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Abstract

Variational inference for state space mod-
els (SSMs) is known to be hard in general.
Recent works focus on deriving variational
objectives for SSMs from unbiased sequen-
tial Monte Carlo estimators. We reveal that
the marginal particle filter is obtained from
sequential Monte Carlo by applying Rao-
Blackwellization operations, which sacrifices
the trajectory information for reduced vari-
ance and differentiability. We propose the
variational marginal particle filter (VMPF),
which is a differentiable and reparameteriz-
able variational filtering objective for SSMs
based on an unbiased estimator. We find
that VMPF with biased gradients gives tighter
bounds than previous objectives, and the un-
biased reparameterization gradients are some-
times beneficial.

1 Introduction

Sequential data are often described by state space mod-
els (SSMs), where the latent variables x and the ob-
served variablesy vary over time. An SSM is defined
as

p(x1:T , y1:T ) = f (x 1)
TY

t=2

f (x t |x t−1 )
TY

t=1

g(yt |x t ). (1)

With this model, given one or more observed sequences
y1:T , two tasks are of interest:

• What is the closest distribution q(x1:T ; φ) to the
posterior distribution p(x 1:T |y1:T )?

• What are the best parameters θ for p(x1:T , y1:T ) to
model the observed data?
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These two tasks can be simultaneously solved by vari-
ational inference (VI) (Blei et al., 2016). Recent ad-
vances (Naesseth et al., 2018; Maddison et al., 2017a;
Le et al., 2018) improve the performance of VI on SSMs
by using sequential Monte Carlo (SMC) or the particle
filter (PF) (Naesseth et al., 2019; Doucet and Johansen,
2009) to define a variational objective, which gives vari-
ational sequential Monte Carlo (VSMC). However, the
SMC resampling step is problematic: sampling of dis-
crete ancestor variables is non-differentiable, and thus
reparameterization gradient estimators (Kingma and
Welling, 2014; Rezende et al., 2014) cannot be used.
Most practical implementations use a biased gradient
estimator instead. Recently, Corenflos et al. (2021) pro-
posed a fully differentiable particle filter, which gives up
the guarantee of being a lower bound but approximates
VSMC well.

This paper makes three contributions. First, we give
a novel proof of the correctness of SMC in terms of
transformations of estimator-coupling pairs (Domke
and Sheldon, 2019). This provides a high-level view
of SMC that complements existing perspectives.Sec-
ond, we marginalize (Rao-Blackwellize) over the choice
of ancestor variables in each step to get the marginal
particle filter (MPF) (Klaas et al., 2005), which gives
a novel proof of correctness of MPF and reveals the
direct relationship between MPF and SMC. Third, we
propose to optimize a variational bound based on MPF,
which we call the variational marginal particle filter
(VMPF). Since Rao-Blackwellization reduces the vari-
ance of estimators, we expect that the VMPF bound is
tighter than VSMC and leads to better inference and
learning. Furthermore, we observe that MPF can be
rephrased without discrete ancestor variables as sam-
pling from mixtures. As it is often possible to efficiently
differentiate through mixtures (currently, this is pos-
sible for Gaussian or product distributions) (Graves,
2016; Figurnov et al., 2018), unbiased reparameteriza-
tion gradients can be computed for the VMPF when
suitable proposal distributions are used.

We conduct experiments using the VMPF on linear
Gaussian SSMs, stochastic volatility models and deep
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Markov models (Krishnan et al., 2017). Our first aim
is to understand the significance of unbiased gradients.
We confirm that these do indeed lead to tighter bounds
given sufficient optimization, especially with higher
numbers of particles, but that a biased gradient esti-
mator typically performs better on complex models
due to lower gradient variance. Our second aim is to
understand the significance of the lower variance of the
MPF vs SMC for estimating the log-likelihood. We find
that, as expected, this manifests as the VMPF bound
being tighter than the VSMC bound, which implies
better posterior distributions and better models.

We note that, while marginalizing ancestor variables is
often beneficial, it prevents applying VMPF to some
models, such as VRNNs (Chung et al., 2015), which
require access to those variables (see Section 7).The
time complexity of VMPF with N particles is O(N 2)
(compared to O(N ) for VSMC), but in many practical
situations the O(N 2) component is dominated by an
O(N ) component with higher constants.

2 Background

Variational Inference and Couplings. Varia-
tional inference seeks to produce an approximation
q(x1:T ; φ) ≈ p (x1:T |y1:T ) given a joint distribution
p(x1:T , y1:T ) such as the SSM in Equation (1) and
fixed observations y1:T . It is based on the fact that
minimizing the KL divergence between the two dis-
tributions is equivalent to maximizing the evidence
lower bound (ELBO) (Jordan et al., 1999) L ELBO (φ) =
Eq(x 1:T ;φ) [log p(x1:T , y1:T ) − log q(x1:T ; φ)]. The ELBO
also lower boundslog p(y1:T ), which is the basis of vari-
ational expectation maximization (VEM) (Beal and
Ghahramani, 2003) for learning model parameters θ.
This paper will use a generalization of the VI framework
based on estimator-coupling pairs (Domke and Sheldon,
2019) , which define a family of algorithms that have
the above properties automatically. This is easier to de-
scribe with a more general notation: let γ(x) be an un-
normalized distribution with normalizer Z =

R
γ(x)dx,

so the goal is to approximate π(x) = γ(x)/Z . (For
Bayesian inference,γ(x) = p(x, y), π(x) = p(x|y ) and
Z = p(y), where the evidence y is fixed.)
Definition 1. An estimator R(ω) > 0 and a distribu-
tion a(x|ω) are a valid estimator-coupling pair for γ(x)
under distribution Q(ω) if, for all x,

EQ(ω) [R(ω)a(x|ω)] = γ(x).

This implies several things. First, EQ(ω) [R(ω)] = Z ,
meaning R is an unbiased estimator of the normalizer
Z . Second,more generally, EQ(ω)a(x|ω) [R(ω)f (x)] =R

f (x)γ(x)dx for any (integrable) test function f .
Third, π(ω, x) = 1

Z
Q(ω)R(ω)a(x|ω) is a “coupling”:

a distribution that has both 1
Z

Q(ω)R(ω) and π(x)
marginals. From the fact that E[R] = Z , it is easy
to see that E[log R] ≤ log Z . The looseness of this
bound can be decomposed as

log Z =E Q(ω) [log R(ω)]+
KL(Q(x)kπ(x)) + KL(Q(ω|x)kπ(ω|x)), (2)

where Q(x) is the marginal distribution of Q(ω)a(x|ω).
This implies that maximizing E[log R] tends to re-
duce KL (Q(x)kπ(x)). Taking “vanilla” VI for example,
given fixed y, a sample x̂  q∼ plays the role of ω, so
Q(x̂) = q(x̂), R(x̂) = p(x̂, y)/q (x̂) and a(x| x̂) = δx̂ (x)
specify an estimator-coupling pair for p(x, y). Then
Equation 2 reduces to the usual decomposition of VI
that log p(x) = L ELBO + KL (q(x)kp(x|y )) (Blei et al.,
2016). For a more general VI, Q is the sampling algo-
rithm, E[log R] gives the lower bound, and Q · a gives
the augmented approximate posterior. A key obser-
vation is that operations on estimator-coupling pairs
can be used to derive new variational objectives. An
example is the Rao-Blackwellization operation (Domke
and Sheldon, 2019):
Lemma 1. Suppose thatR0(ω, ν) and a0(x|ω, ν) are
a valid estimator-coupling pair for γ(x) under Q0(ω, ν).
Then

R(ω) = E Q 0 (ν|ω) R0(ω, ν),

a(x|ω) =
1

R(ω)
EQ 0 (ν|ω) [R0(ω, ν)a0(x|ω, ν)]

are a valid estimator-coupling pair for γ(x) un-
der Q(ω) =

R
Q0(ω, ν)dν. Furthermore, R has

lower variance and gives a tighter bound than R0,
i.e., Var R(ω) ≤ Var R 0(ω, ν) and E [log R0(ω, ν)] ≤
E [log R(ω)] ≤ log Z . Denote this operation by
(Q, R, a) = Marginalize(Q 0, R0, a0; ν).

The Marginalize operation reduces the variance of
an estimator by marginalizing some variables. It is an
example of what is often called Rao-Blackwellization,
where an estimator is replaced by its conditional expec-
tation to reduce variance. This operation is the biggest
difference between VMPF and VSMC.

