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We establish global well-posedness and scattering results for the logarithmically
energy-supercritical nonlinear wave equation, under the assumption that the initial
data satisfies a partial symmetry condition. These results generalize and extend work
of Tao in the radially symmetric setting. The techniques involved include weighted
versions of Morawetz and Strichartz estimates, with weights adapted to the partial
symmetry assumptions. In an appendix, we establish a corresponding quantitative

result for the energy-critical problem.

1 Introduction

The goal of this paper is to show how partial symmetry assumptions on initial data can
lead to enhanced global well-posedness results for nonlinear wave equations posed on
Euclidean spaces R4, d > 4. For the sake of simplicity, we restrict our considerations to
R*, however, we expect that our results can be extended to higher dimensional settings

without much difficulty. We focus our attention on the nonlinear wave equation,

uy—Au+Fu) =0, (t,x)eRxR*

(NLW) {
(U, upli—g = (ug, uy),
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5944 A. Bulut and B. Dodson

with defocusing nonlinearity F in the slightly energy-supercritical regime,
F:uw u®log3+ u?). (1)

To explain this terminology, we recall that when F is a defocusing power-type nonlin-
earity given by F(u) = |ulPu, the problem is energy-subcritical for p < 2 and energy-
critical for p = 2; in these two cases, solutions (starting, e.g., from sufficiently regular
and decaying initial data) are known to be globally well-posed, with a corresponding
scattering result, while when p > 2 the problem is energy-supercritical, and the long-
time behavior of solutions remains a prominent open question (see [5-8, 11, 15-18], and
references cited in these works, for results showing that a priori control over a critical
norm implies global well-posedness, as well as [32] where energy-supercritical blowup
is shown to be possible for certain systems of defocusing nonlinear wave equations; see
also [2, 3,9, 10, 19] for other results in energy-supercritical settings).

Here, a key ingredient in long-time control over solutions is the energy associ-
ated with (NLW),

1
Elu,u,) = —/ |Vu|2+|ut|2dx+/ G(u) dx,
2 R4 R4

where G is given by

G(u) = / ! F(t)dt,
0

and which is conserved in time for solutions of (NLW). When F is given by (1), one has
G(u) ~ u*log(3 4+ u?), while when F is of power-type |ulPu, G(u) = ﬁ|u|p+2.

In recent years, beginning with work of Tao [30], several authors have studied
the global well-posedness and scattering problem for various cases of the 3D nonlinear
wave equation with slightly energy-supercritical nonlinearity, obtaining striking results
that show that the global well-posedness theory can be extended from the energy-
subcritical and energy-critical settings into the slightly energy-supercritical regime (i.e.,
admitting the inclusion of logarithmic factors). While in the discussion that follows
we focus on (NLW), we make note of the works [24-26] on the nonlinear Schrodinger
equation, and [1, 14, 31] on variants of the Navier-Stokes system.

In [30], Tao established global well-posedness for (NLW) posed on R® with
F(u) = u®log(3 + u?), under the assumption that the initial data (ug, up) has radial
symmetry (note that in this 3D setting, the energy-critical power-type nonlinearity is

F(u) = u®). The technique in [30] is based on a quantitative scattering bound obtained
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NLW with Partial Symmetry 5945

by Ginibre, Soffer, and Velo in [12], valid for radially symmetric solutions, which relies
on a combination of the Morawetz estimate with decay properties guaranteed by the
radial case of the Sobolev embedding. See also work of Shih [28], where the method is
refined to treat F(u) = u®log®(3 + u?), 0 < ¢ < 4/3.

The nonradial case was studied by Roy [23]. The result in [23] (see also [27]) is
based on a nonradial quantitative form [29] of the energy-critical global well-posedness
result for 3D (NLW) (closely related to the induction on energy technique of Bourgain [4],
originally developed in the nonlinear Schrédinger setting). Whereas the radial energy-
critical bound of [12] gives control that is polynomial in the energy, the nonradial result
of [29] gives an estimate that exhibits double-exponential dependence on the energy. As
a consequence, the results in [23] apply to nonlinearities of “log-log supercritical” type,
F(u) = u®log®log(3 + u?)) for c sufficiently small (in particular, [23] treats the case
c € (0,8/225)), while “log-supercritical” nonlinearities of type (1) have so far remained
out of reach in the non-radial case.

In the present paper, we consider (NLW) on R*, and show that partial symmetry
assumptions can lead to results that apply to logarithmically supercritical nonlin-
earities, giving an improvement over general non-radial methods as used in [23]. For
comparison, we begin with the R* analog of Tao's 3D log-energy-supercritical result. To

fix notation, for s > 1 let
HS(RY) := HS(RY N HY(RY).

