Bulletin of the American Physical Society

APS March Meeting 2022

Volume 67, Number 3

Monday-Friday, March 14-18, 2022; Chicago

Session Z40: Towards Fault Tolerance and Realization of Quantum Error Correction

11:30 AM–2:06 PM, Friday, March 18, 2022 Room: McCormick Place W-196B

Sponsoring Unit: DQI

Chair: Kevin Satzinger, Google

Abstract: Z40.00002: High threshold fault-tolerant measurement-based quantum computing with biased noise qubits

11:42 AM-11:54 AM

← Abstract →

Presenter:

Jahan Claes (Yale University)

Authors:

Jahan Claes (Yale University)

Eli Bourassa (Xanadu)

Shruti Puri (Yale University)

Measurement-based quantum computing (MBQC) is an alternative model of quantum computation that is equivalent to the standard gate-based model and is the preferred approach for several optical quantum computing architectures. In MBQC, a quantum computation is executed by preparing an entangled cluster state and then selectively measuring qubits. MBQC can be made fault-tolerant by creating an MBQC computation that executes the standard surface code, an approach known as "foliation."

Recent results on gate-based quantum computing have demonstrated that in the presence of biased noise, a modified version of the surface code known as the XZZX code has much higher thresholds than the standard surface code. However, naively foliating the XZZX code does not result in a high-threshold fault-tolerant MBQC, because the foliation procedure does not preserve the noise bias of the physical qubits. To create a high-threshold fault-tolerant MBQC, we introduce a modified cluster state that preserves the bias, and use our modified cluster state to construct an MBQC computation that executes the XZZX code. Using full circuit-level noise simulations, we show that the threshold of our modified MBQC is higher than either the standard fault-tolerant MBQC or the naïve foliated XZZX code in the presence of biased noise, demonstrating the advantage of our approach.

This site uses cookies. To find out more, read our Privacy Policy.

I Agree