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A thermodynamically consistent multiphase phase-field approach for stress and temperature-induced

martensitic phase transformation at the nanoscale and under large strains is developed. A total of N

independent order parameters are considered for materials with N variants, where one of the order

parameters describes A ↔ M transformations and the remaining N − 1 independent order parameters

describe the transformations between the variants. A non-contradictory gradient energy is used within

the free energy of the system to account for the energies of the interfaces. In addition, a non-contradictory

kinetic relationships for the rate of the order parameters versus thermodynamic driving forces is suggested.

As a result, a system of consistent coupled Ginzburg-Landau equations for the order parameters are

derived. The crystallographic solution for twins within twins is presented for the cubic to tetragonal

transformations. A 3D complex twins within twins microstructure is simulated using the developed

phase-field approach and a large-strain-based nonlinear finite element method. A comparative study

between the crystallographic solution and the simulation result is presented.

Keywords: Multiphase phase-field approach; Martensitic transformations; Twins within twins; Crystal-

lographic solution; Large strains; Finite element method.

1 Introduction

Martensitic transformations and microstructures. Martensitic transformations (MTs) are diffu-

sionless solid-solid phase transformations observed in many metallic and nonmetallic crystalline solids,

minerals, and various compounds, where a parent phase called austenite (high temperature phase) trans-

forms into the product phase called martensite (low temperature phase) [1, 2]. The martensitic phase

(here denoted by M) has lower crystallographic symmetry than the austenite phase (here denoted by A),

and generally has multiple variants. Very complex microstructures such as austenite-twinned martensite,
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twins within twins, twins within twins within twins, wedge, X-interfaces, etc., are observed within the

materials undergoing MTs [1–5]. The evolution of such microstructures play a central role in, for example,

strengthening of steel, shape memory effect in various alloys, ferromagnetic effect, caloric effects, etc [1, 6].

In continuum theories for MTs, such phase-changing materials are modeled as nonlinear elastic ma-

terials having multiple wells in the free energy density function [1, 2, 4, 7, 8]. Fine twinned microstruc-

tures associated with austenite-martensite interfaces, which were observed under the microscopes [9–12],

are usually obtained as the minimizers of such non-convex energies within the continuum theories [4].

The analytical crystallographic solutions for twins between a pair of variants and the austenite-twinned

martensite interfaces are well-known within the small as well as finite deformation theories [1, 2, 4, 13].

These solutions have been further used for more complex wedge microstructures [5, 14] and X-interfaces

[15, 16]. Another important complex microstructure is twins within twins [1, 3] for which the general

crystallographic equations were established in [1, 10, 11]. Though the governing equations are well-known

for twins within twins, the analytical solutions to such microstructures are still missing to the best of our

knowledge.

Phase-field approach to MTs. The phase-field approach based on the Ginzburg-Landau equa-

tions [17] (similar to Allen-Cahn’s approach [18]), which provides an ideal framework for studying the

MTs, have been widely used for studying nucleation, growth of the phases, and evolution of complex

microstructures [19–49]. A set of sufficiently smooth scalar internal variables called the order parame-

ters, are used to describe the phases. The volume fraction based (e.g. [50–58]) or the transformation

strains based (e.g. [19, 20, 23, 24, 26]) order parameters have been used. Important requirements for the

interpolation functions are formulated in [45–48, 59]. Within the multiphase phase-field approaches, the

order parameters should be constrained to some specified surfaces in order to control the transformation

paths. To control the transformation paths, various constraint hypersurfaces such as hypersphere [60],

planar surfaces [61], and straight lines [20, 62] have been used; see [20] for a review. The double-well

[19, 20, 26, 60, 62] or double-obstacle [22] based thermal energies are usually used. The free energies are

considered to be smooth functions of the order parameters, and the transformation strains are accepted

as linear [50, 52–58] or nonlinear functions [19–21, 23, 24, 63] of the order parameters smoothly varying

between all the phases, in particular, satisfying some additional requirements [45, 46]. First large-strain

phase-field theory and computational approaches were presented in [21, 37, 47]. They utilized the meth-

ods of repetitive superposition of large strains, developed by Levin in [64–66] for viscoelastic materials,

extended to materials with phase transformations.
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A gradient (of the order parameters) based nonlocal energy is considered which introduces a finite

interface width between the phases. The time evolution of these order parameters describing the kinetics

of the PTs is derived using the laws of thermodynamics yielding a system of coupled Ginzburg-Landau

equations. The interfacial stresses, consisting of the elastic and structural components and which play an

important role in the nucleation of the phases and also in their kinetics and growth, have been considered

[35, 67, 68]. A detailed comparison between these various multiphase phase-field approaches to MTs is

presented in [20].

The multiphase phase-field model for studying the multivariant MTs developed by the authors in [20]

yields non-contradictory results for a two-variant system. However, for a system with more than two

variants, some contradictions have been observed in relation to the gradient energy and the system of

kinetic equations. One of the aims of this work is to discuss those issues from that model and present a

non-contradictory multiphase phase-field model for MTs. A gradient energy proposed therein simplifies

consistently for a two-variant system and matches with the well-established result (see [20] for the discus-

sion), but a contradiction is observed when the system contains more than two variants as discussed in

Sec. 2.3. An alternative form of the gradient energy has been used here which has similarities with the

gradient energy used in [22, 23, 53, 61] and yields non-contradictory results for any number of variants. In

the present model, we however multiply this gradient term with the determinant of the total deformation

gradient while determining the total system energy to ensure an appropriate form of the structural stress

tensor, which was however not considered in [22, 23, 53, 61]. Furthermore, we point out in Sec. 2.5 that

the coupled kinetic equations for the order parameters are non-contradictory for a two-variant system,

but leads to contradictions for an N -variant system for N > 2, if the kinetic coefficients are assumed to be

constants. We thus introduce a system of kinetic equations with kinetic coefficients which are step-wise

functions of the order parameters and the driving forces, which is motivated from Ref. [55].

Contribution of the paper. The contributions of this paper are mainly two-fold:

i) We present a thermodynamically consistent nanoscale phase-field approach for multivariant MTs

considering non-contradictory gradient energies and the local energies including the barrier, chemical,

and elastic energy, as well as energies penalizing the multiphase junctions, while the deviations of the

transformation paths for A ↔ M and Mi ↔ Mj PTs from the specified paths are appropriately controlled.

The issues with the existing gradient energy models are discussed. Furthermore, a consistent kinetic

model for coupled Ginzburg-Landau equations is derived, and the issues with the existing kinetic models

are discussed. The present model can be used for MTs with any number of variants.
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ii) The crystallographic solution for the twins within twins microstructure arising in cubic to tetragonal

MTs are derived. The evolution and formation of 3D twins within twins microstructures in a single grain

is studied using the present phase-field approach. The simulation results are in good agreement with the

crystallographic solution and the experimental results.

Notations. The multiplication and the inner product between two arbitrary second order tensors A and

D are denoted by (A · D)ab = AacDcb and A : D = AabDba, respectively, where Aab and Dab are

the components of the tensors in a right-handed orthonormal Cartesian basis {e1, e2, e3}. The repeated

indices imply Einstein’s summation. The Euclidean norm of A is defined by |A| =
√
A : AT . The second-

order identity tensor is denoted by I. AT , trA, detA, sym(A), and skew(A) denote the transpose, trace,

determinant, symmetric part, and skew part of A, respectively. For an invertible tensor A, its inverse is

denoted by A−1. The tensor or dyadic product between two arbitrary vectors a and b is denoted by a⊗b.

The reference, stress-free intermediate, and deformed or current configurations are denoted by Ω0, Ωt,

and Ω, respectively. The volumes in the reference and current configurations are denoted by V0 and V ,

and their external boundaries are denoted by S0 and S, respectively. The symbols ∇0(·) and ∇(·) denote

the gradient operators in Ω0 and Ω, respectively. The Laplacian operators in Ω0 and Ω are designated by

∇2
0 := ∇0 · ∇0 and ∇2 := ∇ · ∇, respectively. The symbol := implies equality by definition.

