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Abstract. In this paper we generalize a weak sequential result of [C. Fan, Int. Math. Res. Not.
IMRN, 2021 (2021), pp. 4864-4906] to any nonscattering solutions in one dimension. No symmetry
assumptions are required for the initial data.
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1. Introduction. In one dimension, the mass-critical nonlinear Schrédinger (NLS)
equation is the quintic NLS equation,

(1.1) iy +tge = plu|*u = pF(u), u(0, ) = uo, u:IxR—C, w= =l

I C R is an open interval, 0 € I. The case when p = 41 is the defocusing case, and
the case when p = —1 is the focusing case.

Equation (1.1) is called mass-critical due to the scaling symmetry. That is, if u
solves (1.1), then for any A > 0,

(1.2) AY2u(N%t, Ax)

also solves (1.1) with initial data A\'/2ug(Az). The L? norm is preserved under (1.2).
The L? norm, or mass, is also conserved by the flow of (1.1) if u is a solution to (1.1)
on some interval I C R, 0 € I; then for any ¢t € I,

(1.3) M(u(t)) = / lu(t, 2)[2dz = / (0, 2)[2da.

It is well known that the local well-posedness of (1.1) is completely determined by
L?-regularity. In the positive direction, [1], [2] proved that (1.1) is locally well-posed
on some open interval for initial data ug € L?(R). Furthermore, when uy € HZ(R)
for some s > 0, [1], [2] proved that (1.1) was locally well-posed on an open interval
(=T,T), where T(||ug||z=) > 0 depends only on the size of the initial data. Finally,
[1], [2] proved that there exists ey > 0 such that if |jug||z2 < €, then (1.1) is globally
well-posed and scattering.

DEFINITION 1 (scattering). A solution to (1.1) that is global forward in time—
that is, u exists on [0, 00)—is said to scatter forward in time if there exists uy € L*(R)
such that

(1.4) tl}%lo () = €% u || L2 (m) = 0.
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WEAK SEQUENTIAL CONVERGENCE 4745

A solution to (1.1) that is global backward in time is said to scatter backward in time
if there exists u_ € L*(R) such that

(1.5) Jimu(t) = e agey = 0.

Equation (1.1) is scattering for any ug € L*(R), or for ug in a specified subset of
L3(R), if for any ug € L*(R) or the specified subset of L*(R) there exist (u_,uy) €
L*(R) x L?(R) such that (1.4) and (1.5) hold, and additionally, u_ and u, depend
continuously on ug.

The qualitative global behavior for (1.1) in the defocusing case (u = +1) has now
been completely worked out. Equation (1.1) was proved to be globally well-posed and
scattering for any initial data in ug € L?(R); see [4].
In contrast, in the focusing case (u = —1), the existence of nonscattering solutions
e

to (1.1) has been known for a long time; see [7]. The ground state of (1.1) is

(16) mmz(mﬁzwguf

Indeed, the function Q(z) solves the elliptic partial differential equation

) i
)

(17) Qza + Q5 =Q.

Therefore, e*Q(x) gives a global solution to (1.1) in the focusing case that does not
scatter in either time direction. Furthermore, if u(¢,x) is a solution to (1.1), then
applying the pseudoconformal transformation to u,

1 (1 z\ ;=2
(18) mu (t’t)e 4

is also a solution to (1.1). Applying the pseudoconformal transformation to e“Q(x)
gives a solution to (1.1) that blows up in finite time.

Furthermore, the mass ||Q| L2 represents a blowup threshold. In the case when
lluollzz < ||Q|lz: and ug € H!, [16] proved that (1.1) has a global solution. This
follows from conservation laws and the Gagliardo—Nirenberg inequality. A solution to
(1.1) has the conserved quantities mass, (1.3), energy,

(1.9) E(u(t)) = %/|uI(t7x)|2da? + % / lu(t, )|%dr = E(u(0)),
and momentum,
(1.10) P(u(t)) = Im/Vu(t, z)u(t, z)dz = P(u(0)).

When p = +1, (1.9) is positive definite, so if ug € H!(R), then the energy gives an
upper bound on ||u(t)|| g for any ¢ € I, which is enough to prove global well-posedness
in the defocusing case. In the focusing case, the Gagliardo—Nirenberg inequality,

112\

L2(R

(1.11) 1180 <3 | Tamer | 10af 22w,
1QIZ: )
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and conservation of energy implies an upper bound on ||u(¢)||z1 for initial data ug €
H' and |lugl|zz < ||Q]|z2. For initial data ug € L? satisfying |lug||zz < ||Q||L2, where
ug need not lie in H!, [3] proved global well-posedness and scattering.

