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Abstract

It is difficult to use subsampling with variational inference in hierarchical models
since the number of local latent variables scales with the dataset. Thus, inference
in hierarchical models remains a challenge at large scale. It is helpful to use a
variational family with structure matching the posterior, but optimization is still
slow due to the huge number of local distributions. Instead, this paper suggests an
amortized approach where shared parameters simultaneously represent all local
distributions. This approach is similarly accurate as using a given joint distribution
(e.g., a full-rank Gaussian) but is feasible on datasets that are several orders of
magnitude larger. It is also dramatically faster than using a structured variational
distribution.

1 Introduction

Hierarchical Bayesian models are a general framework where parameters of “groups” are drawn
from some shared distribution, and then observed data is drawn from a distribution specified by each
group’s parameters. After data is observed, the inference problem is to infer both the parameters for
each group and the shared parameters. These models have proven useful in various domains [12]
including hierarchical regression amd classification [11], topic models [4, 21, 3], polling [10, 23],
epidemiology [22], ecology [7], psychology [35], matrix-factorization [33], and collaborative filtering
[25, 31].

A proven technique for scaling variational inference (VI) to large datasets is subsampling. The idea
is that if the target model has the formp(z, y) = p(z)

Q
i p(yi |z) then an unbiased gradient can be

estimated while only evaluating p(z) and p(yi |z) at a few i [15, 19, 29, 28, 34, 14].

This paper addresses hierarchical models of the form p(θ, z, y) = p(θ)
Q

i p(zi , yi |θ), where only y
is observed. There are two challenges. First, the number of local latent variableszi increases with
the dataset, meaning the posterior distribution increases in dimensionality. Second, there is often a
dependence between zi and θ which must be captured to get strong results [14].

The aim of this paper is to develop a black-box variational inference scheme that can scale to large
hierarchical models without losing benefits of a joint approximation. Our solution takes three steps.
First, in the true posterior, the different latent variableszi are conditionally independent givenθ, which
suggests using a variational family of the same form. We confirm this intuition by showing that for
any joint variational family q(θ, z), one can define a corresponding "branch" familyq(θ)

Q
i q(zi |θ)

such that inference will be equally accurate (theorem 2). We call inference using such a family the
"branch" approach.

Second, we observe that if using the branch approach, the optimal local variational parameters can be
computed only from θ and local data (eq. (12)). Thus, we propose to amortize the computation of
the local variational parameters by learning a network to approximately solve that optimization. We
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show that when the target distribution is symmetric over latent variables, this will be as accurate as
the original joint family, assuming a sufficiently capable amortization network (claim 5).

Third, we note that in many real hierarchical models, there are many i.i.d. data generated from
each local latent variable. This presents a challenge for learning an amortization network, since the
full network should deal with different numbers of data points and naturally reflect the symmetry
between the inputs (that is, without having to relearn the symmetry.) We propose an approach where
a preliminary "feature" network processes each datum, after which they are combined with a pooling
operation which forms the input for a standard network (section 6). This is closely related to the
"deep sets" [37] strategy for permutation invariance.

We validate these methods on a synthetic model where exact inference is possible, and on a user-
preference model for the MovieLens dataset with 162K users who make 25M ratings of different
movies. At small scale (2.5K ratings), we show similar accuracy using a dense joint Gaussian, a
branch distribution, or our amortized approach. At moderate scale (180K ratings), joint inference
is intractable. Branch distributions gives a meaningful answer, and the amortized approach is
comparable or better. At large scale (18M ratings) the amortized approach is thousands of nats better
on test-likelihoods even after branch distributions were trained for almost ten times as long as the
amortized approach took to converge (fig. 6).

2 Hierarchical Branched Distributions

θ

zi

yij x ij

j  {∈ 1, . . . , n i }

i  {∈ 1, . . . , N }

θ

z1 z2 z3

y11 y12 y21 y31 y32 y33

x11 x12 x21 x31 x32 x33

Figure 1: The graphical model for the HBDs. On the left, we have plate notation for the generic HBD
from eq. (3). Note, we can have an edge from θ to yij (we skip it for clarity.) On the right, we have
an example model with N = 3 .

We focus on two-level hierarchical distributions. A generic model of this type is given by

p(θ, z, y|x) = p(θ)
NY

i=1

p(zi |θ)p(yi |θ, zi , xi ), (1)

where θ and z = {z i } N
i=1 are latent variables, y = {y i } N

i=1 are observations, and x = {x i } N
i=1

are covariates. As the visual representations of these models resemble branches, we refer them as
hierarchical branch distributions (HBDs).

Symmetric. We call an HBD symmetric if the conditionals are symmetric, i.e., if zi = z j , xi = x j ,
and yi = y j , it implies that

p(zi |θ) = p(z j |θ), and

p(yi |θ, zi , xi ) = p(y j |θ, zj , xj ). (2)

Locally i.i.d. Often local observations yi (and x i ) are a collection of conditionally i.i.d observations.
Then, an HBD takes the form of

p(θ, z, y|x) = p(θ)
NY

i=1

p(zi |θ)
n iY

j=1

p(yij |θ, zi , xij ), (3)

where yi = {y ij } n i
j=1 and x i = {x ij } n i

j=1 are collections of conditionally i.i.d observations and
covariates; n i ≥ 1 is the number of observations for branch i .
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No local covariates. Some applications do not involve the covariatesx i . In such cases, HBDs have
a simplified form of

p(θ, z, y) = p(θ)
NY

i=1

p(zi |θ)p(yi |θ, zi ). (4)

In this paper, we will be using eq. (1) and eq. (3) to refer HBDs—the results extend easily to case
where there are no local covariates. (For instance, in section 5, we amortize using (x i , yi ) as inputs.
When there are no covariates, we can amortize with just yi .)

2.1 Related Work

Bayesian inference in hierarchical models is an old problem. The most common solutions are Markov
chain Monte Carlo (MCMC) and VI. A key advantage of VI is that gradients can sometimes be
estimated using only a subsample of data. Hoffman et al. [15] observe that inference in hierarchical
models is still slow at large scale, since the number of parameters scales with the dataset. Instead,
they assume that θ and zi from eq. (1) are in conjugate exponential families, and observe that for a
mean-field variational distributionq(θ)

Q
i q(zi ), the optimal q(zi ) can be calculated in closed form

for fixed q(θ). This is highly scalable, though it is limited to factorized approximations and requires
a conditionally conjugate target model.