2 Coupled mechanics and phase-field model

In this section, we describe our multiphase phase-field model, mostly based on [20] but with further

development in terms of non-contradictory gradient energy and kinetic relationships between the rate of

the order parameters and conjugated thermodynamical driving forces. The free energy used in the model

is presented. The coupled elasticity equations and a new system of coupled Ginzburg-Landau equations

are derived. A comparison of the present model with the previous models from the literature is also

presented.

2.1 Order parameters

For the MTs in a system with austenite and N martensitic variants we consider N + 1 order parameters

η0, η1, . . . , ηi, ηj , . . . , ηN , where η0 describes A ↔ M transformations such that η0 = 0 in A and η0 = 1 in

M, and ηi (for i = 1, . . . , N) describes the variant Mi such that ηi = 1 in Mi and ηi = 0 in Mj for all j 6= i.

Such descriptions for the order parameters were introduced by the authors in earlier work [20]. The order
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parameters η1, η2, . . . , ηN are constrained to lie on a plane by satisfying (see [20] for details)

N
∑

i=1

ηi = 1. (2.1)

2.2 Kinematics

The position vector of a particle in the deformed configuration Ω at time instance t is given by r(r0, t) =

r0 +u(r0, t), where r0 is the position vector of that particle in Ω0, and u is the displacement vector. We

consider the following multiplicative decomposition for the total deformation gradient F [67]:

F := ∇0r = F e · F t = V e ·R ·U t, (2.2)

where the subscripts e and t denote elastic and transformational parts, respectively, and F e and F t are

the elastic and transformational parts of F . The tensors F e and F t are also decomposed into F e = V e ·Re

and F t = Rt · U t, respectively, where V e is the left elastic stretch tensor (symmetric), U t is the right

transformation stretch tensor (symmetric), and Re and Rt are rotations. In Eq. (2.2) we have used

R = Re ·Rt. We denote J = detF , Jt = detF t, and Je = detF e. Hence, by Eq. (2.2), J = JtJe. The

Lagrangian total and elastic strain tensors are defined as

E := 0.5(C − I), and Ee := 0.5(Ce − I), (2.3)

respectively, where C = F T · F , and Ce = F T
e · F e. We define another measure of the total and elastic

strain tensors as

b = 0.5(B − I), and be = 0.5(Be − I), (2.4)

respectively, where B = F ·F T = V 2, Be = F e ·F T
e = V 2

e, and V =
√
B is the left total stretch tensor.

Kinematic model for F t. We consider F t as a linear combination of the Bain strains multiplied by the

interpolation functions related to the order parameters [20]:

F t = U t = I +
N
∑

i=1

(U ti − I)ϕ(aε, η0)φi(ηi), (2.5)

where U ti is the Bain stretch tensor for Mi. We take the interpolation functions ϕ(aε, η0) and φi(ηi) as

[20]

ϕ(aε, η0) = aεη
2
0 + (4− 2aε)η

3
0 + (aε − 3)η40, and

φi(ηi) = η2i (3− 2ηi) for all i = 1, 2, . . . , N, (2.6)
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respectively, which satisfy the following conditions derived from the requirement of thermodynamic equi-

librium of the homogeneous phases:

ϕ(aε, 0) = 0, ϕ(aε, 1) = 1, and
∂ϕ(aε, 0)

∂η0
=
∂ϕ(aε, 1)

∂η0
= 0;

φi(0) = 0, φi(1) = 1, and
∂φi(ηi = 0)

∂ηi
=
∂φi(ηi = 1)

∂ηi
= 0 for all i = 1, 2, . . . , N. (2.7)

The constant aε in Eq. (2.6) must be within the range 0 ≤ aε ≤ 6 [67].

2.3 Free energy

We assume the Helmholtz free energy per unit mass of the body as [20, 67]:

ψ(F , θ, η0, ηi,∇η0,∇ηi) = ψl(F e, θ, η0, ηi) + Jψ∇(η0,∇η0,∇ηi), (2.8)

where ψl(F e, θ, η0, ηi) is the local part of the free energy density and ψ∇(η0,∇η0,∇ηi) is the gradient

based nonlocal energy accounting for the energies of all the interfaces. We have taken ψl as

ψl(F e, θ, η0, ηi) =
Jt
ρ0
ψe(F e, θ, η0, ηi) + Jψ̆θ(θ, η0, ηi) + ψ̃θ(θ, η0, ηi) + ψp(η0, ηi), (2.9)

where ψe is the strain energy per unit volume in Ωt, ψ̆
θ is the barrier energy related to A ↔ M PT and all

the variant↔variant transformations, ψ̃θ is the thermal/chemical energy for A ↔ M transformations, ψp

penalizes various triple and higher junctions between all the phases and also accounts for the penalization

in energies for the deviation of the transformation paths from the assigned ones, θ > 0 is the absolute

temperature, and ρ0 is the density of the solid in Ω0. In Eqs. (2.8) and (2.9), the barrier energy and

the gradient energy are multiplied by J following [67] in order to obtain the desired expression for the

structural stresses; see Eq. (2.29). Any material property B for each particle of the body are determined

using [20]

B(η0, ηi, θ,F ) = B0(1− ϕ(a, η0)) + ϕ(a, η0)

N
∑

i=1

Biφi(ηi), (2.10)

where B0 and Bi are the material properties of the homogeneous phases A and Mi, respectively, ϕ(a, η0)

has the same expression as ϕ(aε, η0) given by Eq. (2.6)1 when aε is replaced by a therein.

The expressions for all the energies introduced in Eqs. (2.8) and (2.9) are given below:

(i) Strain energy: We consider ψe as [20]

ψe = 0.5Ee : Ĉe(η0, ηi) : Ee, (2.11)
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where the fourth-order elastic modulus tensor at any particle is taken following Eq. (2.10) as [20]

Ĉe(η0, ηi) = (1− ϕ(a, η0))Ĉ(e)0 + ϕ(a, η0)

N
∑

i=1

φi(ηi)Ĉ(e)i, (2.12)

and Ĉ(e)0 and Ĉ(e)i are the fourth order elastic modulus tensors of A and Mi, respectively.

(ii) Barrier energy: The total energy of the barriers between A and M and between all the variants is

[20]

ψ̆θ = A0M η20(1− η0)
2 + ϕ(ab, η0)Ã

N−1
∑

i=1

N
∑

j=i+1

η2i η
2
j , (2.13)

where A0M and Ã are the coefficients for the barrier energies between A and M, and Mi and Mj (for all

i 6= j), respectively.

(iii) Thermal energy: The thermal energy of a particle undergoing A ↔ M PTs is taken as [20, 45–47]

ψ̃θ = ψθ0(θ) + η20(3− 2η0)∆ψ
θ(θ), where ∆ψθ = −∆s0M (θ − θe), (2.14)

ψθ0 is the thermal energy of A, ∆ψθ = ψθM −ψθ0 is the thermal energy difference between A and M phases,

∆s0M = sM − s0, s0 and sM are the entropies of A and M, respectively, per unit volume, and θe is the

thermodynamic equilibrium temperature between A and M phases.

