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Abstract
Hierarchical models represent a challenging set-
ting for inference algorithms. MCMC methods
struggle to scale to large models with many local
variables and observations, and variational infer-
ence (VI) may fail to provide accurate approxi-
mations due to the use of simple variational fami-
lies. Some variational methods (e.g. importance
weighted VI) integrate Monte Carlo methods to
give better accuracy, but these tend to be unsuit-
able for hierarchical models, as they do not allow
for subsampling and their performance tends to
degrade for high dimensional models. We propose
a new family of variational bounds for hierarchi-
cal models, based on the application of tightening
methods (e.g. importance weighting) separately
for each group of local random variables. We
show that our approach naturally allows the use
of subsampling to get unbiased gradients, and that
it fully leverages the power of methods that build
tighter lower bounds by applying them indepen-
dently in lower dimensional spaces, leading to
better results and more accurate posterior approx-
imations than relevant baselines.

1. Introduction

Hierarchical models (Kreft & De Leeuw, 1998; Gelman,
2006; Snijders & Bosker, 2011) represent a general class of
probabilistic models which are used in a wide range of sce-
narios. They have been successfully applied in psychology
(Vallerand, 1997), ecology (Royle & Dorazio, 2008; Cressie
et al., 2009), political science (Lax & Phillips, 2012), col-
laborative filtering (Lim & Teh, 2007), and topic modeling
(Blei et al., 2003), among others. While these models may
take a wide range of forms, a widely used one consists of a
tree structure, where a set of global variablesθ controls the
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distribution over local variables zi in multiple independent
groups (see Figure 1 (left)). Then, after observing some
data yi from each group, the inference problem consists in
accurately approximating the posterior distribution over the
global and local variables.

Inference is often difficult in hierarchical models. MCMC
methods struggle to scale to big models and datasets due to
their incapacity to handle subsampling (Betancourt, 2015;
Bardenet et al., 2017). Variational inference (VI) methods,
on the other hand, are naturally compatible with subsam-
pling, and thus represent a more scalable alternative (Hoff-
man et al., 2013; Titsias & Ĺazaro-Gredilla, 2014; Agrawal
& Domke, 2021). Their accuracy, however, is sometimes
limited by the use of simple variational families, such as
factorized Gaussians.

Recently, many methods have been proposed to integrate
Monte Carlo methods into variational inference to give
tighter bounds and better posterior approximations (hence-
forth tightening methods). These include importance weight-
ing (Burda et al., 2016) and many others (Salimans et al.,
2015; Wolf et al., 2016; Maddison et al., 2017; Domke &
Sheldon, 2019; Thin et al., 2021; Zhang et al., 2021; Geffner
& Domke, 2021b). While these methods have shown good
performance in practice, we observe that a direct application
of them may be unsuitable with hierarchical models. There
are two reasons for this. First, the posterior distributions
for hierarchical models are often high dimensional—the
dimensionality typically grows linearly with the number of
local variables. This is problematic as the performance of
tightening methods sometimes degrades in higher dimen-
sions. Second, current tightening methods are incompatible
with subsampling, leading to slow inference.

Practitioners are thus faced with a choice: They can use
powerful but inefficient methods (variational inference with
tightening methods), or faster methods with lower accuracy
(plain variational inference).

We propose locally-enhanced bounds, a new family of vari-
ational objectives for hierarchical models that enjoys much
of the best of both worlds. The main idea involves apply-
ing tightening methods at a local level, separately for each
set of local variables zi , while using a regular variational
approximation (e.g. Gaussian, normalizing flow) to model
the posterior distribution over the global variables. This is
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Figure 1.Tighter bounds using importance weighting. A direct (global) application of importance weighting generates independent set of
copies of all variables in the model to build a tighter bound. A local application of importance weighting, on the other hand, generates
copies at the local level and applies importance weighting separately for each group of local variables to build the locally-enhanced bound.
Gray nodes represent observed variables, which are fixed (not re-sampled with every generated copy).

naturally compatible with subsampling, making inference
more efficient. Additionally, it maintains much of the bene-
fit of tightening methods in terms of improved bounds and
more accurate posterior approximations (Domke & Sheldon,
2019). We show the intuition behind our method in Figure 1.

We present an extensive empirical evaluation of our ap-
proach using two tightening methods: importance weighting
(Burda et al., 2016) and uncorrected Hamiltonian annealing
(Geffner & Domke, 2021b; Zhang et al., 2021). The for-
mer is based on importance sampling, while the latter uses
Hamiltonian Monte Carlo (Neal et al., 2011; Betancourt,
2017) transition kernels to build an enhanced variational
distribution. We observe empirically that the proposed ap-
proach yields better results than plain variational inference
and a traditional application of tightening methods.