A structured variational approximation likeq(θ)
Q

i q(zi |θ) can be used which reflects the dependence
of zi on θ [14, 32, 2, 17]. However, this still has scalability problems in general since the number
of parameters grows in the size of the data (section 7). To the best of our knowledge, the only
approach that avoids this is the framework of structured stochastic VI [14, 17], which assumes the
target is conditionally conjugate, and that for a fixedθ an optimal "local" distribution q(zi |θ) can be
calculated from local data. Hoffman and Blei [14] address matrix factorization models and latent
Dirichlet allocation, using Gibbs sampling to compute the local distributions. Johnson et al. [17]
use amortization for conjugate models but do not consider the setting where local observations are a
collection of i.i.d observations. Our approach is not strictly an instance of either of these frameworks,
as we do not assume conjugacy or that amortization can exactly recover optimal local distributions
[14, Eq. 7]. Still the spirit is the same, and our approach should be seen as part of this line of research.

Amortized variational approximations have been used to learn models with local variables [19, 9, 16,
5]. A particularly related instance of model learning is the Neural Statistician approach [9], where a
“statistics network” learns representations of closely related datasets–the construction of this network
is similar to our “pooling network” in section 6. However, in the Neural Statistician model there are
no global variables θ, and it is not obvious how to generalize their approach for HBDs. In contrast,
our “pooling network” results from the analysis in section 5, reducing the architectural space when
θ is present while retaining accuracy. Moreover, learning a model is strictly different from our
“black-box" setting where we want to approximate the posterior of a given model, and the inference
only has access to log por ∇ θ,z log p(or their parts) [28, 20, 2, 1].

3 Joint approximations for HBD

When dealing with HBDs, a non-structured distribution does not scale. To see this, consider the naive
VI objective—Evidence Lower Bound (ELBO,L ). Let qJ oint

φ be a joint variational approximation
over θ and z; we use sans-serif font for random variables. Then,

L (qJ oint
φ kp) = E qJoint

φ (θ,z) log
p(θ, z, y|x)
qJ oint

φ (θ, z)
, (5)

where φ are variational parameters. Usually the above expectation is not tractable and one uses a
Monte-Carlo estimator. A single sample estimator is given by

bL = log
p(θ, z, y|x)
qJ oint

φ (θ, z)
, (6)

where (θ, z)  q∼ J oint
φ and bL is unbiased. Since qJ oint

φ need not factorize, even a single estimate
requires sampling all the latent variables at each step. This is problematic when there are a large
number of local latent variables. One encounters the same scaling problem when taking the gradient of
the ELBO. We can estimate the gradient using any of the several available estimators [28, 19, 29, 30];
however, none of them scale ifqJ oint

φ does not factorize [15].
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4 Branch approximations for HBD

It is easy to see that the posterior distribution of the HBD eq. (1) takes the form

p(θ, z|y, x) = p(θ|y, x)
NY

i=1

p(zi |θ, yi , xi ).

As such, it is natural to consider variational distributions that factorize the same way (see fig. 2.) In
this section, we confirm this intuition—we start with any joint variational family which can have
any dependence between θ and z1, · · · , zN . Then, we define a corresponding “branch” family where
z1, · · · , zN are conditionally independent given θ. We show that inference using the branch family
will be at least as accurate as using the joint family. We formalize the idea of branch distribution in
the next definition.

Definition 1. Let qJ oint
φ be any variational family with parameters φ. We define qB ranch

v,w to be a
corresponding branch family if, for all φ, there exists (v, {w i } N

i=1 ), such that,

qB ranch
v,w (θ, z) = qv (θ)

NY

i=1

qw i (zi |θ) = q J oint
φ (θ)

NY

i=1

qJ oint
φ (zi |θ). (7)

θ

z1 z2 zN. . .

Figure 2: qbas in eq. (7).

Given a joint distribution, a branch distribution can always be defined by
choosing w and vi as the components of φ that influence qJ oint

φ (θ) and
qJ oint

φ (zi |θ), respectively, and choosing qw (θ) and qw i (zi |θ) correspond-
ingly. However, the choice is not unique (for instance, the parameteri-
zation can require transformations—different transformations can create
different variants.)

The idea to use qB ranch
v,w is natural [14, 2]. However, one might question if

the branch variational family is as good as the original qJ oint
φ ; in theorem 2, we establish that this is

indeed true.

Theorem 2. Let p be a HBD, and qJ oint
φ (θ, z) be a joint approximation family parameterized byφ.

Choose a corresponding branch variational family qB ranch
v,w (θ, z) as in definition 1. Then,

min
v,w

KL (q B ranch
v,w kp) ≤ min

φ
KL (q J oint

φ kp) .

We stress that qB ranch
v,w is a new variational family derived from but not identical to qJ oint

φ . Theorem 2
implies that we can optimize a branched variational family qB ranch

v,w without compromising the quality
of approximation (see appendix C for proof.) In the following corollary, we apply theorem 2 to a
joint Gaussian to show that using a branch Gaussian will be equally accurate.

Corrolary 3. Let p be a HBD, and let qJ oint
φ (θ, z) = N ((θ, z)|µ, Σ) be a joint Gaussian approxima-

tion (with φ = (µ, Σ) ). Choose a variational family

qB ranch
v,w (θ, z) = N (θ|µ 0, Σ0)

NY

i=1

N (zi |µ i + A i θ, Σ i )

with v = (µ 0, Σ0) and wi = (µ i , Σi , Ai ). Then, min
v,w

KL (q B ranch
v,w kp) ≤ min

φ
KL (q J oint

φ kp) .

In the above corollary, the structured family qB ranch
v,w is chosen such that it can represent any branched

Gaussian distribution. Notice, the mean of the conditional distribution is an affine function of θ. This
affine relationship appears naturally when you factorize the joint Gaussian over (θ, z). For more
details see appendix E.

