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1. Introduction. In one dimension, the mass-critical nonlinear Schr\"odinger (NLS)
equation is the quintic NLS equation,

(1.1) iut+uxx = \mu | u| 4u = \mu F (u), u(0, x) = u0, u : I\times \BbbR \rightarrow \BbbC , \mu = \pm 1.

I \subset \BbbR is an open interval, 0 \in I. The case when \mu = +1 is the defocusing case, and
the case when \mu =  - 1 is the focusing case.

Equation (1.1) is called mass-critical due to the scaling symmetry. That is, if u
solves (1.1), then for any \lambda > 0,

(1.2) \lambda 1/2u(\lambda 2t, \lambda x)

also solves (1.1) with initial data \lambda 1/2u0(\lambda x). The L
2 norm is preserved under (1.2).

The L2 norm, or mass, is also conserved by the flow of (1.1) if u is a solution to (1.1)
on some interval I \subset \BbbR , 0 \in I; then for any t \in I,

(1.3) M(u(t)) =

\int 
| u(t, x)| 2dx =

\int 
| u(0, x)| 2dx.

It is well known that the local well-posedness of (1.1) is completely determined by
L2-regularity. In the positive direction, [1], [2] proved that (1.1) is locally well-posed
on some open interval for initial data u0 \in L2(\BbbR ). Furthermore, when u0 \in Hs

x(\BbbR )
for some s > 0, [1], [2] proved that (1.1) was locally well-posed on an open interval
( - T, T ), where T (\| u0\| Hs) > 0 depends only on the size of the initial data. Finally,
[1], [2] proved that there exists \epsilon 0 > 0 such that if \| u0\| L2 < \epsilon 0, then (1.1) is globally
well-posed and scattering.

Definition 1 (scattering). A solution to (1.1) that is global forward in time---
that is, u exists on [0,\infty )---is said to scatter forward in time if there exists u+ \in L2(\BbbR )
such that

(1.4) lim
t\nearrow \infty 

\| u(t) - eit\partial xxu+\| L2(\BbbR ) = 0.
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WEAK SEQUENTIAL CONVERGENCE 4745

A solution to (1.1) that is global backward in time is said to scatter backward in time
if there exists u - \in L2(\BbbR ) such that

(1.5) lim
t\searrow  - \infty 

\| u(t) - eit\partial xxu - \| L2(\BbbR ) = 0.

Equation (1.1) is scattering for any u0 \in L2(\BbbR ), or for u0 in a specified subset of
L2(\BbbR ), if for any u0 \in L2(\BbbR ) or the specified subset of L2(\BbbR ) there exist (u - , u+) \in 
L2(\BbbR ) \times L2(\BbbR ) such that (1.4) and (1.5) hold, and additionally, u - and u+ depend
continuously on u0.

The qualitative global behavior for (1.1) in the defocusing case (\mu = +1) has now
been completely worked out. Equation (1.1) was proved to be globally well-posed and
scattering for any initial data in u0 \in L2(\BbbR ); see [4].

In contrast, in the focusing case (\mu =  - 1), the existence of nonscattering solutions
to (1.1) has been known for a long time; see [7]. The ground state of (1.1) is

(1.6) Q(x) =

\biggl( 
3

cosh(2x)2

\biggr) 1/4

.

Indeed, the function Q(x) solves the elliptic partial differential equation

(1.7) Qxx +Q5 = Q.

Therefore, eitQ(x) gives a global solution to (1.1) in the focusing case that does not
scatter in either time direction. Furthermore, if u(t, x) is a solution to (1.1), then
applying the pseudoconformal transformation to u,

(1.8)
1

t1/2
\=u

\biggl( 
1

t
,
x

t

\biggr) 
ei

| x| 2
4t

is also a solution to (1.1). Applying the pseudoconformal transformation to eitQ(x)
gives a solution to (1.1) that blows up in finite time.

Furthermore, the mass \| Q\| L2 represents a blowup threshold. In the case when
\| u0\| L2 < \| Q\| L2 and u0 \in H1, [16] proved that (1.1) has a global solution. This
follows from conservation laws and the Gagliardo--Nirenberg inequality. A solution to
(1.1) has the conserved quantities mass, (1.3), energy,

(1.9) E(u(t)) =
1

2

\int 
| ux(t, x)| 2dx+

\mu 

6

\int 
| u(t, x)| 6dx = E(u(0)),

and momentum,

(1.10) P (u(t)) = Im

\int 
\nabla u(t, x)u(t, x)dx = P (u(0)).

When \mu = +1, (1.9) is positive definite, so if u0 \in H1(\BbbR ), then the energy gives an
upper bound on \| u(t)\| H1 for any t \in I, which is enough to prove global well-posedness
in the defocusing case. In the focusing case, the Gagliardo--Nirenberg inequality,

(1.11) \| f\| 6L6(\BbbR ) \leq 3

\Biggl( 
\| f\| 2L2(\BbbR )

\| Q\| 2L2(\BbbR )

\Biggr) 2

\| \partial xf\| 2L2(\BbbR ),
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4746 BENJAMIN DODSON

and conservation of energy implies an upper bound on \| u(t)\| H1 for initial data u0 \in 
H1 and \| u0\| L2 < \| Q\| L2 . For initial data u0 \in L2 satisfying \| u0\| L2 < \| Q\| L2 , where
u0 need not lie in H1, [3] proved global well-posedness and scattering.

It is conjectured that u(t, x) = eitQ(x) and its pseudoconformal transformation
are the only nonscattering solutions to (1.1) in the focusing case when \| u0\| L2 =
\| Q\| L2 , modulo symmetries of (1.1). The symmetries of (1.1) include the scaling
symmetry, which has already been discussed (1.2); translation in space and time,

(1.12) u(t - t0, x - x0), t0 \in \BbbR , x0 \in \BbbR ;

phase transformation,

(1.13) \forall \theta 0 \in \BbbR , ei\theta 0u(t, x);

and the Galilean transformation,

(1.14) ei
\xi 0
2 (x - \xi 0

2 t)u(t, x - \xi 0t), \xi 0 \in \BbbR .

This conjecture was answered in the affirmative for the focusing, mass-critical
problem in all dimensions,

(1.15) iut +\Delta u =  - | u| 4du, u(0, x) = u0, u : I \times \BbbR d \rightarrow \BbbC ,

for finite time blowup solutions with finite energy initial data. See [8] and [9]. This
conjecture was also answered in the affirmative for a radially symmetric solution to
(1.15) in dimensions d \geq 4 that blow up in both time directions, but not necessarily
in finite time.

More recently, [6] proved a sequential convergence result for radially symmetric
solutions that may only blow up in one time direction.

Remark 1. The pseudoconformal transformation of the solution eitQ(x) is a so-
lution that blows up in one time direction but scatters in the other. By time reversal
symmetry, it is possible to assume without loss of generality that the solution blows
up forward in time.

Theorem 1. Assume that u is a radial solution to the focusing, mass-critical
nonlinear Schr\"odinger equation, (1.15), with \| u0\| L2 = \| Q\| L2 that does not scatter
forward in time. Let (T - (u), T+(u)) be its lifespan; T - (u) could be  - \infty and T+(u)
could be +\infty . Then there exist a sequence tn \nearrow T+(u) and a family of parameters
\lambda \ast ,n, \gamma \ast ,n such that

(1.16) \lambda 
d/2
\ast ,nu(tn, \lambda \ast ,nx)e

 - i\gamma \ast ,n \rightarrow Q in L2.