2. Preliminaries

2.1. Hierarchical Models

While hierarchical models may take a wide range of forms
(Gelman & Hill, 2006), in this work we focus on a two-
level formulation, using θ to denote the global variables,
and zi and yi to denote the local variables and obser-
vations of group i . By letting z = (z 1, . . . , zM ) and
y = (y 1, . . . , yM ), the corresponding probabilistic model is
given by

p(θ, z, y) = p(θ)
MY

i=1

p(zi , yi |θ), (1)

where the exact form of p(zi , yi |θ) depends on the appli-
cation. Often, yi is conditionally independent of θ given

zi , and so p(zi , yi |θ) = p(y i |zi )p(zi |θ). In addition, yi

often consists of N i observations yi1 , . . . , yiN i that are
conditionally independent given zi , and so p(yi |zi ) =Q N i

j=1 p(yij |zi ). However neither of these simplifications is
required.

2.2. Variational Inference

Variational Inference is a popular method used to approx-
imate posterior distributions. Given some model p(z, y),
where y is observed data and z latent variables, the goal of
variational inference is to find a simpler distribution q(z)
to approximate the target p(z|y) (Jordan et al., 1999; Wain-
wright et al., 2008; Blei et al., 2017). VI does this by finding
the parameters of q(z) that maximize the evidence lower
bound (ELBO), a lower bound on the log-marginal likeli-
hood log p(y), given by

L VI (q(z)kp(z, y)) = E
q(z)

log
p(z, y)
q(z)

. (2)

It can be shown that this is equivalent to minimizing the
KL-divergence from q(z) to the true posterior p(z|y) .

2.3. Tighter Bounds for Variational Inference

While VI has been successfully applied in a wide range
of tasks (Blei et al., 2017), its performance its sometimes
limited by the use of simple approximating families for
q(z), such as Gaussians. A popular approach to address this
drawback involves using tighter lower bounds on the log-
marginal likelihood (Burda et al., 2016; Zhang et al., 2021),
which lead to better posterior approximations (Domke &
Sheldon, 2018; 2019).
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Importance Weighting (IW) (Burda et al., 2016; Cremer
et al., 2017) uses K samples zk  ∼ q(z k ) to build a lower
bound on the log-marginal likelihood log p(y) as

L K
IW (q(z)kp(z, y)) = EQ

k q(z k )
log

1
K

KX

k=1

p(zk , y)
q(zk )

, (3)

which is provably tighter that the variational inference bound
from Equation (2) for any K > 1 .

Annealed Importance Sampling (AIS) (Neal, 2001) is
another method that can be used to build tighter bounds.
It defines a sequence of K − 1 (unnormalized) densities
π1(z), . . . , πK−1 (z) that gradually bridge from q(z) to
p(z, y). Then, it augments q(z) using MCMC transitions
T k (zk+1 |zk ) that hold the corresponding bridging density
πk invariant, and builds a lower bound on log p(y) as1

L K
AIS (q(z)kp(z, y)) =

E
q(z 1:K )

log
p(zK , y)

q(z1)

K−1Y

k=1

πk (zk )
πk+1 (zk+1 )

, (4)

where zk represents the k-th variable generated by the
MCMC-augmented sampling process. It has been observed
that AIS with Hamiltonian Monte Carlo kernels (Neal et al.,
2011; Betancourt, 2017) often yields tight lower bounds in
practice (Sohl-Dickstein & Culpepper, 2012; Grosse et al.,
2015; Wu et al., 2017). However, since the HMC transitions
include a correction step, the resulting bound is not differ-
entiable. Thus, low variance reparameterization gradients
cannot be used to tune the method’s many parameters.

Uncorrected Hamiltonian Annealing (UHA) (Geffner
& Domke, 2021b; Zhang et al., 2021) is a method that
addresses the non-differentiability drawback suffered by
Hamiltonian AIS. It does so by mimicking the construction
used by Hamiltonian AIS, but using uncorrected HMC ker-
nels for the transitions. Then, UHA builds a differentiable
lower bound on the log-marginal likelihood log p(y) as

L K
UHA (q(z)kp(z, y)) =

E
q(z 1:K ,ρ1:K )

log
p(zK , y)

q(z1)

K−1Y

k=1

r(ρ k+1 )
r( ρ̃k )

, (5)

where ρk and ρ̃k are the momentum variables generated by
HMC at each step k, and z1 and zK are the first and last
samples from the chain, respectively. We give full details
on AIS and UHA in Appendix B.

All these methods have been observed to provide lower
bounds that are significantly tighter than the original one
used by variational inference, resulting in better posterior
approximations (Domke & Sheldon, 2019).

1For simplicity, the notation for the transitions and bridging
densities ignores their dependency ony, which is fixed.

3. Locally Enhanced Bounds for Hierarchical
Models

This section introduces our method. We begin with a brief
description on the use of variational inference and tightening
methods for hierarchical models and their limitations. We
then introduce our new family of variational bounds, locally-
enhanced bounds, which addresses these limitations.