It is conjectured that u(t,z) = e®*Q(x) and its pseudoconformal transformation
are the only nonscattering solutions to (1.1) in the focusing case when ||ugllzz =
|QllL2, modulo symmetries of (1.1). The symmetries of (1.1) include the scaling
symmetry, which has already been discussed (1.2); translation in space and time,

(1.12) U(t —to,x — l‘o), to € R, o € R;
phase transformation,
(1.13) Voo € R, eou(t, x);

and the Galilean transformation,

0] (x €0

(1.14) Tyt —&ot), & ER

This conjecture was answered in the affirmative for the focusing, mass-critical
problem in all dimensions,

(1.15) tu + Au = —|u|%u, u(0, ) = uo, w:IxRY—=C,

for finite time blowup solutions with finite energy initial data. See [8] and [9]. This
conjecture was also answered in the affirmative for a radially symmetric solution to
(1.15) in dimensions d > 4 that blow up in both time directions, but not necessarily
in finite time.

More recently, [6] proved a sequential convergence result for radially symmetric
solutions that may only blow up in one time direction.

Remark 1. The pseudoconformal transformation of the solution e®Q(z) is a so-
lution that blows up in one time direction but scatters in the other. By time reversal
symmetry, it is possible to assume without loss of generality that the solution blows
up forward in time.

THEOREM 1. Assume that u is a radial solution to the focusing, mass-critical
nonlinear Schrédinger equation, (1.15), with ||lug|lLz = ||Q|lL2 that does not scatter
forward in time. Let (T~ (u), T (u)) be its lifespan; T~ (u) could be —oco and T (u)
could be +o0o. Then there exist a sequence t, ,/ TT(u) and a family of parameters
Ay Ve Such that

(1.16) )\f{fu(tn,)\*,nm)e*”*”‘ —-Q in L2

In fact, [6] proved Theorem 1 for a larger class of initial data, data which is
symmetric across d linearly independent hyperplanes. In one dimension, there is no
difference between radial initial data and symmetric initial data, but there is in higher
dimensions.

In this paper we remove the symmetry assumption in dimension one. In doing
so, we must allow for translation and Galilean symmetries, not just scaling and phase
transformation symmetries.

THEOREM 2. Assume u is a solution to (1.1) with ||ug|lr2 = [|@||r2 and p = —1,
which does not scatter forward in time. Let (T~ (u), TV (u)) be its lifespan; T (u)
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could be —oo and T (u) could be +o00. Then there exist a sequence t, / TT (u) and
a family of parameters A n, Yen, Ex,n, Ten sSuch that

(1.17) )\i,/fe”f**"u(tn, M + T p)e” T 5 Q in L2

We can also extend the result of [6] of weak convergence of solutions with mass
slightly above the mass of the ground state,

(1.18) Q2 < lluollze < ||Qllz2 +«  for some  «a>0  small

THEOREM 3. Assume u is a solution to (1.1) with ug satisfying (1.18) and p =
—1, which does not scatter forward in time. Let (T~ (u), T+ (u)) be the lifespan of the
solution. Then there exist a sequence of times t, / TT(u) and a family of parameters
Ay Yeons Exons Txn Such that

(1.19) )\17/36”5*~“u(tn, M + T )" T = Q weakly in L2

2. A preliminary reduction. The scattering result of [3] (Theorem 1.7) implies
that (1.1) scatters for |lugllrz < [|@||L2, so a nonscattering solution to (1.1) with
|luollzz = [|@]|z2 is a minimal mass blowup solution to (1.1).

Remark 2. A blowup solution is a solution that fails to scatter. So e¥(Q is a
blowup solution, even though it is global.

Let t, , TT(u) be a sequence of times. Making a profile decomposition, after
passing to a subsequence, for all J,

J
(2.1) ulty) =Y ghd’ +wy,
j=1
where g/ is the group action
o 12 e e
(2.2) gl = n{j eiT€n 3 1. j & A+ T j)-
Since u is a minimal mass blowup solution, ¢/ = 0 for j > 2, ||¢]|z2 = [|Q||Lz,

and ||w/|lz2= — 0 as n — oo. See [5] or [15] for a detailed treatment of the profile
decomposition for minimal mass blowup solutions. Thus, it will be convenient to drop
the j notation and simply write

(2.3) w(tn) = gno + wy.