Variational Sequential Monte Carlo.SMC (Naes-
seth et al., 2019) is an algorithm that constructs
approximations for the sequence of target distribu-
tions p(x1:t |y1:t ) using weighted samples.In particular,
p(x1:t |y1:t ) is approximated by a weighted set of parti-
cles (wi

t , x
t,i
1:t )N

i=1 as

π̂t (x 1:t ) =
NX

i=1

wi
t δx t,i

1:t
(x 1:t ), where w̄i

t = w i
t /

P N
j=1 wj

t .

We use a notation that explicitly distinguishes particles
at different times, so x t,i

s is the sth entry of the i th
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particle in iteration t of SMC, and x t,i
1:t is the entire

particle. Later, we will use x t,1:N
1:t to denote the entire

collection of N particles. The SMC procedure for
sampling particles and computing weights is shown
in Algorithm 1. For each time step t and particle
i , an ancestor index j is sampled (Line 6) and the
corresponding particle is extended using the proposal
distribution r t (Line 7), then weighted (Line 8) and
assigned to become the new ith particle (Line 9).

From SMC, we get that p̂SMC (y1:T ) =
Q T

t=1
1
N

P N
i=1 wi

t

is an unbiased estimator for p(y1:T ). Variational SMC
usesL VSMC = E[log p̂SMC (y1:T )] as a variational objec-
tive (Naesseth et al., 2018; Maddison et al., 2017a; Le
et al., 2018). Naesseth et al. (2018) show that

L VSMC ≤ L SMC
ELBO ≤ log p(y1:T ), (3)

whereL SMC
ELBO is the ELBO between the proposalQ(x1:T )

implied by SMC and the target p(x1:T |y1:T ). VEM is
used to simultaneously learn parameters ofp and adjust
the proposal distributions r t by maximizing L VSMC . In
practice, biased gradient estimates are most commonly
used: the categorical ancestor variables (Line 6) cannot
be reparameterized, and other estimators give problem-
atically high variance (Naesseth et al., 2018; Maddison
et al., 2017a; Le et al., 2018). A recent paper uses en-
semble particle transformations in place of resampling
to obtain a fully differentiable filter (DPF) (Corenflos
et al., 2021). While this introduces some bias into the
likelihood estimator and so does not give a provable
lower bound on the log-likelihood, unbiased gradients
can be computed using reparameterization methods.
We will compare to DPF in Section 6.

3 Couplings and Sequential Monte
Carlo

In this section we show how SMC can be derived with
operations on estimator-coupling pairs. This gives a
straightforward and novel proof of unbiasedness, which
is the key property that guarantees a lower bound of
log p(y1:T ) when used with VI. It will also be the basis
of our MPF analysis.

We first give Lemma 2, which replicates an estimator-
coupling pair N times.
Lemma 2.Suppose thatR0(ω, ν) and a0(x|ω, ν) are a
valid estimator-coupling pair for γ(x) under Q0(ω, ν) =
Q0(ω)Q0(ν|ω). Then

R(ω, ν1, ..., νN ) =
1
N

NX

i=1

R0(ω, νi ),

a(x|ω, ν1, ..., νN ) =
P N

i=1
R0(ω, νi )a0(x|ω, νi )

P N
i=1 R0(ω, νi )

are a valid estimator-coupling pair for γ(x) under
Q(ω, ν1, ..., νN ) = Q0(ω)

Q N
i=1 Q0(νi |ω). Denote this

operation by (Q, R, a) = Replicate(Q 0, R0, a0; ν, N ).

Lemma 2 is used at each step of SMC to getN inde-
pendent particles. It is a slight generalization of the
“IID Mean” method in (Domke and Sheldon, 2019).

All operations so far only work for a fixed target
distribution. In SMC, we also need some operation
to change the target distribution. For instance, at
time t , the target distribution should be extended from
p(x1:t−1 , y1:t−1 ) to p(x1:t , y1:t ). Lemma 3 describes how
to extend the target distribution.
Lemma 3. Suppose that R0(ω) and a0(x|ω) are a
valid estimator-coupling pair for γ(x) under Q0(ω),
and γ0(x, x0) is an unnormalized distribution on the
augmented space of (x, x0). Also suppose that we have
a proposaldistribution r (x0|x) such that if r (x0|x) = 0
then γ0(x, x0)/γ(x) = 0. Then

R(ω, x̂, x̂0) = R 0(ω)
γ0(x̂, x̂0)/γ(ˆx)

r( x̂0|x̂)
,

a(x, x0|ω, x̂, x̂0) = δ ( x̂, x̂ 0) (x, x0)

are a valid estimator-coupling pair for γ0(x, x0)
under Q(ω, x̂, x̂0) = Q0(ω)a0(x̂|ω)r (x̂0|x̂).
Denote this operation by (Q, R, a) =
ExtendTarget(Q 0, R0, a0; γ, γ0, r).
If instead a(x0|ω, x̂, x̂0) = δx̂ 0(x0), then ( R, a) is
still a valid estimator-coupling pair for γ0(x0) =R

γ0(x, x0)dx under Q. Denote this by ( Q, R, a) =
ChangeTarget(Q 0, R0, a0; γ, γ0, r).

We now use these results to derive SMC with estimator-
coupling pairs.
Theorem 1.For the SSM in Equation (1), given fixed
y1:T

R x 1,1:N
1:1 , . . . , xT,1:N

1:T =
TY

t=1

1
N

NX

i=1

wi
t , (4)

a x 1:T | x1,1:N
1:1 , . . . , xT,1:N

1:T =
NX

i=1

wi
T δ

x T,i
1:T

(x 1:T ) (5)

form an estimator-coupling pair for p(x1:T , y1:T ) under
the sampling distribution of Algorithm 1 with weights
wi

t as given in Lines 2 and 8 and wi
t = wi

t /
P N

j=1 wj
t .

Thus, for any test function h,

E

" TY

t=1

1
N

NX

i=1

wi
t

!
·

NX

i=1

wi
T h x T,i

1:T

#

=p(y 1:T ) · Ep(x 1:T |y 1:T )

h
h(x 1:T )

i
. (6)

While the unbiasedness conclusion of Equation(6) is
well-known (Naesseth et al., 2019; Maddison et al.,
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Algorithm 1 Sequential Monte Carlo
Require: p(x1:T , y1:T ), y 1:T , {r t (x t |x t−1 )}, N

1: Sample x1,i
1  ∼ r 1(x 1) for all i

2: Set wi
1 =

f 1 (x 1,i
1 )g(y 1 |x 1,i

1 )
r 1 (x 1,i

1 )
for all i

3: for t = 2, . . . , T do
4: for i = 1, . . . , N do
5: Set wj

t−1 = w
j
t−1 /

P N
k=1

wk
t−1 for all j

6: Sample j ∼ Categorical w1:N
t−1

7: Sample x
t,i
t  ∼ r t (x t |x t−1,j

t−1 )

8: Set wi
t =

f(x t,i
t |x t−1,j

t−1 )g(y t |x t,i
t )

r t (x t,i
t |x t−1,j

t−1 )

9: Set x t,i
1:t = (x t−1,j

1:t−1 , xt,i
t )

Algorithm 2 Marginal Particle Filter
Require: p(x1:T , y1:T ), y 1:T , {r t (x t |x t−1 )}, N

1: Sample xi
1  ∼ r 1(x 1) for all i

2: Set vi
1 = f 1 (x i

1 )g(y 1 |x i
1 )

r 1 (x i
1 ) for all i

3: for t = 2, . . . , T do
4: for i = 1, . . . , N do
5: Set vj

t−1 = v
j
t−1 /

P N
k=1

vk
t−1 for all j

6: Sample j ∼ Categorical v1:N
t−1

7: Sample xi
t  ∼ r t (x t |x

j
t−1 )

8: Set vi
t =

P N
j=1 v j

t−1 f(x i
t |x j

t−1 )g(y t |x i
t )

P N
j=1

v j
t−1

r t (x i
t |x j

t−1 )

2017a, e.g., ), we give a novel proof that breaks SMC
into small operations. This proof strategy will form
the basis for understanding MPF as applying Rao-
Blackwellization operations within SMC.