3.1. Variational Inference for Hierarchical Models

Given a hierarchical modelp(θ, z, y)and some observations
for y, we can approximate the posterior distributionp(θ, z|y)
using VI with a variational distribution q(θ, z). There are
many potential choices for the approximating distribution.
One could use, for instance, a Gaussian with a diagonal or
dense covariance (Challis & Barber, 2013). However, best
results have been observed using a distribution that follows
the true posterior’s factorization (Hoffman & Blei, 2015;
Agrawal & Domke, 2021)

q(θ, z) = q(θ)
MY

i=1

q(zi |θ), (6)

which explicitly avoids modeling dependencies not present
in the target posterior. Then, the parameters of q(θ, z) are
trained by maximizing the objective

L VI (q(θ, z)kp(θ, z, y)) =

E
q(θ,z)

log
p(θ)
q(θ)

| {z }
global term

+
MX

i=1

log
p(zi , yi |θ)

q(zi |θ)
| {z }

local terms

. (7)

While computing this objective’s exact gradient is typi-
cally intractable, an unbiased estimate can be efficiently
obtained by applying the reparameterization trick (Kingma
& Welling, 2013; Rezende et al., 2014; Titsias & Lázaro-
Gredilla, 2014) and subsampling M 0 < M local terms.2

The fact that VI allows for subsampling makes the method
a particularly attractive choice for cases where the number
of groups M is large.

3.2. Unsuitability of Tightening Methods for
Hierarchical Models

One can directly apply tightening methods to variational
inference for hierarchical models. However, this may work
poorly when the number of groups M is large. This is
because some of these methods may provide less tighten-
ing in high dimensions (particularly importance weighting

2The reparameterization trick is applicable for distributions
q(θ, z) parameterized by w for which the sampling process can
be divided in two steps: Sampling a w-independent noise variable
  q∼ 0() , and then obtaining the sample(θ, z) as a w-dependent
differentiable transformation (θ, z) = T w () .
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(Bengtsson et al., 2008; Chatterjee & Diaconis, 2018)) and
because they are not compatible with subsampling, which
makes inference less efficient. This can be seen, for in-
stance, by considering the importance weighting objective
for hierarchical models

L K
IW (q(θ, zkp(θ, z, y))) =

EQ
k q(z k )

"

log
1
K

KX

k=1

p(θk )
q(θk )

MY

i=1

p(zk
i , yi |θk )

q(zk
i |θk )

#
. (8)

There does not appear to be any way to estimate the objec-
tive above subsampling M 0 < M groups without introduc-
ing bias. This is problematic for stochastic optimization,
as using no subsampling leads to expensive gradient eval-
uations and a slow overall optimization process, but the
use of biased gradients may lead to suboptimal parameters
(Naesseth et al., 2020; Geffner & Domke, 2021a) or may
even cause the optimization process to diverge (Ajalloeian
& Stich, 2020).

Importance weighting is not unique in this regard. Other
methods, such as annealed importance sampling or uncor-
rected Hamiltonian annealing, also lead to objectives that do
not allow unbiased subsampling either (Zhang et al., 2021).

3.3. Variational Inference with Locally Enhanced
Bounds

This section introduces our method. Our goal is to apply
tightening methods to boost variational inference’s perfor-
mance on hierarchical models while avoiding the afore-
mentioned issues. We propose to achieve this by applying
tightening methods only for the local variables, separately
for each group i = 1, . . . , M . This leads to a new family
of variational objectives, which we call locally-enhanced
bounds. Our construction of this new family of bounds is
based on the concept of a bounding operator.

Definition 3.1 (Bounding operator). An operator L(·k·) is a
bounding operator if, for any distributionsq(z) and p(z, y),
it satisfies L(q(z)kp(z, y)) ≤ log p(y) .

Example bounding operators we have seen so far include
plain VI (Equation (2)), importance weighted VI (Equa-
tion (3)), and uncorrected Hamiltonian annealing (Equa-
tion (5)).

Building locally-enhanced bounds is simple. We begin by
observing that the typical objective used by VI with hier-
archical models, shown in Equation (7), can be re-written

as

L VI (q(θ, z)kp(θ, z, y))

= E
q(θ)

"

log
p(θ)
q(θ)

+
MX

i=1

E
q(z i |θ)

log
p(zi , yi |θ)

q(zi |θ)

#

= E
q(θ)

"

log
p(θ)
q(θ)

+
MX

i=1

L VI (q(zi |θ)kp(zi , yi |θ))

#
. (9)

Then, a locally-enhanced bound is obtained by replacing
L VI in the last line of Equation (9) by any other bounding
operator. One could use any of the tightening techniques
described in Section 2.3, such as importance weighting or
uncorrected Hamiltonian annealing. (One could also use
AIS, though this yields a non-differentiable objective.) The
following theorem shows that bounds constructed this way
always yield valid variational objectives.