(iv) Gradient energy: We consider the gradient energy, taking all the interfacial energies into consid-

eration, as

ψ∇ =
β0M
2ρ0

|∇η0|2 +
1

2ρ0
ϕ̃(η0, aβ , ac)

N−1
∑

i=1

N
∑

j=i+1

βij∇ηi · ∇ηj , (2.15)

where the interpolation function ϕ̃ is taken as [20]

ϕ̃(aβ , ac, η0) = ac + aβη
2
0 − 2[aβ − 2(1− ac)]η

3
0 + [aβ − 3(1− ac)]η

4
0, (2.16)

where the constant is taken as 0 < ac ≪ 1, and the purpose of considering it in Eq. (2.16) is discussed

in [20]. In Eq. (2.15), β0M and βij are the gradient energy coefficients for A-M and Mi-Mj interfaces,

respectively. In Eq. (2.16) aβ and ac are constant parameters. The gradient energy similar to Eq. (2.15)

was earlier used in [53, 61]. Notably, the authors earlier introduced another form of the gradient energy

in [20] given by

ψ∇ =
1

2ρ0



β0M |∇η0|2 +
N
∑

i=1

N
∑

j=1, 6=i

βij
8
|∇ηi −∇ηj |2ϕ̃(η0, aβ , a0)



 . (2.17)
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This energy given by Eq. (2.17) simplifies to

ψ∇ =
1

2ρ0
β0M |∇η0|2 +

ϕ̃(η0, aβ , a0)

8ρ0

(

β12|∇η1 −∇η2|2 + β21|∇η2 −∇η1|2
)

, (2.18)

for a system with two variants, where applying the constraint η1 + η2 = 1 and β12 = β21 due to the

symmetry [67] we further simplify it to

ψ∇ =
1

2ρ0
β0M |∇η0|2 +

ϕ̃(η0, aβ , a0)

2ρ0
β12|∇η1|2, (2.19)

which is consistent with the results of earlier models; see e.g. [67] and the references therein. We would

like to mention that the coefficients βij in Eq. (2.17) for the variant pairs which are in twin relationships

would be much smaller than that for the variant pairs which are not in twin relationships. For a system

with three variants, Eq. (2.17) reduces to

ψ∇ =
β0M
2ρ0

|∇η0|2 +
1

8ρ0

[

(β12 + β13) |∇η1|2 + (β12 + β23) |∇η2|2 + (β13 + β23) |∇η3|2−

2 (β12∇η1 · ∇η2 + β23∇η2 · ∇η3 + β13∇η1 · ∇η3)] ϕ̃(η0, aβ , a0). (2.20)

Let us consider a region for such a three-variant system where only M1 and M2 coexist and M3 is absent,

i.e. η3 = 0 and η1 + η2 = 1. The gradient energy given by Eq. (2.20) in that region is rewritten by

applying these conditions as

ψ∇ =
β0M
2ρ0

|∇η0|2 +
1

8ρ0
(β23 + β13 + 4β12) |∇η1|2 ϕ̃(η0, aβ , a0). (2.21)

Obviously, the energy parameters β23 and β13 are going to influence the interfacial energy M1 and M2

variants, which is nonphysical; see also [69] for an analysis. We have shown that the gradient energy

given by Eq. (2.17) yields a nonphysical contribution for an interface between two variants from the

gradient coefficients which are not related to that interface, and hence this form of gradient energy is not

acceptable. However, the energy given by Eq. (2.15) is non-contradictory for any number of variants, and

hence it is accepted in this paper.

(v) Penalization energy for junctions: We penalize the triple and higher junctions between all the

phases and the deviations of the transformation paths between the variants using [20]

ψp =

N−1
∑

i=1

N
∑

j=i+1

Kij(ηi + ηj − 1)2η2i η
2
j + [1− ϕ(aK , η0)]

N−1
∑

i=1

N
∑

j=i+1

K0ijη
2
0η

2
i η

2
j +

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k=j+1

Kijkη
2
i η

2
j η

2
k +

[1− ϕ(aK , η0)]

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k=j+1

K0ijkη
2
0η

2
i η

2
j η

2
k +

N−3
∑

i=1

N−2
∑

j=i+1

N−1
∑

k=j+1

N
∑

l=k+1

Kijklη
2
i η

2
j η

2
kη

2
l , where

Kii = K0ii = Kiji = Kiik = K0iji = K0iik = Kijil = Kiikl = Kijjl = Kijki = Kijkk = 0. (2.22)
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In Eq. (2.22), the parameter Kij ≥ 0 controls the penalization of the deviation of the Mj ↔ Mi trans-

formation path from the straight line ηj + ηi = 1 for all ηk = 0 and k 6= j, i; the constant coefficients

K0ij ≥ 0, Kijk ≥ 0, K0ijk ≥ 0, and Kijkl ≥ 0 are related to the penalization of the junctions between

A-Mi-Mj , Mi-Mj-Mk, A-Mi-Mj-Mk, and Mi-Mj-Mk-Ml, respectively.

In the absence of all the penalty terms, i.e. when Kij = K0ij = K0ik = K0jk = Kijk = K0ijk = 0, we

can show that for a martensitic region (η0 = 1) with three variants, say, M1, M2 and M3, the barrier energy

(see Eq. (2.13)) in the middle of the triple junction region, i.e., at the point with η1 = η2 = η3 = 1/3

is 3 × Ā/81 = Ā/27 which is less than the barrier energy Ā/16 at the middle line of any variant-variant

interface (a line with, say, η1 = η2 = 1/2 and η3 = 0). Hence when K123 6= 0 the total energy at a

martensitic particle with η1 = η2 = η3 = 1/3 is

ETJ |η1=η2=η3=1/3 =
Ā

27
+
K123

729
. (2.23)

It is to be noted that Tóth et al. [70] and Bollada et al. [69] considered barrier energy similar to ours

given by Eq. (2.13) but with a common multiplication factor to incorporate higher energy at the junction

region as compared to the respective interface regions. In this paper, we have, however, followed a different

and simpler approach for that purpose, where we have introduced the penalty terms in the free energy,

and by varying the coefficients K0ij , K0ik, K0jk, Kijk, K0ijk we can control the energy of all the junction

regions. For example, by tuning the parameter K123 in Eq. (2.23), we can make the barrier energy height

at the junction region higher than the barrier energy in the interfacial region. A quantitative comparison

between our formulation and the approach in [69, 70] is however not given here.

2.4 Governing equations

We now present the governing equations. Applying the principle of balance of linear and angular mo-

mentum, and the first and second law of thermodynamics, and using an approach similar to [20, 67], we

derive the mechanical equilibrium equation, and the dissipation inequalities listed below.

2.4.1 Mechanical equilibrium equations and stresses

The mechanical equilibrium equation is given by [20, 67]

∇0 · P = 0 in Ω0, or ∇ · σ = 0 in Ω, (2.24)

where the body forces and inertia are neglected, P is the total first Piola-Kirchhoff stress tensor, and σ

is the total Cauchy stress tensor which is symmetric. The total stresses are composed of their respective
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elastic and structural parts [20]:

P = P e + P st, and σ = σe + σst. (2.25)

The elastic stresses are given by [20, 67]

P e = JtF e · Ŝe · F−T
t , and σe = J−1

e F e · Ŝe · F T
e , (2.26)

where Ŝe =
∂ψe(Ee)
∂Ee

. For an isotropic elastic response, P e and σe can alternatively be expressed as

P e = JtV
2
e ·
∂ψe(be)

∂be
· F−T , and σe = J−1

e V 2
e ·
∂ψe(be)

∂be
, (2.27)

respectively. The general forms of structural stress tensors are given by [20, 67]

P st = Jρ0(ψ̆
θ + ψ∇)F−T − Jρ0

(

∇η0 ⊗
∂ψ∇

∂∇η0
+

N
∑

i=1

∇ηi ⊗
∂ψ∇

∂∇ηi

)

· F−T , and

σst = ρ0(ψ̆
θ + ψ∇)I − ρ0

(

∇η0 ⊗
∂ψ∇

∂∇η0
+

N
∑

i=1

∇ηi ⊗
∂ψ∇

∂∇ηi

)

. (2.28)

Using the gradient energy given by Eq. (2.15) in Eq. (2.28)1,2, the exact form of the structural stresses

are obtained as

P st = Jρ0(ψ̆
θ + ψ∇)F−T − Jβ0M∇η0 ⊗∇η0 · F−T − Jϕ̃





N−1
∑

i=1

N
∑

j=i+1

βij∇ηi ⊗∇ηj



 · F−T , and

σst = ρ0(ψ̆
θ + ψ∇)I − β0M∇η0 ⊗∇η0 − ϕ̃





N−1
∑

i=1

N
∑

j=i+1

βij∇ηi ⊗∇ηj



 . (2.29)