(Proof sketch). To start, observe that the estimator
R1(x̂1) = f ( x̂ 1 )g(y 1 | x̂ 1 )

r 1 ( x̂ 1 ) = p( x̂ 1 ,y 1 )
r 1 ( x̂ 1 ) and the coupling

a1(x1|x̂1) = δx̂ 1 (x1) are valid for p(x1, y1) under
Q1(x̂1) = r 1(x̂1). Now, for t > 1, define

(Q t , Rt , at ) = ExtendTarget QN
t−1 , RN

t−1 , aN
t−1 ;

p(x1:t−1 , y1:t−1 ), p(x1:t , y1:t ), r t (x t |x t−1 ) , (7)

where for all t,

(QN
t , RN

t , aN
t ) = Replicate Q t , Rt , at ; xt

1:t , N .

Mechanically applying these transformations, Lemmas
3 and 2 yield that the functions RN

T and aN
T match

Equations (4) and (5) and

QN
T x1,1:N

1:1 , . . . , xT,1:N
1:T =

NY

i=1

"
r1(x 1,i

1 )
TY

t=2

NX

j=1

wj
t−1 δx t−1,j

1:t−1
(x t,i

1:t−1 )r t (x t,i
t |x t,i

t−1 )

#
,

(8)

which matches the SMC sampling distribution. The
claimed result then follows immediately from the fact
that RN

T and aN
T are a valid estimator-coupling pair for

p(x1:T , y1:T ) under Q N
T .

Details appear in the supplement. This proof uses in-
duction on a sequence of estimators with operations
that match the steps of the algorithm, and may be
easier to understand than proofs that reason about
the full expectation and require manipulating complex
expressions.In addition, using operations on estimator-
coupling pairs, it is possible to implement estimators

by transforming simple estimators in a way that exactly
matches their derivation, which is of interest in proba-
bilistic programming (van de Meent et al., 2018). Douc
and Moulines (2008) give a related framework to show
consistency and asymptotic normality for SMC using
operations on weighted particle systems that preserve
those properties. Stites et al. (2021) also derive SMC
by operations on proper weighting (Liu and Liu, 2001;
Naesseth et al., 2015).

Since SMC can be derived by estimator-coupling pairs,
we directly have that L VSMC ≤ L SMC

ELBO ≤ log p(y1:T ) as
in Equation (3). This result also quantifies the gap
L SMC

ELBO
− L VSMC as a conditional KL divergence.

4 Variational Marginal Particle Filter

We now show that the marginal particle filter (MPF) of
Klaas et al. (2005) can also be derived with estimator-
coupling pairs, which proves it is unbiased and suitable
for use within VI. It uses Marginalize operations not
present in SMC, which reduce variance and make VI
bounds tighter “locally”. Unlike SMC, it uses mixture
proposals that can be reparameterized.

In Theorem 1, we see that SMC is not fully reparam-
eterizable because of the Dirac distributions in QN

T

(Equation (8)), which correspond to the sampling and
copying operations in Lines 6 and 9 in Algorithm 1.
The non-reparameterizable variables x t,i

t,1:t−1 are ex-
actly the first t − 1 entries of each particle.Our general
idea is to marginalize these variables using Lemma 1
to get MPF.

MPF and Couplings. The MPF algorithm is shown
in Algorithm 2. Instead of p(x1:t , y1:t ), it targets the
sequence of marginal distributionsp(x t , y1:t ) for all t .
The procedure is very similar to SMC, but with different
weights for t > 1. In MPF, the i th marginal particle at
time t is denoted asx i

t . Using this notation for both
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algorithms to facilitate comparison, the weights are:

SMC: w i
t =

f (x i
t |x

j
t−1 )g(yt |x i

t )
r t (x i

t |x
j
t−1 )

, j ∼ Categorical(·),

MPF: v i
t =

P N
j=1 vj

t−1 f (x i
t |x

j
t−1 )g(yt |x i

t )
P N

j=1 vj
t−1 r t (x i

t |x
j
t−1 )

.

MPF can be obtained from SMC by two steps:(1) drop
the first t − 1 variables x1:t−1 from the target distri-
bution and all particles to target p(x t , y1:t ) instead of
p(x1:t , y1:t ), (2) Rao-Blackwellize the ancestor index j
from the sampling distribution using the Marginalize
operation in each step of SMC. Formally, we have:
Theorem 2.For the SSM in Equation (1), given fixed
y1:T

R x 1:N
1 , . . . , x1:N

T =
TY

t=1

1
N

NX

i=1

vi
t , (9)

a(xT | x1:N
1 , . . . , x1:N

T ) =
NX

i=1

vi
T δx i

T
(x T ) (10)

form an estimator-coupling pair for p(xT , y1:T ) under
the sampling distribution of Algorithm 2 with weights vi

t

as specified in Lines 2 and 8 and vi
t = vi

t /
P N

j=1 vj
t .

Thus, for any test function h,

E

" TY

t=1

1
N

NX

i=1

vi
t

!
·

NX

i=1

vi
T h x i

T

#

=p(y 1:T ) · Ep(x T |y 1:T )

h
h(x T )

i
. (11)

We are not aware of an existing proof of unbiasedness
for MPF, though unbiasedness of the normalizing con-
stant estimate (i.e., h ≡ 1 in Equation (11)) can be
derived from tensor Monte Carlo (TMC) (Aitchison,
2019) (See Supplement 3) or a recent result on auxiliary
particle filters (Branchini and Elvira, 2021). Our proof
again shows that MPF is obtained by operations on
estimator-coupling pairs.

(Proof sketch). The proof is very similar to the proof
of Theorem 1, except the ExtendTarget operation
in Equation (7) for t > 1 is replaced by the following
two operations:

(Q0
t , R

0
t , a

0
t ) = ChangeTarget QN

t−1 , RN
t−1 , aN

t−1 ;

p(x t−1 , y1:t−1 ), p(xt−1 , xt , y1:t ), r t (x t |x t−1 ) ,

(Q t , Rt , at ) = Marginalize Q0
t , R

0
t , a

0
t ; x̂ t−1 .

Recall that ChangeTarget is the same as Extend-
Target (Lemma 3), but drops x t−1 from the target dis-
tribution. The Marginalize operation then marginal-
izes the corresponding variable from the “internal state”

of the estimator. After mechanically applying the trans-
formations of Lemma 3, Lemma 1, and Lemma 2, we
get that the functions RN

T and aN
T match Equations (9)

and (10) and

QN
T x1:N

1 , . . . , x1:N
T

=
NY

i=1

"
r 1(x i

1)
TY

t=2

NX

j=1

vj
t−1 r t (x i

t |x
j
t−1 )

#
, (12)

which matches the MPF sampling distribution.

In the proof sketch, we can see that the estimator Rt

following Marginalize (·) has lower (or the same) vari-
ance and gives a tighter (or the same) bound asR0

t , by
Lemma 1. The same reasoning implies that using MPF
weights is never worse than using the SMC weights “lo-
cally”: in iteration t , when targetingp(x t , y1:t ), variance
is never higher when using the MPF weight calcula-
tion in place of the SMC weight calculation, given the
weights from iteration t − 1. This does not necessarily
imply the full MPF estimator has lower variance than
SMC, but empirical evidence points to it having lower
variance (Klaas et al., 2005).

The time complexity of MPF is O(N 2T ) compared
to O(NT ) for SMC. In Line 8 of the MPF algorithm,
the density f (x i

t |x
j
t−1 ) must be computed N 2 times

in total vs. N times in total in Line 8 of SMC. But
there are only N different conditional distributions:
the distributions f (·|xj

t−1 ) for each particle at the pre-
vious time-step. The density calculations can be split
into two parts: (1) O(N ) pre-processing for each con-
ditional distribution, and (2) evaluating the density
N 2 times. For many models, the O(N ) pre-processing
takes a significant fraction of the time. For example,
in our DMM experiments, pre-processing requires neu-
ral networks computation and density evaluation only
elementary tensor operations, and the times of VMPF
and VSMC are indistinguishable for N ≤ 16. Section
2.4 of Aitchison (2019) gives a similar argument.

Variational MPF.Let p̂MPF (y1:T ) =
Q N

t=1
1
N

P N
i=1 vi

t

be the unbiased estimator ofp(y1:T ) from Equation (9).
We propose the variational objective

L VMPF (φ, θ) = E [log p̂MPF (y1:T ; φ, θ)] , (13)

where φ stands for the parameter of proposal distribu-
tions r t and θ stands for the model parameters. By
properties of estimator-coupling pairs, we immediately
have that L VMPF (φ, θ) ≤ L MPF

ELBO (φ, θ) ≤ log p (y1:T ),
where L MPF

ELBO (φ, θ) is the ELBO between the marginal
proposal Q(xT ; φ) implied by the MPF procedure and
the target distribution p(xT |y1:T ; θ), and we can also
quantify the gap L MPF

ELBO
− L VMPF with Equation (2). To

compute and optimize this objective, we use Monte
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Carlo estimates for the value and gradients. We have
two approaches to estimate the gradients.

