
Improving GNN-Based Accelerator Design Automation with Meta
Learning

Yunsheng Bai, Atefeh Sohrabizadeh, Yizhou Sun, and Jason Cong
Computer Science Department, University of California - Los Angeles, USA

Los Angeles, CA, USA
{yba,atefehsz,yzsun,cong}@cs.ucla.edu

Abstract

Recently, there is a growing interest in developing learning-based
models as a surrogate of the High-Level Synthesis (HLS) tools,
where the key objective is rapid prediction of the quality of a can-
didate HLS design for automated design space exploration (DSE).
Training is usually conducted on a given set of computation kernels
(or kernels in short) needed for hardware acceleration. However,
the model must also perform well on new kernels. The discrep-
ancy between the training set and new kernels, called domain shift,
frequently leads to model accuracy drop which in turn negatively
impact the DSE performance. In this paper, we investigate the pos-
sibility of adapting an existing meta-learning approach, named
MAML, to the task of design quality prediction. Experiments show
the MAML-enhanced model outperforms a simple baseline based
on fine tuning in terms of both offline evaluation on hold-out test
sets and online evaluation for DSE speedup results1.
ACM Reference Format:

Yunsheng Bai, Atefeh Sohrabizadeh, Yizhou Sun, and Jason Cong. 2022.
Improving GNN-Based Accelerator Design Automation with Meta Learning.
In Proceedings of the 59th ACM/IEEE Design Automation Conference (DAC)
(DAC ’22), July 10–14, 2022, San Francisco, CA, USA. ACM, New York, NY,
USA, 4 pages. https://doi.org/10.1145/3489517.3530409

1 Introduction

HLS aims to ease the design efforts for FPGA programming by
raising the abstraction level. Nevertheless, a designer must explore
more design candidates to achieve the optimal micro-architecture
since the combination of different pragmas (compiler directives)
create a larger solution space. A promising solution is to automate
DSE using a deep learning based performancemodel thatmimics the
HLS tool [7, 14]. Such a model relies on training data, collected from
a set of FPGA accelerator kernels, in the form of designs labeled
with their performance metrics such as latency and resource usage.
Once trained, models such as Gnn-Dse [14] can be used to predict
the quality of designs either from the same set of training kernels,
or similar unseen kernels. A domain shift happens when the unseen
kernel is very different from the kernels used for training, which
may result in a significant accuracy drop.

In this paper, we investigate the possibility of adopting ideas from
meta-learning (or learning-to-learn [16]) to address the domain
shift issue. The objective of meta-learning is to obtain a model
that can eventually generalize across many tasks with good data
and computation efficiency [4]. For example, the 𝐾-shot image
classification has been extensively studied recently [2], where the
goal is to learn a classification model that can quickly adapt to a
new class based on only 𝐾 images from that class. In our case, we
1This work is supported by the CAPA award jointly funded by NSF (CCF-1723773)
and Intel (36888881), and the RTML award funded by NSF (CCF-1937599).

treat each kernel as a task. Thus, the model is trained on a set of
kernels, and given a new kernel, we let the trained model adapt to
only 𝐾 designs of that kernel.

Following the 𝐾-shot framework, we formalize our problem as
a 𝐾-shot regression problem. Given a training dataset D (train) =
{(𝑋𝑖 , 𝑌𝑖)}𝑁𝑖=1, we wish to learn a model 𝑌 = 𝑓𝜃 (𝑋) with a good
initialization parameter 𝜃 that can quickly adapt to a new ker-
nel, where 𝐾 data points are provided, denoted as D (new),K =

{(𝑋 (𝑛𝑒𝑤)
𝑘

, 𝑌
(𝑛𝑒𝑤)
𝑘

)}𝐾
𝑘=1. We further want to have a good prediction

power on other test data points of the new kernel.
Among different meta-learning approaches, optimization-based

methods such as MAML [3] and Reptile [9] are attractive to us as
they are model-agnostic, i.e., they are not restricted to a certain type
of learning model. Different from the traditional training scheme
where the entire training datasetD (𝑡𝑟𝑎𝑖𝑛) is used to learn the model
parameter 𝜃 , we mimic the setting where only 𝐾 examples will be
shown for a new kernel. In this paper, we show how MAML can be
adapted to our task of a𝐾-shot design quality prediction. In addition,
at a higher level, we propose a new training-adaptation-evaluation
workflow for learning-based accelerator design automation. It has
the advantage of quickly adapting a learning model to any new
kernel that is unseen during training. We experimentally evaluate
the efficacy of the proposed approach using a recent model, Gnn-
Dse, as an example, and name our MAML-enhanced version as
Gnn-Dse-Maml.