4.1 Subsampling in branch distributions

In this section, we show that if p is an HBD and qB ranch
v,w is as in definition 1, we can estimate ELBO

using local observations and scale better. Consider the ELBO

L (qB ranch
v,w kp) = E

qBranch
v,w (θ,z)

log
p (θ, z, y|x)

qB ranch
v,w (θ, z)

4



JointELBO(φ, y, x)
θ, z  q∼ J oint

φ (θ, z)
bL ← log

p(θ, z, y|x)
qJ oint

φ (θ, z)

(a) Estimation with qJ oint
φ as in eq. (6)

BranchELBO(v, w, y, x)
θ  q∼ v (θ)
zi  ∼ q w i (zi |θ) for i  {∈ 1, · · · , N }.

bL ← log
p (θ)
qv (θ)

+
NX

i=1

log
p (zi , yi |θ, xi )

qw i (zi |θ)

(b) Estimation with qB ranch
v,w as in eq. (9)

SubSampledBranchELBO(v, w, y, x)
θ  q∼ v (θ)
B ∼ Minibatch(B)
zi  ∼ q w i (zi |θ) for i  B∈

bL ← log
p (θ)
qv (θ)

+
N
|B|

X

i B∈

log
p (zi , yi |θ, xi )

qw i (zi |θ)

(c) Estimation with qB ranch
v,w as in eq. (10)

AmortizedSubSampledBranchELBO(v, u, y, x)
θ  q∼ v (θ)
B ∼ Minibatch(B)
wi ← net u (x i , yi ) for i  B∈
zi  ∼ q w i (zi |θ) for i  B∈

bL ← log
p (θ)
qv (θ)

+
N
|B|

X

i B∈

log
p (zi , yi |θ, xi )

qw i (zi |θ)

(d) Estimation with qA mort
v,u for p as in eq. (2)

Figure 3: Pseudo codes for ELBO estimation with different variational methods; w = {w i } N
i=1 ,

y = {y i } N
i=1 , and yi = {y ij } n i

j=1 (x is defined similar to y.) (a) Estimates ELBO for a joint
approximation; (b) to (d) estimate ELBO for branch approximations; (c, d) use subsampling to
estimate ELBO; (d) uses amortized conditionals; (a) to (c) work for any HBD, and (d) assumes p is a
symmetric HBD as in eq. (2). For models where n i > 1 , we use the net u as in fig. 4. Minibatch is
some distribution over the set of possible minibatches and|B| denotes the number of samples in a
minibatch B .

= E
qv (θ)

log
p (θ)
qv (θ)

+
NX

i=1

E
qv (θ)

E
qw i (z i |θ)

log
p (zi , yi |θ, xi )

qw i (zi |θ)
. (8)

Without assuming special structure (e.g. conjugacy) the above expectations will not be available in
closed form. To estimate the ELBO, let (θ, {z i }

N
i=1 )  q∼ B ranch

v,w . Then, an unbiased estimator is

bL = log
p (θ)
qv (θ)

+
NX

i=1

log
p (zi , yi |θ, xi )

qw i (zi |θ)
. (9)

Unlike the joint estimator of eq. (6), one can subsample the terms in eq. (9) to create a new unbiased
estimator. Let B be randomly selected minibatch of indices from {1, 2, . . . , N }. Then,

bL = log
p (θ)
qv (θ)

+
N

|B|

X

i∈B

log
p (zi , yi |θ, xi )

qw i (zi |θ)
, (10)

is another unbiased estimator of ELBO. In figs. 3b and 3c, we present the complete pseudocodes for
ELBO estimation with and without subsampling in branch distributions.

Unsurprisingly, the same summation structure appears for gradients estimators of branch ELBO,
allowing for efficient gradient estimation. With subsampled evaluation and training, branch distri-
butions are immensely computationally efficient—in our experiments, we scale to models with 103

times more latent variables by switching to branch approximations (see fig. 6).

While branch distributions are immensely more scalable than joint approximations, the number of
parameters still scales as O(N) . In the next section, we demonstrate that for symmetric HBDs, we
can share parameters for the local conditionals (amortize) to allow further scalability.

5 Amortized branch approximations

In this section, we discuss how one can amortize the local conditionals of a branch approximations
when the target HBD is symmetric (see eq. (2).) We first formally introduce the amortized branch
distributions in the next definition and then justify the amortization for symmetric HBD.

5



Definition 4. Let qJ oint
φ be a joint approximation and let qB ranch

v,w be as in definition 1. Suppose
net u (x i , yi ) is some parameterized map (with parameters u) from local observations (x i , yi ) to
space of wi . Then,

qA mort
v,u (θ, z) = qv (θ)

NY

i=1

qnet u (x i ,y i ) (zi |θ) (11)

is a corresponding amortized branch distribution.

The idea to amortize is natural once you examine the optimization for symmetric HBDs. Consider
the optimization for objective in eq. (8).

max
v,w

L (qB ranch
v,w kp) = max

v,w

"

E
qv (θ)

log
p (θ)
qv (θ)

+
NX

i=1

E
qv (θ)

E
qw i (z i |θ)

log
p (zi , yi |θ, xi )

qw i (zi |θ)

#

= max
v

"

E
qv (θ)

log
p (θ)
qv (θ)

+
NX

i=1

max
w i

E
qv (θ)

E
qw i (z i |θ)

log
p (zi , yi |θ, xi )

qw i (zi |θ)

#
.

The crucial observation in the above equation is that for any givenv, the optimal solution of inner
optimization depends only on local data points (x i , yi ), i.e.,

w∗
i = argmax

w i

E
qv (θ)

E
qw i (z i |θ)

log
p (zi , yi |θ, xi )

qw i (zi |θ)
. (12)

Now, notice that if p and qB ranch
v,w have symmetric conditionals, then, for each i , we solve the

same optimization over wi , just with different parameters yi and x i . Thus, one could replace the
optimization over wi with an optimization over a parameterized function from (x i , yi ) to the space of
wi . Formally, when the network net u is sufficiently capable, we make the following claim.

