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Abstract

In this paper, we present an end-to-end instance segmen-
tation method that regresses a polygonal boundary for each
object instance. This sparse, vectorized boundary repre-
sentation for objects, while attractive in many downstream
computer vision tasks, quickly runs into issues of parity that
need to be addressed: parity in supervision and parity in
performance when compared to existing pixel-based meth-
ods. This is due in part to object instances being anno-
tated with ground-truth in the form of polygonal boundaries
or segmentation masks, yet being evaluated in a conve-
nient manner using only segmentation masks. Our method,
BoundaryFormer, is a Transformer based architecture that
directly predicts polygons yet uses instance mask segmen-
tations as the ground-truth supervision for computing the
loss. We achieve this by developing an end-to-end differ-
entiable model that solely relies on supervision within the
mask space through differentiable rasterization. Boundary-
Former matches or surpasses the Mask R-CNN method in
terms of instance segmentation quality on both COCO and
Cityscapes while exhibiting significantly better transferabil-
ity across datasets.

1. Introduction

Image segmentation [23] and scene labeling [28,30] are
amongst the most studied topics in computer vision. In ad-
dition to pixel-wise masks, representing segments/objects
using vectorized boundary representations has applications
and significance in many downstream tasks such as shape
recognition [2], tracking [4], image understanding [31],
medical imaging [26], and 3D reconstruction [5].

The recently emerged instance segmentation task (ob-
jects or areas of interest) [10] greatly propels the practical
significance for object segmentation. Unlike detection, in-
stance segmentation predicts the detailed extent of an object
rather than a coarse bounding box. However, while a bound-
ing box can be represented by only two coordinate pairs

Code at https :
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Figure 1. We present a model of instance segmentation which pre-
dicts the boundaries of each object in the form of a polygon. This
treats instance segmentation as a regression problem and allows
for end-to-end differentiability of predictions. At the same time,
our model requires no sacrifices in terms of resulting segmentation
quality nor introduces additional supervision requirements com-
pared algorithms which directly predict masks.

and is therefore easily turned into a regression problem,
there are difficulties when deciding how to best represent
and predict the segmentation of an object. These difficulties
combined with a historical preference for convolutional op-
erations has led the computer vision community to become
mask-centric. This entails almost all segmentation models
relying on a spatially dense function which outputs a bi-
nary confidence to determine whether each pixel belongs to
a particular object. This is in contrast to a boundary-centric
notion where a sparse set of structured points are predicted
to denote the boundary of the object in question. Polygons
are one natural choice for this structure. However, because
of some inherent difficulties along with mask-centric biases,
polygons have large hurdles to overcome. First, there is
not an immediately obvious metric (and thus loss) for poly-
gons. Second, the training regimes of mask-based models
often relies on operations and augmentations that are in-
herently difficult to robustly and efficiently implement on
polygons directly. This includes even basic operations like
cropping and intersection. Finally, evaluation of segmen-
tation quality is performed with respect to masks and not
contours which leads to a possible mismatch in training and
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testing objectives when predicting polygons.

Furthermore, one might question why even predict
boundaries over masks? Despite [10] attaining high
quality masks for instance segmentation, obtaining object
boundaries can be more suited towards certain tasks. While
masks have a large degree of flexibility, they also lack an
explicit topology which can lead to degenerate or undesir-
able behavior (e.g., uncertainty at the boundary or unex-
pected interior holes). Explicit boundaries, however, facili-
tate downstream tasks such as plane detection [18] not only
in the form of a rich, top-down structural prior but also as
a continuous output which can be end-to-end differentiated
in a larger system.

Despite many obstacles, past efforts to predict polygons
within instance segmentation have been made. Neverthe-
less, none have been able to achieve parity with baseline
mask-based segmentation models across commonly used
benchmarks. By parity, we mean a few things:

1). Parity in supervision: The method should require no
additional sources of supervision than its mask-based coun-
terpart. In particular, the method should not rely on poly-
gons directly as a source of supervision. This is crucial
since polygons are not always available and deriving poly-
gons from a mask-based ground truth can introduce subop-
timal performance or uncertainty — see Table 4.

2). Parity in evaluation: While polygonal boundary an-
notations do exist in some instance segmentation datasets,
e.g. [16], further technical barriers await when using poly-
gon predictions for evaluation against the ground-truth di-
rectly. This is due to the vectorized polygon representation
not being unique and there existing a one-to-many represen-
tation from masks to polygons. In other words, two similar
masks may have polygons that have large differences in the
control points, creating a mismatch between training loss
and evaluation.