In summary, our contributions can be summarized as follows:
• We propose a new workflow to train and adapt a learning-based
DSE model for automated accelerator optimization based on
meta-learning to address the domain shift problem.
• We adapt the MAML algorithm to Gnn-Dse, specifically, in the
training and adaptation stages, to obtain a trained model, named
Gnn-Dse-Maml, that can be quickly adapted to different kernels.
• The experimental results demonstrate adaptation is necessary
for a trained Gnn-Dse model to perform well on unseen kernels
with a domain shift, and that MAML leads to higher accuracy
and speedup results on such kernels under 3 out of 5 cases.

2 Background and Related Work

2.1 Learning-based DSE

Despite the recent success of domain-specific accelerators over
general-purpose CPUs (e.g., [5]), quickly obtaining the optimal
design for a particular kernel remains a challenge. This is due to
not only the time-consuming evaluation of the designs using the
commercial tools, but also the large combinatorial search space of
a given kernel consisting of the different design candidates. The
former challenge has recently been tackled with modern machine
learning and deep learning techniques [7, 14] to assess a design’s

https://doi.org/10.1145/3489517.3530409

aes atax nw

Kernels used for training

…

Model
(randomly initialized)

𝐷("#$%&)

Model
(trained)

Stage 1: Training

3mm

New kernel

Hold-out for offline testing
of the adapted model

Selected 𝑲designs to
adapt the model

Model
(adapted)

Stage 2: Adaptation

𝐷(&())

Stage 3: Offline
Testing

Stage 4: DSE
(online testing)

Error on the hold-out
test set:

RMSE of util-DSP:
RMSE of util-BRAM:
…

Domain
Shift

DSE speedup

gemm-
blocked

gemm-
ncubed

Figure1:TheworklowofGnn-Dse-Maml.

Algorithm1TrainingprocedureofGnn-Dse-Maml

Require:𝑝(P(𝑡𝑟𝑎𝑖𝑛)):distributionoverkernels(programs)for
training

Require:𝛼,𝛽:stepsizehyperparameters
1:randomlyinitialize𝜃
2:whilenotdonedo
3: SamplebatchofkernelsP𝑖∼𝑝(P

(𝑡𝑟𝑎𝑖𝑛))
4: forallP𝑖do
5: Sample𝐾datapointsD={𝑋𝑗,𝑌𝑗}fromP𝑖
6: Evaluate∇𝜃LP𝑖(𝑓𝜃)usingDandLP𝑖inEquation1
7: Computeadaptedparameterswithgradientdescent:𝜃′𝑖=

𝜃−𝛼∇𝜃LP𝑖(𝑓𝜃)

8: SampledatapointsD′𝑖={x
(𝑗),y(𝑗)}fromP𝑖forthemeta-

update
9: endfor
10: Update𝜃←𝜃−𝛽∇𝜃 P𝑖∼𝑝(P)LP𝑖(𝑓𝜃′𝑖)usingeachD

′
𝑖and

LP𝑖inEquation1
11:endwhile

qualityinmilliseconds.Weuseourpriorwork,Gnn-Dse[14],to
demonstratetheproposedtechniquesforaddressingthedomain
shiftinthispaper.ThecorecomponentofGnn-DseisaGraph
NeuralNetwork(GNN)-basedmodelforpredictingthequalityofa
design.Thegoalofthemodel,𝑌=𝑓𝜃(𝑋),istomakepredictions
asaccurateaspossiblesothattheDSEprocesscanexploremore
designpointsbyreplacingthetime-consumingHLStool.However,
quicklyadaptingatrainedmodeltonewkernelshasyettobe
researched.