Theorem 3.2. Let p(θ, z, y) = p(θ)
Q M

i=1 p(zi , yi |θ) and

q(θ, z) = q(θ)
Q M

i=1 q(zi |θ) be any distributions, and let
L(·k·) be a bounding operator. Then,

E
q(θ)

"

log
p(θ)
q(θ)

+
MX

i=1

L(q(z i |θ)kp(zi , yi |θ))

#

≤ log p(y).

(10)
In particular, the gap in the above inequality is

KL(q(θ)kp(θ|y))+
MX

i=1

E
q(θ)

[log p(yi |θ) − L(q(z i |θ)kp(zi , yi |θ))] . (11)

We include a proof in Appendix A. Theorem 3.2 states that
we can build a valid locally-enhanced variational bound by
using Equation (10) with any valid bounding operatorL(·k·) .
Some examples include, for instance,L K

IW or L K
UHA , corre-

sponding to importance weighting and uncorrected Hamil-
tonian annealing, introduced in Section 2.3. Equivalently,
this construction can be seen as applying the corresponding
tightening method at a local level, separately for each group,
as shown in Figure 1.

For concreteness, consider importance weighting and its
corresponding bounding operator L K

IW . Following the con-
struction described above, we get a locally-enhanced bound
of

E
q(θ)

"

log
p(θ)
q(θ)

+
MX

i=1

E
q(z 1:K

i |θ)

"

log
1
K

KX

k=1

p(zk
i , yi |θ)

q(zi |θ)

##
.

(12)

Benefits of locally-enhanced bounds The benefits of us-
ing locally-enhanced bounds are twofold. First, they nat-
urally allow the use of subsampling. This can be seen by
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noting that the generic locally-enhanced bound from Equa-
tion (10) can be estimated without bias using a subset of
local variables I  {⊂ 1, . . . , M } as

E
q(θ)

"

log
p(θ)
q(θ)

+
M
|I |

X

i I∈

L(q(z i |θ)kp(zi , yi |θ))

#
, (13)

where |I | denotes the size of the set I . This is in contrast to
direct applications of tightening methods, which are incom-
patible with subsampling.

Second, they fully leverage the power of tightening methods
by applying them separately for each set of local variables,
which are often low-dimensional. In fact, for hierarchical
models with M groups, the local variables’ dimensionality
is, on average, M times smaller than that of the full model.
Then, one may expect tightening methods to perform well
when applied this way. We verify this empirically in Sec-
tion 5, where we observe that locally-enhanced bounds ob-
tained with importance weighting tend to be considerably
better than those obtained by applying importance weighting
directly for the full model all at once.

Tightness of locally-enhanced bounds Equation (10)
shows that better tightening methods lead to tighter locally-
enhanced bounds. However, Equation (11) states that, even
in the ideal case where the perfect bounding operator is
available,3 locally-enhanced bounds are only able to fully
close the variational gap if the variational approximation
over global variablesq(θ) is a perfect approximation of the
true posterior p(θ|y). If this is not the case, the application
of a perfect tightening method yields a variational gap of
KL(q(θ)kp(θ|y)) .

Often, this does not represent a significant drawback. In
practice, for moderately large datasets, the true posterior
over global variables p(θ|y) is informed by a large number
of observations, and thus we might expect it to concentrate
and roughly follow a Gaussian distribution. In such cases,
accurate approximations can be obtained using a Gaussian
variational family. Moreover, even in cases where the true
global posterior is non-Gaussian (e.g. small dataset), one
could use a more flexible family for q(θ), such as normal-
izing flows (Tabak & Turner, 2013; Rezende & Mohamed,
2015). This can be done efficiently, as the dimensionality
of θ is often moderately low and, more importantly, does
not depend on the number of groups M nor number of
observations.

Locally-enhanced bounds as divergence minimization
Finally, it is worth mentioning that maximizing a locally-
enhanced bound can be equivalently formulated as minimiz-
ing a divergence between an augmented target and varia-

3That is L(q(z i )kp(z i , yi )) = log p(y i ).

tional approximation. We give details for this construction
in Appendix C.

4. Related Work

There is a lot of work on related topics, such as the devel-
opment of more flexible variational approximations (Tabak
& Turner, 2013; Rezende & Mohamed, 2015), better tight-
ening methods (Salimans et al., 2015; Domke & Sheldon,
2019), and more efficient variational methods for hierar-
chical models (Agrawal & Domke, 2021). Most of these
represent contributions orthogonal to ours, and can be used
jointly with our locally-enhanced bounds.

Normalizing flows (Tabak & Turner, 2013; Rezende & Mo-
hamed, 2015; Kingma et al., 2016; Tomczak & Welling,
2016), for instance, are a powerful method to build flexible
variational approximations using invertible parametric trans-
formations. Since they typically require a large number of
parameters, they are sometimes impractical for very high
dimensional problems, such as those that arise when work-
ing with hierarchical models with many latent variables.
Despite this, they can be used jointly with our method. One
could use flows for each local approximation q(zi |θ) and/or
for the global approximation q(θ), and then optimize their
parameters by maximizing a locally-enhanced bound.