Let v be the solution to (1.1) with initial data ¢, and let I be the maximal interval
of existence of v. Since

(2.4) T lullzs (7 ()e)xm =00 and lullgs (@, 14 @)xm =00 n,
(2.5) 101l , ((0,sup(1))xR) = IVlILg  ((int(1),0xR) = 00

Remark 3. Equation (2.4) is also the reason that it was unnecessary to allow for
the possibility of terms like [e*n?$7] in (2.1) in place of ¢/, where t — %oo.
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THEOREM 4. To prove Theorem 2, it suffices to prove that there exists a sequence
Sm / sup(l), sm >0, such that

(2.6) 9(8m)v(sm) = Q in L?
where g(sy,) is in the form of (2.2).
Proof. For any m let s,, € I be such that
(2.7) l9(sm)v(sm) = QL2 <27,
Next, observe that (2.1) implies
(2.8) enTem A2t A 4 x,) — ¢ in L2,
and by the perturbation theory, for a fixed m, for n sufficiently large,
(2.9) ||)\,11/2e*i5is"be’f”ze”"u(tn + )\is,@, )\nx' +xy — 260 M08m) — v(Sm) | L2
< Clsm)||len e ALY 2u(tp, Az + 2,) — || L2

Therefore, by (2.7), (2.9), and the triangle inequality,

g(sm) (AL 2emEmsm tn® iyt 4 A2 5, A + T — 260 Anm)) — Q|| 12

(2.10) o
< Clsp) €€ N 24ty At + ) — @2 + 27

Since g(snm) is also of the form (2.2), there exists a group action gy, », of the form (2.2)
such that
(2.11)

9(sm) ()\}L/Qefigis’" eig"ze”"u(tn —|—)\$Lsm, AnZ+Tn —26,A08m)) = GnmU(ty —|—)\ism, x).

Equation (2.10) implies

(2.12) mlirgoo | gn,mu(tn + /\ismv z) = QL2 =0.
Since t,, S TH(u) and s, > 0, b, + N5, S TF(u). O

Now then, since we know that v(s) blows up in both time directions, (2.5) holds,
and ||v||z2 = ||Q]|L2, Theorem 1.13 of [15] implies that v is almost periodic. That is,
for all s € I, there exist A(s) > 0, &(s) € R, z(s) € R, and (s) € R such that

91 —1/2 iz&(s) iv(s) r — x(s) K
(2.13) A(s)™%e ey 577)\(5) €K,

where K is a fixed precompact subset of L?. It only remains to prove sequential
convergence to @ for this solution v.
THEOREM 5. There exist a sequence s, / sup(l) and a sequence of group actions

g(sm) of the form (2.2) such that

(2.14) l9(sm)v(sm) = Qllzz — 0.

The proof of this fact will occupy the next two sections.

Remark 4. In order for notation to align with notation in prior works, such as [3],
it will be convenient to relabel so that v is now denoted by w, and s is now denoted
by t.
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3. Proof of Theorem 5 when A(t) = 1. When A\(¢) = 1, the solution w is
global in both time directions, I = R. As in [3] use the interaction Morawetz quantity

(3.1) M) = [ [ Inte,)Pffutui(e - y)dedy,

where I is the Fourier truncation operator P<p, where T' = 2k where k € Z>¢. Here,

(3.2) b(z) = / " o(s)ds.

where ¢(s) is an even function given by
(3.3)

cﬁ(:cfy):%/x2 <x£8)x2 (;)ds;/xz(st>x2 (SRy>ds
() e () e

where x is a smooth, compactly supported, even function, x(z) = 1 for |z| < 1 and
x(x) is supported on |z| < 2, and x(z) is decreasing on the set 1 < 2 < 2. Ris a
large, fixed constant that will be allowed to go to infinity as T — oco.

By direct computation,

iM(t) = 72//Im[IﬁIuy]Im[IﬁIum]qS(x — y)dxdy

dt
4y [ [P )P @ - y)dody
2 [ [ty Pt ote - ydsdy
=2 [ [ )Pt ot — y)dady + €.

where £ are the error terms arising from N,
(3.5) ilug + Tugy + F(Iu) = F(Iu) — IF(u) = N.

It is known from Theorem 1.13 of [3] that

T
(3.6) / Ndt < Ro(T)
0
and
(3.7) sup |M(t)] < Ro(T).
t€[0,T]

By direct computation,

(3.8) o) = 3 [ (Igs)xz (2)as~1

for |z] < R, and ¢(z) is supported on the set || < 4R. Finally, ¢(z) is decreasing
when x > 0. Therefore, (3.2) implies that

(3.9) [Y(x)] S R.
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Also, by direct computation,

(3.10) /am( (x_s)>x2 (%) dsgﬁ.