Biased gradients with categorical sampling.The
first approach follows VSMC (Naesseth et al., 2018).
We assume that each proposal distribution r t is repa-
rameterizable and compute gradients of Equation (13)
as ∇L VMPF (φ, θ) = E[∇ log p̂MPF (y1:T ; φ, θ)] + gscore ,
where the first term uses the reparameterization
trick (Kingma and Welling, 2014; Rezende et al., 2014),
but ignores gradient paths for probabilities of categor-
ical variables, which cannot be reparameterized; and
gscore is a score function term to handle the categorical
sampling (Naesseth et al., 2018).As with VSMC, we
observe that estimates ofgscore have very high variance
and lead to slow convergence.For this approach, we
simply drop gscore and estimate the first term, which
is a biased gradient estimator. We call this method
VMPF with biased gradient (VMPF-BG), which does
not have any limitation on the proposals.

Unbiased gradients with implicit reparameteri-
zation. A biased gradient estimator can lead to sub-
optimal inference (Corenflos et al., 2021). A very
appealing property of Algorithm 2 is that, as a re-
sult of Rao-Blackwellization, the variables j and x j

t−1
are not used in weight computations, so Lines 6 and
7 can be combined conceptually into a single draw
x i

t ∼
P N

j=1
vj

t−1 r t (x t |x
j
t−1 ) from a mixture distribution.

This is evident from Equation (12), which includes only
the (continuous) mixture density

P N
j=1

vj
t−1 r t (x i

t |x
j
t−1 )

for x i
t . It is therefore possible to reparameterize x i

t

by sampling from the mixture and then using implicit
reparameterization gradients (Graves, 2016; Figurnov
et al., 2018). We then have the fully reparameterized
gradient ∇L VMPF (φ, θ) = E[∇ log p̂MPF (y1:T ; φ, θ)], and
can form an unbiased estimate by drawing samples and
backpropagating through mixtures. This is currently
possible for any proposal that is a product distribution,
or full-rank Gaussians. We call this method VMPF
with unbiased gradients (VMPF-UG). It is a fully repa-
rameterized gradient estimate for a variational filtering
objective that lower bounds the log-likelihood for suit-
able proposal distributions.

5 Related Work

There is significant previous work on improving VI
approximations. One direction enriches the variational
family directly, for example, with normalizing flows
(Papamakarios et al., 2019; Rezende and Mohamed,
2015), copulas (Tran et al., 2015; Han et al., 2016; Hirt
et al., 2019), or mixture distributions (Miller et al.,
2017). Another direction increases expressiveness by
introducing auxiliary variables: this work includes hi-
erarchical variational models (Ranganath et al., 2016),

VI with Markov chain Monte Carlo (Salimans et al.,
2015; Caterini et al., 2018), variational Gaussian pro-
cesses (Tran et al., 2016), and importance-weighted VI
(IWVI) (Burda et al., 2016; Domke and Sheldon, 2018).
Estimator-coupling pairs generalize IWVI and include
other variance reduction techniques, such as strati-
fied sampling (Domke and Sheldon, 2019). For SSMs,
three papers independently proposed to use SMC as
an unbiased estimator to generalize IWVI in another
direction (Naesseth et al., 2018; Maddison et al., 2017a;
Le et al., 2018). This work builds on the above two
ideas.

One limitation of prior SMC variational objectives is
that they are not fully differentiable due to resampling
steps. Moretti et al. (2019) use the concrete distri-
bution (Maddison et al., 2017b; Jang et al., 2017) to
approximate the resampling step, but they focus on the
signal-to-noise ratio problem (Rainforth et al., 2018)
and do not mention any performance improvement due
to differentiability. A series of works employ differen-
tiable neural networks to approximate the resampling
function (Karkus et al., 2018; Jonschkowski et al., 2018;
Zhu et al., 2020; Ma et al., 2020a,b). However, none
produces fully differentiable SMC (Corenflos et al.,
2021). Corenflos et al. (2021) use optimal transport
to learn an ensemble transform to replace resampling,
leading to the first fully differentiable particle filter in
the literature. Their likelihood estimator is asymptoti-
cally consistent, but biased, so does not give a provable
lower bound of the log-likelihood.

Another interesting line of previous work is independent
particle filters (IPF) (Lin et al., 2005), which improve
SMC with multiple permutations of ancestor variables.
With the setting of complete matching, IPF becomes
tensor Monte Carlo (TMC) (Aitchison, 2019) for SSMs.
We outline an alternate viewpoint of MPF as TMC
with specific mixture proposals in Section 3 of the
supplement.

Recently, Campbell et al. (2021) propose an online
VI which outperforms several online filtering methods
on SSM by using a Bellman-type recursion similar to
those used in reinforcement learning (Sutton and Barto,
2005).

6 Experiments

We conduct experiments on linear Gaussian SSMs,
stochastic volatility models, and deep Markov mod-
els (DMMs) (Krishnan et al., 2017) and compare lower
bounds obtained by IWVI ∗ , VSMC with biased gra-
dients (Naesseth et al., 2018), tensor Monte Carlo

∗ This usesq(x1:T ) = r 1(x1)
Q T

t=2
r t (x t |x t−1 ) as proposal

and is equivalent to VSMC without resampling.
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(TMC) (Aitchison, 2019) (factorized), differentiable
particle filter (DPF) (Corenflos et al., 2021) (evaluated
by SMC), VMPF-BG, and VMPF-UG. We implement
all algorithms in TensorFlow with TensorFlow Prob-
ability (Abadi et al., 2015; Dillon et al., 2017) and
train with the Adam optimizer (Kingma and Ba, 2015).
The code to replicate the experiments can be found at
https://github.com/lll6924/VMPF.

Linear Gaussian State Space ModelsWe first
test with linear Gaussian models, for which the ex-
act log-likelihood can be computed by the Kalman
filter (KF) (Harvey, 1990). The model is x t =
Ax t−1 + vt , yt = Cx t + et , where vt  ∼ N (0, Q),
et  ∼ N (0, R), and x1  ∼ N (0, I ). We follow Naes-
seth et al. (2018) and set T = 10, (A) ij = α |i−j|+1 for
α = 0 .42, Q = I and R = I . There are two settings for
C: “sparse”C has diagonal entries 1 and other entries
0; “dense” C has Cij  ∼ N (0, I ) for all i, j . We vary
dx = dim(x t ), dy = dim(yt ), and whether C is sparse or
dense. The same model p is used to generate data and
during inference. We choose the proposal distributions
r t (x t |x t−1 ; φ) = N (x t |µt + diag(βt )Ax t−1 , diag(σ2

t ))
with φ = ( µt , βt , σ2

t )T
t=1 and maximize each objective

with respect to φ. In all settings, we first train for 10K
iterations with learning rate 0 .01, then another 10K
iterations with learning rate 0 .001. Further lowering
the learning rate has little effect.

We first examine convergence of each algorithm with
N = 4. Figure 1 shows the lower bound of each method
during training. For sparseC, the VMPF bounds are
substantially higher than VSMC, but IWVI is highest.
The bound of DPF is between VSMC and VMPF in
this case. In contrast, for denseC, IWVI is much worse,
while the final bounds of VSMC, DPF and VMPF are
similar. Overall, VMPF-BG is never worse than VSMC,
TMC or DPF in terms of final bounds or convergence
speed, and gives significantly higher bounds for sparse
C. The convergence of VMPF-UG is slow,† and the
final bound is comparable to, but not higher than,
VMPF-BG.

It is likely IWVI performs well for sparse C because
the variational family q(x1:T ; φ) includes the true pos-
terior. Because SMC “greedily” resamples particles
with high probability under p(x t |y1:t ) (using only the
first t observations), it is counterproductive relative
to a very accurate model of p(x t |y1:T ) (conditioned
on all observations); see the discussion of sharpness
in (Maddison et al., 2017a). The variational family
does not include the posterior for denseC, and IWVI
is much worse than the SMC-based methods.To fur-

†For dx = 25, dy = 1, dense C (second panel), 20K itera-
tions were not enough to train VMPF-UG, so we initialiazed
it with the parameters from VMPF-BG.

ther understand this, we reran the sparseC experiment
for dx = 25, dy = 25 after fixing βt = 1 to impover-
ish the variational family. The final bounds become
− 456.20,− 453.32, and− 451.85 for IWVI, VSMC, and
VMPF, respectively, confirming that resampling can
be harmful when q(x1:T ; φ) can already approximate
the true posterior very well, but tends to be beneficial
otherwise.