In fact, [6] proved Theorem 1 for a larger class of initial data, data which is
symmetric across d linearly independent hyperplanes. In one dimension, there is no
difference between radial initial data and symmetric initial data, but there is in higher
dimensions.

In this paper we remove the symmetry assumption in dimension one. In doing
so, we must allow for translation and Galilean symmetries, not just scaling and phase
transformation symmetries.

Theorem 2. Assume u is a solution to (1.1) with \| u0\| L2 = \| Q\| L2 and \mu =  - 1,
which does not scatter forward in time. Let (T - (u), T+(u)) be its lifespan; T - (u)
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WEAK SEQUENTIAL CONVERGENCE 4747

could be  - \infty and T+(u) could be +\infty . Then there exist a sequence tn \nearrow T+(u) and
a family of parameters \lambda \ast ,n, \gamma \ast ,n, \xi \ast ,n, x\ast ,n such that

(1.17) \lambda 
1/2
\ast ,ne

ix\xi \ast ,nu(tn, \lambda \ast ,nx+ x\ast ,n)e
 - i\gamma \ast ,n \rightarrow Q in L2.

We can also extend the result of [6] of weak convergence of solutions with mass
slightly above the mass of the ground state,

(1.18) \| Q\| L2 < \| u0\| L2 \leq \| Q\| L2 + \alpha for some \alpha > 0 small.

Theorem 3. Assume u is a solution to (1.1) with u0 satisfying (1.18) and \mu =
 - 1, which does not scatter forward in time. Let (T - (u), T+(u)) be the lifespan of the
solution. Then there exist a sequence of times tn \nearrow T+(u) and a family of parameters
\lambda \ast ,n, \gamma \ast ,n, \xi \ast ,n, x\ast ,n such that

(1.19) \lambda 
1/2
\ast ,ne

ix\xi \ast ,nu(tn, \lambda \ast ,nx+ x\ast ,n)e
 - i\gamma \ast ,n \rightharpoonup Q weakly in L2.

2. A preliminary reduction. The scattering result of [3] (Theorem 1.7) implies
that (1.1) scatters for \| u0\| L2 < \| Q\| L2 , so a nonscattering solution to (1.1) with
\| u0\| L2 = \| Q\| L2 is a minimal mass blowup solution to (1.1).

Remark 2. A blowup solution is a solution that fails to scatter. So eitQ is a
blowup solution, even though it is global.

Let tn \nearrow T+(u) be a sequence of times. Making a profile decomposition, after
passing to a subsequence, for all J ,

(2.1) u(tn) =

J\sum 
j=1

gjn\phi 
j + wJ

n ,

where gjn is the group action

(2.2) gjn\phi 
j = \lambda 

1/2
n,j e

ix\xi n,jei\gamma n,j\phi j(\lambda n,jx+ xn,j).

Since u is a minimal mass blowup solution, \phi j = 0 for j \geq 2, \| \phi 1\| L2 = \| Q\| L2 ,
and \| wJ

n\| L2 \rightarrow 0 as n \rightarrow \infty . See [5] or [15] for a detailed treatment of the profile
decomposition for minimal mass blowup solutions. Thus, it will be convenient to drop
the j notation and simply write

(2.3) u(tn) = gn\phi + wn.

Let v be the solution to (1.1) with initial data \phi , and let I be the maximal interval
of existence of v. Since

(2.4) lim
n\rightarrow \infty 

\| u\| L6
t,x((T

 - (u),tn)\times \BbbR ) = \infty and \| u\| L6
t,x((tn,T

+(u))\times \BbbR ) = \infty \forall n,

(2.5) \| v\| L6
t,x([0,sup(I))\times \BbbR ) = \| v\| L6

t,x((inf(I),0]\times \BbbR ) = \infty .

Remark 3. Equation (2.4) is also the reason that it was unnecessary to allow for

the possibility of terms like [eit
j
n\Delta \phi j ] in (2.1) in place of \phi j , where tjn \rightarrow \pm \infty .
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4748 BENJAMIN DODSON

Theorem 4. To prove Theorem 2, it suffices to prove that there exists a sequence
sm \nearrow sup(I), sm \geq 0, such that

(2.6) g(sm)v(sm) \rightarrow Q in L2,

where g(sm) is in the form of (2.2).

Proof. For any m let sm \in I be such that

(2.7) \| g(sm)v(sm) - Q\| L2 \leq 2 - m.

Next, observe that (2.1) implies

(2.8) ei\xi nxei\gamma n\lambda 1/2n u(tn, \lambda nx+ xn) \rightarrow \phi in L2,

and by the perturbation theory, for a fixed m, for n sufficiently large,

(2.9)
\| \lambda 1/2n e - i\xi 2nsmei\xi nxei\gamma nu(tn + \lambda 2nsm, \lambda nx+ xn  - 2\xi n\lambda nsm) - v(sm)\| L2

\leq C(sm)\| ei\xi nxei\gamma n\lambda 1/2n u(tn, \lambda nx+ xn) - \phi \| L2 .

Therefore, by (2.7), (2.9), and the triangle inequality,

(2.10)
\| g(sm)(\lambda 1/2n e - i\xi 2nsmei\xi nxei\gamma nu(tn + \lambda 2nsm, \lambda nx+ xn  - 2\xi n\lambda nsm)) - Q\| L2

\leq C(sm)\| ei\xi nxei\gamma n\lambda 1/2n u(tn, \lambda nx+ xn) - \phi \| L2 + 2 - m.

Since g(sm) is also of the form (2.2), there exists a group action gn,m of the form (2.2)
such that
(2.11)

g(sm)(\lambda 1/2n e - i\xi 2nsmei\xi nxei\gamma nu(tn+\lambda 
2
nsm, \lambda nx+xn - 2\xi n\lambda nsm)) = gn,mu(tn+\lambda 

2
nsm, x).

Equation (2.10) implies

(2.12) lim
m,n\rightarrow \infty 

\| gn,mu(tn + \lambda 2nsm, x) - Q\| L2 = 0.

Since tn \nearrow T+(u) and sm \geq 0, tn + \lambda 2nsm \nearrow T+(u).

Now then, since we know that v(s) blows up in both time directions, (2.5) holds,
and \| v\| L2 = \| Q\| L2 , Theorem 1.13 of [15] implies that v is almost periodic. That is,
for all s \in I, there exist \lambda (s) > 0, \xi (s) \in \BbbR , x(s) \in \BbbR , and \gamma (s) \in \BbbR such that

(2.13) \lambda (s) - 1/2eix\xi (s)ei\gamma (s)v

\biggl( 
s,
x - x(s)

\lambda (s)

\biggr) 
\in K,

where K is a fixed precompact subset of L2. It only remains to prove sequential
convergence to Q for this solution v.

Theorem 5. There exist a sequence sm \nearrow sup(I) and a sequence of group actions
g(sm) of the form (2.2) such that

(2.14) \| g(sm)v(sm) - Q\| L2 \rightarrow 0.

The proof of this fact will occupy the next two sections.