Therefore,

(311 5 [ [ )Pt p)Pe o - y)dody < 5l

Next, decompose
(3.12

)
—//Im[l_uluy]lm[ﬁﬂuw]é(x—y)dxdy—i—//|Iu(t,y)|2|Iuw(t,x)|2¢(x—y)dxdy

(e (5 ) (] (5 )
o f ([ (57 mewka) ([ (75" ) mote o ) as

Fix s € R. For any £ € R,

/X2 (y]_{s) Im[eiyquay(eiyélu)]dy = /X2 (yl_%s) Im[I_quy}dy
and

e [ (U5 ) e
(3.14)

/x2 <st> |0, (e Tu) [P 252/x2 (st> Tu|*dz
+2£/ ( )Im[Iqum]dx+/ (x_s

Therefore, (3.12) is invariant under the Galilean transformation Tu ~ e**¢(*)Tu. This is
not surprising since (3.1) is invariant under the Galilean transformation Tu ~ €**¢(*)Tu.
Indeed, under the mapping e™¢(*)Tu, since Y(xz — y) is an odd function of = — y,
(3.15)

M(t) / / ITu(t, o)X [Tl | (z — y)dady + £(t / / ITu(t, o)[2[Tu(t, 2)|2dzdy

://|Iu(t,y)|21m[ﬁﬂuw]w(x—y)dxdy.

(3.13)

) Tu, |*da.

It is therefore convenient to choose £(s) such that (3.13) = 0. For notational
convenience, let

(3.16) vg = Gy,
Then by the fundamental theorem of calculus and (3.6)—(3.16), if R /oo as T' " oo,

(3.17)
2/Tl/ (/X2 (z/RS) Ivs(t,y)F) </><2 <st) |3x(vs)(t,1:)|2d:c) dsdt
‘/T 1 /(/ ( )Ivé(t vl ) (/x2 (x};‘j IUS(t,x)|6dac) dsdt < Ro(T).
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By the Arzela—Ascoli theorem and (2.13), for any 7 > 0, there exists C(n) < oo such
that

(3.18) / lu(t, z)|?dz < n?.
lz—2(t)|> S8

By Holder’s inequality and A(t) = 1,
(3.19)

1 / 2 (17 - 5) 6 212 2
= X vs[Pdx S X5 | oo (2ma () >0 vs|“d | .
6 Jjs—atlzcm) R M= (z== @20 \ J._oyscm

We can estimate ”XU?H%”(lx—x(t)lZC(n)) using an idea from [10]. By the funda-

mental theorem of calculus, for |z — z(t)| > C(n),
(3.20)

1
ot < ( [ 2xdullnlds + 5 [ Wlloas )
xr—s 1/2 i 1
([ (550) atwnriac) ( / |v|2> +< / |>
R ja—a(8)[>C(n) B \Jja—a@)1=cm

Therefore,
(3.21)

2 3

o=/ (50 ] ) 4 )
R jo—a()|>C () R\ Jo—ayzcm)

< h 2 (LS8 2 l 6

S (/x ( 7 )|a:1:(vs)| dw) + R

Therefore,
(3.22)

LGy f
L O )] () i)
< Ro(T)+ L T+R//( ( >|vs|2dy)< x2<x};s>3z(vs)|2dx)dsdt.

When 7 > 0 is sufficiently small,

(3.23) / J (e (P57 ban) ([ (55°) atwnria) asa
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can be absorbed into the left-hand side of (3.22), proving that
(3.24)

/T 2 ([ (U i) ([ (557 atwtoa) asa
—/T X /(/ ( )vé(t y)| ) </|m<t>|<c<n> X2 (x;> |vs(t,a:)|6dx> dsdt
< Ro(T) + T+—/ [([¢ (45 1etenay)

x <~/|x—x(t)|§0(n) X2 (xl_%s) |v3(t,x)|6dx> dsdt.