Theorem 1.1 (Radial log-supercritical NLW on R%). Suppose that u : I x R* — R is
a solution to (NLW) with nonlinearity (1) and radially symmetric initial data (ug, u;) €
HY%R*) x HY*(R*). Then

. <
I upll oo o4 g2y S 1

with constant independent of the time interval I. In particular, combining this estimate
with the usual local theory for (NLW), radial solutions to (NLW) with nonlinearity (1)

exist globally in time and scatter at +oo.

For the convenience of the reader, we sketch a proof of Theorem 1.1 in Section 2
below.
Our main result is the following theorem, which shows that this global well-

posedness property persists when the assumption of radial initial data is relaxed to the
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5946 A. Bulut and B. Dodson

assumption that uy and u; obey a symmetry condition of the form
ux) = u(x],xy), xR, (2)

with & : R, x R — R, where x' = (x;, x5, x3) for x = (x,...,x,) € R%.

Theorem 1.2 (Axially symmetric log-supercritical NLW on R%). Suppose that u : I x
R* — R s a solution to (NLW) with nonlinearity (1) and initial data (ug, u;) € H>?(R*) x

H%/2(R*) with each of u, and u, satisfying the symmetry condition (2). Then

1w Ul oo g2 g2y S 10
with constant independent of the time interval I. In particular, solutions to (NLW) with
nonlinearity (1) and initial data having axial symmetry of the form (2) exist globally in

time and scatter at +oo.

The proof of Theorem 1.2 is based on a bootstrap procedure and continuity
argument. The key long-time estimates are provided by a variant of the Morawetz
estimate adapted to weights in the symmetric variables, complemented with a class
of weighted Strichartz estimates. These weighted estimates of Morawetz and Strichartz
type are the new ingredients that allow us to fully exploit the anisotropic decay satisfied
by solutions in our setting (i.e., decay arising from the symmetry assumption (2)).

We remark that our techniques can be extended to other partially symmetric
settings. As an example, we give a related global well-posedness result when the initial

data uy and u,; has product-type symmetry

ux) = w(|(x1, )1, [(X3, X)), X=(X1,...,Xy) € R%, (3)
with & : R2 — R.
Theorem 1.3. Suppose that u : I x R* — R is a solution to (NLW) with nonlinearity

(1) and initial data (uy, u,) € H?(R*) x H*/?(R*) with each of u, and u, satisfying the

symmetry condition (3). Then

_ <
”(u! ut)”L?O(Hg/ZXH;/Z) ~ 1!
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with constant independent of the time interval I. In particular, solutions to (NLW) with
nonlinearity (1) and initial data having symmetry of the form (3) exist globally in time

and scatter at +oo.

As we alluded to in our discussion of the works of Tao [30] and Roy [23] above,
there is a close connection between global well-posedness results for slightly energy-
supercritical (NLW) and quantitative estimates for the energy-critical problem. This
viewpoint carries over to our partially symmetric setting, and we include one such
result in Appendix A. In particular, for solutions to energy-critical (NLW) satisfying the
symmetry condition (2), we present a global well-posedness and scattering result with
bounds that have polynomial dependence on the energy.

To the best of our knowledge, Theorems 1.2 and 1.3 (as well as the energy-critical
results discussed in the appendix) are among the 1st instances where partial symmetry
assumptions are exploited to improve global well-posedness results for (NLW); in this
context, we note also the works of Martel [21] that uses a similar philosophy to establish
blow-up results for the nonlinear Schrodinger equation, as well as Liu-Wang [20] on
axisymmetric Navier-Stokes. We expect that this philosophy can be broadly applied in
settings where radial symmetry arises as a useful hypothesis. We plan to revisit the

question of extending these results to a 3D setting in a future work.

1.1 Outline

We now describe the structure of the rest of this article. In Section 2, we prove the radial
R* result, Theorem 1.1, with an argument (as in [30]) based on Strichartz estimates, the
Morawetz estimate, and the radial Sobolev embedding. The subsequent Sections 3-5
deal with our main results concerning global well-posedness under partial symmetry
assumptions. In Section 3 we establish a class of weighted Strichartz estimates for
solutions to (NLW) under the symmetry assumptions (2) and (3). These are used in
Section 4 to prove Theorem 1.2, where they are combined with a suitable form of the
Morawetz estimate adapted to the symmetry condition (2), and, similarly in Section 5 to
prove Theorem 1.3. In the appendix, we establish an associated result for the energy-

critical problem.

2 Proof of Theorem 1.1

In this section, we prove the radial global well-posedness result, Theorem 1.1. The
argument is largely similar to the 3D case of [30] and [28], and is based on Strichartz

estimates, the Morawetz estimate for (NLW), and the radial Sobolev embedding.
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5948 A. Bulut and B. Dodson

We begin by specifying a few notational conventions: we write A < B to mean
A < CB for some constant C > 0, and allow for the constants C to change from line to
line unless otherwise indicated. For s > 0, we use H, and H; to refer to the usual
(L?-based) inhomogeneous and homogeneous Sobolev spaces, respectively. In addition,
we use subscripts on the spaces LP, H®, and HS to indicate the variables of integration

for the appropriate norm.