Remark 4. In order for notation to align with notation in prior works, such as [3],
it will be convenient to relabel so that v is now denoted by u, and s is now denoted
by t.
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3. Proof of Theorem 5 when \bfitlambda (\bfitt ) = 1. When \lambda (t) = 1, the solution u is
global in both time directions, I = \BbbR . As in [3] use the interaction Morawetz quantity

(3.1) M(t) =

\int \int 
| Iu(t, y)| 2Im[ \=IuIux]\psi (x - y)dxdy,

where I is the Fourier truncation operator P\leq T , where T = 2k, where k \in \BbbZ \geq 0. Here,

(3.2) \psi (x) =

\int x

0

\phi (s)ds,

where \phi (s) is an even function given by
(3.3)

\phi (x - y) =
1

R

\int 
\chi 2

\biggl( 
x - y  - s

R

\biggr) 
\chi 2
\Bigl( s
R

\Bigr) 
ds =

1

R

\int 
\chi 2

\biggl( 
x - s

R

\biggr) 
\chi 2

\biggl( 
s - y

R

\biggr) 
ds

=
1

R

\int 
\chi 2

\biggl( 
x - s

R

\biggr) 
\chi 2

\biggl( 
y  - s

R

\biggr) 
ds,

where \chi is a smooth, compactly supported, even function, \chi (x) = 1 for | x| \leq 1 and
\chi (x) is supported on | x| \leq 2, and \chi (x) is decreasing on the set 1 \leq x \leq 2. R is a
large, fixed constant that will be allowed to go to infinity as T \rightarrow \infty .

By direct computation,

(3.4)

d

dt
M(t) =  - 2

\int \int 
Im[ \=IuIuy]Im[ \=IuIux]\phi (x - y)dxdy

+
1

2

\int \int 
| Iu(t, y)| 2| Iu(t, y)| 2\phi \prime \prime (x - y)dxdy

+ 2

\int \int 
| Iu(t, y)| 2| Iux(t, x)| 2\phi (x - y)dxdy

 - 2

3

\int \int 
| Iu(t, y)| 2| Iu(t, x)| 6\phi (x - y)dxdy + \scrE ,

where \scrE are the error terms arising from \scrN ,

(3.5) iIut + Iuxx + F (Iu) = F (Iu) - IF (u) = \scrN .

It is known from Theorem 1.13 of [3] that

(3.6)

\int T

0

\scrN dt \lesssim Ro(T )

and

(3.7) sup
t\in [0,T ]

| M(t)| \lesssim Ro(T ).

By direct computation,

(3.8) \phi (x) =
1

R

\int 
\chi 2

\biggl( 
x - s

R

\biggr) 
\chi 2
\Bigl( s
R

\Bigr) 
ds \sim 1

for | x| \leq R, and \phi (x) is supported on the set | x| \leq 4R. Finally, \phi (x) is decreasing
when x \geq 0. Therefore, (3.2) implies that

(3.9) | \psi (x)| \lesssim R.
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4750 BENJAMIN DODSON

Also, by direct computation,

(3.10) \phi \prime \prime (x) =
1

R

\int 
\partial xx

\biggl( 
\chi 2

\biggl( 
x - s

R

\biggr) \biggr) 
\chi 2
\Bigl( s
R

\Bigr) 
ds \lesssim 

1

R2
.

Therefore,

(3.11)
1

2

\int \int 
| Iu(t, y)| 2| Iu(t, y)| 2\phi \prime \prime (x - y)dxdy \lesssim 

1

R2
\| u\| 4L2 .

Next, decompose
(3.12)

 - 
\int \int 

Im[ \=IuIuy]Im[ \=IuIux]\phi (x - y)dxdy +

\int \int 
| Iu(t, y)| 2| Iux(t, x)| 2\phi (x - y)dxdy

=
1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
Im[ \=IuIuy]

\biggr) \biggl( \int 
\chi 2

\biggl( 
x - s

R

\biggr) 
Im[ \=IuIux]

\biggr) 
ds

+
1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| Iu(t, y)| 2dy

\biggr) \biggl( \int 
\chi 2

\biggl( 
x - s

R

\biggr) 
| Iux(t, x)| 2dx

\biggr) 
ds.

Fix s \in \BbbR . For any \xi \in \BbbR ,

(3.13)

\int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
Im[eiy\xi Iu\partial y(e

iy\xi Iu)]dy =

\int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
Im[ \=IuIuy]dy

+ \xi 

\int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| Iu(t, y)| 2dy

and
(3.14)\int 

\chi 2

\biggl( 
x - s

R

\biggr) 
| \partial x(eix\xi Iu)| 2dx = \xi 2

\int 
\chi 2

\biggl( 
x - s

R

\biggr) 
| Iu| 2dx

+ 2\xi 

\int 
\chi 2

\biggl( 
x - s

R

\biggr) 
Im[ \=IuIux]dx+

\int 
\chi 2

\biggl( 
x - s

R

\biggr) 
| Iux| 2dx.

Therefore, (3.12) is invariant under the Galilean transformation Iu \mapsto \rightarrow eix\xi (s)Iu. This is
not surprising since (3.1) is invariant under the Galilean transformation Iu \mapsto \rightarrow eix\xi (s)Iu.
Indeed, under the mapping eix\xi (s)Iu, since \psi (x - y) is an odd function of x - y,
(3.15)

M(t) \mapsto \rightarrow 
\int \int 

| Iu(t, y)| 2Im[ \=IuIux]\psi (x - y)dxdy + \xi (t)

\int \int 
| Iu(t, y)| 2| Iu(t, x)| 2dxdy

=

\int \int 
| Iu(t, y)| 2Im[ \=IuIux]\psi (x - y)dxdy.

It is therefore convenient to choose \xi (s) such that (3.13) = 0. For notational
convenience, let

(3.16) vs = eix\xi (s)Iu.

Then by the fundamental theorem of calculus and (3.6)--(3.16), if R\nearrow \infty as T \nearrow \infty ,
(3.17)

2

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) \biggl( \int 
\chi 2

\biggl( 
x - s

R

\biggr) 
| \partial x(vs)(t, x)| 2dx

\biggr) 
dsdt

 - 2

3

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) \biggl( \int 
\chi 2

\biggl( 
x - s

R

\biggr) 
| vs(t, x)| 6dx

\biggr) 
dsdt \lesssim Ro(T ).
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By the Arzel\`a--Ascoli theorem and (2.13), for any \eta > 0, there exists C(\eta ) <\infty such
that

(3.18)

\int 
| x - x(t)| \geq C(\eta )

\lambda (t)

| u(t, x)| 2dx < \eta 2.

By H\"older's inequality and \lambda (t) = 1,
(3.19)

1

6

\int 
| x - x(t)| \geq C(\eta )

\chi 2

\biggl( 
x - s

R

\biggr) 
| vs| 6dx \lesssim \| \chi v2s\| 2L\infty (| x - x(t)| \geq C(\eta ))

\Biggl( \int 
| x - x(t)| \geq C(\eta )

| vs| 2dx

\Biggr) 
.

We can estimate \| \chi v2s\| 2L\infty (| x - x(t)| \geq C(\eta )) using an idea from [10]. By the funda-

mental theorem of calculus, for | x - x(t)| \geq C(\eta ),
(3.20)

| \chi v2s | \leq 
\biggl( \int 

2\chi | v| | vx| dx+
1

R

\int 
| \chi \prime | | v| 2dx

\biggr) 

\lesssim 

\biggl( \int 
\chi 2

\biggl( 
x - s

R

\biggr) 
| \partial x(vs)| 2dx

\biggr) 1/2
\Biggl( \int 

| x - x(t)| \geq C(\eta )

| v| 2
\Biggr) 1/2

+
1

R

\Biggl( \int 
| x - x(t)| \geq C(\eta )

| v| 2
\Biggr) 
.