Now choose z(t) — 2C(n) < z. < z(t) + 2C(n) such that

Ty — S . xr— S
3.25 = f .
( ) X ( R > m(t)—QC(n)g;Sz(t)—&-QC(t)X ( R )

By the fundamental theorem of calculus, when z(t) — C(n) < z < z(t) + C(n),

() () ()

When |z — z(t)| < C(n),

52 AICONCOES &
SO
(3.28)

2] (e (55 ) et ( Lo (x];) o, x>|6dx> ds
Z’R) vs(t,y)2> ( /|m—m(t)|§c(n) ) ot x>|6dx> ds
@ (U5 ) el ( Lo |vs<t,x>|6dx> ds

— % (/ X (yés> vs(t,y)2> </|x—x(t)|§0(n) X2 (w*R_ S) |vs(t,:v)|6dx> ds

Cn
+0 (S polialols )

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.
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Plugging (3.28) into (3.24),
(3.29)

[ 1 ([ (57 o) ([ (55 )
SR () o) ([ o (55 teitas)
< Ro(T) + %T + gl el

/ /(/ ( ) [os] dy) (Xm_x<t>|gc<n> S (x*]f) |vs|6d:c> dst.

Since x(*x -1y <1,
(3.30)

L)) ([ (52 ) o

S 774||U||L;°Li H“”L?,m'

By definition of z, and Yy,
(3.31)

/ /</ (y ) lvs (t, )| ) </X2 (st) |3x(vs)(t,x)|2dx) dsdt
. ,/ / (/ X <yRs> vs(t,y)2> </a:ﬂc(t)|<0(n) X2 <x1;8> vs(t,x)|6dx> dsdt
(U5 ) el

_Rx(t)) |0z (v5) (¢, x)Ide) dsdt

(L55) )
\ [

Integrating by parts,
(3.32)

[ () ot pae = f1o. (x (S ) ) pae
+ %/x“ (”3 _g(t)) X (”” _;(t)> (v, [2da.
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Therefore,
(3.33)

2[5 [ (e () )

(x (M)/X2 (x_R )>|8x(vs)(t,m)|2dx> dsdt
LR (e (5 wetewr)
x (X ( 7 I RV (“7;“)> |vs(t,a:)|6dx> dsdt

[ R (o) ()5 (2 (52):) o

T
+ —lulltez:

x(t

Here E is the energy given by (1.9). Therefore, we have finally proved
(3.34)

R (e () o () (252 o

6
U C(n)
< RoT) + LT+ ez N8y + Sl el
Now by Strichartz estimates and A(t) = 1, [Jullgs (jo,rjxr) ~ T, so choosing

R " oo perhaps very slowly as T' 7 oo, and then n \, 0 sufficiently slowly, the
right-hand side of (3.34) is bounded by o(T' )
On the other hand, when [s — 2(t)] < £, x(£27%) = 1 and

(3.35) (/ X’ (yR) |vs(t, y)IQdy) *HUIILz

Therefore, the left-hand side of (3.34) is bounded below by

(3.36) ||u0||L2/ /I s ( <I;(t)>vs) dsdt < o(T).

Thus, taking a sequence T, /oo, R, /' 00, n, N\ 0, there exists a sequence of times
tn € [, T,], |sn — 2(tn)| < B2 such that

(3.37) E (X (l;%) emg(s”)e”(s”')P<T”u(tn,x)) — 0,
(3.38) (1 - X (?)) @)V Pty x) -0 in L2
(3.39) (1 - Psgp)u(ty,x) -0 in L%
and
(3.40) HX (HL) esen) V) p gty x)||  ~ 1.
R, L6
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Now by the almost periodicity of u, (2.13), after passing to a subsequence, there
exists ug € H' such that

(3.41) <W> €178 (5n) g (En)E(3n) gV (n) P (8, @ 4 2 () — ug,

weakly in H!, and

t,) — ) )
an) (T e ) P (1 + (1)

strongly in L2 N LS. Also, by (3.37), (3.38), and (3.39), |luo||z = [|Q|l L2, F(uo) <0,
and by the Gagliardo—Nirenberg inequality, E(ug) = 0. Therefore,

(3.43) uy = A2Q(Nz — x0))

for some A ~ 1 and |zg| < 1. This proves Theorem 5 when A(t) = 1. d

4. Proof of Theorem 5 for a general A(t). Now suppose that A(t) is free to
vary. Recall that [\ (t)] < A(¢)3. In this case,

(4.1) A(#) : T — (0,00),

where I is the maximal interval of existence of an almost periodic solution to (1.1).