2.1 Strichartz estimates for (NLW)

We recall the usual Strichartz estimates for solutions to the inhomogeneous wave

equation (NLW) on R%. These estimates read
NV ullga S 1@O), wgO)l g ot + 1IVEFll gy,

where (q,7), (a,b) € [2,x] x [2,00) satisfy

i, s <l

q r q 2r — 4
It o a4sow, to <l
a b a 2b” 4
RS U

a a " b b

For the convenience of the reader, we record the particular instances of these

estimates that we use below. In Section 2, we use

2

1 U)W oo g, py92 11512 S Iuto), u(to)lzora, y5s + ID Fll 2onps/a,
2

||Vu||L;4‘0/7L)1(0 < ||(u(t0),ut(t0)||ﬁg/4XH§/4 +ID FIIL;zO/nL;/z;,

2 2
1D wll 2073572 S 1to) ug(to)llzosa, s + ID Fll zonps/a.

2.2 Morawetz estimate and the radial Sobolev embedding

The usual Morawetz estimate for (NLW) (on R#) with nonlinearity given by (1) is

4 2
// u(t, x)*log(3 + u(t,x)*) dx dt < CE[ug, u,]
I R4 |X|
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NLW with Partial Symmetry 5949

for some constant C > 0 independent of u, where u : I x R* — R is a solution of (NLW).

Combining this with the radial Sobolev bound
w2l gz, S 1l s, (@)
(see, for instance, [22]), one obtains
/I/R4 lu(t, x)|° log(3 + u(t, x)?) dx dt < CE[ug, u,1*/2.

2.3 Sketch of the proof of Theorem 1.1

As in [30], the argument used to prove Theorem 1.1 is based on an iterative application of
Strichartz estimates. We sketch the key estimate in this section, a conditional bound on
the Strichartz norm for short-time intervals, which is then used inductively to establish
the result. We postpone the details of this inductive argument to Section 5, where it is
performed in the setting of the proof of Theorem 1.2.

where I denotes the maximal interval of

Fix an interval I = [¢y,t;] C I, max

ax/’

existence, and define
t1
A(tg, t;) :=/ / lu(t, x)|° log(3 + u(t, x)?) dx dt,
to R4
along with

Z(t) = | Vul 207 + ||D2u||L30/3 5/2

([to,thLL) (Ito. thLY%)

+ Sup ||(u(t/), ut(t/))|lH3/4(R4)>< '£/4(R4)r t S I
to<t'<t

Let t € I be given. By Strichartz,

Z(t) < I1uto) 273 a) + 14 (o) 974 ) + DX 10g(3 + U]l 201 574

< Z(tg) + lulV,ul?log(3 + u2)||L§0/11L5/4 + lu*(D*u) log(3 + u2)||Lf°/“L5/4'

< ulvul? <

where we have used the bounds u?|Vu|?/(3 + u?) < < u|Vul®log(3 + u?) and

u?|Vul?/(3 + u?)? < ulVul? < ulVul?log(3 + u?).
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5950 A. Bulut and B. Dodson

Using the Hoélder inequality, the right-hand side of (5) is bounded by a
multiple of

Z(to) + IVl pgepz | Vel 207 10w log!* (3 + u) 5 10g™®(3 + [ullZe )
+ [ID?ull 203,502 ]| u® 10g%/° (3 + u®) | 512 10g%/° (3 + ||ul|Z )
t X t,x t.x

S Z(ty) + Elug, ug1'"2Z(0)A(ty, 1) /° 10g*° (3 + Elug, u,] + 2(1)%)
+ Z(DA(ty, 1)*° 10g*°(3 + Elug, u,1 + Z(1)%)

< Z(tg) + (1 + Elug, uy1Y?)Z(t)A(ty, t,) /% 10g*° (3 + Elug, u,1 + Z(1)?),

provided A(ty, t;) < 1, where we have also used the bound log(3 + Eluy, u;]1+ Z(t)%) > 1.

A standard continuity argument now shows that if one has a bound of the form

< €
A(to'tl) — log*(3+Eluo,u1l+Z(to)?)
can conclude

with € sufficiently small (depending on (ug, u;)), then one

Z(t) < CZ(t,), tel,

as desired. To finish the proof of Theorem 1.1, one argues as in [30], appealing to a
partitioning argument based on dividing a given time interval [0, T] into a collection of
subintervals [t;, t;,,]1, i = 0, ..., m, on which the desired control on A(¢;, t;, ;) holds. Since
we give a full discussion of a closely related variant of this argument in Section 4 below,

we omit the details.