Therefore,
(3.21)

(3.19)\lesssim 

\biggl( \int 
\chi 2

\biggl( 
x - s
R

\biggr) 
| \partial x(vs)| 2dx

\biggr) \Biggl( \int 
| x - x(t)| \geq C(\eta )

| v| 2dx

\Biggr) 2

+
1

R

\Biggl( \int 
| x - x(t)| \geq C(\eta )

| v| 2
\Biggr) 3

\lesssim \eta 4
\biggl( \int 

\chi 2

\biggl( 
x - s

R

\biggr) 
| \partial x(vs)| 2dx

\biggr) 
+

1

R
\eta 6.

Therefore,
(3.22)

2

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) \biggl( \int 
\chi 2

\biggl( 
x - s

R

\biggr) 
| \partial x(vs)(t, x)| 2dx

\biggr) 
dsdt

 - 2

3

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y - s
R

\biggr) 
| vs(t, y)| 2

\biggr) \Biggl( \int 
| x - x(t)| \leq C(\eta )

\chi 2

\biggl( 
x - s
R

\biggr) 
| vs(t, x)| 6dx

\Biggr) 
dsdt

\lesssim Ro(T )+
\eta 6

R
T+

\eta 4

R

\int T

0

\int \biggl( \int 
\chi 2

\biggl( 
y - s
R

\biggr) 
| vs| 2dy

\biggr) \biggl( \int 
\chi 2

\biggl( 
x - s
R

\biggr) 
| \partial x(vs)| 2dx

\biggr) 
dsdt.

When \eta > 0 is sufficiently small,

(3.23) \eta 4
\int T

0

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs| 2dy

\biggr) \biggl( \int 
\chi 2

\biggl( 
x - s

R

\biggr) 
| \partial x(vs)| 2dx

\biggr) 
dsdt
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can be absorbed into the left-hand side of (3.22), proving that
(3.24)

2

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) \biggl( \int 
\chi 2

\biggl( 
x - s

R

\biggr) 
| \partial x(vs)(t, x)| 2dx

\biggr) 
dsdt

 - 2

3

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y - s
R

\biggr) 
| vs(t, y)| 2

\biggr) \Biggl( \int 
| x - x(t)| \leq C(\eta )

\chi 2

\biggl( 
x - s
R

\biggr) 
| vs(t, x)| 6dx

\Biggr) 
dsdt

\lesssim Ro(T ) +
\eta 6

R
T +

\eta 4

R

\int T

0

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2dy

\biggr) 
\times 

\Biggl( \int 
| x - x(t)| \leq C(\eta )

\chi 2

\biggl( 
x - s

R

\biggr) 
| vs(t, x)| 6dx

\Biggr) 
dsdt.

Now choose x(t) - 2C(\eta ) \leq x\ast \leq x(t) + 2C(\eta ) such that

(3.25) \chi 

\biggl( 
x\ast  - s

R

\biggr) 
= inf

x(t) - 2C(\eta )\leq x\leq x(t)+2C(t)
\chi 

\biggl( 
x - s

R

\biggr) 
.

By the fundamental theorem of calculus, when x(t) - C(\eta ) \leq x \leq x(t) + C(\eta ),

(3.26) \chi 2

\biggl( 
x - s

R

\biggr) 
= \chi 2

\biggl( 
x\ast  - s

R

\biggr) 
+

2

R

\int x

x\ast 

\chi \prime 
\biggl( 
r  - s

R

\biggr) 
\chi 

\biggl( 
r  - s

R

\biggr) 
dr.

When | x - x(t)| \leq C(\eta ),

(3.27)
2

R

\int x

x\ast 

\chi \prime 
\biggl( 
r  - s

R

\biggr) 
\chi 

\biggl( 
r  - s

R

\biggr) 
dr \lesssim 

C(\eta )

R
,

so
(3.28)

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) \Biggl( \int 
| x - x(t)| \leq C(\eta )

\chi 2

\biggl( 
x - s

R

\biggr) 
| vs(t, x)| 6dx

\Biggr) 
ds

\leq 1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) \Biggl( \int 
| x - x(t)| \leq C(\eta )

\chi 2

\biggl( 
x\ast  - s

R

\biggr) 
| vs(t, x)| 6dx

\Biggr) 
ds

+
C(\eta )

R2

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) \Biggl( \int 
| x - x(t)| \leq C(\eta )

| vs(t, x)| 6dx

\Biggr) 
ds

=
1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) \Biggl( \int 
| x - x(t)| \leq C(\eta )

\chi 2

\biggl( 
x\ast  - s

R

\biggr) 
| vs(t, x)| 6dx

\Biggr) 
ds

+O

\biggl( 
C(\eta )

R
\| v\| 2L2\| v\| 6L6

\biggr) 
.
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Plugging (3.28) into (3.24),
(3.29)

2

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) \biggl( \int 
\chi 2

\biggl( 
x - s

R

\biggr) 
| \partial x(vs)(t, x)| 2dx

\biggr) 
dsdt

 - 2

3

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y - s
R

\biggr) 
| vs(t, y)| 2

\biggr) \Biggl( \int 
| x - x(t)| \leq C(\eta )

\chi 2

\biggl( 
x\ast  - s
R

\biggr) 
| vs(t, x)| 6dx

\Biggr) 
dsdt

\lesssim Ro(T ) +
\eta 6

R
T +

C(\eta )

R
\| u\| 2L\infty 

t L2
x
\| u\| 6L6

t,x

+
\eta 4

R

\int T

0

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs| 2dy

\biggr) \Biggl( \int 
| x - x(t)| \leq C(\eta )

\chi 2

\biggl( 
x\ast  - s

R

\biggr) 
| vs| 6dx

\Biggr) 
dsdt.

Since \chi (x
\ast  - 1
R ) \leq 1,

(3.30)

\eta 4

R

\int T

0

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs| 2dy

\biggr) \Biggl( \int 
| x - x(t)| \leq C(\eta )

\chi 2

\biggl( 
x\ast  - s

R

\biggr) 
| vs| 6dx

\Biggr) 
dsdt

\lesssim \eta 4\| u\| 2L\infty 
t L2

x
\| u\| 6L6

t,x
.

By definition of x\ast and \chi ,
(3.31)

2

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) \biggl( \int 
\chi 2

\biggl( 
x - s

R

\biggr) 
| \partial x(vs)(t, x)| 2dx

\biggr) 
dsdt

 - 2

3

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y - s
R

\biggr) 
| vs(t, y)| 2

\biggr) \Biggl( \int 
| x - x(t)| \leq C(\eta )

\chi 2

\biggl( 
x\ast  - s
R

\biggr) 
| vs(t, x)| 6dx

\Biggr) 
dsdt

\geq 2

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) 
\times 
\biggl( 
\chi 2

\biggl( 
x\ast  - s

R

\biggr) \int 
\chi 2

\biggl( 
x - x(t)

R

\biggr) 
| \partial x(vs)(t, x)| 2dx

\biggr) 
dsdt

 - 2

3

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) 
\times 
\biggl( 
\chi 2

\biggl( 
x\ast  - s

R

\biggr) \int 
\chi 6

\biggl( 
x - x(t)

R

\biggr) 
| vs(t, x)| 6dx

\biggr) 
dsdt.