Additionally, many powerful tightening methods have been
developed (Agakov & Barber, 2004; Burda et al., 2016;
Salimans et al., 2015; Domke & Sheldon, 2019; Geffner
& Domke, 2021b; Zhang et al., 2021). All of these can be
easily used to build locally-enhanced bounds following our
construction from Section 3.3.

Specifically for hierarchical models, Hoffman & Blei (2015)
introduced a flexible framework for fast stochastic varia-
tional inference. Their approach, however, requires con-
jugacy, limiting its applicability. To overcome this limi-
tation, Agrawal & Domke (2021) proposed a parameter
efficient algorithm that uses a single amortization network
(Kingma & Welling, 2013) to parameterize all local approx-
imations q(zi |θ). This approach is compatible with our
method, as this amortized variational distribution can be
used with locally-enhanced bounds.

More generally, Ambrogioni et al. (2021) suggested the use
of a variational approximation following the prior model’s
structure. For the hierarchical models considered in this
work, this results in a variational approximation with the
same structure as the one shown in Equation (6), which was
used by Hoffman & Blei (2015); Agrawal & Domke (2021),
and is the one used in this work.

Finally, concurrently with this work, Jankowiak & Phan
(2021) proposed several promising extensions for uncor-
rected Hamiltonian Annealing (Geffner & Domke, 2021b;
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Figure 2. Inference results using locally-enhanced bounds and other baselines on synthetic datasets for varying number of groups (10, 50
and 100) and observations per group (10 and 30). The plots show the final lower bound achieved by different methods after training for
50k steps. All methods (local IW, local UHA, global IW, and global UHA) converge to plain VI forK = 1 . The dimensionality of the
local variables zi is taken to be dz = 5 for the datasets with N = 10 observations per group, anddz = 20 for the datasets with N = 30
observations.

Zhang et al., 2021). One of them involves its use for hi-
erarchical models, applying it independently for each set
of local variables. This is equivalent to a locally-enhanced
bound built using uncorrected Hamiltonian Annealing. Al-
though this is a minor focus of their work, it can be seen as
an instance of our general framework.

5. Experiments

This section presents an empirical evaluation of our new
bounding technique. We perform variational inference us-
ing locally-enhanced bounds on multiple hierarchical mod-
els with real and synthetic datasets. We use a variational
distribution q(θ, z) = q(θ)

Q M
i=1 q(zi ), where the approxi-

mation for the global variables q(θ) is set to be a factorized
Gaussian, and the local approximations q(zi ) are taken to
be independent of θ and also set to factorized Gaussians4

We test locally-enhanced bounds obtained using impor-
tance weighting and uncorrected Hamiltonian annealing
for K  {∈ 5, 10, 15} . We compare against plain VI, which
trains the parameters of q(θ, z)by maximizing the L VI ob-
jective from Equation (7) (this corresponds to the “branch”
approach from Agrawal & Domke (2021)), and against a
direct/global application of importance weighting (objective

4We parameterize Gaussians using their mean and log-scale.

from Equation (8)) and uncorrected Hamiltonian anneal-
ing. (For the latter two baselines, the tightening methods
are applied to all variables, local and global, jointly. See
Figure 1.)

We optimize using Adam (Kingma & Ba, 2014) with a step-
size η = 0.001. For the plain VI baseline and the locally-
enhanced bounds we use subsampling with M 0 = 10 to
estimate gradients at each step using the reparameterization
trick (Kingma & Welling, 2013; Titsias & Ĺazaro-Gredilla,
2014; Rezende et al., 2014). We do not use subsampling
with the global application of importance weighting and
uncorrected Hamiltonian annealing, as the methods do not
support it. We initialize all methods to maximizers of the
ELBO, and train for 50k steps. All results are reported
together with their standard deviation, obtained using five
different random seeds.

We clarify that the global importance weighting and
global uncorrected Hamiltonian annealing baselines are also
trained for 50k steps, using a full-batch approach to com-
pute gradients at each iteration. This results in an optimiza-
tion process that is significantly more expensive than that
of other methods (locally-enhanced bounds and plain VI)
which support subsampling.
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Figure 3. Inference results using locally-enhanced bounds and other baselines on MovieLens datasets of different sizes. The plots show
the final lower bound achieved by different methods after training for 50k steps. All methods converge to plain VI forK = 1 .

5.1. Synthetic data

Model We consider the hierarchical model given by

p(µz , ψz , ψy , z, y) = N (µz |0, 1)N (ψz |0, 1)

N (ψy |0, 1)
MY

i=1

N (zi |µz , eψz )
N iY

j=1

N (yij |zi x ij , eψi ),

(14)

where x ij is external information available for observation
yij . In this case θ = (µ z , ψz , ψy ) represents the global
variables and z the local ones. While the above model
defines the local variables zi to be one dimensional, they
can also be defined to have an arbitrary dimension dz > 1 ,
by setting N (zi |1dz

µz , Idz
eψz ) and N (yij |z>

i x ij , eψi ).