2.5 Dissipation inequality and Ginzburg-Landau equations

The dissipation inequalities for the order parameter η0 and also for the order parameter η1, . . . , ηN are

obtained as (see [20] for the details)

D0 = η̇0X0 ≥ 0 and DM =
N
∑

i=1

η̇iXi ≥ 0, (2.30)

respectively, where the conjugate ‘forces’ X0 and Xi correspond to the ‘fluxes’ η̇0 and η̇i, respectively, are

given by

Xk = −ρ0
∂ψ

∂ηk
+∇0 ·

(

ρ0J
∂ψ∇

∂∇0ηk

)

for all k = 0, 1, . . . , N. (2.31)

Using Eqs. (2.8) and (2.9) in (2.31) and also applying the following identities (for all k = 0, 1, . . . , N)

∇0ηk = F t · ∇ηk, (2.32)
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∂ψ∇

∂∇0ηk
= F−1 · ∂ψ

∇

∂∇ηk
, (2.33)

which can be easily proved using the indicial notations, we get the conjugate forces X0 and Xi (for all

i = 1, . . . , N) as

X0 =
(

P T
e · F − JtψeI

)

: F−1
t · ∂F t

∂η0
− Jt

∂ψe
∂η0

∣

∣

∣

∣

F e

− ρ0(6η0 − 6η20)∆ψ
θ − Jρ0Ã

N−1
∑

i=1

N
∑

j=i+1

η2i η
2
j

∂ϕ(ab, η0)

∂η0
−

Jρ0[A0M (θ) + (aθ − 3)∆ψθ(θ)](2η0 − 6η20 + 4η30)−
J

2

∂ϕ̃(aβ , ac, η0)

∂η0

N−1
∑

i=1

N
∑

j=i+1

βij(C
−1 · ∇0ηi) · ∇0ηj −

ρ0





N−1
∑

i=1

N
∑

j=i+1

K0ijη
2
i η

2
j +

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k=j+1

K0ijkη
2
i η

2
j η

2
k





[

2(1− ϕ(aK , η0))η0 −
∂ϕ(aK , η0)

∂η0
η20

]

+

∇0 · (Jβ0M∇0η0) ; (2.34)

Xi =
(

P T
e · F − JtψeI

)

: F−1
t · ∂F t

∂ηi
− Jt

∂ψe
∂ηi

∣

∣

∣

∣

F e

− 2Jρ0Ã

N
∑

j=1, 6=i

ηiη
2
jϕ(ab, η0)− 2ρ0

N
∑

j=1

Kij(ηi + ηj − 1)×

(2ηi + ηj − 1)η2j ηi − 2ρ0





N
∑

j=1

K0ijη
2
j +

N−1
∑

j=1

N
∑

k=j+1

K0ijkη
2
j η

2
k



 η20ηi(1− ϕ(aK , η0))−

2ρ0

N−1
∑

j=1

N
∑

k=j+1

Kijkηiη
2
j η

2
k − 2ρ0

N−2
∑

j=1

N−1
∑

k=j+1

N
∑

l=k+1

Kijklηiη
2
j η

2
kη

2
l +

∇0 ·



ϕ̃(aβ , ac, η0)J

N
∑

j=1

βij∇0ηj



 for all i = 1, 2, 3, . . . , N. (2.35)

In Eqs. (2.34) and (2.35) the conjugate forces are expressed with respect to the field variables in the

reference configuration Ω0.

Alternatively, these forces can be expressed with respect to the field variables in Ω as follows. Using

the following identity (see e.g. Chapter 2 of [71])

∇0 · (Cof F ) = ∇0 · (JF−t) = 0, (2.36)

we can rewrite the conjugate force Xl given by Eq. (2.31) in terms of the derivative with respect to Ω(t)

as

Xk = −Jρ ∂ψ
∂ηk

+ J∇ ·
(

ρ0
∂ψ∇

∂∇ηk

)

= J

[

−∂(ρψ)
∂ηk

+∇ ·
(

∂(ρJψ∇)

∂∇ηk

)]

for all k = 0, 1, . . . , N. (2.37)

The conjugate forces given by Eqs. (2.34) and (2.35) can be rewritten in terms of the Cauchy stress and
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the gradient operator ∇(·) as

X0 =
(

JF−1 · σe · F − JtψeI
)

: F−1
t · ∂F t

∂η0
− Jt

∂ψe
∂η0

∣

∣

∣

∣

F e

− ρ0(6η0 − 6η20)∆ψ
θ − Jρ0Ã

N−1
∑

i=1

N
∑

j=i+1

η2i η
2
j

∂ϕ(ab, η0)

∂η0
−

Jρ0[A0M (θ) + (aθ − 3)∆ψθ(θ)](2η0 − 6η20 + 4η30)−
J

2

∂ϕ̃(aβ , ac, η0)

∂η0

N−1
∑

i=1

N
∑

j=i+1

βij∇ηi · ∇ηj −

ρ0





N−1
∑

i=1

N
∑

j=i+1

K0ijη
2
i η

2
j +

N−2
∑

i=1

N−1
∑

j=i+1

N
∑

k=j+1

K0ijkη
2
i η

2
j η

2
k





[

2(1− ϕ(aK , η0))η0 −
∂ϕ(aK , η0)

∂η0
η20

]

+

J∇ · (β0M∇η0) ; (2.38)

Xi =
(

JF−1 · σe · F − JtψeI
)

: F−1
t · ∂F t

∂ηi
− Jt

∂ψe
∂ηi

∣

∣

∣

∣

F e

− 2Jρ0Ã
N
∑

j=1, 6=i

ηiη
2
jϕ(ab, η0)− 2ρ0

N
∑

j=1

Kij(ηi + ηj − 1)×

(2ηi + ηj − 1)η2j ηi − 2ρ0





N
∑

j=1

K0ijη
2
j +

N−1
∑

j=1

N
∑

k=j+1

K0ijkη
2
j η

2
k



 η20ηi(1− ϕ(aK , η0))−

2ρ0

N−1
∑

j=1

N
∑

k=j+1

Kijkηiη
2
j η

2
k − 2ρ0

N−2
∑

j=1

N−1
∑

k=j+1

N
∑

l=k+1

Kijklηiη
2
j η

2
kη

2
l +

J∇ ·



ϕ̃(aβ , ac, η0)
N
∑

j=1

βij∇ηj



 for all i = 1, 2, 3, . . . , N. (2.39)

From the dissipation inequality (2.30)1 we derive the kinetic law for η0 as

η̇0 = L0MX0, (2.40)

where L0M > 0 is the kinetic coefficient for A ↔ M PTs. In order to derive the kinetic laws for the order

parameters η1, . . . , ηN using the inequality (2.30)2, we introduce

η̇i =

N
∑

j=1

η̇ij , where η̇ij = −η̇ji and η̇ii = 0 for all i, j = 1, . . . , N. (2.41)

Using Eq. (2.41), the dissipation rate due to the evolution of the martensitic variants given by Eq. (2.30)2
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is rewritten as

DM =

N
∑

i=1

η̇iXi =

N
∑

i=1

N
∑

j=1

Xiη̇ij (using Eq. (2.41)1)

=
N
∑

i=1

N
∑

j=1

Xij η̇ij +
N
∑

i=1

N
∑

j=1

Xj η̇ij (using Xij = Xi −Xj)

=
N
∑

i=1

N
∑

j=1

Xij η̇ij −
N
∑

i=1

N
∑

j=1

Xj η̇ji (using Eq. (2.41)2)

=

N
∑

i=1

N
∑

j=1

Xij η̇ij −
N
∑

i=1

N
∑

j=1

Xiη̇ij (swapping the indices in the second term)

=
N
∑

i=1

N
∑

j=1

Xij η̇ij −
N
∑

i=1

Xiη̇i. (2.42)

Noticing that the second term on the right-hand side of Eq. (2.42) is equal to DM (compare with Eq.