Integrating by parts,
(3.32)\int 

\chi 2

\biggl( 
x - x(t)

R

\biggr) 
| \partial x(vs)| 2dx =

\int 
| \partial x
\biggl( 
\chi 

\biggl( 
x - x(t)

R

\biggr) 
vs

\biggr) 
| 2dx

+
1

R2

\int 
\chi \prime \prime 
\biggl( 
x - x(t)

R

\biggr) 
\chi 

\biggl( 
x - x(t)

R

\biggr) 
| vs| 2dx.
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Therefore,
(3.33)

2

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) 
\times 
\biggl( 
\chi 2

\biggl( 
x\ast  - s

R

\biggr) \int 
\chi 2

\biggl( 
x - x(t)

R

\biggr) 
| \partial x(vs)(t, x)| 2dx

\biggr) 
dsdt

 - 2

3

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2

\biggr) 
\times 
\biggl( 
\chi 2

\biggl( 
x\ast  - s

R

\biggr) \int 
\chi 6

\biggl( 
x - x(t)

R

\biggr) 
| vs(t, x)| 6dx

\biggr) 
dsdt

= 4

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2dy

\biggr) 
\chi 2

\biggl( 
x\ast  - s

R

\biggr) 
E

\biggl( 
\chi 2

\biggl( 
x - x(t)

R

\biggr) 
v

\biggr) 
dsdt

+
T

R2
\| u\| 4L\infty 

t L2
x
.

Here E is the energy given by (1.9). Therefore, we have finally proved
(3.34)

4

\int T

0

1

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2dy

\biggr) 
\chi 2

\biggl( 
x\ast  - s

R

\biggr) 
E

\biggl( 
\chi 2

\biggl( 
x - x(t)

R

\biggr) 
v

\biggr) 
dsdt

\lesssim Ro(T ) +
\eta 6

R
T + \eta 4\| u\| 2L\infty 

t L2
x
\| u\| 6L6

t,x
+
C(\eta )

R
\| u\| 2L\infty 

t L2
x
\| u\| 6L6

t,x
.

Now by Strichartz estimates and \lambda (t) = 1, \| u\| L6
t,x([0,T ]\times \BbbR ) \sim T , so choosing

R \nearrow \infty perhaps very slowly as T \nearrow \infty , and then \eta \searrow 0 sufficiently slowly, the
right-hand side of (3.34) is bounded by o(T ).

On the other hand, when | s - x(t)| \leq R
2 , \chi (

x\ast  - s
R ) = 1 and

(3.35)

\biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs(t, y)| 2dy

\biggr) 
\geq 1

2
\| v\| 2L2 .

Therefore, the left-hand side of (3.34) is bounded below by

(3.36) \| u0\| 2L2

\int T

0

1

R

\int 
| s - x(t)| \leq R

2

E

\biggl( 
\chi 

\biggl( 
x - x(t)

R

\biggr) 
vs

\biggr) 
dsdt \lesssim o(T ).

Thus, taking a sequence Tn \nearrow \infty , Rn \nearrow \infty , \eta n \searrow 0, there exists a sequence of times
tn \in [Tn

2 , Tn], | sn  - x(tn)| \leq Rn

2 such that

(3.37) E

\biggl( 
\chi 

\biggl( 
x - sn
Rn

\biggr) 
eix\xi (sn)ei\gamma (sn)P\leq Tnu(tn, x)

\biggr) 
\rightarrow 0,

(3.38)

\biggl( 
1 - \chi 

\biggl( 
x - sn
Rn

\biggr) \biggr) 
eix\xi (sn)ei\gamma (sn)P\leq Tn

u(tn, x) \rightarrow 0 in L2,

(3.39) (1 - P\geq Tn
)u(tn, x) \rightarrow 0 in L2,

and

(3.40)

\bigm\| \bigm\| \bigm\| \bigm\| \chi \biggl( x - sn
Rn

\biggr) 
eix\xi (sn)ei\gamma (sn)P\leq Tnu(tn, x)

\bigm\| \bigm\| \bigm\| \bigm\| 
L6

\sim 1.
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Now by the almost periodicity of u, (2.13), after passing to a subsequence, there
exists u0 \in H1 such that

(3.41) \chi 

\biggl( 
x+ x(tn) - sn

Rn

\biggr) 
eix\xi (sn)eix(tn)\xi (sn)ei\gamma (sn)P\leq Tnu(tn, x+ x(tn))\rightharpoonup u0,

weakly in H1, and

(3.42) \chi 

\biggl( 
x+ x(tn) - sn

Rn

\biggr) 
eix\xi (sn)eix(tn)\xi (sn)P\leq Tn

u(tn, x+ x(tn)) \rightarrow u0,

strongly in L2 \cap L6. Also, by (3.37), (3.38), and (3.39), \| u0\| L2 = \| Q\| L2 , E(u0) \leq 0,
and by the Gagliardo--Nirenberg inequality, E(u0) = 0. Therefore,

(3.43) u0 = \lambda 1/2Q(\lambda (x - x0))

for some \lambda \sim 1 and | x0| \lesssim 1. This proves Theorem 5 when \lambda (t) = 1.

4. Proof of Theorem 5 for a general \bfitlambda (\bfitt ). Now suppose that \lambda (t) is free to
vary. Recall that | \lambda \prime (t)| \lesssim \lambda (t)3. In this case,

(4.1) \lambda (t) : I \rightarrow (0,\infty ),

where I is the maximal interval of existence of an almost periodic solution to (1.1).

Theorem 6. Suppose Tn \in I, Tn \rightarrow sup(I) is a sequence of times in I. Then

(4.2) lim
Tn\rightarrow sup(I)

1

supt\in [0,Tn] \lambda (t)
\cdot 
\int Tn

0

\lambda (t)3dt = +\infty .

Proof. Suppose that this were not true, that is, there exist a constant C0 < \infty 
and a sequence Tn \rightarrow sup(I) such that for all n \in \BbbZ \geq 0,

(4.3)
1

supt\in [0,Tn] \lambda (t)

\int Tn

0

\lambda (t)3dt \leq C0.

This would correspond to the rapid cascade scenario in [3], [4], [6]. In those papers
N(t) was used instead of \lambda (t). As in those papers, \lambda (t) can be chosen to be continuous,
so for each Tn choose tn \in [0, Tn] such that

(4.4) \lambda (tn) = sup
t\in [0,Tn]

\lambda (t).

Since I is the maximal interval of existence of u,

(4.5) lim
n\rightarrow \infty 

\| u\| L6
t,x([0,Tn]\times \BbbR ) = \infty .

By the almost periodicity property of u and (2.13), there exist x(tn), \xi (tn), and \gamma (tn)
such that if

(4.6) ei\gamma (tn)\lambda (tn)
1/2eix\xi (tn)ei\gamma (tn)u(tn, \lambda (tn)x+ x(tn)) = vn(x),

then vn converges to some u0 in L2(\BbbR ), and u0 is the initial data for a solution u to
(1.1) that blows up in both time directions, \lambda (t) \leq 1 for all t \leq 0, and

(4.7)

\int 0

 - \infty 
\lambda (t)3dt \leq C0.
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Following the proof of Theorem 5.1 in [4],

(4.8) \| u\| L\infty 
t

\.Hs(( - \infty ,0]\times \BbbR ) \lesssim s C
s
0

for any 0 \leq s < 5. Combining (4.8) with (4.7) and | \lambda \prime (t)| \lesssim \lambda (t)3 implies

(4.9) lim
t\searrow  - \infty 

\lambda (t) = 0.

Also, since

(4.10) | \xi \prime (t)| \lesssim \lambda (t)3,

(4.7) implies that \xi (t) converges to some \xi  - \in \BbbR as t \searrow  - \infty . Make a Galilean
transformation so that \xi  - = 0. Then, by interpolation, (4.8) and (4.9) imply

(4.11) lim
t\searrow  - \infty 

E(u(t)) = 0.

Therefore, by conservation of energy, and convergence in L2 of (4.6),

(4.12) E(u0) = 0 and \| u0\| L2 = \| Q\| L2 .