THEOREM 6. Suppose T,, € I, T,, — sup(I) is a sequence of times in I. Then

1 T s e
(4.2) 0 /0 A(t)3dt = +oc.

lim —~—————————
Ty —rsup(I) SUPye [0,Tn] A

Proof. Suppose that this were not true, that is, there exist a constant Cy < oo
and a sequence T,, — sup(J) such that for all n € Zx,

1 Tn
4.3 - / At)3dt < €.
(4.3) SUPte[0,T] At) Jo ( ) 0

This would correspond to the rapid cascade scenario in [3], [4], [6]. In those papers
N(t) was used instead of A\(¢). As in those papers, A(t) can be chosen to be continuous,
so for each T;, choose t,, € [0,T,,] such that

(4.4) Atn) = sup ().
te[0,T]

Since I is the maximal interval of existence of u,
(4.5) nlgrolo ||U||Lgm([o,Tn]xR) = 0.

By the almost periodicity property of v and (2.13), there exist (¢, ), &(t,), and y(t,)
such that if

(4.6) eVt \(£,)1/ 26828 En) V) gy (1 Nt ) + 2(tn)) = vn(@),

then v,, converges to some g in L?(R), and uq is the initial data for a solution u to
(1.1) that blows up in both time directions, A(t) < 1 for all ¢ < 0, and

(4.7) /O A(t)3dt < Co.

— 00
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Following the proof of Theorem 5.1 in [4],
(4.8) ”uHLfCHS((—oo,O]XR) Ss Co

for any 0 < s < 5. Combining (4.8) with (4.7) and [N (¢)| < A(¢)® implies

(4.9) t\l‘%zrloo A(t) =0.
Also, since
(4.10) €' ()] S A,

(4.7) implies that £(¢) converges to some {— € R as t \, —oco. Make a Galilean
transformation so that £~ = 0. Then, by interpolation, (4.8) and (4.9) imply

(4.11) Jim B(u(t) = 0.

Therefore, by conservation of energy, and convergence in L? of (4.6),
(4.12) B(u)=0 and fuolze = Q] 2.
Therefore, by the Gagliardo-Nirenberg theorem,

(4.13) up = \2Q(Nz —x0)), 0<A<oo, mx€R,
and @ is the solution to the elliptic partial differential equation
(4.14) Quz +1QI'Q = Q.

However, assuming without loss of generality that £y = 0 and A = 1, the solution to
(1.1) is given by

(4.15) u(t,r) = e"Q(x), teR.

However, such a solution definitely does not satisfy (4.3), which gives a contradic-
tion. ]

Therefore, consider the case when

(4.16) lim / At)3dt =

=00 SUP¢e(0,T),] >\
Passing to a subsequence, suppose

1 n 2n
(4.17) ]A(t)/o A(t)3dt = 22",

SUP¢teo, T,

Then as in [3], replace M(t) in the previous section with

(4.18) M(t) = / / [Tut, ) [PIm{Fulu, (At — y))dady,
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where A(t) is given by the smoothing algorithm from [3]. Then

%M(t) = —2X(t) / / Im[Tulu, | Im[Tulu, |p(A(t) (z — y))dzdy

At)? / / Tu(t, ) 2[Tu(t, ) P () (@ — v))dady
(4.19) +2(1) / / Tu(t, )/ g (£, 2) PS(NE) (@ — ) derdy
= 530 [ [ Mttt o) Po0) o~ )dady + €
0 [ [ e y) Proffata, ] (@ - ) - y)dody,

where I = PSQM'SUPte[o,T] A(t)-
Equation (3.9) implies

(4.20) sup |M(t)| < Ro(2*™) - sup A(t).

~

te[0,T,] te[0,T]

Next, since the smoothing algorithm guarantees that A(t) < A(t), following (3.11),

|7 550° [ [Pl e (oo - u)dedyar

< R2||uHL2 / AMOA(E)%dt < Ro(22™) - sup A(t).
te[0,7]

(4.21)

Since A(t) < A(t), following the analysis in (3.12)(3.34),

/"1~ [ [Pt )P () - )y

/ //Im Tuluy ) Tm(Tulu, |¢(A(t) (= — y))dzdydt

(4.22)
> / 3 [ [ 1t o) it (,0) Po0) & — v)dzdye
2 [730 [ [P 600 - vy
=4/0T;\(t)2(t)2/ (/x2 <y1—%s> Ivs,t(tyy)|2dy)
e (220 (1 (20 )
(4.23)

Tn _
+ Ro(2*") - sup A(t) + O <n4IIU||2L;;OL3/O A(L‘)|U(15)||6Lsdt>

te[0,T)

T ~
o <CJ(%77)|“”%:°L2/O A(t)IIU(7f)||%2cit> .
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Remark. The term v, is an abbreviation for

4.24 el I I
. st = N 7N170 t: N )
(424) RS YORE “( A<t>>

where £(s) € R is chosen such that

(4.25) /X2 (W) Im[v, 0y (vs,¢)]dx = 0.