3 Weighted Strichartz estimates with symmetry

In this section, as preparation for our proofs of Theorems 1.2 and 1.3, we prove several
weighted Strichartz estimates adapted to the symmetry conditions (2) and (3). In fact,
both of the relevant estimates originate in a Strichartz bound for a 3rd symmetry

condition,

u(x) = u(|(xy, X5)|, X3, Xy). (6)

with 2 : R xR x R — R, expressed in the following lemma.
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NLW with Partial Symmetry 5951

Lemma 3.1. Suppose that u is a solution to (NLW) that satisfies the symmetry

assumption (6) for all ¢ € I. Then one has the estimate

16+ 39 ulla ey S Wollige + 1ty llg17z + 1 + 5370 F 1 3 -

Proof. To simplify notation, for x = (xy,%,,%x3,x,) € R* let r = (x? + x3)/2, w =
(x1,X%5) € R? and y = (%3,%,) € R2. Let & denote the Fourier variable dual to x, and
for each £ € R* set s = (62 + 212, u = (§,,&,), and v = (&;,£,). Moreover, we write
u(r,y) = u(w,y) = u(x) for x € R* and u(s, v) = U(u, v) = U() for &£ e R%).

We perform decompositions in both space and frequency. Let ¢ € CX(R?) be
radially symmetric and such that ¢(x) = 1 for |x| < 1 and supp¢ C {x : |x| < 2}.
For k € Z, let x; : R*> — R be the characteristic function of the ball {w € R? : 2k <
jw| < 25H1}, and set ¢ (x) = ¢(27*x), Y(x) = ¢(x) — $(2%), and Yy (x) = ¥ (2 *x) for
x € R2. Moreover, for f € S(R%), let P,f and P_,f be defined by P,f(£) = ¥ (w)f (§) and
P:k\f &)= Zj>k ¢j(u)f($ ), respectively. Then

1/4 ,it|V|
r
I e™ uo iz,

/4
(Z// (M€Y ug (t, x)| dth)

keZ

1/4
Z//r Xk (r)| etV uy(r, yI* drdydt)

keZ

keZ
2 2P e Pugr, e+ 221 me P, ug(rplige
J=—k

1/4
( > 22| (e Vrug(r, y>|| )
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5952 A. Bulut and B. Dodson

We begin by estimating the contributions of terms corresponding to (k,j) with

Jj < —k. For such terms, one has

||Xk(r)elt|Vx|Pju0(r, y) ”L‘tlry

2
= H/ ”/Xk(T')Seirscos(9)+iv~y+it(sz+\V|2)1/2wj(s)uAO(S, v ds dv do
0

Liry
2 . ; o2 2\1/2
5/ /Selrscos(0)+1v-y+zt(s +|v|%) wj(s)qu(sl V) dsdv de
0 L;I,V/Y
o —1/4 irs+iv-y+it(s?+|v|?)1/2 TN
< | cos(0)] e Y sY;()Ug(s, v) dsdv do, (8)
0 thlyr,y

where we've used the change of variables r — r/cos(f) in the last inequality. Invoking

3D Strichartz estimates for the wave equation, we obtain

27
® < /0 | cos@)|~VA1(s? + 1vIH A sy;(9) T (s, vlyz, A6
2w
< / lcos@) A (ul® + vV ul g (w) g (u, v) || 2 do
0 u,v

< 202 Pugll 2.
S 27 W Puoll g

Fixing k € Z, we now turn to the P__, u, contribution. By standard estimates for

oscillatory integrals, there exists g € C*°([0, 2]) such that

2 2
/ g eisrcos(ﬂ) do = (sr)fl i g(e)eisrcos(e) de + Cleisr(sr)fl/Z + Czefisr(sr)fl/zl
0 0

This gives
||Xk(r)eit|VX‘P>_kuo(r, Y)”L;lry S.; (I)k + (II)k’
with

21
D= |
0

lg(0)]do,

_ i iv-vit(s2 2y1/2 —
X (P)T l/elrscos(9)+lvy+lt(s +Hlv|*)V= | Vo (S)Ug(s, V) dsdv

4
LtJ':Y
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NLW with Partial Symmetry 5953

and

@y = > 27k2

ref{—1,1}

’

X () / s!/2eltrs iy VDT y, ()T (s, v) ds dv

4
Lt.r,Y

where we have used the definition ¥, _ := >, 1 V.
To estimate (I);, note that, as before, using the change of variables r — r/ cos(0)

and invoking 3D Strichartz estimates,

D S 27 D 16"+ vV 45() T (s, V) 2,
j>—k

S278 37 Il + VDl 2y, v g,
j>—k

—k—j/2
< 2 275 TPl e
j>-k

Collecting these bounds, we get

2\ 1/4 La
7)< Z Zz*lHkI/ZHPquHH;/z —1—(2 [zk/Z(H)k]4) . (9)
k

k | jez

Recalling the definition of the functions yx, k € Z, as characteristic functions,