2.2 Meta-Learningfordomainshift
Theproblemofadaptingmachinelearningmodelsacrosstasksand
domainshaslongbeenstudiedincomputervision[12],natural
languageprocessing[8],graph-relatedtasks[18],etc.Here,we
focusonourspeciictaskofthe𝐾-shotdesignqualityregression,
anddiscussexsitingapproachestodealwiththedistributionalshift
acrosskernels.
Onesimpleapproachistoapplyarelativelysimpletechnique

knownasine-tuning.Asitsnamesuggests,onecanfurthertune
𝑓𝜃(𝑋)byperformingseveralstepsofthegradientupdate,e.g.,back-
propagationforneuralnetworkmodelssuchasGnn-Dse,onseveral
labeleddesignpointsofthatnewkernel.Sincetheinputkernels
arerepresentedthesamewayacrossdiferentkernels,andthe
outputregressiontargetsbearthesamemeanings,nonewlearning
componentisneededforourtask.
Despitethesimplicityofsuchaine-tuningmethod,moread-

vancedmethodsareshowntobemoreefectivetoaddressthe
domainshiftproblems[19,21].Forthatpurpose,weadoptthe

Model-AgnosticMeta-Learning(MAML)[3](presentedinAlgo-
rithm1)approachproposedinthemetalearningcommunity.As
mentionedpreviously,metalearningdealswiththehigherlevel
problemoflearningtolearn,whereweutilizeoneofitsmostpop-
ulartasks,𝐾-shotpredictionproblem,toformulateourproblem.
Numerousapproacheshavebeenproposedthroughtheyears[4].
Onecategory,forexample,isbasedonmetric-learning,wherethe
modeltriestomatchthenew𝐾datapointswithsomeexistingdata
pointsinthetrainingset[17].Inthiswork,however,weturnto
theoptimizationapproachsuchasMAML,whichcanbeappliedto
anylearning-based𝑓𝜃(𝑋),includingGnn-Dse.

3OurProposedMethodology
Fig.1depictsahigh-leveldiagramofGnn-Dse-Mamlwhichop-
eratesinfourstages:training,adaptation,olinetesting,andDSE.
Webeginwithacollectionofkernelsformingthetrainingdataset,

D(train).TherandomlyinitializedGnn-Dsemodelistrainedon

D(train)formanyepochsusingtheMAMLalgorithm.Then,the
trainedmodelisadaptedto𝐾designsthatwesamplefromthenew
kernel.Finally,theadaptedmodelisusedasasurrogatetotheHLS
tooltoruntheolinetestingandDSEstagesonthenewkernel,
measuringtheaccuracyoftheupdatedmodelonthehold-outtest
setandsearchingforthePareto-optimaldesignpoints,respectively.

3.1TrainingviaMeta-Learning
ThepurposeoftrainingGnn-Dse-Mamlistolearnageneralmodel
parameter𝜃thatcanquicklyadapttonewkernels.Weadaptthe
originalMAMLalgorithmforourtask.Togetstarted,weassume
alearning-basedmodel,𝑓𝜃,whichtakesakernel𝑋asinput,and
outputsasetofdesignqualitymetrics,suchaslatency,resource
utilization,etc.,whichwedenoteas𝑌.WeuseGnn-Dseasanexam-
pletoillustratethetrainingtechnique,butinpractice,anymodel
followingthesamesetupcanbeused.Thereadersarereferred
totheoriginalpaperofGnn-Dse[14]foramorecomprehensive
descriptionoftheinput,outputformats,andthearchitecture.Gnn-
Dseperformsthenormalsupervisedtrainingwhoselossfunction
takesthefollowingform:

LP𝑖(𝑓𝜙)=
∑︁

𝑋𝑗,𝑌𝑗∼P(𝑡𝑟𝑎𝑖𝑛)

∥𝑓𝜙(𝑋𝑗)−𝑌𝑗∥
2
2, (1)

However,Gnn-Dse-Mamlperformsthefollowingtrainingwithin
eachepoch:First,abatchof𝑁kernelsaresampled(line3);then
MAMLloopsthrougheachkernel,samples𝐾labeleddesignsfrom
thekernel(line5),updatesthemodeltoobtainatemporarymodel
withparameter𝜃′𝑖(line7),andfurthersamplesanother𝐾designs
fromthekernelformingavalidationsetD′𝑖(line8).Attheend
oftheloop,MAMobtains𝑁copiesofthemodeltogetherwith𝑁
validationsets,eachcorrespondingtotheupdatedversionofthe
modelusingonekernel.

2

The key step is to aggregate these 𝑁 models together to produce
the final updated model for this epoch (line 10). Specifically, the
aggregation step (line 10) evaluates each updated model 𝑓𝜃 ′

𝑖
on

its earlier sampled validation set D ′
𝑖
by computing the gradient

∇𝜃
∑
P𝑖∼𝑝 (P) LP𝑖 (𝑓𝜃 ′𝑖). The gradients from 𝑁 models are accumu-

lated to perform a final update of the original model with step size
𝛽 . Intuitively, this ensures each updated model 𝑓𝜃 ′

𝑖
has a chance

to update the original model 𝑓𝜃 by being evaluated on another
validation set D ′

𝑖
that is different from the set used for training

D. This helps to reduce the chance of over-fitting 𝑓𝜃 ′
𝑖
to D. The

readers are referred to the original paper of MAML[3] and various
follow-up papers (.g., [1, 6, 11]) for a more detailed analysis and
understanding of MAML.