(2.30)2) we obtain

DM =
1

2

N
∑

i=1

N
∑

j=1

Xij η̇ij =
N−1
∑

j=1

N
∑

i=j+1

Xij η̇ij ≥ 0. (2.43)

Using the inequality (2.43) we derive the Ginzburg-Landau equations for the evolution of the variants as

η̇ij = Lij(Xi −Xj), (2.44)

where Lij ≥ 0 is the kinetic coefficient for transformations between Mi and Mj and is taken as in [55]

Lij











6= 0 if (Xi −Xj) ≥ 0 and {0 ≤ ηi < 1 & 0 < ηj ≤ 1}
6= 0 if (Xi −Xj) ≤ 0 and {0 < ηi ≤ 1 & 0 ≤ ηj < 1}
= 0 if (Xi −Xj) ≥ 0 and {ηi = 1 or ηj = 0}
= 0 if (Xi −Xj) ≤ 0 and {ηi = 0 or ηj = 1}.

(2.45)

Substituting Eq. (2.44) in Eq. (2.41) the Ginzburg-Landau equations for allN order parameters η1, . . . , ηN

are obtained as

η̇i =
N
∑

j=1,j 6=i

Lij(Xi −Xj). (2.46)

We note that Lij in Eq. (2.46) and defined in Eq. (2.45) are piece-wise constant, jumping between their

finite values and zero depending on the driving forces and the order parameters. If Lij is simply assumed

to be constants similar to our earlier work in [20], an issue would arise. To understand it clearly, let us

consider, without any loss of generality, a three-variant martensitic system (where η0 = 1) with M1, M2,

and M3. Using the constraint η1 + η2 + η3 = 1, the two independent Ginzburg-Landau equations from
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Eq. (2.46), when expressed for η̇1 and η̇2, are given by

η̇1 = L12(X1 −X2) + L13(X1 −X3) and η̇2 = L12(X2 −X1) + L23(X2 −X3). (2.47)

We now consider a martensitic region in the domain where M3 is absent and only the variants M1 and M2

are evolving within an arbitrary time interval. The order parameters η1 and η2 hence must be determined

using the equation η̇1 = η̇2 = L12(X1 − X2) as η1 + η2 = 1 therein, and this is possible if and only if

L13 = L23 = 0 therein within that time interval. However, if the coefficients L13 and L23 are taken as

nonzero constants, the contributions from the terms L13(X1 − X3) and L23(X2 − X3) would be there

unwantedly, since the driving forces X1−X3 and X2−X3 might be nonzero there. The desired condition

can obviously be fulfilled by Lij given by Eq. (2.45), but not by constant Lij considered in [20]. The

essence of the third and fourth conditions in Eq. (2.45) is that if variant i is absent, it cannot be

transformed into other variants [55].

2.6 Boundary conditions

The boundary conditions for the phase-field equations and the mechanics problem namely the Dirichlet,

Neumann, and periodic BCs are listed here.

Phase-field problem. We have applied the periodic BC for all the order parameters. If two boundaries

Sp1ηk ⊂ S0 and Sp2ηk ⊂ S0 (where Sp1ηk ∩ Sp2ηk is empty), having opposite unit normals in Ω0, i.e.

(n0)Sp1ηk
= −(n0)Sp2ηk

, are subjected to a periodic BC related to the order parameters ηk (for k =

0, 1, 2, . . . , N), then the order parameters and their gradients must satisfy

ηk|Sp1ηk
= ηk|Sp2ηk

and (∇0ηk · n0)Sp1ηk
= (∇0ηk · n0)Sp2ηk

for all k = 0, 1, 2, . . . , N. (2.48)

Mechanics problem. On the traction boundary S0T ⊂ S0, the traction vector is specified (denoted by psp),

and on the displacement boundary S0u ⊂ S0, the displacements are specified (denoted by usp), i.e.

P · n0 = psp on S0T , (2.49)

u = usp on S0u. (2.50)

If two boundaries Spu1 ⊂ S0 and Spu2 ⊂ S0 (where Spu1 ∩ Spu2 is empty) are subjected to a periodic BC

on the displacements u, then the displacements on these boundaries are related by

u|Spu1
= u|Spu2

+ (F h − I) · r0, (2.51)
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Mi

Mi

Mj

Mi
Mj

Mj

Mj

Mi

twinned boundaries
Mk

Ml

Ml

Ml

Ml

Mk

Mk

Mk

n1
n2

m

κ1

κ2

δκ

1− κ2 1− κ1

Figure 1: A schematic of twins within twins.

where F h is a specified homogeneous deformation gradient. The mixed boundary conditions where, on

a single surface, some components of displacements are specified and some components of the traction

are specified, are also used. Furthermore, one or more displacement components on a boundary may be

related by the periodic BC given by Eq. (2.51) with another appropriate boundary.

3 Crystallographic solutions for twins within twins microstrucrure

In this section, we obtain the analytical solutions for the twins within twins microstructures for the cubic

to tetragonal MTs using the crystallographic theory (see e.g. [1]). A schematic of twins within twins is

shown in Fig. 1 where the twins formed by a variants pair Mi and Mj, and the twins formed by another

variants pair Mk and Ml form an interface of finite thickness δk shown by a shaded region. The volume

fractions of Mi and Mk in the respective twins are κ1 and κ2. The variants Mi and Mj need not be in twin

relationship with the other two variants Mk or Ml [1].

3.1 Crystallographic equations and general solutions

Crystallographic equations for twin-twin: The equations for the twins between the pairs Mi-Mj, and

Mk-Ml are (see e.g. Chapter 7 of [1] and [10, 11])

R2 ·U tj −R1 ·U ti = a′
1 ⊗ n1, and R4 ·U tl −R3 ·U tk = a′

2 ⊗ n2, (3.1)



16

respectively, where R1, R2, R3, and R4 are the rotation tensors; n1 and n2 are the unit normals to the

respective twin boundaries such that n1 points into Mj and n2 points into Ml (see Fig. 1); the vectors a′
1

and a′
2 are related to the simple shear deformations. The governing equation for the twins within twins

shown in Fig. 1 is (Chapter 7 of [1] and [10, 11])

(κ1R2 ·U tj + (1− κ1)R1 ·U ti)− (κ2R4 ·U tl + (1− κ2)R3 ·U tk) = b′ ⊗m, (3.2)

where κ1 and κ2 are the volume fractions of Mi and Mk in the respective twins, m is the unit normal to

the twin-twin interface shown in the figure, and b′ is a vector related to the deformation.

Equations (3.1)1 and (3.1)2 can be rewritten as

Q1 ·U tj −U ti = a1 ⊗ n1, and Q2 ·U tl −U tk = a2 ⊗ n2, (3.3)

where Q1 = Rt
1 ·R2, a1 = Rt

1 · a′
1, Q2 = Rt

3 ·R4, and a2 = Rt
3 · a′

2. Similarly, using Eq. (3.3)1,2, Eq.

(3.2) is rewritten as

Q3 · (U ti + κ1a1 ⊗ n1)− (U tk + κ2a2 ⊗ n2) = b⊗m, (3.4)

whereQ3 = Rt
3·R1 and b = Rt

3·b′. In order to solve Eq. (3.4), we post-multiply it with (U tk+κ2a2⊗n2)
−1

and rearrange the terms to rewrite the equation as [10]

Q3 · Ã = I + b⊗ m̃, (3.5)

where

Ã = (U ti + κ1a1 ⊗ n1) · (U tk + κ2a2 ⊗ n2)
−1, and m̃ = (U tk + κ2a2 ⊗ n2)

−t ·m. (3.6)

The variables to be determined from the above equations (3.3) to (3.6) are κ1, κ2, δκ, a1, a2, n1, n2, b,

m, Q1, Q2, and Q3.