The error estimates can be handled in a manner similar to the previous section;
see [3]. Therefore, it only remains to consider the contribution of the term in (4.19)
with A(t). By direct computation,

3 [ [ e, )Pl o 0) o — ) (o~ )dedy
_& 2 S\(t)y—s u 2
—Rw)/</x ( v )u (t,9) dy>

(4.26) X ( / X’ (

oAV (A(“j{) <yﬂ<t>—s>lu<t,y>|2dy>

Mt)w_s) Im[IquE]d;v> ds.

_S> Im([Tulu, ) (z\(t) — s)dx) ds

Now rescale
(4.27)

] ( IE <x<t>]%;(3<t>s> et (65)
~ 1

A(t) M)y — A)s\ [ yA(t) — sA?) 1 v \|?
Rx(t)w)/ </ X2< RA(1) >< A®) )‘/\(t)lﬂlu(t’)\(t)) dy)

(0 (P o gt (et 2 Grgam (15 )

Remark 5. Throughout these calculations, we understand that A\Y/2Iu(%) refers
to the rescaling of the function Iu(x), not the I-operator acting on a rescaling of w.
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For any ¢ € R,
(4. 28)

-3 WZ () (o))
(e ()l o) o 52)
fiding
— ééiiw/ (/ e (M%) (2552 s (5t )
(e (e ()] )

In particular, if we choose & = £(s),
(4.29)

: ;;z;w [/ () )
| / [/ ( i) ot
(/ & “) oo () 0] (4572 ) o

Then by the Cauchy—Schwarz inequality,
(4.30)

. A \ —s At (z—s

< %A(t)A(t)z/ (/x2 (A(Z(Azzﬂ >> |vs,t|2dy> (/Xz (A(%@ )) |81(vs,t)|2do:> o
LB A0 (L (Anm-9),
T ADA()? BA®R) (/X < RA(t) ) [0s.1] dy)

(A =9)\ o (ADE-9)\
X (/X ( RO >US,t| ( N0 ) dx).

The first term in (4.30) can be absorbed into (4.23). The second term in (4.30)
is bounded by

1 t
(431) 1 AOP POE poys ..

"t ABA(E)?
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The smoothing algorithm from [3] is used to control this term. Recall that after
n iterations of the smoothing algorithm on an interval [0,T], A(t) has the following
properties:

LoA() < A(1).

2. IfA();é then A(t) = A(t).

3. A(t) = 27"A(H).

4. fo \5\ (t)|dt < %fo IA(t) /A\(gdt with implicit constant independent of n and
Therefore7

Tn 1 ‘ (t)‘Q 1 T )\(t)|
2 Rt 2dt< U 2/ RQ)\ dt
L st Pt < il [ R

JA(D)?
1 R?
S warlulters / At

Since sup;e(o 1, A(t) < 272" fOT" A(t)3dt,

(4.32)

(4.33) R, sup |M(t)] < R,0(2*")- sup A(t).
te[0,Ty] tel0,7)

Therefore, it is possible to take a sequence 7, \, 0, R, oo, probably very slowly,
such that

1 R2 Tn _ ) Tn _ )
(4.34) Hu||LooL2 IA@®)IA(#)?dt = 0,(1) AE)A(¥)?dt,
nnt 0 0
(4.35) R, sup |M(t)] <o(2°")- sup (1),
te[0,T,] te[0,7)

T~ T7L~
(4.36) o(mtnuiw / A(t)llu(wiedt) S on(1) / AOA()dt,
0 0

and

C(n) 12 Tn s 6 Tn 2
(4.37) 0( 2l ey [ A<t>||u<t>||Lgdt>son<1> | Awnerae

Therefore, these terms may be safely treated as error terms, and repeating the
analysis in (3.25)—(3.43) for (4.23), there exists a sequence of times t,, /* sup(I) such
that

(@ = @(tn))A(tn)
(4.38) E <X (Rn)\(tn)> Us,,,,tn> — 0,

(z — x(tn))j‘(tn)
(4.39) H (1 - X (Rn/\(tn)>> Vspitn y — 0,
(4.40) [V tallzz /7 1QllL2,
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and

~ 1.
L6

(4.41)

(2 = 2(tn)) Altn)

In this case as well, we can show that this sequence converges in H' to
(4.42) ug = A2Q(\(x — x0)).