Datasets We generated several datasets by sampling from
the hierarchical model above. We consider different number
of groups M  {∈ 10, 50, 100} , and observations per group
N  {∈ 10, 30} . In all cases, we sample components of
x ij ∈ Rdz independently from a standard Gaussian.

Results Results for all the generated datasets are shown in
Figure 2. It can be observed that the use of locally-enhanced
bounds yields significant improvements over plain VI, with
the performance gap increasing for the larger values ofK .
It can also be observed that the use of locally-enhanced
bounds leads to better results than the ones obtained us-
ing the global importance weighting baseline. While this

baseline is somewhat competitive for the smaller models
(left plots in Figure 2), it is severely outperformed by the
use of locally-enhanced bounds in the larger models (right
plots in Figure 2). This is despite the fact that the base-
line is significantly more expensive to run, as it does not
allow subsampling. On the other hand, we observe that the
global uncorrected Hamiltonian baseline performs similarly
to the locally-enhanced bound obtained using uncorrected
Hamiltonian annealing. However, as mentioned above, this
baseline is incompatible with subsampling, thus leading to
a significantly more expensive optimization process.

Figure 5 in Appendix D shows the test log-likelihood
achieved by each method for this model. It can be observed
that methods based on uncorrected Hamiltonian annealing
achieve the best log-likelihoods (both the global baseline
and the locally-enhanced bound), followed by the locally-
enhanced bound with importance weighting, and finally by a
global application of importance weighting, which performs
similarly to plain VI.

All results in Figure 2 were obtained for datasets which have
the same number of observations for all local groups. To
verify the effect that changing this may have, we ran addi-
tional simulations using a dataset which contained different
number of observations for different groups. Specifically,
we considered a dataset composed of M = 100 groups, out
of which 50 have only 2 observations, 30 have 5 observa-
tions, and 20 have 30 observations. Results are shown in
Figure 4. Similar conclusions hold.



Figure 4. Inference results using locally-enhanced bounds and
other baselines on a synthetic dataset generated with M = 100
groups and a different number of observations per group (see main
text). The plot shows the final lower bound achieved by different
methods after training for 50k steps. All methods converge to the
baseline plain VI for K = 1 .

5.2. Real data: Movie Lens

We now show results obtained using data from Movie-
Lens100K (Harper & Konstan, 2015). This database con-
tains 100k ratings from several users on1700movies, where
each movie comes with a feature vector x  {∈ 0, 1} 18 con-
taining information about its genre. While the original rat-
ings consist of discrete values between 1 and 5, we binarize
them, assigning 0 as “dislike” to ratings (1, 2, 3), and 1 as
“like” to ratings (4, 5).

Model We consider the hierarchical model given by

p(µz , ψz , z, y) = N (µz |0, I)N (ψz |0, I )
MY

i=1

N (zi |µz , eψz )
NY

j=1

B(y ij |z>
i x ij ), (15)

where x ij  ∈ {0, 1} 18 represents the feature vector for the
j -th movie ranked by the i -th user, µz ∈ R18 and ψz ∈ R18

represent the global variables θ, and zi ∈ R 18 represents
the local variables for group i , in this case the i -th user.

Datasets We used data from MovieLens100K to generate
several datasets with a varying number of users and ratings
per user. Specifically, we consider three different number
of users M  {∈ 10, 50, 100} and two different number of
ratings per user N  {∈ 30, 200} .

Results Results are shown in Figure 3. It can be observed
that the locally-enhanced bound with importance weighting
leads to the best results, followed by the locally-enhanced
bound with uncorrected Hamiltonian annealing and the

work involves extending locally-enhanced bounds to more
general models that do not follow a two level tree structure.
We believe that developing methods able to automatically
exploit conditional independences in arbitrary models to
build locally-enhanced bounds would be extremely useful
in practice.
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A. Proof of Theorem 3.2

Proof. We have

log p(y) = E
q(θ)

log
p(θ)
q(θ)

p(y|θ)
q(θ)

p(θ|y)

= E
q(θ)

log
p(θ)
q(θ)

+ log p(y|θ) + log
q(θ)

p(θ|y)

= E
q(θ)

"

log
p(θ)
q(θ)

+
MX

i=1

log p(yi |θ)

#

+ KL(q(θ)kp(θ|y))

= E
q(θ)

"

log
p(θ)
q(θ)

+
MX

i=1

L(q(z i |θ)kp(zi , yi |θ))

#

+
MX

i=1

E
q(θ)

[log p(yi |θ) − L(q(z i |θ)kp(zi , yi |θ))] + KL(q(θ)kp(θ|y)).

In the final equality, note that all terms on the second line are non-negative: the KL-divergence by definition andlog p(yi |θ)−
L(q(z i |θ)kp(zi , yi |θ)) by assumption.