Twins within twins solution: The solution for Eq. (3.3)1 and (3.3)2 are well known (see e.g. Chapter

5 of [1]) and is enlisted here for completeness. To do so, we define a symmetric tensor G1 = U−1
tj ·U2

ti ·U−1
tj

corresponding to Eq. (3.3)1. The eigenvalues of G1 are denoted by λ1, λ2, and λ3, which are all positive,

and the corresponding normalized eigenvectors are denoted by i1, i2, and i3, respectively. Equation (3.3)1

has a solution if and only if λ1 ≤ 1, λ2 = 1, and λ3 ≥ 1 (assuming λ1 ≤ λ2 ≤ λ3). The expressions for a1
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and n1 are given by

a1 = ζ1





√

λ3(1− λ1)

λ3 − λ1
i1 + ξ

√

λ1(λ3 − 1)

λ3 − λ1
i3



 ,

n1 =

√
λ3 −

√
λ1

ζ1
√
λ3 − λ1

(

−
√

1− λ1 U tji1 + ξ
√

λ3 − 1 U tji3

)

(3.7)

where ξ = ±1, and ζ1 is such that |n1| = 1. The solutions a2 and n2 for the twins between Mk and Ml

are similarly obtained using the eigenpairs of U−1
tl ·U2

tk ·U−1
tl in Eq. (3.7). The rotations Q1 and Q2 can

then be obtained using Eqs. (3.3)1,2.

We now solve the twins within twins equation (3.5) which has got a form similar to the A-twinned

martensite interface equation using the procedure of Ball and James [4] (also see Chapter 7 of [10]).

Noticing that the Bain stretches U ti, U tj , U tk, and U tl are given for a material, we first obtain a1, a2,

n1, and n2 using, e.g., Eq. (3.7). The procedure for obtaining the remaining unknowns κ1, κ2, Q3, b,

and m̃ is derived here. In obtaining these unknowns, let us first assume that the parameters κ1 and κ2

are given, and solve for the remaining unknown variables. We introduce

G2 = Ã
t · Ã, (3.8)

which is obviously symmetric and positive-definite, and all the eigenvalues are positive numbers which

we denote by Λ1, Λ2, and Λ3. The corresponding normalized eigenvectors are denoted by j1, j2, and

j3, respectively. Equation (3.5) has a solution if and only if Λ1 ≤ 1, Λ2 = 1, and Λ3 ≥ 1 assuming

Λ1 ≤ Λ2 ≤ Λ3. The solutions for the vectors b and m̃ are obtained as (see e.g. Chapter 6 of [1])

b =
ζ2√

Λ3 − Λ1

(

√

Λ3(1− Λ1) j1 + ξ
√

Λ1(Λ3 − 1) j3

)

, and

m̃ =

√
Λ3 −

√
Λ1

ζ2
√
Λ3 − Λ1

(

−
√

1− Λ1 j1 + ξ
√

Λ3 − 1 j3

)

. (3.9)

The unit normal to the twin-twin boundary m is finally obtained using Eq. (3.9)2 in Eq. (3.6)2

m =

√
Λ3 −

√
Λ1

ζ2
√
Λ3 − Λ1

(U tk + κ2n2 ⊗ a2) ·
(

−
√

1− Λ1 j1 + ξ
√

Λ3 − 1 j3

)

, (3.10)

where ζ2 in Eqs. (3.9) and (3.10) is such that |m| = 1. The rotation Q3 is then determined using Eqs.

(3.9)1,2 in Eq. (3.5). Note that the middle eigenvalues Λ2 obtained would be an expression as a function

of the volume fractions κ1 and κ2. Setting Λ2 = 1, which is required for the existence of the twins within

twins solution [10], would give a relation between κ1 and κ2. However, it is not possible to obtain the

exact solutions for κ1 and κ2 from the limited governing equations at hand. The thickness of the transition

layer κt is also indeterminate.
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3.2 Twins within twins solutions for cubic to tetragonal MTs

The solutions for twins within twins for cubic to tetragonal MTs are now obtained. The three Bain stretch

tensors for such transformations are [1]

U t1 = χ c1 ⊗ c1 + α c2 ⊗ c2 + α c3 ⊗ c3,

U t2 = α c1 ⊗ c1 + χ c2 ⊗ c2 + α c3 ⊗ c3,

U t3 = α c1 ⊗ c1 + α c2 ⊗ c2 + χ c3 ⊗ c3, (3.11)

where α < 1 and χ > 1 are the material constants and {c1, c2, c3} is a right-handed standard Cartesian

basis in the cubic unit cell of A such that the basis vectors are parallel to three mutually orthogonal sides

of that unit cell. The solutions for twins between M1-M2 are (n pointing into M2), M1-M3 (n pointing

into M3), and M2-M3 (n pointing into M3) are (see e.g. Chapter 5 of [1])

a =
√
2υ(−χc1 ± αc2), n = (c1 ± c2)/

√
2;

a =
√
2υ(−χc1 ± αc3), n = (c1 ± c3)/

√
2;

a =
√
2υ(−χc2 ± αc3), n = (c2 ± c3)/

√
2, (3.12)

respectively, where υ = (χ2 − α2)/(χ2 + α2). Since all the variants for tetragonal M phase are in a twin re-

lationship [1], the combinations of possible twins within twins solutions are {M1,M2}-{M1,M3}, {M2,M1}-

{M2,M3}, and {M2,M3}-{M2,M1}, where the corresponding twin solutions {a1,n1} and {a2,n2} are to

be considered from Eq. (3.12).

Using Eq. (3.6)1 and the solutions to the corresponding twin pairs from Eq. (3.12), we get G2 as the

following diagonal tensor for all the possible combinations of twins within twins listed above:

G2 = Ã
t · Ã = Λ1j1 ⊗ j1 + Λ2j2 ⊗ j2 + Λ3j3 ⊗ j3, where (3.13)

Λ1 = [1− κ2υ]
2 < 1,

Λ2 = [(1 + κ1)α
2 + (1− κ1)χ

2]2[(1 + κ2)χ
2 + (1− κ2)α

2]2/(χ2 + α2)4 = 1, and

Λ3 = [1 + κ1υ]
2 > 1, (3.14)

and we have used the facts χ > 1, α < 1, 0 < υ < 1, and 0 < κ1, κ2 < 1. The eigenvectors j1, j2, and j3

are functions of the vectors c1, c2, and c3 and depend on the combinations of the variants in the twins

as obtained below. We have imposed the condition Λ2 = 1 in Eq. (3.14)2, which is a requirement for G2
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given by Eq. (3.13) to represent a twins within twins as discussed above, and from that the following two

conditions on the parameters χ, α, κ1, κ2 are obtained:

1

κ1
− 1

κ2
= υ, or

(κ1 − κ2)
1

υ
+ κ1κ2 =

2

υ2
. (3.15)

Since 0 < υ < 1, Eq. (3.15)1 is satisfied if and only if κ1 < κ2. For κ1 = κ2 Eq. (3.15)1 yields the trivial

condition χ = α which does not yield twins within twins. It is easy to verify that for all χ > 1 and α < 1

no 0 < κ1, κ2 < 1 satisfy Eq. (3.15)2, and hence we disregard this relation. Finally, considering κ1 and

κ2 are related by Eq. (3.15)1, and using the expressions for Λ1 and Λ3 given by Eqs. (3.14)1,3 into Eqs.

(3.7) and (3.10), we get the solutions for b and m for different twins within twins as listed below.