3.2 Adapting the Trained Model for a New Kernel

The next stage of Gnn-Dse-Maml is to adapt the trained model for
a new kernel, which is likely to be very different from the kernels
used for training, causing the domain shift issue. The high-level idea
here is to select as few design points as possible from the new kernel,
since each design point requires running the time-consuming HLS
tool to obtain its label for adapting the model.

There are two challenges in the adaptation stage. The first one is
how to smartly select only 𝐾 designs, where 𝐾 is typically 10 or 20,
out of the very large design space with many candidate designs as
the labeled designs,D (new),K, for adaptation. We leave the topic as
future direction and use random sampling in this work. The second
challenge is how to adapt the model to these 𝐾 new designs of
the new kernel. Thankfully, MAML, by its design, allows for the
easy adaptation of a trained model to 𝐾 data points sampled from
another kernel via lines 5-7 in Algorithm 1.

3.3 Testing the Adapted Model via Offline and

Online Stages

The last two stages of Gnn-Dse-Maml are to test the efficacy of
the adapted model on the new kernel. For the offline testing stage,
we hold out a certain percentage of labeled designs from the new
kernel, evaluate the adapted model on these designs in the same
way as the original Gnn-Dse, and report the root mean-squared
error (RMSE) on the design’s objectives However, the ultimate goal
is to find the Pareto-optimal design points. Therefore, we feed the
adapted model to the DSE process (as described in the original
Gnn-Dse paper) which essentially ranks the design points based
on their quality predicted by the adapted model. It then evaluates
the top-ranked design points using the HLS tool to determine their
true objectives and whether they form the Pareto-optimal design
points.

4 Evaluation

4.1 Experimental Setup

Gnn-Dse-Maml follows the same model architecture as Gnn-Dse,
and to ensure fair comparison, we also use the same 9 training
kernels as the original paper of Gnn-Dse, as detailed in Table 1,
which includes kernels from the MachSuite [13] and the Polyhe-
dral (Polybench) [20] benchmark suites. The database is generated
employing both AutoDSE [15] and Gnn-Dse with the Xilinx Virtex
Ultrascale+ VCU1525 as the target FPGA. Our model predicts the
latency in the form of cycle counts, and the resource utilization

in the forms of DSP, BRAM, LUT, and FF. All the models are trained
using the PyTorch [10] library. All models are trained for 5000 it-
erations, and the best model with the lowest validation error is
selected for the adaptation stage.

To demonstrate the ability of Gnn-Dse-Maml to adapt to differ-
ent kernels, we choose the following 5 kernels from Polybench [20],
which are new to Gnn-Dse and it does not perform well on them,
suggesting a domain shift compared to the training set.
• jacobi-1d: Jacobi-style stencil computation over 1D data with
3-point stencil pattern.
• fdtd-2d: Simplified Finite-Difference Time-Domain method for
2D data consisting of three stencil operations.
• gemm: A scalar matrix multiplication followed by a matrix mul-
tiplication calculating 𝛽𝐶 + 𝛼𝐴 · 𝐵.
• 3mm: Three matrix multiplications calculating (𝐴 · 𝐵) · (𝐶 · 𝐷),
which creates a solution space with more than 17 trillion design
points.
• gemver: Multiple loop sections with vector-vector and matrix-
vector multiplications.
Although we have one stencil operation in the training set, the

stencil window size and the number of stencil operations are differ-
ent compared to the ones in jacobi-1d and fdtd-2d. The last three
kernels cause a domain shift due to the increase in the number of
different operations compared to other matrix-vector operations of
our training set. In other words, the Pareto-optimal design point of
each operation separately may not create an overall Pareto-optimal
design point. This is because not only increasing the number of
operations restricts the on-chip resources for the others, these op-
erations also share matrices/vectors which need consistent array
partitioning.