Finally, we also want to deal with 3). Parity in access.
While the predictive model itself might deviate in terms of
architecture, the model should be generally considered to
be a “drop-in” replacement for a mask-based segmentation
head. This includes working within one and two-stage ar-
chitectures, e.g., with respect to either full image or Rol
features.

While certain works have touched upon aspects of our
model [9, 14], none has yet to provide a fully polygon based
solution that is accessible to a myriad of architectures and
matches performance of mask-based architectures on stan-
dard datasets. We believe providing a clearer picture into
the capabilities of polygons in providing a performant and
end-to-end differentiable segmentation pipeline could be
helpful to further development within the field. We outline
our contributions below:

1. In this paper, we present a new instance segmenta-
tion method, BoundaryFormer, a Transformer based

approach for predicting an object’s boundary as a
polygon directly. Our model outperforms the strong
baseline Mask R-CNN [10] on the MS-COCO [16]
dataset and achieves competitive results on Cityscapes
[7] when training from scratch while significantly out-
performing it when transferring from a COCO-based
initialization. To the best of our knowledge, this is
the first time a method with polygonal outputs has
matched or exceeded Mask R-CNN on the MS-COCO
dataset. Furthermore, BoundaryFormer does so with-
out compromising its ability to be trained end-to-end.

2. BoundaryFormer uses pixel-wise masks as ground-
truth for supervision and evaluation by utilizing a
novel differentiable rasterization module. There-
fore, BoundaryFormer adds no new supervision re-
quirements over Mask R-CNN [10].

3. By only relying on masks as a source of supervision,
our model can be placed as a drop-in replacement for
the mask-based segmentation head of R-CNN [10] as
either a full image-based component or an Rol-based
component. Furthermore, it can be adopted in other
common architectures including FCOS [29].

2. Related Work

We highlight past work which has predicted polygonal
(or contour-based) segmentations and make special note of
those which have adopted rasterization as a form of super-
vision for their models.

2.1. Point-based Losses

We first discuss contour-based segmentation algorithms
which rely primarily on a matching between predicted
points and ground-truth points sampled from a known poly-
gon. Therefore, these methods require access to some
polygonal ground-truth. As one of the first works built on
modern architectures, DeepSnake [25] considers an initial
octagonal polygon derived from four extreme points, after
which an iterative process of refinement is carried out using
circular convolutions. The resulting refinements are super-
vised using an L; loss against a uniform ground-truth poly-
gon. On the other hand, PolarMask [34] models polygons in
a polar representation along with an approximation to IoU
as supervisory signal.

Applying a direct distance loss in a Transformer-based
architecture for line segmentation detection [35] and pose
recognition [ 3] exists, but they have the direct ground-truth
supervision on the points.

PolyTransform [14] uses an off the shelf mask-based
segmentation pipeline to predict an initial binary mask of an
object from which highly accurate initial polygons(s) can be
derived using an non-differentiable border following algo-
rithm. These polygons are then deformed using Transform-
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ers [32] after which a point-based loss is used for supervi-
sory signal.

Building off of DeepSnake, DANCE [20] considers an
FCOS [29] detector to produce an initial box proposal.
Points are uniformly sampled along this box to produce an
initial polygon which can be deformed using an attention-
like process. This initial box contour allows for a novel
ground-truth matching which can be more easily optimized.
In addition, the attentive process plus predicted edge maps
(which relies on access to panoptic annotations) improve
performance.

2.2. Mask-based Losses

We next consider contour-based models which entirely
or in-part rely on rasterized forms of predicted polygons as
supervision. ACDRNet [9] provides a system which takes
crops of objects of interest as input and iteratively deforms
an initial contour by predicting a dense heatmap of offsets in
feature-space. A 3D neural renderer [11] is applied to a tri-
angulation of the predictions against the ground-truth masks
using an MSE loss. In addition, ACDRNet relies on two ad-
ditional losses: a balloon like loss to force expansion of the
contour and a curvature term. While an interesting proof
of concept, the authors do not consider integration into an
actual detection pipeline and performance on the standard
MS-COCO [16] is not considered.

CurveGCN [17] predicts polygonal boundaries through
a graph convolutional neural network from an initial con-
tour proposal. For the bulk of training, they use an ordinary
Chamfer loss, however, they do note that fine-tuning their
model with respect to a differentiable accuracy metric, i.e.
triangulating the polygon into a mesh and supervising with
respect to masks using a differentiable renderer [22] leads
to improved results.