B. Details for AIS and UHA

This section introduces the details for AIS and UHA. We begin with a detailed description AIS, explain how it can be used
with HMC transition kernels, and finally move on to UHA, which is built on those ideas.

Annealed Importance Sampling (AIS) AIS can be seen as an instance of the auxiliary VI framework (Agakov & Barber,
2004). Given an initial approximation q(z) and an unnormalized target distribution p(z), AIS proceeds in four steps.

1. It builds a sequence of unnormalized densitiesπ1(z), . . . , πK−1 (z) that gradually bridge from q(z) to the target p(z).

2. It defines the forward transitions T k (zk+1 |zk ) as an MCMC kernel that leaves the bridging density πk invariant, and
the backward transitions Uk (zk |zk+1 ) as the reversal of T k with respect to πk .

3. It uses the transition T k and Uk to augment the variational and target density. This yields the augmented distributions

q(z1:K ) = q(z 1)
K−1Y

k=1

T k (zk+1 |zk ) (16)

p(z1:K ) = p(z K )
K−1Y

k=1

Uk (zk |zk+1 ). (17)

4. It uses the augmented distributions to build the augmented ELBO, a lower bound on the log-normalizing constant of
p(z) as

E
q(z 1:K )

log
p(zK )
q(z1)

K−1Y

k=1

Uk (zk |zk+1 )
T k (zk+1 |zk )

. (18)

Then, using that T k (zk+1 |zk )πk (zk ) = U k (zk |zk+1 )πk (zk+1 ), the ratio from Equation (18) simplifies to

E
q(z 1:K )

log
p(zK )
q(z1)

K−1Y

k=1

πk (zk )
πk+1 (zk+1 )

. (19)

This is the AIS lower bound. Its tightness depends on the specific Markov kernels used, with more powerful kernels
leading to tighter bounds.
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A particular Markov kernel that is known to work well is given by Hamiltonian Monte Carlo (HMC) (Neal et al., 2011;
Betancourt, 2017). Integrating HMC with AIS is straightforward. It requires extending the initial distribution q(z), the
unnormalized target p(z), and the bridging densities πk (z) with a momentum variable ρ  r∼ (ρ) . Then, the transitions
T k (zk+1 , ρk+1 |zk , ρk ) and Uk (zk , ρk |zk+1 , ρk+1 ) as an HMC kernel and its reversal, respectively.

It has been observed that Hamiltonian AIS may yield tight lower bounds on the log marginal likelihood (Sohl-Dickstein &
Culpepper, 2012; Grosse et al., 2015; Wu et al., 2017). Its main drawback, however, is that, due the use of a correction step in
the HMC kernel, the resulting lower bound from Equation (19) is not differentiable, making tuning the method’s parameters
hard. As we explain next, Uncorrected Hamiltonian Annealing addresses this drawback, building a fully-differentiable lower
bound using an AIS-like procedure.

Uncorrected Hamiltonian Annealing (UHA) UHA can be seen as a differentiable alternative to Hamiltonian AIS. It
closely follows its derivation. It extends the variational distribution and target with the momentum variables ρ  r∼ (ρ) ,
augments them using transitions T k (zk+1 , ρk+1 |zk , ρk ) and Uk (zk , ρk |zk+1 , ρk+1 ), and builds the ELBO using these
augmented distributions as

E
q(z 1:K ,ρ1:K )

log
p(zK )r(ρ K )
q(z1)r(ρ 1)

K−1Y

k=1

Uk (zk , ρk |zk+1 , ρk+1 )
T k (zk+1 , ρk+1 |zk , ρk )

. (20)

The main difference with Hamiltonian AIS comes in the choice for the transition. UHA sets T k to be an uncorrected
HMC kernel targeting the bridging density πk (z, ρ). This transition consists of two steps, (partially) re-sampling the
momentum from a distribution s(·|ρk ) that leaves r(ρ) invariant, followed by the simulation of Hamiltonian dynamics
without a correction step. Formally, this can be expressed as

T k (zk+1 , ρk+1 |zk , ρk ) :
1. ρ̃k  ∼ s(·|ρ k )
2. (zk+1 , ρk+1 ) = Dynamics(z k , ρ̃k ).

(21)

Similarly, UHA defines the backward transition Uk as the uncorrected reversal of an HMC kernel that leaves πk (z, ρ)
invariant (see Geffner & Domke (2021b) for details).

While closely related to Hamiltonian AIS, the use of uncorrected transition means that Uk is no longer the reversal of T k .
Therefore, the simplification for the ratioUk /T k used by AIS to go from Equation (18) to Equation (19) cannot be used.
However, Geffner & Domke (2021b) and Zhang et al. (2021) showed that the ratio between these uncorrected transitions
yields a simple expression,

Uk (zk , ρk |zk+1 , ρk+1 )
T k (zk+1 , ρk+1 |zk , ρk )

=
r(ρ k )
r( ρ̃k )

, (22)

where ρ̃k is defined in Equation (21). Then, the bound from Equation (20) can be expressed as (Geffner & Domke, 2021b;
Zhang et al., 2021)

E
q(z 1:K ,ρ1:K )

log
p(zK )
q(z1)

K−1Y

k=1

r(ρ k+1 )
r( ρ̃k )

, (23)

which can be easily estimated using samples from the augmented proposalq(z1:K , ρ1:K ). UHA’s main benefit is that, in
contrast to Hamiltonian AIS, it yields differentiable lower bounds that admit reparameterization gradients. This simplifies
tuning all of the method’s parameters, which has been observed to yield large gains in practice (Geffner & Domke, 2021b;
Zhang et al., 2021).