A key difference between the set up of Gnn-Dse-Maml and
Gnn-Dse is the split of the dataset into training and testing kernels.
In Gnn-Dse, 80% of the labeled designs within each training kernel
is used for training, while in Gnn-Dse-Maml, we test the ability of
the model to adapt to different testing kernels. In order to evaluate
the trained model on the 5 testing kernels, we have the following
three settings for the offline and online evaluation stages:
• Gnn-Dse-Unadapted: The trained Gnn-Dse model.
• Gnn-Dse-FineTune: The trained Gnn-Dse model adapted to 𝐾
sampled designs.
• Gnn-Dse-Maml: The model is trained using the MAML algo-
rithm, and the trained model is adapted to 𝐾 sampled designs.

To ensure a consistent comparison for both, Gnn-Dse-FineTune
and Gnn-Dse-Maml, we run 5 gradient steps on the 𝐾 designs.

4.2 Model Evaluation

We pre-process the dataset the same way as Gnn-Dse. For each
one of the 5 new kernels, we take the trained model and perform
adaptation by sampling 𝐾 = 20 design points of that kernel and
getting their labels by running the HLS tool. We argue that the
choice of 𝐾 should be small enough, since otherwise, it would take
too much time to obtain the labels. For the offline evaluation stage
though, we run AutoDSE [15] up to 20 hours to report the total
root mean-squared error (RMSE) on a larger set of data (referred
to as the hold-out set). The best design found by AutoDSE is also
used as a baseline to measure the speedup of each of the models.

3

Table 1: Design space and the database of the 9 kernels used for training and the 5 kernels for testing. For each testing kernel,

we restrict ourselves to using only 20 labeled designs to adapt the trained models.

Kernel

Training Testing

aes atax gemm-
blocked

gemm-
ncubed mvt spmv-

crs
spmv-
ellpack stencil nw jacobi-1d fdtd-2d gemm 3mm gemver

pragmas 3 5 9 7 8 3 3 7 6 5 16 8 21 13
Database Size

(# Valid)
44 140 189 199 255 52 60 295 103 20 20 20 20 20

4.3 Results of Design Space Exploration

For testing our approach, we collected 5 new kernels that the un-
adapted model of GNN-DSE [14] was not successful in finding their
Pareto-optimal design points. GNN-DSE has shown that it can per-
form well on new kernels with a similar domain to its training set.
Therefore, when it fails to produce comparable results as those by
AutoDSE, it is likely there is a domain shift that needs adaptation.
Table 2 summarizes the performance of the unadapted model of
GNN-DSE and the adapted models as explained in Section 4.1 when
they have used in the DSE process for up to 1 hour. The results show
that the MAML-based adaptation can achieve great performance
for 3 of the new kernels. In fact, it can get a significant speedup
for 3mm compared to AutoDSE. The solution space of this kernel
consists of more than 17 trillion design candidates that AutoDSE
got to explore only 149 of them after 20 hours since it relies on the
HLS tool for evaluating each candidate. However, the model-based
DSE can explore about 80K candidates after a 1 hour search. This
helps it to find a better design point given an accurate-enough
model.

For two of the kernels, ftdt-2d and gemver, the MAML results
lead to Timed Out, as the HLS tool cannot finish the synthesis
after 3 hours. Manual inspection shows that both examples have
multiple sections of nested loops, but with shared array variables.
The MAML-based model uses high degree of parallelization for
each section of the loop nests, requiring complex and extensive
array partitioning of the shared array variables that overwhelm
the HLS tool. Unfortunately, such cases were not covered in the K
samples, highlighting the importance of sample selection, which
will be further investigated in the future.
Table 2: The DSE speedup with respect to AutoDSE [15] after

20 hours.

Method jacobi-1d fdtd-2d gemm 3mm gemver

Gnn-Dse-Unadapted 0.44× 0.06× 0.87× 0.30× 0.20×
Gnn-Dse-FineTune 0.54× 0.04× 0.18× 1.00× 0.22×
Gnn-Dse-Maml 1.00× TO 1.21× 64.52× TO

TO: Timed Out

4.4 Results of Offline Testing

Table 3: Offline evaluation results. RMSE (the lower, the bet-

ter) is used to evaluate each model’s error on the hold-out

test set of each new kernel.

Method jacobi-1d fdtd-2d gemm 3mm gemver

Gnn-Dse-Unadapted 4.2496 6.7047 7.5337 9.1584 4.4717
Gnn-Dse-FineTune 3.2611 4.0831 1.7342 6.2930 3.1600
Gnn-Dse-Maml 2.3898 2.4912 2.1116 5.9670 3.0303

We report the offline evaluation results in Table 3. The results show
that adaptation is necessary for the unadaptedmodel to obtain lower
error on the hold-out sets, and comparing between fine-tuning and
MAML, under 4 out of 5 kernels, MAML leads to a more accurate
adapted model. This suggests the importance of training the model

under the meta-learning framework, and the better accuracy of
MAML can be attributed to its ability to provide a better model
parameter 𝜃 .