Claim 5. Let p be a symmetric HBD and let qJ oint
φ be some joint approximation. Let qA mort

v,u be as in
definition 1. Suppose that for all v, there exists a u, such that,

net u (x i , yi ) = argmax
w i

E
qv (θ)

E
qw i (z i |θ)

log
p (zi , yi |θ, xi )

qw i (zi |θ)
. (13)

Then,

min
v,u

KL (q A mort
v,u kp) ≤ min

φ
KL (q J oint

φ kp) (14)

Note, we only amortize the conditional distributionqw i (zi |θ) and leave qv (θ) unchanged. In practice,
of course, we do not have perfect amortization functions. The quality of the amortization depends on
our ability to parameterize and optimize a powerful neural network. In other words, we make the
following approximation

net u (x i , yi ) ≈ argmax
w i

E
qv (θ)

E
qw i (z i |θ)

log
p (zi , yi |θ, xi )

qw i (zi |θ)
. (15)

In our experiments, we found the amortized approaches work well even with moderately sized
networks. Due to parameter sharing, the amortized approaches converge much faster than other
alternatives (especially, true for larger models; see fig. 6 and table 2).

6 Amortized branch approximations for i.i.d. observations

In the previous section, we discussed how we could amortize branch approximations for symmetric
HBDs. However, in some applications, the construction of amortization network net u is not as
straightforward. Consider the case when we have a varying number of local i.i.d observations for
each local latent variable. In this section, we highlight the problem with naive amortization for locally
i.i.d HBDs, and present a simple solution to alleviate them.
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Table 1: All variational families used in our experiments. Σ denotes a generic covariance matrix and
σ2 denotes a diagonal covariance.

Gaussian Family qJ oint
φ as in eq. (5) qB ranch

v,w as in eq. (7) qA mort
v,u as in definition 4

Dense N (θ, z|µ, Σ) N (θ|µ0, Σ0)
NY

i=1

N (zi |µi + A i θ, Σi ) N (θ|µ0, Σ0)
NY

i=1

N (zi |µi + A i θ, Σi )

φ = (µ, Σ) v = (µ 0 , Σ0), wi = (µ i , Ai , Σ i ) v = (µ 0 , Σ0), (µ i , Ai , Σ i ) = net u (x i , yi )

Block Diagonal N (θ|µ0, Σ0)N (z|µ 1, Σ1) N (θ|µ0, Σ0)
NY

i=1

N (zi |µi , Σi ) N (θ|µ0, Σ0)
NY

i=1

N (zi |µi , Σi )

φ = (µ 0 , µ1 , Σ0 , Σ1) v = (µ 0 , Σ0), wi = (µ i , Σ i ) v = (µ 0 , Σ0), (µ i , Σ i ) = net u (x i , yi )

Diagonal N (θ, z|µ, σ2) N (θ|µ0, σ2
0 )

NY

i=1

N (zi |µ i , σ2
i ) N (θ|µ0, σ2

0)
NY

i=1

N (zi |µ i , σ2
i )

φ = (µ, σ 2) v = (µ 0 , σ2
0 ), wi = (µ i , σ2

i ) v = (µ 0 , σ2
0 ), (µ i , σ2

i ) = net u (x i , yi )

Mathematically, for locally i.i.d HBDs we have yi = {y ij } n i
j=1 and x i = {x ij } n i

j=1 , such that the
conditional over yi factorizes as

p (yi |x i , zi , θ) =
n iY

j=1

p (yij |x ij , zi , θ) .

Now, if x i and yi are directly input to the amortization network net u , the input size to the network
would change for different i (notice we have n i observations for i th local variable.) Another problem
is that the optimal variational parameters are invariant to the order in which the i.i.d. observations
are presented. For instance, consider two data points: (x i , yi ) = [(x i1 , yi1 ), . . . , (xin i

, yin i )] and
(x 0

i , y
0
i ) = [(x in i

, yin i ), . . . , (xi1 , yi1 )]. A naive amortization scheme will evaluate very different
conditionals for these two data points because net u (x i , yi ) and net u (x 0

i , y
0
i ) will be different.

net u (x i , yi )
for j in {1, 2, . . . , ni }

ej ← feat_net u (x ij , yij )
e ← pool({e j } n i

j=1 )
wi ← param_netu (e)
return wi

Figure 4: Psuedocode for net u

for locally i.i.d symmetric HBD.

To deal with both issues: variable length input and permutation
invariance, we suggest learning a “feature network” and "pooling
function" based amortization network; this is reminiscent of "deep
sets" [37] albeit here intended not just to enforce permutation
invariance but also to deal with inputs of different sizes. Firstly, a
feature network feat_net takes each (x ij , yij ) pair and returns a
vector of features ej . Secondly, a pooling function pool takes the
collection {e j } n i

j=1 and achieves the two aims. First, it collapses
n i feature vectors into a single fixed-sized featuree (with the same
dimensions as ej ). Second, pooling is invariant by construction
to the order of observations (for example, pooling function would
take a dimension-wise mean or sum across j .) Finally, this pooled feature vector e is input to another
network param_net that returns the final parameters wi . The pseudocode for a net u with feature
networks is available in fig. 4. In table 3, in appendix, we summarize the applicability of proposed
variational methods to different HBD variants.

7 Experiments

Figure 5: Visualization of
covariances of dense, block-
diagonal, and diagonal Gaus-
sians. For each, we experiment
with qJ oint

φ , qB ranch
v,w , and qA mort

v,u
methods.

We conduct experiments on a synthetic and a real-world problem.
For each, we consider three inference methods: using a joint
distribution, using a branch variational approximation, and using
our amortized approach.

For each method, we consider three variational approximations a
completely diagonal Gaussian, a block-diagonal Gaussian (with
blocks for θ and z) and a dense Gaussian; see fig. 5 for a vi-
sual. (For each choice of a joint distribution, the corresponding
qB ranch

v,w is used for the branch variational approximation and the
corresponding qA mort

v,u for the amortized approach; see table 1 for
details.)
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We use reparameterized gradients [19] and optimize with Adam [18] (see appendix F for complete
experimental details.) In appendix A, we discuss some of the observations we had during experimen-
tation involving parameterization, feat-net architecture, batch-size selection, initialization, and
gradient estimators.