(Zk; [zk/Z(II)k]4)l/4 s >

; a2 241/2 —
/sl/zewrerlverlt(s +|v|%) ¢>—k(s)u0(sr v) dsdv

el-11) Liry
S+ WDV 2y (9)Tg(s, )2,
S Iul? + DYy, g, vz,
S IP. kUl 172
S Mol e (10)

Combining (9) and (10) and using Young's inequality, we obtain
1772 ug g < gl 172-

The desired result now follows from duality considerations and the Christ-Kiselev

lemma. u
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5954 A. Bulut and B. Dodson

We now give a weighted Strichartz estimate associated to the symmetry condi-
tion (2).

Lemma 3.2. If u is a solution the wave equation (NLW) on a time interval I that

satisfies the symmetry condition (2), that is,
_ 2 2 2
u(t, Xy, Xy, X3, X,) = U(t, X7 + X5 + X3,X4),
then one has the estimate
115l gy S Ndollznzgesy + Ul + 11X 17 4F N a3 gy (11)

where x = (x,X,, X3, %,) € R* and x’ = (x;, x5, X3).

Proof. Let S(t) be the solution operator to the wave equation, that is, S(t)(f,g) = u(t)

is the solution to the linear wave equation
uy;—Au=0, ul®=¢f u, =g

Now, by Lemma 3.1,

1/8

||(Xf—|—X§)1/8u||th;X,y~l— ||(x§+x§)1/8u||L?X,y+ (x5 + x3) ulg, S U Nz + gl (12)

In view of this, we observe that the dual of the estimate (12) is

/—1/4
STV s
H1/2 5 F-1/2 txy

H/ S(—t)(O,F)dt’

The desired estimate (11) now follows by the Christ-Kiselev lemma. |

As another corollary, which will be useful in the next section, we obtain a

Strichartz bound involving second derivatives.

Corollary 3.3. For solutions u of (NLW) as in Lemma 3.2, one has the estimate

115D % Ul s 1ray S Ntollise) + It lgze) + 11X~ /2D Fl a5 (13)

X

(IxR%)"
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NLW with Partial Symmetry 5955
4 Proof of Theorem 1.2

In this section, we prove our main result, Theorem 1.2, on global well-posedness for

solutions with initial data satisfying the symmetry condition (2), that is,

u(x) = u(x'|,x,), xeRY,

with x = (x;,X,,X3) € R3. We first introduce a variant of the Morawetz estimate adapted

to this axially symmetric setting.

Proposition 4.1. If u solves (NLW) on I x R* and satisfies the symmetry condition (2),
then

// u(t, x)*log(3 + u(t, x)?)
IxR*

x| dt dx < Elug, uql.

Proof. Define the Morawetz potentials,

/

X
M, (t) = / ut(t,X/,y)m -Vyu(t,x',y)dx' dy

and

/ / 1 /
My (t) =/ut(t,x,y>u(t,x,y>mdx dy.

This leads to

/ /

d
aMl(t) = / utt(t,x’,y);—/| -Veu(t,x',y) dx’ dy—l—/ut(t,x’,y)% -V, (t, X', y) dx’ dy,

so that, integrating by parts and using (NLW),

d 1 /
S M) = —/—ut(t,x’,y)z ax’ dy+/Au(t,x/,y)i-vx,u(t,x’,y) dx’ dy
dt x| x|

/
— / u®log(3 + uz)(t,X/,y)é—,| -Vyou(t,x',y)dx’ dy.
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Writing Au = Ay u + Aju and integrating by parts again,

/

X
/ Aul(t, X’,y)m -Vyu(t,x',y)dx' dy

/ /
= / Ayu(t,X/,y);—/| - Vyeu(t,x',y) dx’ dy+/AX/u(t,X’,y)% -Vyu(t,x',y) dx’' dy
/ X/ / / / X/ / /
=— [ Vyu(x ,y)|7,| Ve Vyu(t x',y) dx'dy + [ Ayu(t,x',y) ™ -Vyu(t,x',y)dx' dy,
which is in turn equal to
Vyut,x', pi* , X , ,
T dx'dy + [ Apu(t,x ,y)m -Veu(t,x',y) dx' dy.

Next, adopting the Einstein summation convention and integrating by parts once

more,

X/

/Ax,u(t, x,y) -Vyu(t,x',y)dx’' dy

x|

x.
:/8,§u(t,x/,y)ﬁ8ju(t,x/,y) dx' dy
S X%

] pop Xy dxdy

= —/8ku(t,x’,y)[

x\
—/8ku(t,x’,y)ﬁajaku(t,x’,y) dx’ dy.