5 Conclusion and Future Work

We investigate the use of meta-learning, in particular, the MAML
algorithm, to enhance the training of deep learning based predic-
tion models, such as Gnn-Dse, for HLS performance prediction and
automated DSE. Our MAML based model Gnn-Dse-Maml shows
advantages over bothGnn-Dse and its adaptation based on fine tun-
ing when there is domain shift. AlthoughGnn-Dse-Maml produces
promising results, it also reveals further research opportunities, es-
pecially on design sample selection of new kernels for MAML-based
adaptation, and the possibility of further online adaptation during
DSE.
References

[1] S. Arnold et al. 2021. When maml can adapt fast and how to assist when it
cannot. In International Conference on Artificial Intelligence and Statistics. PMLR,
244–252.

[2] G. S. Dhillon et al. 2020. A baseline for few-shot image classification. ICLR (2020).
[3] C. Finn et al. 2017. Model-agnostic meta-learning for fast adaptation of deep

networks. In ICML. PMLR, 1126–1135.
[4] T. Hospedales et al. 2020. Meta-learning in neural networks: A survey. arXiv

preprint arXiv:2004.05439 (2020).
[5] N. P. Jouppi et al. 2017. In-datacenter performance analysis of a tensor processing

unit. In Proceedings of the 44th annual international symposium on computer
architecture. 1–12.

[6] C. H. Kao et al. 2022. MAML is a Noisy Contrastive Learner in Classification. In
ICLR.

[7] J. Kwon et al. 2020. Transfer Learning for Design-Space Exploration with High-
Level Synthesis. In 2020 ACM/IEEE MLCAD.

[8] E. Lekhtman et al. 2021. DILBERT: Customized Pre-Training for Domain Adapta-
tion with Category Shift, with an Application to Aspect Extraction. In Proceedings
of the 2021 Conference on Empirical Methods in Natural Language Processing. 219–
230.

[9] A. Nichol et al. 2018. On first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999 (2018).

[10] A. Paszke et al. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32.

[11] A. Raghu et al. 2020. Rapid learning or feature reuse? towards understanding
the effectiveness of maml. ICLR (2020).

[12] P. Z. Ramirez et al. 2019. Learning across tasks and domains. In Proceedings of
the IEEE/CVF International Conference on Computer Vision. 8110–8119.

[13] B. Reagen et al. 2014. Machsuite: Benchmarks for accelerator design and cus-
tomized architectures. In IISWC.

[14] A. Sohrabizadeh et al. 2022. Automated Accelerator Optimization Aided by Graph
Neural Networks. DAC (2022).

[15] A. Sohrabizadeh et al. 2020. AutoDSE: Enabling Software Programmers Design
Efficient FPGA Accelerators. arXiv preprint arXiv:2009.14381 (2020).

[16] S. Thrun et al. 1998. Learning to learn: Introduction and overview. In Learning
to learn. Springer, 3–17.

[17] O. Vinyals et al. 2016. Matching networks for one shot learning. NeurIPS 29
(2016).

[18] G. Yehudai et al. 2021. From local structures to size generalization in graph neural
networks. In International Conference on Machine Learning. PMLR, 11975–11986.

[19] M. Yi et al. 2021. Improved OOD Generalization via Adversarial Training and
Pretraing. In ICML. PMLR, 11987–11997.

[20] T. Yuki et al. PolyBench/C. ([n. d.]). https://web.cse.ohio-state.edu/~pouchet.2/s
oftware/polybench/

[21] M. Zhang et al. 2021. Adaptive risk minimization: Learning to adapt to domain
shift. NeurIPS 34 (2021).

4

https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/
https://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Learning-based DSE
	2.2 Meta-Learning for domain shift

	3 Our Proposed Methodology
	3.1 Training via Meta-Learning
	3.2 Adapting the Trained Model for a New Kernel
	3.3 Testing the Adapted Model via Offline and Online Stages

	4 Evaluation
	4.1 Experimental Setup
	4.2 Model Evaluation
	4.3 Results of Design Space Exploration
	4.4 Results of Offline Testing

	5 Conclusion and Future Work
	References