Lastly, some recent work [6] considers using boundary
information as an additional supervision for instance seg-
mentation, however, they still predict masks directly and not
polygons.

3. Method
3.1. Setting

Instance segmentation considers an input image I €
RA*Wx3 and is tasked with producing N ordered instances
0;, 1 < i < N. Most modern benchmarks consider
instances as a tuple (M;,¢;) where M, is a per-pixel bi-
nary mask denoting membership by the object and where
ci € {1,...,C} is the predicted class of the object.

Since M; is a binary mask, most segmentation models
find it natural to predict some downsampled version of M.
M; is predicted as a discrete grid of continuous confidence
values M;(z,y) with x € {1,..., X'}, y € {1,...,Y'}
for a mask size of X’ x Y’. This phrases mask prediction

as a classification problem. At inference time, M; is trans-
formed into a binary mask with an ordinary decision rule
(usually M;(x,y) > 0.5). Therefore, without approxima-
tions or relaxations, M; is not differentiable for downstream
components relying on M;(x,y).

In this work, we phrase the prediction of M; rather as
a regression problem. This decomposes the prediction of
M; into two parts. First, we predict K vertices V; =
{(z8,98), .., (x%_1,yk _, } which define the boundary of
a polygon in 2D under a fixed ordering. Then, we produce
M;; through rasterization to the desired mask size X’ x Y.
M; must be produced because instance segmentation re-
lies on masks for evaluation. This leads to the following
choices: how should V; be predicted and more importantly,
how should V; be supervised with respect to the ground
truth. We present our approach to this problem as Bound-
aryFormer.

3.2. Instance Segmentation with Mask-supervised
Boundary Regression Transformers

We design BoundaryFormer as a component that can be
added on to existing detection-based frameworks. While we
believe BoundaryFormer is generally applicable, we con-
sider a more concrete setup for the sake of presentation.
In particular, we assume a detector built upon a standard
FPN architecture (this includes FCOS [29] or R-CNN [10])
which produces feature maps F = {P,,...,Ps} in de-
creasing resolution from the image I. From these fea-
tures, the detector proposes IV objects in the form of boxes
B; = (l;,t;,w;, h;) which denote the left edge, top edge,
width, and height of the box respectively. Each B; cor-
responds to some ground-truth mask M; where M; is ex-
pected to be clipped to B;. We use B; as a means to ini-
tialize an ellipsoidal polygon V;(0) inscribed in B;, sim-
ilar to other contour-based methods [14, 20, 25]. From
V;(0), our model iteratively refines this shape L times by
Vi(j +1) = g;(F,Vi(j)) to produce a final prediction
Vi(L).

We visualize a concrete implementation in Figure 2.
Since we are dealing with point sets, we implement g with
Transformers [32] using two kinds of attention. Each vertex
within the polygon V; corresponds to some point embedding
Pf where 1 < k < K and includes a “point encoding”
modeled off of the usual Transformer sine positional en-
coding. The first kind of attention allows each P} to attend
to all other point embeddings Pik' within the same object.
The second allows each P} to attend to the image features
F'. While the first kind of attention is implemented using
ordinary (quadratic) self-attention, we implement the point
to image feature attention using Deformable Attention [36]
which significantly reduces the computational cost. Fur-
thermore, this allows multi-scale across levels P, through
Ps. Finally, for each embedding PF, g; predicts a 2D offset
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Figure 2. Illustration of BoundaryFormer: Given an image, multi-scale features are collected and boxes for each object are proposed
by the underlying detector. We initialize a proposed polygon for each box using a simple ellipse. At each layer, attention between points
within the polygon as well as attention from points to the image features is performed in order to refine the polygon. New points are inserted
between existing ones in order to efficiently produce higher resolution polygons as the refinement progresses. After each refinement, the
predicted polygon is rasterized in a differentiable manner and compared to the ground-truth mask using a mask-based loss.

(Ax, Ay) to refine the vertex using an MLP.