Evaluating the summation, this expression is equal to

x'.x
/E)ku(t, X’,y)[J—k

|X/|3 ]a]u(tl X// Y) d-X/ dY!

which (again integrating by parts) is the same as

@, u(t,x',y))?
/gdx/ dy.

x|
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Therefore,

1
CclltMl(t) /| /|ut(tX 7)? dX’dy—i—/| /||V u(t,x', y))? dx' dy

+/m(8r,u(t,x/,y))2 dX/dy—/u log(3 + u?)(t, %/, y)m

Vyou(t,x',y)dx dy.

We next estimate the derivative of M,, writing
d
dth(t) = /(Au —ullogB +ud)(t, X, y)u, x, y)m dx’ dy

—i—/ut(t,x’,y) mdx’d

Again writing Au = A, u + Ayu and integrating by parts,
/Au(t x/, y)mu(t x',y)dx' dy

/|V u(t, x', y))? mdx’dy /|V

+;/u(tx v)? AX,(I |)dX’dy

dy

Now, since AX,(IXL,l) <0

dx’ dy

1
|x’|
/
— / u®log(3 + uz)(t,X/,y)% -Vyeu(t,x',y) dx’ dy.

Integrating by parts and using

u
/ ) log3 + (x)?) dx’ < ~utlog(3 + u?),
0

N

one obtains

—(M1 )+ M,(t) < —l/log(3 + u?)ut m dx’ dy.
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Therefore, by the fundamental theorem of calculus,

/ / u*log(3 + u?)(t,x,y)
I

; dx'dy dt < sup [M, (t)| + | M,(t)|.
| x| tel

Now, since If_’l < 1, one has

1My (O < lue @ X, P)llzzee) I Ve ut, X' D lizgsy < Iuglizge IVUlpzgs)

Also, by Hardy's inequality, for any y € R,

1 /
mu(t,X ,Y) 5 ”Vx/u(t, ',Y)||L§/(R3),

12, (R3)
so that

lu(t, x',y)|?

¥ dx'dy < [Vu@®)|2,

(RH)*
|

We now turn to the proof of Theorem 1.2. The proof is based on a bootstrap

procedure and continuity argument.
Proof of Theorem 1.2. Fort €I, define

Z4y @) = 11X 14 D%l 13 g0, 15y + SUP_ V12U 2y + IV U@z ey (14)
i t

o<t'<t

We first establish a result for general intervals I C I

naxs analogous to the

estimate shown in Section 2 above. For ¢y, t; € R and I = [ty, t;], define

- 5] 41 2
A(ty, 1)) :=/ / u(t, )| og(? TUu07) 4y ar.
to JR4 |X |

We claim that there exist ¢ > 0 and C > 0 so that for all I = [t,, ;] C R, if

t) = : 2y’
10g(3+E[u0, u1]+Z(t0) )

A(ty, (15)
then Zto (t) < CZt0 for all ¢ € [ty, t;]1, where

Zyo = VI 2ulto) 2 ge) + 1V 20, (o) 2 me) - (16)
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To see this claim, fix t; < t; so that [ty t;] C I,,., and suppose that (15) is

satisfied. Let t € [t, t;] be given. Then, by the Strichartz estimate of Corollary 3.3, we

have
Zyo(t1) S Zyo (b) + 11X 7V/4VE (WP 1og(3 + u?))l| s -
tx Yy

By the product rule,

vz ,@’log@3 + u?) = 3u”log(3 + u)VZ ju+6ulogd+ u?)|V, ,ul® + (3 D — |V,

2ut _, aubd

2
+ Gt ud Vgt — 31 u2) IV yul®,

and the right-hand side of (17) is bounded by a multiple of

Zyy + 11X 17 *u? logB + uP)VE Jullan + 11X *ulog3 + u?)|Vy yul?|l 4
tx'y tx'y

u3 4
S — Jul? pl—% vy
x'[1/4(3 + u?) Loy IX'|V4@ 4 u?) X s

5
u

+ | —————= 1V, yul?
|X’|1/4(3+u2)2 D4 1473

tx'y

Now, by Sobolev embedding,

4
u 2

/—1/4,,2 2y 2 /\—1/4
[Ib:d u“log(3+u )VX/’yuIIL;;Q’y + H |x'| —(3 D Ve yt

4/3
Lt,x’ 5

u?log(3 + u?)'/?
|X/|1/2

1/4o2 2,\1/2
I 1Y4V2 ule  [11og(3 4+ u?) /2| o0
tx'y txy

u?log(3 + u?)'/?
|X/|1/2

< 2y, (8))10g(3 + Z, () + Elug, u)'/?