The slow convergence of VMPF-UG can be explained
by gradient variance (Figure 2, left). Both VSMC and
VMPF with biased gradients have low variance and
converge quickly. In contrast, VMPF-UG has high
gradient variance and slower convergence,especially
in early iterations, but variance reduces substantially
when close to convergence.This suggests a strategy of
using the biased gradient estimator at the beginning
of optimization and then switching to the unbiased
estimator.

Although we did not observe it for N = 4, unbiased
gradients can lead to tighter bounds upon convergence,
especially for larger numbers of particles (Figure 2,
right). For small N , VMPF-BG and VMPF-UG are
similar, but as N increases, the gap between the meth-
ods increases,which indicates that biased gradients
are more of a problem. We conjecture that the bias of
gradients for VMPF-BG will not go to zero as N is in-
creased, but the magnitude of the true gradient shrinks
as N → ∞ , which leads to difficulty in training (Le
et al., 2018; Rainforth et al., 2018).

Stochastic Volatility The stochastic volatility
model (Chib et al., 2009) is widely used for finan-
cial data. It is x t = µ + Φ( x t−1 − µ ) + vt , yt =
diag (exp (xt /2)) Be t , where vt  ∼ N (0, Q), et ∼

N (0, I ), and x1  ∼ N (µ, Q). The model parameters
are θ = ( µ, Φ, Q, B), where µ is a vector, Φ and Q
are diagonal matrices, and B is either a diagonal or
lower triangular matrix (with positive diagonal en-
tries in both cases). We use VEM to learn θ. Fol-
lowing Naesseth et al. (2018), we use the proposal
r t (x t |x t−1 ; φ, θ)  ∝ f (x t |x t−1 ; θ)N (x t ; µt , Σ t ) with pa-
rameters φ = (µ t , Σt )T

t=1 and Σ t diagonal.

We model the exchange rates of 22 international cur-
rencies with respect to US dollars for 10 years (monthly
from 4/2011 to 3/2021). The data can be downloaded
from the US Federal Reserve System.‡ Table 1 reports
the optimized lower bound for different algorithms for
N  {∈ 4, 8, 16} . VMPF-BG always gives a higher bound
than VSMC, and the IWVI bound is always highest.
TMC works well for N = 16, but is much worse for
smaller N . We also notice that DPF works slightly
better than VSMC or VMPF on a simpler model with

‡https://www.federalreserve.gov/releases/h10/current/
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Table 1: Stochastic volatility model lower bounds for IWVI, VSMC, DPF, VMPF-BG and VMPF-UG (higher is
better). Mean and standard deviation of 3 runs are reported.

Method N = 1 N = 4 N = 8 N = 16

Diagonal B

IWVI

7216.09 (0.42)

7219.77 (0.17) 7220.60 (0.51) 7221.51 (0.10)
VSMC 7200.57 (0.11) 7198.13 (0.30) 7197.70 (0.09)
TMC 7193.21 (0.08) 7202.16 (0.07) 7208.67 (0.11)
DPF 7209.42 (0.99) 7209.05 (1.13) 7210.22 (0.24)

VMPF-BG 7205.29 (0.17) 7205.04 (0.16) 7205.90 (0.35)
VMPF-UG 7208.57 (0.27) 7208.95 (0.28) 7206.35 (0.27)

Triangular B

IWVI

8585.16 (1.00)

8590.87 (0.27) 8593.19 (0.64) 8595.78 (0.82)
VSMC 8573.04 (0.23) 8572.58 (0.19) 8572.01 (0.08)
TMC 8554.89 (0.18) 8570.56 (0.01) 8582.32 (0.10)
DPF 8572.74 (2.97) 8574.32 (1.65) 8574.32 (0.32)

VMPF-BG 8576.57 (0.61) 8578.53 (0.20) 8581.21 (0.39)
VMPF-UG 8556.64 (3.63) 8543.40 (1.48) 8538.15 (5.36)

Table 2: Test set nats per timestep for DMM trained with IWVI, VSMC, DPF, VMPF-BG (higher is better) on
four polyphonic music datasets. Mean and standard deviation of 3 runs are reported.

N Method Nottingham JSB MuseData Piano-midi.de

4

IWVI -3.86 (0.04) -7.40 (0.01) -8.19 (0.04) -8.78 (0.01)
VSMC -3.38 (0.03) -7.16 (0.01) -7.68 (0.02) -8.39 (0.03)
TMC -3.65 (0.02) -7.51 (0.01) -8.41 (0.02) -9.00 (0.01)
DPF -3.33 (0.02) -7.14 (0.01) -7.75 (0.01) -8.45 (0.01)

VMPF-BG -3.29 (0.03) -7.04 (0.01) -7.67 (0.00) -8.35 (0.01)

8

IWVI -3.82 (0.03) -7.38 (0.01) -8.16 (0.04) -8.75 (0.01)
VSMC -3.20 (0.02) -6.96 (0.00) -7.43 (0.01) -8.20 (0.01)
TMC -3.40 (0.02) -7.24 (0.01) -8.03 (0.01) -8.64 (0.01)
DPF -3.19 (0.00) -6.95 (0.01) -7.40 (0.01) -8.31 (0.00)

VMPF-BG -3.09 (0.03) -6.80 (0.01) -7.39 (0.01) -8.12 (0.01)

16

IWVI -3.84 (0.03) -7.33 (0.02) -8.16 (0.02) -8.74 (0.02)
VSMC -3.06 (0.02) -6.81 (0.00) -7.22 (0.02) -8.03 (0.00)
TMC -3.23 (0.02) -6.98 (0.02) -7.72 (0.00) -8.37 (0.01)
DPF -3.08 (0.02) -6.78 (0.00) -7.22 (0.01) -8.18 (0.02)

VMPF-BG -2.96 (0.02) -6.64 (0.01) -7.14 (0.01) -7.92 (0.01)
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Supplementary Material:
Variational Marginal Particle Filters

A Proof of the Operations

A.1 Proof of Lemma 1

Proof. We have that

Z
Q(ω)R(ω)a(x|ω)dω =

Z
Q(ω)R(ω)

1
R(ω)

Z Q0(ω, ν)
Q(ω)

R0(ω, ν)a0(x|ω, ν)dν dω

=
Z Z

Q0(ω, ν)R0(ω, ν)a0(x|ω, ν)dνdω

=γ(x).

For the variance, we have

Var R0(ω, ν) = Var E[R0(ω, ν)|ω] + E Var[R0(ω, ν)|ω]
≥ Var E[R 0(ω, ν)|ω]
= Var R(ω).

For the lower bounds,

Eω,ν [log R0(ω, ν)] = E ω Eν|ω [log R0(ω, ν)]
≤ E ω log Eν|ω [R0(ω, ν)]
= E ω[log R(ω)],

and Eω[log R(ω)] ≤ log Z because we have shown that R and a are valid estimator-coupling pair for γ.

A.2 Proof of Lemma 2

Proof.

Z
· · ·

Z
Q(ω, ν1, . . . , νN )R(ω, ν1, . . . , νN )a(x|ω, ν1, . . . , νN )dω dν1 . . . dνN

=
Z

· · ·
Z

Q0(ω)

 NY

i=1

Q0(νi |ω)

! 
1
N

NX

i=1

R0(ω, νi )

! P N
i=1 R0(ω, νi )a0(x|ω, νi )

P N
i=1

R0(ω, νi )
dω dν1 . . . dνN

=
1
N

NX

i=1

Z
· · ·

Z
Q0(ω)

NY

j=1

Q0(νj |ω)R0(ω, νi )a0(x|ω, νi )dω dν1 . . . dνN

=
1
N

NX

i=1

Z
Q0(ω)Q0(ν i |ω)R0(ω, νi )a0(x|ω, νi ) dω dνi

=γ(x).
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A.3 Proof of Lemma 3

Proof. For ExtendTarget,
Z Z Z

Q(ω, x̂, x̂0)R(ω, x̂, x̂0)a(x, x 0|ω, x̂, x̂0) dx̂0dx̂ dω

=
Z Z Z

Q0(ω)a0(x̂|ω)r( x̂0|x̂)R 0(ω)
γ0(x̂, x̂0)/γ(ˆx)

r( x̂0|x̂)
δ( x̂, x̂ 0) (x, x0) dx̂0dx̂ dω

=
Z Z Z

Q0(ω)a0(x̂|ω)R0(ω) dω
γ0(x̂, x̂0)

γ( x̂)
δ( x̂, x̂ 0) (x, x0) dx̂0dx̂

=
Z Z

γ0(x̂, x̂0)δ( x̂, x̂ 0) (x, x0) dx̂0dx̂

=γ 0(x, x0).