C. Locally-enhanced bounds as divergence minimization

Tightening methods can be seen as minimizing a divergence in an augmented space (Domke & Sheldon, 2019). That is, a
divergence between an augmented target and variational approximation. This section presents the locally-enhanced bounds
obtained with UHA and IW from the perspective of minimizing a divergence in an augmented space, justifying the use of
these methods for posterior approximation. Simply put, these constructions follow those by  Domke & Sheldon (2018) and
Geffner & Domke (2021b), but applied at the the local variables’ level. These constructions were provided by Sam Power.
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C.1. Locally-enhanced bound with UHA

This section gives details on the construction of the augmented target and variational approximation that yield the locally-
enhanced bound obtained with UHA. This uses a sequence of K densities π1

i (z), . . . , πKi (z) bridging between q(z|θ) and
p(z|θ, yi ) for each i = 1, . . . , M, and follows the construction from Appendix B but at the local variables’ level.

Augmented target Given the target

p(θ, z1:M |y) = p(θ|y)
MY

i=1

p(zi |θ, yi ), (24)

we apply the UHA augmentation (see Appendix B) for each local termp(zi |θ, yi ). That is, we define the i -th augmented
local term using variables z1:K

i and ρ1:K
i as

p(z1:K
i , ρ1:K

i |θ, yi ) = p(z K
i |θ, yi )r(ρ K )

K−1Y

k=1

Uk
i (zk

i , ρk
i |zk+1

i , ρk+1
i , θ, yi ), (25)

where the transition Uk
i corresponds to the uncorrected reversal of the HMC kernel targeting the k-th “local” bridging

density πk
i . Then, the final augmented target is given by

p(θ, z1:K
1:M , ρ1:K

1:M |y) = p(θ|y)
MY

i=1

p(z1:K
i , ρ1:K

i |θ, yi ). (26)

Note that the marginal over (θ, zK
i:M ) recovers the original target distribution from Equation (24).

Augmented variational approximation We define the augmented i -th local approximation over variables z1:K
i and ρ1:K

i

as

q(z1:K
i , ρ1:K

i |θ, yi ) = q(z 1
i |θ, yi )r(ρ 1

i )
K−1Y

k=1

T k
i (zk+1

i , ρk+1
i |zk

i , ρk
i , θ, yi ), (27)

where T k
i is an uncorrected (underdamped) HMC kernel targeting the k-th “local” bridging density πk

i (z, ρ|θ, yi ) =
πk

i (z|θ, yi )r(ρ) . Then, the final variational approximation is given by

q(θ, z1:K
1:M , ρ1:K

1:M |y) = q(θ|y)
MY

i=1

q(z1:K
i , ρ1:K

i |θ, yi ). (28)

Then, the marginal over (θ, zK
1:M ) is used as an approximation of the original (un-augmented) target.

Recovering the locally-enhanced bound Using the augmented distributions defined above we get the following decom-
position of the marginal likelihood

log p(y) = L VI q(θ, z1:K
1:M , ρ1:K

1:M |y)kp(θ, z1:K
1:M , ρ1:K

1:M |y) + KL q(θ, z 1:K
1:M , ρ1:K

1:M |y)kp(θ, z1:K
1:M , ρ1:K

1:M |y) , (29)

where the first term in the RHS is exactly the locally-enhanced bound obtained with UHA. Since log p(y) is constant,
maximizing the locally-enhanced bound is equivalent to minimizing the KL-divergence between the augmented distributions.
Finally, the chain-rule of the KL-divergence (Cover, 1999) justifies the use of the marginalq(θ, zK

1:M |y) as the approximation
to the original target distribution.

C.2. Locally-enhanced bound with IW

The derivation follows that of Domke & Sheldon (2018), but applied at the local level (as done above for UHA). We refer
the reader to the work by Domke & Sheldon (2018) for details regarding the construction.

D. Test log-likelihoods for synthetic model

Figure 5 presents log-likelihoods obtained by each method on a held-out test set.
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Figure 5.Test log-likelihoods achieved by each method on synthetic datasets of different sizes. The plots show the test log-likelihoods
achieved by different methods after training for 50k steps. All methods converge to plain VI forK = 1 . The dimensionality of the local
variables zi is taken to be dz = 5 for the datasets with N = 10 observations per group, and dz = 20 for the datasets with N = 30
observations.
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