3.3. Mask-based Supervision

Given the predictive model, we expect a final output
polygon V; consisting of K points for each proposed box
B; from the underlying detector. However, in order to train
such a model, we must provide a means of supervision.
Most previous work has relied upon point-based matching
losses where some scheme to assign a predicted point to
a point in the polygonal ground-truth is devised. These
might include: the Chamfer distance [14], permutation-
based matching [17], and assignment rules that depend on
the initial contour [20]. However, we believe these ap-
proaches are undesirable and unnecessary. First, they re-
quire access to ground-truth polygons which are not always
available and attempting to derive polygonal contours from
masks is a noisy process (Table 4). These ground-truth
polygons might need to be sampled (up or down) against
heuristics in order to satisfy the requirements of point-based
losses. Second, we evaluate instance segmentation quality
with respect to masks (i.e. COCO mask AP [16]), and there-
fore it’s not guaranteed that these metrics are optimizing the
desired metric. Lastly, many essential operations are non-
trivial to implement on polygons directly. This includes:
clipping to a box (required for Rol-like operations), inter-
section, and even union. However, the mask-based coun-
terparts are simple, highly optimized, and differentiable in
existing frameworks.

Therefore, we require our model to only require mask-

With-in Polygon Sign
C(V.z,y)

Rasterized Soft Mask
I(z,y)

Polygon Predictions
v

Distance to Nearest Segment
D(V,z.y)

Figure 3. Illustration of differentiable rasterizer: We illustrate
the transformation from polygonal point predictions to a differ-
entiably rasterized mask: pixels are given signs based on being
within the polygon or not, projections onto the nearest segment are
computed, and Equation 1 determines the final rasterized value.

based supervision and furthermore, to require it in the exact
same sense as an ordinary mask-based segmentation model.
We transparently handle this transformation from polygon
space to mask space by the usage of a differentiable 2D
rasterizer. Because of the dynamic nature of rasterization,
we are afforded more flexibility than a purely mask-based
model. We now describe specific details of the rasterization
process.

3.3.1 A polygon-specific rasterizer

While previous work [9, 17] has used 3D renderers (leav-
ing the depth component constant) to produce masks from
polygons in a differentiable manner, these methods require
the additional step of triangulation. We find this to be un-
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necessary, especially accounting for the time necessary for
triangulation and additional choice of triangulation method
required. Rather, we use [19] as inspiration to design a ras-
terizer that operates on polygons directly rather than trian-
gulated meshes.

The pipeline of the proposed differentiable rasterizer is
shown in Figure 3. Consider a polygon with vertices V' and
a desired rasterization pixel size of X’ x Y. For each pixel
(z,y) where 0 < & < X’,0 < y < Y’, we use a PnP algo-
rithm [1] to determine whether the pixel at position (z,y)
lies within the polygon as C(V, z,y), where C' = 1 if it lies
within and —1 if it does not. Then, each pixel (z, y) is pro-
jected onto the closest segment on the polygon’s boundary
and this distance is recorded as D(V, x, y). Finally, follow-
ing [19], we model each pixel’s contribution to the raster-
ized image as a sigmoidal function (with some sharpness 7)
according to the associated distance:

I(z,y) =0 (C(V’”’y) * D(Vaw,y))

)]

Ju
Therefore, this rasterizer provides signal solely from the
boundary without the need to consider derived mesh points.
The rasterizer and backwards pass are implemented en-
tirely in CUDA. This affords us efficiency to train solely
with the differentiable rasterizer for the entirety of training.
We find the Dice [24] loss to be critical to the success of
training with rasterized masks, although it’s likely similar
losses, e.g., Lovasz-Softmax [3] perform equally well.

3.3.2 Alignment

Alignment with ground-truth: We emphasize that we use
the exact same ground-truth masks (although possibly at
differing resolutions) as an ordinary R-CNN pipeline. Thus,
it is imperative that we ensure our differentiable rasteriza-
tion is “aligned” to the method of rasterization built into
the COCO API [16]. Due to differences in what is consid-
ered a “pixel”, we ensure that we subtract a half pixel on all
coordinates before passing them to our rasterizer. This sig-
nificantly improves alignment and thus performance, e.g.,
mask AP drops from 36.1 AP to 35.3 AP when not aligned.
Alignment with architecture: When building off of ex-
isting architectures, e.g., FPN [15], operations often have
a bias towards alignment with convolutions. We find that
when we attempt to use BoundaryFormer in an Rol-less
setting, i.e., directly attending to the full image-based fea-
tures, it is essential to perform a global pooling-like oper-
ation to significantly increase performance — without this,
mask AP drops from 36.1 AP to 34.2 AP. We hypothesize
this might be due to aliasing in the deconvolutional process
of the FPN.