7.1 Synthetic problem

The aim of the synthetic experiment is to work with models where we have access to closed-form
posterior (and the marginal likelihood.) If the variational family contains the posterior, one can expect
the methods to perform close to ideal (provided we can optimize well.)

For our experiments, we use the following hierarchical regression model

p(θ, z, y|x) = N (θ|0, I)
NY

i=1

N (zi |θ, I )
n iY

j=1

N (yij |x>
ij zi , 1), (16)

where N denotes a Gaussian distribution, and I is an identity matrix (see appendix F.2 for posterior
and the marginal closed-form expressions.)

To demonstrate the performance of our methods, we experiment with three different problems scale
(correspond to three different models with N = 10, 1K, and 100K.) Synthetic data is created using
forward sampling for each of the scale variants independently. We avoid any test data and metrics for
the synthetic problem as the log-marginal is known in closed form. The inference results are present
in fig. 7 (in appendix.) In all cases, amortized distributions perform favorably when compared to
branch and joint distributions.

7.2 MovieLens

Next, we test our method on the MovieLens25M [13], a dataset of 25 million movie ratings for over
62,000 movies, rated by 162,000 users, along with a set of features (tag relevance scores [36]) for
each movie.

Purely, to make experiments more efficient on GPU hardware, we pre-process the data to drop users
with more than 1,000 ratings—leaving around 20M ratings. Also, for the sake of efficiency, we PCA
the movie features to reduce their dimensionality to 10. We used a train-test split such that, for each
user, one-tenth of the ratings are in the test set. This gives us≈ 18M ratings for training (and ≈ 2M
ratings for testing.)

We use the hierarchical model

p(θ, z, y|x) = N (θ|0, I)
NY

i=1

N (zi |µ(θ), Σ(θ))
n iY

j=1

B(y ij |sigmoid(x>
ij zi )), (17)

Table 2: Inference results for the MovieLens25M problem. For both metrics, we draw a fresh batch
of 10,000 samples from the final posterior. All values are in nats (higher is better).

Metric Final ELBO Test likelihood
≈ # train ratings 2.5K 180K 18M 2.5K 180K 18M

Methods (see table 1)

Dense qJ oint
φ -1572.31 -166.37

qB ranch
v,w -1572.39 -1.0368e+05 -1.1413e+07 -166.66 -11054.43 -1.3046e+06

qA mort
v,u -1572.45 -1.0352e+05 -1.0665e+07 -166.64 -10976.38 -1.1476e+06

Block qJ oint
φ -1579.04 -167.36

Diagonal qB ranch
v,w -1579.05 -1.0350e+05 -1.1078e+07 -166.97 -10987.17 -1.2538e+06

qA mort
v,u -1579.06 -1.0353e+05 -1.0665e+07 -166.96 -10975.96 -1.1484e+06

Diagonal qJ oint
φ -1592.59 -167.39

qB ranch
v,w -1592.64 -1.0428e+05 -1.1325e+07 -167.31 -10977.95 -1.2713e+06

qA mort
v,u -1592.64 -1.0430e+05 -1.0736e+07 -167.29 -10980.75 -1.1497e+06

8
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Figure 6: Training ELBO trace for the MovieLens25M problem. Top to bottom: dense, block
diagonal, and diagonal Gaussian (for each, we have qJ oint

φ , qB ranch
v,w , and qA mort

v,u method.) Left to right:
small, moderate, and large scale of the MovieLens25M problem. For clarity, we plot the exponential
moving average of the training ELBO trace with a smoothing value of 0.001. These traces correspond
to the values reported in table 2.

where θ represents distribution over user preferences; for instance,θ might represent that users who
like action films tend to also like thrillers but tend to dislike musicals;zi determine the user specific
preference; x ij are the features of the j th movie rated by user i ; yij is the binary movie ratings;n i

is the number of movies rated by user i , and B denotes a Bernoulli distribution. Here, µ and Σ are
functions of θ, such that, for θ = [θµ , θΣ ], we have

µ(θ) = θ µ , and Σ(θ) = tril(θ Σ )> tril(θ Σ )

where tril is a function that transforms an unconstrained vector into a lower-triangular positive
Cholesky factor. As movie features x ij ∈ R 10 , we have θµ ∈ R 10, θΣ ∈ R 55 , and zi ∈ R 10 . Note
that as Σ depends on θ, and the likelihood is Bernoulli, the model is non-conjugate.

For inference, we use the methods as described in table 1. Note, we hold the amortization network
architecture constant across the scales–the number of parameters remains fixed forqA mort

v,u (for all
Gaussian variants) while the number of parameters scale asO(N) for qB ranch

v,w (see appendix E for
more details.)

In fig. 6, we plot the training time ELBO trace, and in table 2, we present the final training
ELBO and test likelihood values. We approximate the test likelihood p(ytest |x test , x, y) with
Eq [p(ytest |x test , q)], and draw a fresh batch of 10,000 samples to approximate the expectation
(see appendix F for complete details.) For the smaller model, the amortized and branch approaches
perform similar to the joint approach for all three variational approximations; this supports  theorem 2
and claim 5. For the moderate size model, the branch and amortize approaches are very comparable
to each other, while joint approaches fail to scale. For the large model (18M ratings), amortized
approaches are significantly better than branch methods. We conjecture this is because parameter
sharing in amortized approaches improves convergence for models where batch size is smaller com-
pared to total iterates–true only for large model. Interestingly, the performance of amortized Dense
and Block Gaussian approximation is very similar in the large and moderate setting (see qA mort

v,u

results in tables 2, 6 and 7.) We conjecture this is because the posterior over the global parameters is

9



very concentrated for this problem. Asθ behaves like a single fixed value, Block Gaussian performs
just as good as the Dense approach (see appendix B for more discussion.)