This proves Theorem 5 for a general A(t). |

5. Proof of Theorem 3. The proof of Theorem 3 uses the argument used in
the proof of Theorem 2, combined with some reductions from [6]. First recall Lemma
4.2 from [6].

LEMMA 1. Letu be a solution to (1.1) that satisfies the assumptions of Theorem 3.
Then there exists a sequence t, /T (u) such that u(t,) admits a profile decomposi-
tion with profiles {¢;,{Tjmn, Njn,&jnstin, Vin}}, and there is a unique profile, call it
@1, such that the following hold:

1 61l > Q-
2. The nonlinear profile ®, associated to ¢y is an almost periodic solution in the
sense of (2.13) that does not scatter forward or backward in time.

Now consider the nonlinear profile ;. To simplify notation relabel ®; = u, and
let vs ¢ be as in (4.24). Using the same arguments as in the proof of Theorem 2, there
exists a sequence t,, N TV (u), R, /' 00, s, € R, A(t) < A(¢), such that

(5.1) E <x (W) vsmtn> =0,

(x — z(tn))A(tn)
(5.2) H (1 —x <W>> - ) o
(53) ||1)s,,,,tn||L2 N ||u||L2,
and
(@ — x(tn))A(tn)
(5.4) HX (M) Tvs, ¢, B ~ 1

Therefore, by the almost periodicity of v, there exists a sequence g(t,) given by (2.2)
such that

(5.5) g(tn)v(tn) — uo in L?,

where E(ug) = 0 and ||uol|z2 > ||Q]| Lz

Next, utilize a blowup result of [11], [12], [13], [14]. We will state it here as it is
stated in Theorem 3.1 of [6].
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THEOREM 7. Assume u is a solution to (1.1) with up = —1, and with initial data
in H' that has nonpositive energy and satisfies (1.18). If u is of zero energy, then u
blows up in finite time according to the log-log law,

(5.6)
ult,z) = A(tl)m(me) (W) 0, z(t) R, () ERA(E) > 0, |lellm < 5(c),

with the estimate

T—t
(57) Alt) ~ In|In(T —¢)|’
and
(5.8) lim [ (|Ve(t,z)|? + |e(t, z)|?e"1*Ndz = 0.
t—T

Let u be the solution to (1.1) with initial data ug. If |Jug||z = ||Q|| L2, then we are
done, using the analysis in the previous section. If ||ug||rz > ||@]| L2, then Theorem 7
implies that «w must be of the form (5.6). Furthermore, by perturbative arguments,
for any fixed t' € [0,T), (5.5) implies that there exists a sequence g(t,,t") such that

!

(5.9) G(tm, )0 (tn + A(:M) Su@) i I

In fact, perturbative arguments also imply that there exists a sequence ¢/, * oo,
perhaps very slowly, such that

t/

(5.10) Hg(tn,t;)v (tn + )\(tZ)2> — u(t))

— 0.

L2

To see why this is so, first observe that if g(¢,)v(t,) = ug, then the uniqueness of
solutions to (1.1) combined with (1.2) and (1.14) implies that there exists g(t,,t’)
such that

t/
/ LA !
(5.11) g(tn,t" v (tn + )\(tn)2> u(t").
Suppose that

(5'12) g(tn)v(tn) = Uug + wo, ||w0||L2 < 1.

For T € [0,T) fixed, Hu||L? (0,7 xr) < 0. Therefore, for [lwo| .2 sufficiently small, if
t' € [0,T7,

tl
(5.13) g(tn, t)v (tn + W) =u(t) +w(t),
where u solves (1.1) and w solves
(5.14) iw + Aw = —|u 4+ w|*(u + w) + |ul*u.
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Partitioning [0, 7] into finitely many pieces such that ||u| LS (1,xr) < € on each piece,
and iterating perturbative arguments on each piece (see Chapter 1.3 of [5]), for ||wo|| L2
sufficiently small,

ulls (0.7
t,z([ovT]X]R)
(5.15) ”wHLt"OLi([O,T]xR)Sexp T & lwol[ 2

Both (5.9) and (5.10) clearly follow from (5.15), since as [Jwo| 2, it is possible to take
T /T sufficiently slowly such that the right-hand side of (5.15) goes to zero.
Furthermore, Theorem 7 implies that there exists a sequence g(t],) such that

(5.16) gt u(t)) — Q, weakly in L2

Combining (5.10) and (5.16),

t/
)\(tZ)Q) —Q, weakly in L?.

(B17)  g(t)gltn ) (tn i

This completes the proof of Theorem 3.
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