L?X/,y(IxR‘*)

Next, we estimate

5
1/4 2 n-1/4 U 2
X b'¢ ———|V, U
Hl | 3+ 2| | +H| | (3+u2)2| x\y | 43
tx'y Lyw
u 2
_ V., U
|x'|1/4 || 1 IV y ||L‘t1

(17)

(18)

(19)
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Let 1 <j < 4 be a fixed index. Integrating by parts,

// (Qu* dx' dy dt = —3/// w(d?u)(9w)* dx' dy dt

< ||V, ul? X1V4V2 Ul 4 x| V4,. .
SIVpuls I AVE uls X1 ulyy
Summing over 1 <j <4,
V., ul? < |1x'1V4V2 _ul;a x| V4|4
IV yulis, S IPAVE ulps 1 ulyy
2\1/4
< IIK1V4V2 ule ulog(3 + u?)!/
/
~ X,y Lt,X’,y |X/|1/4 L4
txy

and we therefore obtain

u®log(3 + u?)1/?

<
(19) < e

1114V yulzs , 110g@+u”) e,
tx'y
u?log(3 + u?)1/?
|X/|1/2

< 2, (8))10g(3 + Zy () + Elug, u)'/2

Finally, integrating by parts and using log(3 + u?) > 1,
///(aju)4 log(3 + u?)!/2 dx’' dy dt
=-3 // (07w (u)*ulogd + u*)'/? dx’ dy dt
B // @jw* 3 fuz) log(3 Ji u?)l/2 dx’dy dt

S Ve pullts  + [ IogB+u®'8v, Jul?,
tx'y

tx'y

log(3 + u?)/*u
|X/|1/4

11/4o2
- lx VZ, ull;a
1114V s,

4
Lt,X’ B4

so that, by (20),

log(3 + u?)/*u

211/82 < /A2
1Vl log B+ PIZs S IX1AVE pulys par

tx'y

4
Lt,X’,y

2 4
Lt,x’,y(IXR )

(19)

(20)
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Collecting the above estimates, we have shown

Z, (t)) S Zy, + (|||x’|—1/2 log3 +u”)2u? 2 | (5.ma)
XY

- Z, (t))10g(3 + Zy, (t,) + Elug, ull)l/z) ,
so that, for ¢ > O sufficiently small (independent of ¢, and t;), (15) implies, via a
continuity argument,
Z; (t) S Zy,,

which completes the proof of the claim.
Now, let € and C be as in the claim, and note that the Morawetz estimate of

Proposition (4.1) implies

41 2
// lu(t, x)|*log(3 + u(t, x)*) dx dt < C'Elug, u,] < oo.
IxR4

x|

Following [30], we partition the interval I into finitely many consecutive inter-

vals J, k =1,--- ,K, with each Jy of the form J, = [t;, t;, ], where
infl=t, <ty <--- <tg, =supl.

Setting ¢; = infI and Z = Z, , and noting that

K
€

> log(3 + N/log(3 + Z2)),

kélog(fﬂ + Elug, up1 4 C%k2z2) ™~ 0g(3 +N/log(3 + Z%))

it follows that one can form a partition (J;) with K < (3 + Z2)¢Elwou1l guch that

41 2
/ [u(t, x)| og(/3 + u(t, x)%) dxdt < € i
JkXR4 IX | 10g(3 + E[UO, ul] + CZ ZZ)

foralll <k <K.

Setting Z(Jy) = SUP;c(y, 4,124, (t) for each k, we now inductively show the bound
Z(J,) < Ckz. Indeed, for k = 1 this is a straightforward application of the claim we
established above, with (15) verified via the k = 1 case of (21). Suppose now that k > 1
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and that we have Z(J;) < ckz. This implies

€ €
<
log(3 + Elug, u,] + C222) ~ log(3 + Elug, u;1+ Z(Jp)?)'

so that, in view of (21), an application of the claim for the interval I = J;,; gives
Z(Jyyy) < CZ;, < CZ(Jy) < C*112,

which is the desired inductive bound.

Assembling the estimates for Z(J}), we obtain
X1 D% w g gy < CElug, uyl, [ugllgsrz + Uy llgar2),

which implies the desired global well-posedness and scattering result. |

5 Proof of Theorem 1.3

In this section, we prove Theorem 1.3, which is the global well-posedness result
for solutions u to (NLW) with log-supercritical nonlinearity (1) under the symmetry

condition (3), that is,
u(t, Xq,Xy,X3,Xy) = u(t,Xf +X§,X§ —+—Xﬁ).
The relevant Strichartz estimate in this setting is given by Lemma 3.1.

Proof of Theorem 1.3. This time the standard Morawetz estimate implies that if J is

an interval on which (NLW) is well-posed, then
1
—u(t,x,y)*log(3 + u?(t,x’,y)) dx’' dy dt < Elug, u,l.
/J / X+ Iyl Yy g Yy Yy ort

Now, proceeding as before, for any I = [¢ty, t;] C I, the Strichartz estimate of

Lemma 3.1 and the above Morawetz estimate lead to

Zy, () S Zy, + 11X + 1yl 7% 10g (3 + u2>”2u2||L3X,YaXR4)

XN+ DD uls , sy 1083 + Ul 1,cpay) ™
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Making the same argument as before implies the global well-posedness and

scattering result. |

Funding

This work was partially supported by National Science Foundation (NSF) Grants [DMS-1361838
and DMS-1748083 to A.B.] and National Science Foundation (NSF) Grant [DMS-1500424 to B.D.].