For ChangeTarget , proceed as above withδx̂ 0(x0) in place of δ( x̂, x̂ 0) (x, x0). The steps are the same until the
second to last line, which becomes

Z Z
γ0(x̂, x̂0)δx̂ 0(x 0) dx̂0dx̂ =

Z
γ0(x̂, x0)dx̂ = γ 0(x 0).

B Derivation of SMC and MPF

B.1 Proof of Theorem 1

We first repeat relevant definitions from the algorithm and theorem statement. The weights are

wi
1 =

f (x 1,i
1 )g(y1|x1,i

1 )
r 1(x 1,i

1 )
, wi

t =
f (x t,i

t |x t,i
t−1 )g(yt |x

t,i
t )

r t (x t,i
t |x t,i

t−1 )
for t > 1.

The normalized weights are wi
t = w i

t /
P N

j=1
wj

t .

We wish to show that, for all t,

QN
t (x 1,1:N

1:1 , . . . , xt,1:N
1:t ) =

NY

i=1



 r 1(x 1,i
1:1 )

tY

τ=2

NX

j=1

wj
τ−1 δx τ−1,j

1:τ−1
(x τ,i

1:τ −1 )r τ (x τ,i
τ |x τ,i

τ−1 )



 , (14)

RN
t (x 1,1:N

1:1 , ..., xt,1:N
1:t ) =

tY

τ=1

1
N

NX

i=1

wi
τ , (15)

aN
t (·|x1,1:N

1:1 , . . . , xt,1:N
1:t ) =

NX

i=1

wi
t δx t,i

1:t
(·) (16)

define an estimator-coupling pair for p(x 1:t , y1:t ).

We can check that these match the SMC algorithm at step t : that is, QN
t is sampling distribution, RN

t is the
likelihood estimator, and aN

t is approximation to p(x1:t |y1:t ). So, after proving this, the conclusion of the theorem
follows immediately.

We will show inductively that (QN
t , RN

t , aN
t ) are obtained by applying appropriate operations on estimator-coupling

pairs. In particular, the procedure is

(QN
t , RN

t , aN
t ) = Replicate Q t , Rt , at ; xt

1:t , N ,
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where

Q1(x 1
1:1 ) = r 1(x 1

1),

R1(x 1
1:1 ) =

p(x1
1, y1)

r 1(x 1
1)

=
f (x 1

1)g(y1|x1
1)

r 1(x 1
1)

,

a1(·|x1
1:1 ) = δ x 1

1:1
(·),

and, for t > 1,

(Q t , Rt , at ) = ExtendTarget QN
t−1 , RN

t−1 , aN
t−1 ; p(x1:t−1 , y1:t−1 ), p(x1:t , y1:t ), r t (x t |x t−1 ) .

The proof is a mechanical application of these operations.

For the base case, it is immediate that (Q1, R1, a1) are an estimator-coupling pair for p(x1, y1), and easy to verify
that applying Lemma 2 yields ( QN

1 , RN
1 , aN

1 ) that match Equations (14)–(16) and give an estimator-coupling pair
for p(x 1, y1).

For the induction step ( t > 1), we first apply Lemma 3 to obtain ( Qt , Rt , at ) from ( QN
t−1 , RN

t−1 , aN
t−1 ) using the

ExtendTarget operation. We get

Qt (x 1,1:N
1:1 , . . . , xt−1,1:N

1:t−1 , xt
1:t ) = Q N

t−1 (x 1,1:N
1:1 , . . . , xt−1,1:N

1:t−1 )
· aN

t−1 (x t
1:t−1 |x1,1:N

1:1 , . . . , xt−1,1:N
1:t−1 ) · rt (x t

t |x
t
t−1 )

=
NY

i=1



 r 1(x 1,i
1:1 )

t−1Y

τ=2

NX

j=1

wj
τ−1 δx τ−1,j

1:τ−1
(x τ,i

1:τ −1 )r τ (x τ,i
τ |x τ,i

τ−1 )





·
NX

j=1

wj
t−1 δx t−1,j

1:t−1
(x t

1:t−1 )r τ (x t
t |x

t
t−1 ).

Rt (x 1,1:N
1:1 , ..., xt−1,1:N

1:t−1 , xt
1:t ) = R N

t−1 (x 1,1:N
1:1 , ..., xt−1,1:N

1:t−1 ) ·
p(x t

1:t , y1:t )/p(x t
1:t−1 , y1:t )

r t (x t
t |x

t
t−1 )

=
t−1Y

τ=1

"
1
N

NX

i=1

wi
τ

#
f (x t

t |x
t
t−1 )g(yt |x t

t )
r t (x t

t |x
t
t−1 )

.

at (·|x1,1:N
1:1 , ..., xt−1,1:N

1:t−1 , xt
1:t ) = δ x t

1:t
(·).

By Lemma 3, (Q t , Rt , at ) define an estimator-coupling pair for p(x 1:t , y1:t ).

It is now straightforward to verify that applying Lemma 2 give the triple ( QN
t , RN

t , aN
t ) defined in Equations (14)–

(16), and therefore (QN
t , RN

t , aN
t ) define an estimator-coupling pair for p(x 1:t , y1:t ), and the result is proved.

B.2 Proof of Theorem 2

We again repeat the relevant definitions. The weights used in VMPF are

vi
1 =

f (x i
1)g(y1|x i

1)
r 1(x i

1)
, vi

t =
P N

j=1 vj
t−1 f (x i

t |x
j
t−1 )g(yt |x i

t )
P N

j=1 vj
t−1 r t (x i

t |x
j
t−1 )

for t > 1.

The normalized weights are vi
t = v i

t /
P N

j=1 vj
t .
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We wish to show that, for all t,

QN
t (x 1:N

1 , . . . , x1:N
t ) =

NY

i=1



 r 1(x i
1)

tY

τ=2

NX

j=1

vj
τ−1 r τ (x i

τ |x j
τ−1 )



 , (17)

RN
t (x 1:N

1 , . . . , x1:N
t ) =

tY

τ=1

1
N

NX

i=1

vi
τ , (18)

aN
t (·|x1:N

1 , . . . , x1:N
t ) =

NX

i=1

vi
t δx i

t
(·) (19)

define an estimator-coupling pair for p(x t , y1:t ).

We can check that these match the MPF algorithm at step t : that is, QN
t is sampling distribution, RN

t is the
likelihood estimator, and aN

t is approximation to p(x t |y1:t ). So, after proving this, the conclusion of the theorem
follows immediately.

We will show inductively that (QN
t , RN

t , aN
t ) are obtained by applying appropriate operations on estimator-coupling

pairs to. In particular, the procedure is

(QN
t , RN

t , aN
t ) = Replicate (Q t , Rt , at ; xt , N )

for all t, where

Q1(x 1) = r 1(x 1),

R1(x 1) =
p(x1, y1)
r 1(x 1)

=
f (x 1)g(y1|x1)

r 1(x 1)
,

a1(·|x1) = δ x 1 (·),

and, for t > 1,

(Q0
t , R

0
t , a

0
t ) = ChangeTarget QN

t−1 , RN
t−1 , aN

t−1 ; p(xt−1 , y1:t−1 ), p(xt−1 , xt , y1:t ), r t (x t |x t−1 ) ,

(Q t , Rt , at ) = Marginalize Q0
t , R

0
t , a

0
t ; x̂ t−1 .

The proof is again a mechanical application of these operations.

The base case is identical to the base case in the proof of Theorem 1, and yields that (QN
1 , RN

1 , aN
1 ) have the

form in Equations (17)–(19) and define an estimator-coupling pair for p(x 1, y1).