Therefore, by the Gagliardo--Nirenberg theorem,

(4.13) u0 = \lambda 1/2Q(\lambda (x - x0)), 0 < \lambda <\infty , x0 \in \BbbR ,

and Q is the solution to the elliptic partial differential equation

(4.14) Qxx + | Q| 4Q = Q.

However, assuming without loss of generality that x0 = 0 and \lambda = 1, the solution to
(1.1) is given by

(4.15) u(t, x) = eitQ(x), t \in \BbbR .

However, such a solution definitely does not satisfy (4.3), which gives a contradic-
tion.

Therefore, consider the case when

(4.16) lim
n\rightarrow \infty 

1

supt\in [0,Tn] \lambda (t)

\int Tn

0

\lambda (t)3dt = \infty .

Passing to a subsequence, suppose

(4.17)
1

supt\in [0,Tn] \lambda (t)

\int Tn

0

\lambda (t)3dt = 22n.

Then as in [3], replace M(t) in the previous section with

(4.18) M(t) =

\int \int 
| Iu(t, y)| 2Im[ \=IuIux]\psi (\~\lambda (t)(x - y))dxdy,
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where \~\lambda (t) is given by the smoothing algorithm from [3]. Then

(4.19)

d

dt
M(t) =  - 2\~\lambda (t)

\int \int 
Im[ \=IuIuy]Im[ \=IuIux]\phi (\~\lambda (t)(x - y))dxdy

+
1

2
\~\lambda (t)3

\int \int 
| Iu(t, y)| 2| Iu(t, y)| 2\phi \prime \prime (\~\lambda (t)(x - y))dxdy

+ 2\~\lambda (t)

\int \int 
| Iu(t, y)| 2| Iux(t, x)| 2\phi (\~\lambda (t)(x - y))dxdy

 - 2

3
\~\lambda (t)

\int \int 
| Iu(t, y)| 2| Iu(t, x)| 6\phi (\~\lambda (t)(x - y))dxdy + \scrE 

+
\.\~\lambda (t)

\int \int 
| Iu(t, y)| 2Im[ \=IuIux]\phi (\~\lambda (t)(x - y))(x - y)dxdy,

where I = P\leq 22n\cdot supt\in [0,T ] \lambda (t)
.

Equation (3.9) implies

(4.20) sup
t\in [0,Tn]

| M(t)| \lesssim Ro(22n) \cdot sup
t\in [0,T ]

\lambda (t).

Next, since the smoothing algorithm guarantees that \~\lambda (t) \leq \lambda (t), following (3.11),

(4.21)

\int Tn

0

1

2
\~\lambda (t)3

\int \int 
| u(t, y)| 2| u(t, y)| 2\phi \prime \prime (\~\lambda (t)(x - y))dxdydt

\lesssim 
1

R2
\| u\| 4L2 \cdot 

\int Tn

0

\~\lambda (t)\lambda (t)2dt \lesssim Ro(22n) \cdot sup
t\in [0,T ]

\lambda (t).

Since \~\lambda (t) \leq \lambda (t), following the analysis in (3.12)--(3.34),

(4.22)

\int Tn

0

1

2
\~\lambda (t)3

\int \int 
| u(t, y)| 2| u(t, y)| 2\phi \prime \prime (\~\lambda (t)(x - y))dxdydt

2

\int Tn

0

\~\lambda (t)

\int \int 
Im[I\=uIuy]Im[ \=IuIux]\phi (\~\lambda (t)(x - y))dxdydt

+ 2

\int Tn

0

\~\lambda (t)

\int \int 
| Iu(t, y)| 2| Iux(t, x)| 2\phi (\~\lambda (t)(x - y))dxdydt

 - 2

3

\int Tn

0

\~\lambda (t)

\int \int 
| u(t, y)| 2| u(t, x)| 6\phi (\~\lambda (t)(x - y))dxdydt

(4.23)

= 4

\int T

0

\~\lambda (t)\lambda (t)2

R

\int \biggl( \int 
\chi 2

\biggl( 
y  - s

R

\biggr) 
| vs,t(t, y)| 2dy

\biggr) 
\times \chi 2

\biggl( 
x\ast  - s

R

\biggr) 
E

\biggl( 
\chi 2

\biggl( 
x - x(t)

R

\biggr) 
vs,t(t, x)

\biggr) 
dsdt

+Ro(22n) \cdot sup
t\in [0,T ]

\lambda (t) +O

\Biggl( 
\eta 4\| u\| 2L\infty 

t L2
x

\int Tn

0

\~\lambda (t)\| u(t)\| 6L6dt

\Biggr) 

+O

\Biggl( 
C(\eta )

R
\| u\| 2L\infty 

t L2
x

\int Tn

0

\~\lambda (t)\| u(t)\| 6L6
x
dt

\Biggr) 
.
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Remark. The term vs,t is an abbreviation for

(4.24) vs,t =
eix\xi (s)

\lambda (t)1/2
Iu

\biggl( 
t,

x

\lambda (t)

\biggr) 
,

where \xi (s) \in \BbbR is chosen such that

(4.25)

\int 
\chi 2

\Biggl( 
\~\lambda (t)(x - s)

R\lambda (t)

\Biggr) 
Im[\=vs,t\partial x(vs,t)]dx = 0.

The error estimates can be handled in a manner similar to the previous section;
see [3]. Therefore, it only remains to consider the contribution of the term in (4.19)
with \~\lambda (t). By direct computation,

(4.26)

\.\~\lambda (t)

\int \int 
| Iu(t, y)| 2Im[ \=IuIux]\phi (\~\lambda (t)(x - y))(x - y)dxdy

=
\.\~\lambda (t)

R\~\lambda (t)

\int \Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)y  - s

R

\Biggr) 
| Iu(t, y)| 2dy

\Biggr) 

\times 

\Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)x - s

R

\Biggr) 
Im[ \=IuIux](x\~\lambda (t) - s)dx

\Biggr) 
ds

 - 
\.\~\lambda (t)

R\~\lambda (t)

\int \Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)y  - s

R

\Biggr) 
(y\~\lambda (t) - s)| Iu(t, y)| 2dy

\Biggr) 

\times 

\Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)x - s

R

\Biggr) 
Im[ \=IuIux]dx

\Biggr) 
ds.

Now rescale
(4.27)

=
\.\~\lambda (t)

R\~\lambda (t)
\lambda (t)

\int \Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)y  - \lambda (t)s

R\lambda (t)

\Biggr) \bigm| \bigm| \bigm| \bigm| 1

\lambda (t)1/2
Iu

\biggl( 
t,

y

\lambda (t)

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dy
\Biggr) 

\times 

\Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)x - \lambda (t)s

R\lambda (t)

\Biggr) 
Im

\biggl[ 
1

\lambda (t)1/2
\=Iu

\biggl( 
t,

x

\lambda (t)

\biggr) 
\partial x

\biggl( 
1

\lambda (t)1/2
Iu

\biggl( 
t,

x

\lambda (t)

\biggr) \biggr) \biggr] 

\times 

\Biggl( 
x\~\lambda (t) - s\lambda (t)

\lambda (t)

\Biggr) 
dx

\Biggr) 
ds

 - 
\.\~\lambda (t)

R\~\lambda (t)
\lambda (t)

\int \Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)y  - \lambda (t)s

R\lambda (t)

\Biggr) \Biggl( 
y\~\lambda (t) - s\lambda (t)

\lambda (t)

\Biggr) \bigm| \bigm| \bigm| \bigm| 1

\lambda (t)1/2
Iu

\biggl( 
t,

y

\lambda (t)

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dy
\Biggr) 

\times 

\Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)x - s\lambda (t)

R\lambda (t)

\Biggr) 
Im

\biggl[ 
1

\lambda (t)1/2
\=Iu

\biggl( 
t,

x

\lambda (t)

\biggr) 
\partial x

\biggl( 
1

\lambda (t)1/2
Iu

\biggl( 
t,

x

\lambda (t)

\biggr) \biggr) \biggr] 
dx

\Biggr) 
ds.