8 Discussion

In this paper, we present structured amortized variational inference scheme that can scale to large
hierarchical models without losing benefits of joint approximations. Such models are ubiquitous
in social sciences, ecology, epidemiology, and other fields. Our ideas can not only inspire further
research in inference but also provide a formidable baseline for applications.
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A Other practical challenges

Parameterizing covariances It is common to to re-parameterize covariance matrices to a vector
of unconstrained parameters. As above, the typical way to do this is via a function tril that maps
unconstrained vectors to Cholesky factors, i.e. lower-triangular matrices with positive diagonals.
This can be done by simple re-arranging the components of the vector into a lower-triangular matrix,
followed by applying a function to map the entries on the diagonal components to the positive
numbers. In our preliminary experiments, the choice of the mapping was quite significant in terms of
how difficult optimization was. Common choices like the exp(x) and log(exp(x) + 1) functions did
not perform well when the outputs were close to zero. Instead, we propose to use the transformation
x 7→ 1

2 (x +
p

x2 + 4γ) , where γ is a hyperparameter (we use γ = 1 ). This is based on the proximal
operator for the multivariate Gaussian entropy [8, section 5]. Intuitively, when x is a large positive
number, this mapping returns approximatelyx, while if x is a large negative number, the mapping
returns approximately −1/x . This decays to zero more slowly than common mappings, which
appears to improve numerical stability and the conditioning of the optimization.

Feature network architecture. In this paper, we propose the use of a separate feat_net to deal
with variable-length input and order invariance. In our preliminary experiments, we found that the
performance improves when we concatenate the embedding ej in the fig. 4 with it’s dimension-
wise square before sending it to the pooling functionpool . We hypothesis that this is because the
embeddings act as learnable statistics, and using the elementwise square directly provides useful
information to param_net.

Batch size selection For the small scale problems (both synthetic and MovieLens), we do not sub-
sample data; this is to maintain a fair comparison to joint approaches that do not support subsampling.
For moderate and large scales, we select the batch size for the branch methods based on the following
rule of thumb: we increase the batch size such that |B|

T 1.18 is roughly maximized. This rule-of-thumb
captures the following intuition. Suppose batch size |B| takes time T per iteration. If the time taken
per iteration for batchsize |2B| is less than 1.8T, then we should use 2B . Of course, we roughly
maximize |B|

T 1.18 for computational ease. We use the same batch size as the branch methods for the
amortized methods as we found that amortized methods were much more robust to the choice of
batchsize. We use |B| = 200 for moderate scale and |B| = 400 for large scale.

Initialization We initialize the neural network parameters using a truncated normal distribution
with zero mean and standard deviation equal to

√
1/fan _in , where fan_in is the number of inputs to

the layer [24]. We initialize the final output layer of the param-net with a zero mean Gaussian with
a standard deviation of 0.001 [1]. This ensures an almost standard normal initialization for the local
conditional qnet u (x i ,y i ) (zi |θ).

Gradient Calculation In our preliminary experiments, we found sticking the landing gradient [30,
STL] to be less stable. STL requires a re-evaluation of the density which in turn requires a matrix
inversion (for the Cholesky factor); this matrix inversion was sometimes prone to numerical precision
errors. Instead, we found the regular gradient, also called the total gradient in [30], to be numerically
robust as it can be evaluated without a matrix inversion. This is done by simultaneously sampling
and evaluating the density in much the same as done in normlaizing flows [29, 26]. We use the total
gradient for all our experiments.

B General trade-offs

Table 3: Summary of method applicability.

Models qB ranch
v,w qA mort

v,u qA mort
v,u w/ feat_net u

(definition 1) (definition 4) (net u as in fig. 4)

HBD (eq. (1)) X × ×

Symmetric HBD (eq. (2)) X X X
Locally i.i.d.
Symmetric HBD (eq. (3)) X × X

The amortized approach proposed in section 5
is only applicable for symmetric models. In ta-
ble 3, we summarize the applicability of all the
methods we discuss in this paper. In our pre-
liminary experiments, for amortized approaches,
the performance improved when we increased
the number of layers in the neural networks or
increased the length of the embeddings in net u .
However, we make no serious efforts to find the optimal architecture. In fact, we use the same
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architecture for all our experiments, across the scales. We believe the performance on a particular
task can be further improved by carefully curating the neural architecture. Note that there are no
architecture choices in joint or branched approaches. We also did not optimize our choice of number
of samples to drawn from q to estimate ELBO. This forms the second source of stochasticity and
using more samples can help reduce the variance [34]. We use 10 copies for all our experiments.

A particularly interesting case arises when the number of local latent variables ( N ) is very large.
In such scenarios, the true posterior p(θ|x, y) can be too concentrated. As the randomness in θ is
very low, we might not gain any significant benefits from conditioning onθ—as θ reduces to a fixed
quantity, Dense Gaussian will work just well as the Block Gaussian (see tables 2, 6 and 7). In practice,
it is hard to know this apriori; in fact, our scalable approaches allow for such analysis on large scale
model.

C Proof for Theorem

Theorem (Repeated). Let p be a HBD, andqJ oint
φ (θ, z) be a joint approximation family parameterized

by φ. Choose a corresponding branch variational family qB ranch
v,w (θ, z) as in definition 1. Then,

min
v,w

KL (q B ranch
v,w kp) ≤ min

φ
KL (q J oint

φ kp) .

Proof. Construct a new distribution q0
φ such that

q0
φ(θ, z) = q J oint

φ (θ)
Y

i

qJ oint
φ (zi |θ). (18)

Then, note that zi are conditionally independent in q0
φ , such that,

q0
φ(zi |θ, z<i ) = q 0

φ(zi |θ). (19)

From chain rule of KL-divergence, we have

KL (q J oint
φ (θ, z)kp(θ, z|x, y)) = KL (q J oint

φ (θ)kp(θ|x, y))

+
X

i

KL (q J oint
φ (zi |z<i , θ)kp(zi |z<i , θ, x, y)) , and

KL q 0
φ(θ, z) p(θ, z|x, y) = KL (q J oint

φ (θ)kp(θ|x, y))

+
X

i

KL q 0
φ(zi |z<i , θ) p(zi |z<i , θ, x, y) .