For the induction step ( t > 1), we first apply Lemma 3 as in the proof of Theorem 1, except using the
ChangeTarget operation instead of ExtendTarget, to get

Q0
t (x 1:N

1 , . . . , x1:N
t−1 , x̂ t−1 , xt ) =

NY

i=1



 r 1(x i
1)

t−1Y

τ=2

NX

j=1

vj
τ−1 r τ (x i

τ |x j
τ−1 )





·
NX

j=1

vj
t−1 δx j

t−1
(x̂ t−1 )r t (x t |x̂ t−1 ),

R0
t (x 1:N

1 , . . . , x1:N
t−1 , x̂ t−1 , xt ) =

t−1Y

τ=1

"
1
N

NX

i=1

vi
τ

#
f (x t |x̂ t−1 )g(yt |x t )

r t (x t |x̂ t−1 )
,

a0
t (·|x1:N

1 , ..., x1:N
t−1 , x̂ t−1 , xt ) = δ x t (·).

which define an estimator-coupling pair for p(x t , y1:t ).
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Next, we apply the Marginalize operation using Lemma 1. Marginalizing x̂ t−1 from Q0
t gives

Qt (x 1:N
1 , . . . , x1:N

t−1 , xt )

=
Z

Q0
t (x 1:N

1 , . . . , x1:N
t−1 , x̂ t−1 , xt )dx̂ t−1

=
Z NY

i=1



 r 1(x i
1)

t−1Y

τ=2

NX

j=1

vj
τ−1 r τ (x i

τ |x j
τ−1 )





NX

j=1

vj
t−1 δx j

t−1
(x̂ t−1 )r t (x t |x̂ t−1 )dx̂ t−1

=
NY

i=1



 r 1(x i
1)

t−1Y

τ=2

NX

j=1

vj
τ−1 r τ (x i

τ |x j
τ−1 )





NX

j=1

Z
vj

t−1 δx j
t−1

(x̂ t−1 )r t (x t |x̂ t−1 )dx̂ t−1

=
NY

i=1



 r 1(x i
1)

t−1Y

τ=2

NX

j=1

vj
τ−1 r τ (x i

τ |x j
τ−1 )





NX

j=1

vj
t−1 r t (x t |x

j
t−1 ).

The conditional distribution is

Q0
t (x̂ t−1 | x1:N

1 , . . . , x1:N
t−1 , xt ) =

Q0
t (x 1:N

1 , . . . , x1:N
t−1 , x̂ t−1 , xt )

Q0
t (x 1:N

1 , . . . , x1:N
t−1 , xt )

=

P N
j=1 vj

t−1 δx j
t−1

(x̂ t−1 )r t (x t |x̂ t−1 )
P N

j=1
vj

t−1 r t (x t |x
j
t−1 )

.

The new estimator R t is the conditional expectation

Rt (x 1:N
1 , . . . , x1:N

t−1 , xt )
= E

Q 0
t ( x̂ t−1 |x 1:N

1
,...,x 1:N

t−1
,x t )

R0
t (x 1:N

1 , . . . , x1:N
t−1 , x̂ t−1 , xt )

=
Z P N

j=1 vj
t−1 δx j

t−1
(x̂ t−1 )r t (x t |x̂ t−1 )

P N
j=1

vj
t−1 r t (x t |x

j
t−1 )

t−1Y

τ=1

"
1
N

NX

i=1

vi
τ

#
f (x t |x̂ t−1 )g(y t |x t )

r t (x t |x̂ t−1 )
dx̂ t−1

=
1

P N
j=1 vj

t−1 r t (x i
t |x

j
t−1 )

t−1Y

τ=1

"
1
N

NX

i=1

vi
τ

# Z NX

j=1

vj
t−1 δx j

t−1
(x̂ t−1 )f (x t |x̂ t−1 )g(yt |x t )dx̂ t−1

=
t−1Y

τ=1

"
1
N

NX

i=1

vi
τ

# P N
j=1

vj
t−1 f (x t |x

j
t−1 )g(yt |x t )

P N
j=1 vj

t−1 r t (x i
t |x

j
t−1 )

.

The new coupling at is

at (x 1:N
1 , . . . , x1:N

t−1 , xt )

=
1

Rt (x 1:N
1 , . . . , x1:N

t−1 , xt )
· E

Q 0
t ( x̂ t−1 |x 1:N

1
,...,x 1:N

t−1
,x t )

R0
t (x 1:N

1 , . . . , x1:N
t−1 , x̂ t−1 , xt )a0

t (·|x1:N
1 , . . . , x1:N

t−1 , x̂ t−1 , xt )

=
1

Rt (x 1:N
1 , . . . , x1:N

t−1 , xt )
E

Q 0
t ( x̂ t−1 |x 1:N

1
,...,x 1:N

t−1
,x t )

R0
t (x 1:N

1 , ..., x1:N
t−1 , x̂ t−1 , xt ) δx t (·)

= δx t (·).

It is now straightforward to verify that applying Lemma 2 give the triple ( QN
t , RN

t , aN
t ) defined in Equations (17)–

(19), and therefore (QN
t , RN

t , aN
t ) define an estimator-coupling pair for p(x t , y1:t ), and the result is proved.
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Algorithm 3 Independent Particle Filters
Require: p(x1:T , y1:T ), y 1:T , {r t (x t )}, N

1: Sample xi
1  ∼ r 1(x 1) for all i

2: Set ui
1 = f(x i

1 )g(y 1 |x i
1 )

r 1 (x i
1 ) for all i

3: for t = 2, . . . , T do
4: Generate L permutations k (1:L,1:N)

t

5: for i = 1, . . . , N do
6: Sample xi

t  ∼ r t (x t )

7: Set ui
t =

P L
l=1 u

k l,i
t−1 f(x i

t |x
k l,i
t−1 )g(y t |x i

t )
L·r t (x i

t )

Algorithm 4 Tensor Monte Carlo for SSM
Require: p(x1:T , y1:T ), y 1:T , {r t (x t )}, N

1: Sample xi
1  ∼ r 1(x 1) for all i

2: Set zi
1 = f(x i

1 )g(y 1 |x i
1 )

r 1 (x i
1 ) for all i

3: for t = 2, . . . , T do
4: for i = 1, . . . , N do
5: Sample xi

t  ∼ r t (x t )

6: Set zi
t =

P N
j=1 z j

t−1 f(x i
t |x j

t−1 )g(y t |x i
t )

N·r t (x i
t )

C Deriving MPF from IPF

We directly give the detail of IPF in Algorithm 3. In line 4 of Algorithm 3, L distinct permutations ( k l 1 ,i
t 6= k l 2 ,i

t

for any l1, l2, i satisfying l1 6= l2) of 1 , . . . , Nshould be generated.Proposition 1 of IPF (Lin et al., 2005) implies
that for any test function h,

E

"
1
N

NX

i=1

ui
t h(x i

t )

#

= p(y 1:t ) · Ep(x t |y 1:t ) [h(x t )] . (20)

If h ≡ 1, we have E
h

1
N

P N
i=1 ui

t

i
= p(y 1:t ).

The idea of TMC is to draw many copies of each individual variable from independent proposal distributions,
and then average over all (exponentially many) combinations of joint samples to get an unbiased estimator. We
assume for each latent variable xt , we have N samples xi

t  ∼ r t (x t ), i = 1, . . . , N . So

p̂TMC =
1

N T

X

i 1 ,i 2 ,...,i T

p(x i 1
1 , . . . , xi T

T , y1:T )
r 1(x i 1

1 ) . . . rT (x i T
T )

=
1

N T

X

i 1 ,i 2 ,...,i T

f (x i 1
1 )g(y1|x i 1

1 )
r 1(x i 1

1 )
· f (x i 2

2 |x i 1
1 )g(y2|x i 2

2 )
r 2(x i 2

2 )
· . . . ·

f (x i T
T |x i T −1

T −1 )g(yT |x i T
T )

r T (x i T
T )

(21)

will be an unbiased estimator for p(y1:T ). Computing the summation in Equation (21) can be accelerated by
summing over i1, i 2, ..., i T in order. If we define zi

1 = f 1 (x i
1 )g(y 1 |x i

1 )
r 1 (x i

1 ) , then summing over i 1 gives

p̂TMC =
1

N T

X

i 1 ,i 2 ,...,i T

zi 1
1 · f (x i 2

2 |x i 1
1 )g(y2|x i 2

2 )
r 2(x i 2

2 )
· . . . ·

f (x i T
T |x i T −1

T −1 )g(yT |x i T
T )

r T (x i T
T )

=
1

N T −1

X

i 2 ,...,i T

NX

i 1 =1

zi 1
1 f (x i 2

2 |x i 1
1 )g(y2|x i 2

2 )
N · r 2(x i 2

2 )
· . . . ·

f (x i T
T |x i T −1

T −1 )g(yT |x i T
T )

r T (x i T
T )

. (22)

We can further define the boxed variable in Equation (22) by zi 2
2 and continue the summation. This gives a

filtering style framework as in Algorithm 4. In the end, 1
N

P N
i=1 zi

t will also be an unbiased estimator for p(y1:t ).