Remark 5. Throughout these calculations, we understand that \lambda 1/2Iu(x\lambda ) refers
to the rescaling of the function Iu(x), not the I-operator acting on a rescaling of u.
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For any \xi \in \BbbR ,
(4.28)

=
\.\~\lambda (t)

R\~\lambda (t)
\lambda (t)

\int \Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)y  - \lambda (t)s

R\lambda (t)

\Biggr) \bigm| \bigm| \bigm| \bigm| eix\xi 

\lambda (t)1/2
Iu

\biggl( 
t,

y

\lambda (t)

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dy
\Biggr) 

\times 

\Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)x - \lambda (t)s

R\lambda (t)

\Biggr) 
Im

\biggl[ 
e - ix\xi 

\lambda (t)1/2
\=Iu

\biggl( 
t,

x

\lambda (t)

\biggr) 
\partial x

\biggl( 
eix\xi 

\lambda (t)1/2
Iu

\biggl( 
t,

x

\lambda (t)

\biggr) \biggr) \biggr] 

\times 

\Biggl( 
x\~\lambda (t) - s\lambda (t)

\lambda (t)

\Biggr) 
dx

\Biggr) 
ds

 - 
\.\~\lambda (t)

R\~\lambda (t)
\lambda (t)

\int \Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)y  - \lambda (t)s

R\lambda (t)

\Biggr) \Biggl( 
y\~\lambda (t) - s\lambda (t)

\lambda (t)

\Biggr) \bigm| \bigm| \bigm| \bigm| eix\xi 

\lambda (t)1/2
Iu

\biggl( 
t,

y

\lambda (t)

\biggr) \bigm| \bigm| \bigm| \bigm| 2 dy
\Biggr) 

\times 

\Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)x - s\lambda (t)

R\lambda (t)

\Biggr) 
Im

\biggl[ 
e - ix\xi 

\lambda (t)1/2
\=Iu

\biggl( 
t,

x

\lambda (t)

\biggr) 
\partial x

\biggl( 
eix\xi 

\lambda (t)1/2
Iu

\biggl( 
t,

x

\lambda (t)

\biggr) \biggr) \biggr] 
dx

\Biggr) 
ds.

In particular, if we choose \xi = \xi (s),
(4.29)

=
\.\~\lambda (t)

R\~\lambda (t)
\lambda (t)

\int \Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)y  - \lambda (t)s

R\lambda (t)

\Biggr) 
| vs,t| 2dy

\Biggr) 

\times 

\Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)x - \lambda (t)s

R\lambda (t)

\Biggr) 
Im

\biggl[ 
\=vs,t

\biggl( 
t,

x

\lambda (t)

\biggr) 
\partial x(vs,t)

\biggr] \Biggl( 
x\~\lambda (t) - s\lambda (t)

\lambda (t)

\Biggr) 
dx

\Biggr) 
ds

=
\.\~\lambda (t)

R

\int \Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)(y  - s)

R\lambda (t)

\Biggr) 
| vs,t| 2dy

\Biggr) 

\times 

\Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)(x - s)

R\lambda (t)

\Biggr) 
Im

\biggl[ 
\=vs,t

\biggl( 
t,

x

\lambda (t)

\biggr) 
\partial x(vs,t)

\biggr] \Biggl( \~\lambda (t)(x - s)

\lambda (t)

\Biggr) 
dx

\Biggr) 
ds.

Then by the Cauchy--Schwarz inequality,
(4.30)

\lesssim 
\eta 4

R
\lambda (t)\~\lambda (t)2

\int \Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)(y - s)
R\lambda (t)

\Biggr) 
| vs,t| 2dy

\Biggr) \Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)(x - s)
R\lambda (t)

\Biggr) 
| \partial x(vs,t)| 2dx

\Biggr) 
ds

+
1

\eta 4
| \.\~\lambda (t)| 2

\lambda (t)\~\lambda (t)2

\~\lambda (t)

R\lambda (t)

\Biggl( \int 
\chi 2

\Biggl( 
\~\lambda (t)(y  - s)

R\lambda (t)

\Biggr) 
| vs,t| 2dy

\Biggr) 

\times 

\left(  \int \chi 2

\Biggl( 
\~\lambda (t)(x - s)

R\lambda (t)

\Biggr) 
| vs,t| 2

\Biggl( 
\~\lambda (t)(x - s)

\lambda (t)

\Biggr) 2

dx

\right)  .

The first term in (4.30) can be absorbed into (4.23). The second term in (4.30)
is bounded by

(4.31)
1

\eta 4
| \.\~\lambda (t)| 2

\lambda (t)\~\lambda (t)2
R2\| u\| 4L\infty 

t L2
x
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The smoothing algorithm from [3] is used to control this term. Recall that after
n iterations of the smoothing algorithm on an interval [0, T ], \~\lambda (t) has the following
properties:

1. \~\lambda (t) \leq \lambda (t).

2. If
\.\~\lambda (t) \not = 0, then \lambda (t) = \~\lambda (t).

3. \~\lambda (t) \geq 2 - n\lambda (t).

4.
\int T

0
| \.\~\lambda (t)| dt \leq 1

n

\int T

0
| \.\lambda (t)| \~\lambda (t)\lambda (t)dt, with implicit constant independent of n and

T .
Therefore,

(4.32)

\int Tn

0

1

\eta 4
| \.\~\lambda (t)| 2

\lambda (t)\~\lambda (t)2
R2\| u\| 4L\infty 

t L2
x
dt \leq 1

\eta 4
\| u\| 4L\infty 

t L2
x

\int Tn

0

| \.\lambda (t)| 
\lambda (t)3

R2| \.\~\lambda (t)| dt

\lesssim 
1

n

R2

\eta 4
\| u\| 4L\infty 

t L2
x

\int Tn

0

\~\lambda (t)\lambda (t)2dt.

Since supt\in [0,Tn] \lambda (t) \leq 2 - 2n
\int Tn

0
\lambda (t)3dt,

(4.33) Rn sup
t\in [0,Tn]

| M(t)| \lesssim Rno(2
2n) \cdot sup

t\in [0,T ]

\lambda (t).

Therefore, it is possible to take a sequence \eta n \searrow 0, Rn \nearrow \infty , probably very slowly,
such that

(4.34)
1

n

R2

\eta 4
\| u\| 4L\infty 

t L2
x

\int Tn

0

| \~\lambda (t)| \lambda (t)2dt = on(1)

\int Tn

0

\~\lambda (t)\lambda (t)2dt,

(4.35) Rn sup
t\in [0,Tn]

| M(t)| \lesssim o(22n) \cdot sup
t\in [0,T ]

\lambda (t),

(4.36) O

\Biggl( 
\eta 4n\| u\| 2L\infty 

t L2
x

\int T

0

\~\lambda (t)\| u(t)\| 6L6dt

\Biggr) 
\lesssim on(1)

\int Tn

0

\~\lambda (t)\lambda (t)2dt,

and

(4.37) O

\Biggl( 
C(\eta n)

Rn
\| u\| 2L\infty 

t L2
x

\int Tn

0

\~\lambda (t)\| u(t)\| 6L6
x
dt

\Biggr) 
\lesssim on(1)

\int Tn

0

\~\lambda (t)\lambda (t)2dt.