Consider any arbitrary summand term. We have that

KL (q J oint
φ (zi |z<i , θ)kp(zi |z<i , θ, x, y))

(1)= KL (q J oint
φ (zi |z<i , θ)kp(zi |θ, xi , yi ))

(2)= E
θ q∼ Joint

φ (θ)
E

z<i ∼q Joint
φ (z<i |θ)

[KL (q J oint
φ (zi |z<i , θ)kp(zi |θ, xi , yi ))]

(3)
≥ E

θ q∼ Joint
φ (θ)

KL E
z<i ∼q Joint

φ (z<i |θ)
[qJ oint

φ (zi |z<i , θ)] E
z<i ∼q Joint

φ (z<i |θ)
[p(zi |θ, xi , yi )]

(4)= E
θ q∼ Joint

φ (θ)
[KL (q J oint

φ (zi |θ)kp(zi |θ, xi , yi ))]

= KL (q J oint
φ (zi |θ)kp(zi |θ, xi , yi ))

= KL q 0
φ(zi |θ) p(zi |θ, xi , yi )

(5)= KL q 0
φ(zi |θ, z<i ) p(zi |θ, z<i , xi , yi ) ,

where (1) follows from HBD structure; (2) follows from definition of conditional KL divergence; (3)
follows from convexity of KL divergence and Jensen’s inequality; (4) follows from marginalization,
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and (5) follows from the conditional independence of q0 and p. Summing the above result over i gives
that

KL q 0
φ p ≤ KL (q J oint

φ kp) . (20)

Now, from definition 1, we know that for every φ, there exists a corresponding (v, w) such that
qB ranch

v,w = q 0
φ. Let φ∗ = argmin φ KL (q J oint

φ kp). Then, there exists some qB ranch
v,w = q 0

φ∗ . Then, it
follows that

min
v,w

KL (q B ranch
v,w kp) ≤ KL q 0

φ∗ p ≤ KL q Joint
φ∗ p = min

φ
KL (q J oint

φ kp) . (21)

D Proof for Claim

Claim (Repeated). Let p be a symmetric HBD and let qJ oint
φ be some joint approximation. Let

qA mort
v,u be as in definition 1. Suppose that for all v, there exists a u, such that,

net u (x i , yi ) = argmax
w i

E
qv (θ)

E
qw i (z i |θ)

log
p (zi , yi |θ, xi )

qw i (zi |θ)
. (22)

Then,

min
v,u

KL (q A mort
v,u kp) ≤ min

φ
KL (q J oint

φ kp) (23)

Proof. Consider the optimization for qB ranch
v,w . We have

max
v,w

L (qB ranch
v,w kp) = max

v,w

"

E
qv (θ)

log
p (θ)
qv (θ)

+
NX

i=1

E
qv (θ)

E
qw i (z i |θ)

log
p (zi , yi |θ, xi )

qw i (zi |θ)

#

= max
v

"

E
qv (θ)

log
p (θ)
qv (θ)

+
NX

i=1

max
w i

E
qv (θ)

E
qw i (z i |θ)

log
p (zi , yi |θ, xi )

qw i (zi |θ)

#

(1)= max
v

"

E
qv (θ)

log
p (θ)
qv (θ)

+
NX

i=1

E
qv (θ)

E
qnet u (x i ,y i ) (z i |θ)

log
p (zi , yi |θ, xi )

qnet u (x i ,y i ) (zi |θ)

#

≤ max
u

max
v

"

E
qv (θ)

log
p (θ)
qv (θ)

+
NX

i=1

E
qv (θ)

E
qnet u (x i ,y i ) (z i |θ)

log
p (zi , yi |θ, xi )

qnet u (x i ,y i ) (zi |θ)

#

= max
u

max
v

L (qA mort
v,u kp) ,

where (1) follows from the assumption in the Claim. Now, from the ELBO decomposition equation,
we have

log p(y|x) = L (qkp) + KL (qkp) . (24)

Therefore, we have

min
u

min
v

KL (q A mort
v,u kp) ≤ min

v,w
KL (q B ranch

v,w kp) (25)

From theorem 2, we get the desired result.

min
u

min
v

KL (q A mort
v,u kp) ≤ min

v,w
KL (q B ranch

v,w kp) ≤ min
φ

KL (q J oint
φ kp) (26)
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E Derivation for Branch Gaussian

Let qJ oint
φ (θ, z) = N ((θ, z)|µ, Σ) be the joint Gaussian approximation as in corrolary 3. Further, let

(µ, Σ) be defined as

µ =







µθ
µz1

...
µzN





 and Σ =








Σ θ Σ θz1
. . . Σ θzN

Σ >
θz1

Σ z1
. . . Σ z1 zN

...
...

. . .
...

Σ >
θzn

Σ >
z1 zN

. . . Σ zN








. (27)

Then, from the properties of the multivariate Gaussian [27]

qJ oint
φ (zi |θ) = N (z i |µz i |θ , Σz i |θ ), where (28)

µz i |θ = µ z i + Σ >
θz i Σ

−1
θ (θ − µ θ), and (29)

Σ z i |θ = Σ z i z i − Σ >
θz i Σ

−1
θ Σ θz i

. (30)

Now, to parameterize a correspondingqB ranch
v,w , we use the (µ i , Σi , Ai ), such that,

qB ranch
v,w (zi |θ) = N (z i |µ i + A i θ, Σi ). (31)

F Experimental Details

Table 4: Architecture details for
net u . Each fully-connected layer
is followed by leaky-ReLU baring
the last layer.

Network Layer Skeleton

feat-net 64, 64, 64, 128
param-net 256, 256, 256

Architectural Details We use the architecture as reported in
table 4 for all our amortized approaches. In addition to using
ej as detailed in fig. 4, we concatenate the elementwise square
before sending it to param-net . Thus, the input to param-net
is not 128 dimensional but 256 dimensional. Further, we use
mean as the pool function.

Compute Resources We use JAX [6] to implement our meth-
ods. We trained using Nvidia 2080ti-12GB. All methods fin-
ished training within 4 hours. Branch approaches were at an
average twice as fast as amortized variants.

Step-size drop We use Adam [ 18] for training with an initial step-size of 0.001 (and default
values for other hyperparameters.) In preliminary experiments, we found that dropping the step-size
improves the performance. Starting from 0.001, we drop the step to one-tenth of it’s value after a
predetermined number of steps. For small scale experiments, we drop a total of three times after
every 50,000 iterations (we train for 200,000 iterations.) For moderate and large scale models, we
drop once after 100,000 iterations.