C.1 Deriving TMC for SSM from IPF

Now we show that TMC is IPF with complete matching ( L = N ). Under this circumstance, k1,i
t , . . . , kL,i

t will
also be a permutation of 1, . . . , N .So Line 7 of Algorithm 3 will become

ui
t =

P N
j=1

uj
t−1 f (x i

t |x
j
t−1 )g(yt |x i

t )
N · r t (x i

t )
,

which exactly matches Line 6 of Algorithm 4.
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C.2 Deriving MPF from TMC for SSM

The proposal distributions of IPF and TMC can be extended to condition on all past particles, i.e.r t = r t (x t |x1:N
1:t−1 )

(See 7.2 of Aitchison (2019) about non-factorized TMC), which includes the case of MPF. However, no formal
theory supports any specific form of proposal distribution, such as the mixture distribution used by MPF.
Additionally, full details of how to construct the non-factorised approximate posterior and ensure differentiability
are not given. Finally, by using couplings to derive MPF and VMPF, we obtain the interpretation as auxiliary
variable VI as described in the main text, which is not obvious from the unbiasedness result of Equation (20)
alone.

This paper fills these gaps by deriving MPF from SMC directly and revealing the KL decomposition for VMPF.
Now we verify that MPF is TMC with a specific mixture distribution. If we define vi

t = z i
t /

Q t−1
τ=1

1
N

P N
j=1 vj

τ

and replace the proposal distributions for t > 1 by
P N

j=1 vj
t−1 r t (x i

t |x
j
t−1 ), we will have v i

1 = z i
1 for all i and

zi
t =

P N
j=1

zj
t−1 f (x i

t |x
j
t−1 )g(yt |x i

t )
N ·

P N
j=1 vj

t−1 r t (x i
t |x

j
t−1 )

⇐⇒



t−1Y

τ=1

1
N

NX

j=1

vj
τ



 vi
t =




t−2Y

τ=1

1
N

NX

j=1

vj
τ





P N
j=1

vj
t−1 f (x i

t |x
j
t−1 )g(yt |x i

t )
N ·

P N
j=1 vj

t−1 r t (x i
t |x

j
t−1 )

⇐⇒



t−1Y

τ=1

1
N

NX

j=1

vj
τ



 vi
t =




t−1Y

τ=1

1
N

NX

j=1

vj
τ





P N
j=1

vj
t−1 f (x i

t |x
j
t−1 )g(yt |x i

t )
P N

j=1 vj
t−1 r t (x i

t |x
j
t−1 )

⇐⇒vi
t =

P N
j=1 vj

t−1 f (x i
t |x

j
t−1 )g(yt |x i

t )
P N

j=1 vj
t−1 r t (x i

t |x
j
t−1 )

. (23)

Therefore, the weight computation of MPF is equivalent to Line 6 of Algorithm 4 if the specific mixture distribution
is chosen.And we directly have the unbiased estimator

1
N

NX

i=1

zi
t =

tY

τ=1

1
N

NX

i=1

vi
τ (24)

to be in the same form as MPF.

D Limitation on VRNN

A VRNN is a sequential latent variable model

p(x1:T , y1:T ) =
TY

t=1
f (x t |ht )g(yt |x t , ht )

where h1 is constant and ht = h(x t−1 , yt−1 , ht−1 ) for t > 1. The variational posterior distribution is factorized as

q(x1:T |y1:T ) =
TY

t=1

qt (x t |ht , yt ).

We interpret a VRNN as a SSM that has both deterministic latent variables ht and stochastic latent variables x t .
The full model is

p(x1:T , h2:T , y1:T ) =
TY

t=1

f (x t |ht )g(yt |x t , ht )
TY

t=2

δh(x t−1 ,y t−1 ,h t−1 ) (h t ).

To be clearer, we defineX t = ( x t , ht ) to be the full latent variable, so the model becomes p(X 1:T , y1:T ). VSMC
can be used to learn the parameters of a VRNN. However, VMPF is not applicable to learning VRNN parameters.
If we set the proposal distribution to be

r t (X t |X t−1 , y1:t ) = δ h(x t−1 ,y t−1 ,h t−1 ) (h t )qt (x t |ht , yt ),
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Table 3: Training schedule on stochastic volatility model.
Diagonal B Triangular B

Phase Learning Rate Epochs Learning Rate Epochs
1 0.01 50000 0.003 100000
2 0.001 50000 0.0003 100000
3 0.0001 50000 0.00003 100000
4 0.00001 50000 0.000003 100000

the weighting function for VMPF for t > 1 would become

vi
t =

P N
j=1 vj

t−1 δ
h(x j

t−1
,y t−1 ,h j

t−1 ) (h
i
t )f (x i

t |h
i
t )g(yt |x i

t , h
i
t )

P N
j=1 vj

t−1 δ
h(x j

t−1
,y t−1 ,h j

t−1 ) (h
i
t )qt (x i

t |ht , yt )
.

We know that, in general, for all j , the values h(x j
t−1 , yt−1 , hj

t−1 ) will be different from each other. Due to the
presence ofDirac function, the summation in the numerator as well as the denominator will only have one
non-zero term, so VMPF collapses to VSMC. This failure can be understood in terms of marginalization: if we
are able to accesshi

t with MPF at t , we can reconstruct the corresponding (x j
t−1 , hj

t−1 ) that generates (x i
t , h

i
t ),

but (x j
t−1 , hj

t−1 ) should be marginalized.

E Experiment Details

We run all experiments on CPU. For models with multiple data, the batch size is 1. The experiment details can
be found below.

E.1 Details of experiments on stochastic volatility models

Suppose the raw data of the exchange rate is d0:T = (d 0, d1, ..., dT ), we get y1:T by

yt = log dt − log dt−1

for 1 ≤ t ≤ T . For both diagonal B and triangular B case,we restrict elements of Φ to be in [0 , 1]. For all
algorithms, we train with the same learning rate scheduler (See Table 3), except for VMPF-UG for diagonal B
with N = 16, where we train with 0.3x of the listed learning rate. Further reducing the learning rate has little
effect on the results. To stabilize the training of VMPF-UG, we use gradient clipping with threshold 100. With
that, VMPF-UG for diagonal B with N = 8 , 16 are not stable in early iterations, and we only keep stable runs.

E.2 Details of experiments on deep Markov models

The four polyphonic music datasets are sequences of 88-dimensional binary vectors.Recall that the DMM is

x t = µ θ(x t−1 ) + diag(exp(σθ(x t−1 )/2))v t ,

yt ∼ Bernoulli(sigmoid(η θ(x t ))),

where vt  ∼ N (0, I), x 0 = 0, and µ θ, σθ, ηθ are neural networks. The architectures are

µθ, σθ = Linear(d h → 176) ◦ LeakyReLU ◦ Linear(88 → dh ),
ηθ = Linear(d h → 88) ◦ LeakyReLU ◦ Linear(88 → dh )

where dh varies on different datasets. And we use the proposal distribution

r(x t |x t−1 , yt ; φ)  N x∝ t ; µx
φ(x t−1 ), diag(exp(σx

φ(x t−1 ))) · N x t ; µy
φ(yt ), diag(exp(σy

φ(yt )))

where µx
φ, σx

φ , µy
φ and σ

y
φ are neural networks. The architectures are

µx
φ, σx

φ = Linear(d h → 176) ◦ LeakyReLU ◦ Linear(88 → dh ),
µy

φ, σy
φ = Linear(d h → 176) ◦ LeakyReLU ◦ Linear(88 → dh ).
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Table 4: Training details of DMMs.
Nottingham JSB MuseData Piano-midi.de

Learning Rate 0.001,0.0001 0.001,0.0001 0.001,0.0001 0.001,0.0001
Epochs 500,100 1000,200 350,100 600,150

Hidden Units d h 128 64 128 128

For training, we use the default train, validation, and test set split. For all datasets, the learning rate, training
epochs and hidden unitsht can be found in Table 4. The comma separates different phases of training:we train
with the larger learning rates for some epochs and reduce the learning rate for some additional epochs.We report
the performance on test set with the best parameters during training determined by the validation set.
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