Case I For {M1,M2}-{M1,M3} twin pairs

For {M1,M2}-{M1,M3} twin pairs the indices are i = k = 1, j = 2, and l = 3, and κ1 and κ2 are the

volume fractions of M1 in the respective twins. The eigenvectors of G2 tensor are obtained as j1 = c3,

j2 = c1, and j3 = c2. The vectors b and m̃ are obtained using Eqs. (3.14)1,3 in Eq. (3.9) as

b =
ζ2

√

(κ1 + κ2)[2 + (κ1 − κ2)υ]

[

ξ(1− κ2υ)
√

κ1(2 + κ1υ) c2 + (1 + κ1υ)
√

κ2(2− κ2υ) c3

]

, and

m̃ =

√
κ1 + κ2 υ

ζ2
√

2 + (κ1 − κ2)υ

[

ξ
√

κ1(2 + κ1υ) c2 −
√

κ2(2− κ2υ) c3

]

, (3.16)

respectively. Using Eq. (3.16)2 and (3.7) in Eq. (3.10) we finally get m as

m =

√
κ1 + κ2 υα

ζ2
√

2 + (κ1 − κ2)υ

[

−υκ1.52

√
2− κ2υ c1 + ξ

√

κ1(2 + κ1υ) c2 +
√

κ2(2− κ2υ)(1 + κ2υ) c3

]

,(3.17)

where the condition |m| = 1 yields

ζ2 =

√
κ1 + κ2 υα

√

2 + (κ1 − κ2)υ

[

κ2(2− κ2υ)(1 + 2κ2υ + 2κ22υ
2) + κ1(2 + κ1υ)

]

. (3.18)

Case II For {M2,M1}-{M2,M3} twin pairs

In this case the indices are i = k = 2, j = 1, and l = 3, and κ1 and κ2 are the volume fractions of M2

in the respective twins. The eigenvectors for G2 tensor are given by j1 = c3, j2 = c2, and j3 = c1. The

vectors b and m̃ are obtained using Eqs. (3.7) and (3.9) as

b =
ζ2

√

(κ1 + κ2)[2 + (κ1 − κ2)υ]

[

(1 + κ1υ)
√

κ2(2− κ2υ) c3 + ξ(1− κ2υ)
√

κ1(2 + κ1υ) c1

]

, and

m̃ =

√
κ1 + κ2 υ

ζ2
√

2 + (κ1 − κ2)υ

[

−
√

κ2(2− κ2υ) c3 + ξ
√

κ1(2 + κ1υ) c1

]

, (3.19)
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respectively. Using Eq. (3.16)2 in Eq. (3.10) we finally get m as

m =

√
κ1 + κ2 υα

ζ2
√

2 + (κ1 − κ2)υ

[

−ξυκ1.52

√
2− κ2υ c2 + ξ

√

κ1(2 + κ1υ) c1 +
√

κ2(2− κ2υ)(1 + κ2υ) c3

]

,(3.20)

where ζ2 is given by Eq. (3.18).

Case III For {M3,M1}-{M3,M2} twin pairs

In this case the indices are i = k = 3, j = 1, and l = 2, and κ1 and κ2 are the volume fractions of M3

in the respective twins. The eigenvectors for G2 tensor are given by j1 = c2, j2 = c3, and j3 = c1. The

vectors b and m̃ are obtained using Eqs. (3.7) and (3.10) as

b =
ζ2

√

(κ1 + κ2)[2 + (κ1 − κ2)υ]

[

(1 + κ1υ)
√

κ2(2− κ2υ) c2 + ξ(1− κ2υ)
√

κ1(2 + κ1υ) c1

]

, and

m̃ =

√
κ1 + κ2 υ

ζ2
√

2 + (κ1 − κ2)υ

[

−
√

κ2(2− κ2υ) c2 + ξ
√

κ1(2 + κ1υ) c1

]

, (3.21)

respectively. Using Eq. (3.16)2 in Eq. (3.10) we finally get m as

m =

√
κ1 + κ2 υα

ζ2
√

2 + (κ1 − κ2)υ

[

−ξυκ1.52

√
2− κ2υ c3 + ξ

√

κ1(2 + κ1υ) c1 +
√

κ2(2− κ2υ)(1 + κ2υ) c2

]

,(3.22)

where ζ2 is given by Eq. (3.18).

In summary, we have obtained the general analytical solution for a1, a2, n1, n2, b, and m listed in

Eqs. (3.7), (3.9), and (3.10). The rotation tensors Q1, Q2, and Q3 can be finally obtained using Eqs.

(3.4)1,2 and (3.3). The twins within twins solutions for cubic to tetragonal MTs are listed in Eqs. (3.12)

and (3.16) to (3.22). Since the volume fractions κ1 and κ2 satisfy the relation given by Eq. (3.15)1, there

are obviously many solutions possible for each of the twins within twins listed in Cases (I), (II) and (III)

(also see Chapter 7 of [1]). The width of the twins within twins interface (shaded region in Fig. 1) δκ is

indeterminate within the set of governing equations at hand.

4 Results and discussions

We now present the simulation results for twins within twins microstructure obtained using our phase-field

approach. The materials properties for NiAl alloy, which exhibits cubic to tetragonal MTs, are considered

and listed in Section 4.1. In Section 4.2 the phase-field results are compared with the crystallographic

solution obtained in Section 3.
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Figure 2: Unit cells for cubic austenite and three tetragonal martensitic variants.

4.1 Material parameters

The material parameters for NiAl alloy are enlisted here. We consider the interfacial widths and energies

as δ0M = 1 nm, γ0M = 0.2 N/m, δ12 = δ13 = δ23 = 0.75 nm, and γ12 = γ13 = γ23 = 0.1 N/m. Using the

following analytical relations between the interfacial thickness and energy, and the phase-field parameters

[67, 72]

δij =
√

18βij/Aij ; βij = γijδij for A-M and all the variant-variant interfaces, (4.1)

which were obtained by solving an 1D Ginzburg-Landau equation neglecting mechanics, we obtain

ρ0A0M = 3600 MPa, ρ0Ā = 2400 MPa, β0M = 2 × 10−10 N, and β12 = β13 = β23 = 7.5 × 10−11

N. We take θe = 215 K and ∆s = −1.47 MPa K−1, using which we calculate the critical temper-

atures for A → M and M → A transformations as (see [59]) θcA→M = θe + A0M/(3∆s) = 0 K and

θcM→A = θe − A0M/(3∆s) = 430 K, respectively. The Lamé constants assuming isotropic elasticity

are taken to be identical for all the phases A, M1, M2, and M3: λ0 = λ1 = λ2 = λ3 = 74.62 GPa,

µ0 = µ1 = µ2 = µ3 = 72 GPa . The other material constants are taken as aβ = aε = aK = 3, a0 = 10−3,

K12 = K23 = K13 = 50 GPa, K012 = K023 = K013 = 5 GPa, K0123 = K123 = 50 GPa, L0M = 2600 (Pa-

s)−1 and L12 = L13 = L23 = 12600 (Pa-s)−1. The transformation stretches are α = 0.922 and χ = 1.215

[45].

4.2 Numerical result for twins within twins

For the simulation we consider a 22 nm×22 nm×22 nm cube as the reference configuration Ω0 as shown

in Figs. 3(a). The periodic BCs given by Eq. (2.48) are used for all the order parameters on the
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Figure 3: Evolution of twin within twin microstructure in a 22 nm×22 nm×22 nm cube shown by color
plot of ηeq = η0(1− 0.67η1 − 0.33η2): ηeq = 0.33 denotes M1; ηeq = 0.67 denotes M2; ηeq = 1 denotes M3.

respective opposite faces of the cube domain. We have used the periodic BC for the normal component

of the displacement vector on the opposite faces of the cube given by Eq. (2.51) with the homogeneous

deformation gradient as F h = I + 0.98n0 ⊗ n0, where n0 is the unit normal to the opposite faces of

the cube in Ω0. On each face of the cube domain, we have used the traction-free BC for the tangential

components of the first Piola-Kirchhoff traction vector. The temperature of the sample is taken as θ = 0

K. The material properties listed in Section 4.1 are used. The Bain tensors listed in Eq. (3.11) are used

in Eq. (2.5), where the basis vectors c1, c2, and c3 of A unit cell are parallel to basis vectors e1, e2, and

e3, respectively, attached to the sample (see Fig. 3 (a)). The initial distribution of the order parameters

are taken between 0 ≤ η0 ≤ 1, 0 ≤ η1 ≤ 0.8, and 0 ≤ η2 ≤ 0.8, all distributed randomly shown in Figs.

3(a). The other order parameter η3 is calculated using Eq. (2.1) for all the times t ≥ 0. We have used a

finite element procedure similar to that of [73] developed by the authors. A finite element code has been

developed using an open-source code deal.ii [74]. The domain is discretized spatially with quadratic brick

element and it is ensured that at least three grid points lie across all the interfaces. The mesh density

in the 3D domain is shown in Fig. 4(a), and the mesh density on one of the boundaries is shown in Fig.