F.1 Movielens

Table 5: Metrics used for evaluation. We
use K = 10,000 samples from the posterior.
Here, (zk , θk )  q∼ (z, θ|x train , ytrain ).

Metric Expression

Test likelihood log 1
K

P
k p(ytest |x test , zk , θk )

Train likelihood log 1
K

P
k

p(y train ,z k ,θk |x train )
q(z k ,θk |x train ,y train )

Train ELBO 1
K

P
k log p(y train ,z k ,θk |x train )

q(z k ,θk |x train ,y train )

Feature Dimensions We reduce the movie feature di-
mensionality to 10 using PCA. This is done with branch
approaches in focus as the number of features for dense
branch Gaussian scale as O(ND 3), where D is the dimen-
sionality of the movie features. Note, that the number of
features for amortized approaches is independent of N
allowing for better scalability.

Metrics We use three metrics for performance
evaluation—test likelihood, train likelihood, and train
ELBO. Details of the expressions are presented in table 5. We draw a batch of fresh 10,000
samples from the posterior to estimate each metric. Of course, the evaluated expressions are just
approximation to the true value. In table 6 and table 7 we present the extended results. In table 7 we
present the same values but normalized by the number of ratings in the dataset.
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Table 6: This table has the extended results for the Movielens25M Dataset. All values are in nats.
Higher is better.

Test LL Train LL Train ELBO
≈ # ratings 2.5K 180K 18M 2.5K 180K 18M 2.5K 180K 18M
Methods

Dense qJ oint
φ -166.37 -1373.97 -1572.31

qB ranch
v,w -166.66 -11054.43 -1.3046e+06 -1374.20 -95731.42 -1.0315e+07 -1572.39 -1.0368e+05 -1.1413e+07

qA mort
v,u -166.64 -10976.38 -1.1476e+06 -1374.27 -95980.37 -1.0027e+07 -1572.45 -1.0352e+05 -1.0665e+07

Block qJ oint
φ -167.36 -1375.56 -1579.04

Diagonal qB ranch
v,w -166.97 -10987.17 -1.2538e+06 -1375.71 -95891.42 -1.0399e+07 -1579.05 -1.0350e+05 -1.1078e+07

qA mort
v,u -166.96 -10975.96 -1.1484e+06 -1375.71 -95962.56 -1.0027e+07 -1579.06 -1.0353e+05 -1.0665e+07

Diagonal qJ oint
φ -167.39 -1377.25 -1592.59

qB ranch
v,w -167.31 -10977.95 -1.2713e+06 -1377.19 -96414.40 -1.0709e+07 -1592.64 -1.0428e+05 -1.1325e+07

qA mort
v,u -167.29 -10980.75 -1.1497e+06 -1377.20 -96467.88 -1.0068e+07 -1592.64 -1.0430e+05 -1.0736e+07

Table 7: This table has the extended results for the Movilens25M Dataset. It has the same results as
in table 6; however, the values are divided by the number of ratings.

Test LL Train LL Train ELBO
≈ # ratings 2.5K 180K 18M 2.5K 180K 18M 2.5K 180K 18M

Methods

Dense qJ oint
φ -0.5717 -0.5108 -0.5845

qB ranch
v,w -0.5727 -0.5640 -0.6486 -0.5109 -0.5224 -0.5492 -0.5845 -0.5658 -0.6077

qA mort
v,u -0.5726 -0.5600 -0.5705 -0.5109 -0.5238 -0.5339 -0.5846 -0.5649 -0.5678

Block qJ oint
φ -0.5751 -0.5114 -0.5870

Diagonal qB ranch
v,w -0.5738 -0.5606 -0.6233 -0.5114 -0.5233 -0.5537 -0.5870 -0.5648 -0.5898

qA mort
v,u -0.5738 -0.5600 -0.5709 -0.5114 -0.5237 -0.5339 -0.5870 -0.5650 -0.5678

Diagonal qJ oint
φ -0.5752 -0.5120 -0.5920

qB ranch
v,w -0.5749 -0.5601 -0.6320 -0.5120 -0.5261 -0.5702 -0.5921 -0.5691 -0.6029

qA mort
v,u -0.5749 -0.5602 -0.5716 -0.5120 -0.5264 -0.5360 -0.5921 -0.5691 -0.5716

Preprocess Movielens25M originally uses a 5 point ratings system. To get binary ratings, we map
ratings greater than 3 points to 1 and less than and equal to 3 to 0.

F.2 Synthetic problem

Details of the model We use the hierarchical regression model

p(θ, z, y|x) = N (θ|0, I)
NY

i=1

N (zi |θ, I )
n iY

j=1

N (yij |x>
ij zi , 1)

for synthetic experiments. For simplicity, we use n i = 100 for all i ; we vary N to create different
scale variants—we use N = 10 for small scale, N = 1000 for moderate scale, and N = 100000 for
large scale experiments; we set x ij ∈ R10 and thus θ ∈ R10 and zi ∈ R10 ; yij ∈ R .

Expression for posterior

p(θ|x, y) = N

 "
I D +

X

i

x>
i (I M i + x i x

>
i )−1 x i

#−1 "
X

i

x>
i (I M + x i x

>
i )(−1) yi

#
,

"
I D +

X

i
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>
i )−1 x i

#−1 !

p(zi |θ, xi , yi ) = N ([I D + x >
i x i ]−1 [x>

i yi + θ], [I D + x >
i x i ]−1 )

Expression for marginal likelihood

p(y|x) = N
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Figure 7: Training ELBO trace for the synthetic problem. Top to bottom: dense, block diagonal,
and diagonal Gaussian (for each, we haveqJ oint

φ , qB ranch
v,w , and qA mort

v,u method.) Left to right: small,
moderate, and large scale of the synthetic problem. For clarity, we plot the exponential moving
average of the training ELBO trace with a smoothing value of 0.001. For the small setting, we also
plot the true log-marginal log p(y|x) for reference (black horizontal line): ELBO for dense approach
is exactly same as the log-marginal, it’s slightly lower for block, and is much less for the diagonal (see
first column.) Note, calculating the log-marginal was computationally prohibitive for the moderate
and large setting.
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