Acknowledgments

Both authors are grateful to A. Soffer for enlightening discussions and comments on an earlier
draft.

Appendix A. Quantitative Strichartz Norm Estimates for the Energy-Critical (NLW)

In this appendix, we apply a variant of the method used to prove Theorem 1.2 to analysis
of the energy-critical NLW. In particular, in Proposition A2 below we obtain a partial-
symmetry analog of the radial 3D result in [12], where the Strichartz norm is controlled
by a quantity that is polynomial in the energy (c.f. Theorem 1.2 and Theorem 1.3, where
the possibility of exponential growth comes from the slightly energy-supercritical
nonlinearity).

As a preliminary tool for this analysis, we establish a weighted L? estimate for

functions satisfying the symmetry condition (2), that is,
u;(x) = 0;(1x'|,x4), 1=0,1,
with
x=(x,x,) € R3 x R.
For a related bound used in the study of explicit constructions of blow-up solutions for
the 3D nonlinear Schrédinger equation, see [13].

Lemma Al. There exists C > 0 such that

1/5
|||X/| / u(X/:X4)||L§(R4) S ||Vu||L§(R4)

holds for all u € S(R® x R) satisfying the symmetry condition (2).

Proof. Letx = (x,x,) € R® x R be given. By the usual radial Sobolev embedding (4)

applied to the map x' — u(x/, x,), we have

X u %) 2 S IV ul, %) 1122 s (A.1)
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Combining this with the inequality
lux’, x9)® < / [u(x', x9) 1?10y, u(x', x,)| dxy, (¥, x5) € R® xR,
R

we get

X Ju, x)° < (/R |vxfu<x/,x4)|2dx’) (/R'”(X xg) 1oy, ux, x4)|dx4)

for all (x',x,) € R® x R.

Integrating in x’ and x,, we therefore obtain
2 2
e ) P ey 19, 00 g g M g

S IVull?, pa lull?

LZ(R%) LA(R%)

” Vu”LZ(R4)

where we have used the Sobolev embedding to obtain the last inequality. |

We are now ready to state and prove the quantitative energy-critical result.

Proposition A2. Suppose that u : I x R* — R is a solution to (NLW) with nonlinearity
F:R — R given by
F(u) = ud.

There exist constants C;,C, > 0 such that if u corresponds to initial data
(WU leg = (Ug,up) € H'(R*) x L*(R%), with u;, i = 0,1, satisfying the symmetry

condition (2), then

”u(t'X)||LfX(IxR4) = ClE[uOI u1]C2-

Proof. For any solution of (NLW) with energy-critical nonlinearity F(u) = u® that

satisfies the symmetry condition (2), the argument used to prove Proposition 4.1 shows

// UG 4y < Blug, uyl.
IxR% |X/

Moreover, as a consequence of Lemma Al, one has

the Morawetz-type bound

4/9
< 1 |1/9y,5/9

Il gz S M1 g I,
— 1w/ 11/5,,5/9 4/9
= 11wl /|1/4||

< Elug, uy 1718,
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For t, < t;, defining Zto(tl) by

Zy () = ||u||L§([t0,t1];L§(R4)) + ||u”L?([to,t1];L§(R4))f

the usual Strichartz estimates on R* give

< 1/2 2
Zto (tl) ~ E[uOI u]] + ”u Vu”L%([t(),t]];L?(/7(R4))

1/2 2
S Elug, uql 24 ||u||th1L)1(6/3||vu”L§°L§

1/2

2
17/54, . 15/27 1/2
o902 L]l / ||u||/ :| E[uo,ull/
L9

< 1/2
NE[uOI ul] + | llull Lng L?X

< Blug, uy "2 + (1wl 9,92 Elug, w,1'/2) 24, (2y).

LILy
As a consequence, there exist constants C > 0 and ¢ > 0 such that for all ¢; < t; the

condition

9/2 € (A.2)

”u”L?([toltll;Lx ®R*) = E[u0'u1]1/2
implies

Z; (t)) < CElug, u,1'/2,

Now, invoking an iterative argument based on partitioning the interval I into

K < Elug, u,1® intervals [ty, ¢y, ], k =1, -+ , K, on which (A.2) is satisfied, we obtain

1/2
U8 e e izs @y < Ze () S Elug, uglV

for each 1 < k < K, and thus

”u”Lts(I;LE(]R‘*)) < E[u(), u1]21/10

as desired. [ |
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