4(b). The time derivatives of the order parameters are discretized using the backward difference scheme

of order two described in [73]. A constant time step size of 2× 10−16 s is used for the simulation.

The evolution of the microstructure is shown at different time instances in Figs. 3. We have in fact
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Figure 4: (a) Mesh density in the 3D computational domain. (b) Mesh density on one of the external
boundaries.
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Figure 5: The twin microstructures on three mutually perpendicular faces of the sample shown in Fig. 3.
The colour plots of ηeq are shown: ηeq = 0.33 denotes M1; ηeq = 0.67 denotes M2; ηeq = 1 denotes M3.

shown a colour plot for an equivalent order parameter defined as ηeq = η0(1 − 0.67η1 − 0.33η2) which

obviously takes the following values in different phases: ηeq = 0 in A, ηeq = 0.33 in M1, ηeq = 0.67 in

M2, and ηeq = 1 in M3. Figure 3(a) shows the initial distribution of ηeq. Figures 3(b) and (c) show the

intermediate microstructures at different time instances which are approaching a twinned microstructure.

We finally obtain twins within twins microstructures between the twin pairs M1-M2 and M1-M3 as shown

in Fig. 3(d). The microstructure shown in Fig. 3(d) is a little far from being a stationary one. However,

the twinned microstructure obtained can be compared with the analytical solution as there is no further

significant change in the orientations of the twin boundaries and twin-twin boundaries with time as

observed in Figs. 3 (c) and (d). The microstructures on three faces of the domain with unit normals

parallel to e3, e2 and e1 are shown in Fig. 5(a), (b), and (c), respectively.

The plots for the components of the Cauchy elastic stress tensor (in GPa) at t = 2.25 ps (corresponding

to the microstructure shown in Fig. 3 (d)) are shown in Fig. 6. The internal stresses are concentrated

mainly across the twin-twin boundaries and also across the twin boundaries (see e.g. [75] for experimental

results). The stresses vary from compressive to tensile between two adjacent variant plates within and

near the twin-twin interfaces. For a better understanding of the elastic stresses across the interfaces,
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Figure 6: Components of the Cauchy elastic stress tensor (in GPa) in the domain shown in Fig. 3(d).

Table-1: Crystallographic solutions for twins between the variants for NiAl alloy in {c1 , c2 , c3} basis.
Variant pair a n

M1-M2 −0.4625 c1 ± 0.3510 c2 0.7071 c1 ± 0.7071 c2
M2-M3 0.4625 c1 ± 0.3510 c3 −0.7071 c1 ± 0.7071 c3
M3-M1 0.4625 c2 ± 0.3510 c3 −0.7071 c2 ± 0.7071 c3

we have shown a plot for the components across the lines joined by the points O and A, and C and B

(see Fig. 3 (d)) in Fig. 7(a) and (b), respectively. Obviously, in these two figures, the elastic stresses

within M1-M3 and M1-M2 twin boundaries are plotted. Figure 7(b) also shows the stresses across a

twin-twin boundary. All the normal stresses σ(e)11, σ(e)22, and σ(e)33 are significantly higher across the

twin boundaries compared to the adjacent phases. The reason for such large elastic stresses within the

twin boundaries is studied in detail by the authors in [76]. The shear stresses σ(e)12 and σ(e)13 on the

corresponding external boundary (having unit normal e1 in Ω0) are much lower due to the traction-free

BC applied in the tangential plane. From the elastic stress plots shown in Fig. 6 it is clear that stresses

are mainly concentrated within the twin boundaries and the twins-twins boundaries. In fact, the stresses

within twins within twins boundaries are usually much higher than that across the twin boundaries (also

see Fig. 7). This can be justified by noticing that the twin-twin boundaries are compatible in an average

sense, whereas the twin boundaries are compatible in Hadamard’s sense according to the crystallographic

theory (see Chapter 5 of [1]). Understanding the stress distributions across these interfaces is important

from the materials design perspective [75].
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Figure 7: Components of the Cauchy elastic stress tensor across the lines drawn between points (a) O and
A, and (b) C and B shown in Fig. 3(d). Obviously, figures (a) and (b) show the elastic stress distribution
across the twin boundaries between variants M1-M3 and M1-M2, respectively.
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Figure 8: Plot for κ2 versus κ1 given by Eq. (3.15)1 for NiAl alloy.

Comparison of crystallographic and numerical solutions. We now present a comparative study

of the microstructure obtained numerically with the crystallographic solution given in Section 3.2. We have

shown in Fig. 3 the twins within twins microstructures obtained using the present phase-field approach,

where a twin with a variant pair M1-M2 is forming interfaces with another twin made of variants pair

M1-M3, i.e. the indices of Fig. 1 are i = k = 1, j = 2, and l = 3. The normal to the interfaces between M1

and M2 plates are making approximately 45◦ with both e1 and e2 axes, and the normal to the interfaces

between M1 and M3 plates are making approximately 45◦ with both e2 and e3 axes. The normals to these

twins are obviously in good agreement with the crystallographic solution listed in Table-1. The volume

fractions of M1 in the respective twin pairs are calculated as κ1 = 0.46 and κ2 = 0.56. The unit normal
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Figure 9: A plane within a twins within twins interface (within the domain shown in Fig. 3(d)) is shown
by the rectangle. The unit normal to that plane is m = 0.1020 c1 − 0.7204 c2 + 0.6859 c3.

to one of the twins within twins interface m is obtained as

m = 0.1020 c1 − 0.7204 c2 + 0.6859 c3, (4.2)

where a rectangular plane (on red lines) lying on the twin-twin interface is shown in Fig. 9. We now

calculate the analytical expression for m. As mentioned earlier, the volume fractions κ1 and κ2, satisfying

the relation given by Eq. (3.15)1 and plotted in Fig. 8, cannot be uniquely determined from the limited

governing equations at hand. In view of that, we simply assume κ1 = 0.46 for the analytical solution and

obtain κ2 = 0.5250 using Eq. (3.15)1 which differs from the numerical result by 7.7%. Finally, using Eqs.

(3.16), (3.17), and (3.18) we obtain ζ2 = 0.2634 and the vectors b, m̃, and m as

b = ±0.1362 c2 + 0.2093 c3,

m̃ = ±0.7119 c2 − 0.7115 c3, and

m = −0.0928 c1 ± 0.6560 c2 + 0.7492 c3. (4.3)

The maximum difference in the components of analytical and numerically obtained unit normals m is

within 10%, and the orientation of the analytical m differs by 12.3◦ from the numerical one, which is

acceptable. One of the main sources of difference is that in the numerical solution local stress fields

and their relaxation by incomplete martensitic variants at the twin within twin interface is automatically

taken into account.
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5 Concluding remarks

A thermodynamically consistent Ginzburg-Landau type nanoscale multiphase phase-field approach to

multivariant martensitic transformations is formulated at large strain and taking the interfacial stresses

into consideration. A total of N independent order parameters are assumed to describe the austenite and

N martensitic variants. A non-contradictory form for the gradient energy is considered, and the gradient

energies with the previous models are compared. Furthermore, a non-contradictory kinetic model for the

coupled Ginzburg-Landau equations is derived for all the order parameters. The kinetic models from the

previous models are compared and their shortcomings are discussed. A general crystallographic solution

for the twins within twins microstructure is obtained, and the solutions for cubic to tetragonal trans-

formations are presented. Using the present phase-field approach 3D twins within twins microstructures

evolution in a single grain is studied, and the numerical results are compared with the crystallographic

solution. The present phase-field model can be used for studying more complex microstructures with more

variants such as cubic↔orthorhombic and cubic↔monoclinic MTs, and also in polycrystalline solids. Note

that for large transformation strains for the MTs Si I to Si II, a new martensitic microstructure, which

does not obey the mathematical theory of martensite [1–5], was obtained with molecular dynamic simu-

lations in [77]. It will be a challenge for the current (and any other) large-strain theory to reproduce such

a microstructure.
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