Therefore, these terms may be safely treated as error terms, and repeating the
analysis in (3.25)--(3.43) for (4.23), there exists a sequence of times tn \nearrow sup(I) such
that

(4.38) E

\Biggl( 
\chi 

\Biggl( 
(x - x(tn))\~\lambda (tn)

Rn\lambda (tn)

\Biggr) 
vsn,tn

\Biggr) 
\rightarrow 0,

(4.39)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( 
1 - \chi 

\Biggl( 
(x - x(tn))\~\lambda (tn)

Rn\lambda (tn)

\Biggr) \Biggr) 
vsn,tn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2

\rightarrow 0,

(4.40) \| vsn,tn\| L2 \nearrow \| Q\| L2 ,
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and

(4.41)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \chi 
\Biggl( 
(x - x(tn))\~\lambda (tn)

Rn\lambda (tn)

\Biggr) 
Ivsn,tn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L6

\sim 1.

In this case as well, we can show that this sequence converges in H1 to

(4.42) u0 = \lambda 1/2Q(\lambda (x - x0)).

This proves Theorem 5 for a general \lambda (t).

5. Proof of Theorem 3. The proof of Theorem 3 uses the argument used in
the proof of Theorem 2, combined with some reductions from [6]. First recall Lemma
4.2 from [6].

Lemma 1. Let u be a solution to (1.1) that satisfies the assumptions of Theorem 3.
Then there exists a sequence tn \nearrow T+(u) such that u(tn) admits a profile decomposi-
tion with profiles \{ \phi j , \{ xj,n, \lambda j,n, \xi j,n, tj,n, \gamma j,n\} \} , and there is a unique profile, call it
\phi 1, such that the following hold:

1. \| \phi 1\| L2 \geq \| Q\| L2 .
2. The nonlinear profile \Phi 1 associated to \phi 1 is an almost periodic solution in the

sense of (2.13) that does not scatter forward or backward in time.

Now consider the nonlinear profile \Phi 1. To simplify notation relabel \Phi 1 = u, and
let vs,t be as in (4.24). Using the same arguments as in the proof of Theorem 2, there

exists a sequence tn \nearrow T+(u), Rn \nearrow \infty , sn \in \BbbR , \~\lambda (t) \leq \lambda (t), such that

(5.1) E

\Biggl( 
\chi 

\Biggl( 
(x - x(tn))\~\lambda (tn)

Rn\lambda (tn)

\Biggr) 
vsn,tn

\Biggr) 
\rightarrow 0,

(5.2)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( 
1 - \chi 

\Biggl( 
(x - x(tn))\~\lambda (tn)

Rn\lambda (tn)

\Biggr) \Biggr) 
vsn,tn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2

\rightarrow 0,

(5.3) \| vsn,tn\| L2 \nearrow \| u\| L2 ,

and

(5.4)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \chi 
\Biggl( 
(x - x(tn))\~\lambda (tn)

Rn\lambda (tn)

\Biggr) 
Ivsn,tn

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L6

\sim 1.

Therefore, by the almost periodicity of v, there exists a sequence g(tn) given by (2.2)
such that

(5.5) g(tn)v(tn) \rightarrow u0 in L2,

where E(u0) = 0 and \| u0\| L2 \geq \| Q\| L2 .

Next, utilize a blowup result of [11], [12], [13], [14]. We will state it here as it is
stated in Theorem 3.1 of [6].
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Theorem 7. Assume u is a solution to (1.1) with \mu =  - 1, and with initial data
in H1 that has nonpositive energy and satisfies (1.18). If u is of zero energy, then u
blows up in finite time according to the log-log law,
(5.6)

u(t, x) =
1

\lambda (t)1/2
(Q+\epsilon )

\biggl( 
x - x(t)

\lambda (t)

\biggr) 
ei\gamma (t), x(t) \in \BbbR , \gamma (t) \in \BbbR , \lambda (t) > 0, \| \epsilon \| H1 \leq \delta (\alpha ),

with the estimate

(5.7) \lambda (t) \sim 

\sqrt{} 
T  - t

ln | ln(T  - t)| 
,

and

(5.8) lim
t\rightarrow T

\int 
(| \nabla \epsilon (t, x)| 2 + | \epsilon (t, x)| 2e - | x| )dx = 0.

Let u be the solution to (1.1) with initial data u0. If \| u0\| L2 = \| Q\| L2 , then we are
done, using the analysis in the previous section. If \| u0\| L2 > \| Q\| L2 , then Theorem 7
implies that u must be of the form (5.6). Furthermore, by perturbative arguments,
for any fixed t\prime \in [0, T ), (5.5) implies that there exists a sequence g(tn, t

\prime ) such that

(5.9) g(tn, t
\prime )v

\biggl( 
tn +

t\prime 

\lambda (tn)2

\biggr) 
\rightarrow u(t\prime ) in L2.

In fact, perturbative arguments also imply that there exists a sequence t\prime n \nearrow \infty ,
perhaps very slowly, such that

(5.10)

\bigm\| \bigm\| \bigm\| \bigm\| g(tn, t\prime n)v\biggl( tn +
t\prime n

\lambda (tn)2

\biggr) 
 - u(t\prime n)

\bigm\| \bigm\| \bigm\| \bigm\| 
L2

\rightarrow 0.

To see why this is so, first observe that if g(tn)v(tn) = u0, then the uniqueness of
solutions to (1.1) combined with (1.2) and (1.14) implies that there exists g(tn, t

\prime )
such that

(5.11) g(tn, t
\prime )v

\biggl( 
tn +

t\prime 

\lambda (tn)2

\biggr) 
= u(t\prime ).

Suppose that

(5.12) g(tn)v(tn) = u0 + w0, \| w0\| L2 \ll 1.

For \~T \in [0, T ) fixed, \| u\| L6
t,x([0,

\~T ]\times \BbbR ) <\infty . Therefore, for \| w0\| L2 sufficiently small, if

t\prime \in [0, \~T ],

(5.13) g(tn, t
\prime )v

\biggl( 
tn +

t\prime 

\lambda (tn)2

\biggr) 
= u(t\prime ) + w(t\prime ),

where u solves (1.1) and w solves

(5.14) iwt +\Delta w =  - | u+ w| 4(u+ w) + | u| 4u.
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Partitioning [0, \~T ] into finitely many pieces such that \| u\| L6
t,x(Ij\times \BbbR ) \leq \epsilon on each piece,

and iterating perturbative arguments on each piece (see Chapter 1.3 of [5]), for \| w0\| L2

sufficiently small,

(5.15) \| w\| L\infty 
t L2

x([0,
\~T ]\times \BbbR ) \lesssim exp

\left(  \| u\| 6
L6

t,x([0,
\~T ]\times \BbbR )

\epsilon 6

\right)  \| w0\| L2 .

Both (5.9) and (5.10) clearly follow from (5.15), since as \| w0\| L2 , it is possible to take
\~T \nearrow T sufficiently slowly such that the right-hand side of (5.15) goes to zero.

Furthermore, Theorem 7 implies that there exists a sequence g(t\prime n) such that

(5.16) g(t\prime n)u(t
\prime 
n)\rightharpoonup Q, weakly in L2.

Combining (5.10) and (5.16),

(5.17) g(t\prime n)g(tn, t
\prime 
n)v

\biggl( 
tn +

t\prime n
\lambda (tn)2

\biggr) 
\rightharpoonup Q, weakly in L2.

This completes the proof of Theorem 3.
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