3.4. Coarse to fine upsampling

By having each point dedicated to a single point query
embedding, we afford a great deal of flexibility to our

model. However, since often we might have a large num-
ber O of objects or object proposals and K control points
for each object, this can require computation on the order
of O * K x L if we include L layers. At the same time, it’s
unlikely that we truly need K vertices until the prediction
is itself more accurate. Therefore, we consider a base num-
ber of control points B (usually 8) and upsample the points
by 2x at each layer. Specifically, given V;(l) consisting of
K (1) points, we first apply g;(G, V;(1)) to get refinements to
produce V(I + 1) still consisting of K () points. Then, be-
tween each point (z;,y;) and (2,11, y;+1), we insert a new
wﬁ'gwl , yﬁ'gwl

point at the midpoint < ) We do not av-

erage the corresponding point embeddings P; and P;y; to
initialize the new point and instead insert the corresponding
“learned” point embedding . Overall, this speeds up train-
ing and memory consumption by about 1.5X versus using
the same number of points at each layer.

3.5. Loss

We finally present the loss of our polygon-based bound-
ary prediction model trained jointly with a box-based detec-
tor. Suppose the detector is trained against Lppo,.. We de-
note the subset of foreground-matched boxes as {B; | 1 <
¢ < R} and associate ground-truth mask M; of resolution
X’ x Y’ to each. If our predictive model of polygons con-
sists of L layers, then we have dense outputs corresponding
to V;(1) with 1 < [ < L. Then, using I;(!) to denote the
(differentiably) rasterized version of V;(1), we define a total
loss:

L R
L= »cbbo:c +ZZDZC€ (Il(l)le) 2)
1 =1

This loss provides parity in supervision since like a stan-
dard instance segmentation model, it relies only on access
to ground-truth masks M.

4. Experiments

We evaluate the parity in performance of Boundary-
Former across the commonly used MS-COCO dataset
[16] and Cityscapes dataset [7]. We additionally provide
experiments for transferring models from MS-COCO to
Cityscapes to illustrate possible differences based on the un-
derlying representation learned. We focus on comparisons
with Mask R-CNN [10] as the standard baseline for instance
segmentation, although, we calibrate our results with other
contour-based and masked-based models. Furthermore, we
consider inclusion of BoundaryFormer in both single stage,
FCOS [29], and two stage approaches, Faster R-CNN [27].

4.1. Training Details

All models are trained in an end-to-end fashion with re-
spect to the entire network. We aim to keep underlying
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backbones and architectures as close as possible to Mask
R-CNN [10] to compare as fairly as possible. Therefore,
unless specified, we use a ResNet50-FPN backbone for
all models and follow the exact same settings as Mask-
RCNN in Detectron2 [33] with only the “mask head” of
Mask R-CNN replaced with the architecture outlined in Fig-
ure 2. While Mask R-CNN requires Rol pooling to predict
masks, this feature is optional in our approach and frees us
from constraints that such a grid-based approach imposes.
Rather, we present results without the need of Rol pool-
ing such that the point to image features attention is with
respect to the entirety of { P, ..., Ps}. One notable excep-
tion to standard training is that instead of SGD, we train all
models with the Adam [12] optimizer according to the set-
tings outlined in Swin [21] due to our use of Transformers
(except a weight decay of 0.20 for larger models).

For details specific to BoundaryFormer, we train all
models with coarse to fine upsampling over 4 layers of
Transformers [32] to produce a final output of 64 points on
COCO and 128 on Cityscapes. All other parameters with
respect to deformable attention follow the same settings of
Deformable DETR’s [36] decoder layer.

For rasterization, we find that 7 = (0.1 (denoting raster-
ization smoothness) generally performs well. Additionally,
we rasterize polygons during training to a fixed X’ x Y’/ =
64 x 64 resolution. When performing rasterization, we only
rasterize the predicted polygon within its box, not with re-
spect to the entire image. This emulates the behavior of Rol
pooling. Like Mask R-CNN [10], the ground-truth mask is
clipped to this box.

Inference: At inference time, we follow the same infer-
ence procedures as the underlying detector. We rely on ras-
terization from the COCO API directly [16] rather than our
own rasterizer since differentiability is not required.

4.2. COCO

COCO [16] is a large-scale dataset containing 118K
training images of natural scenes with 80 annotated fore-
ground classes. It has historically been a relatively difficult
dataset for contour or boundary-based models to achieve
parity in performance with mask-based approaches. As far
as we can tell, our model is the first to achieve parity in
mask quality to Mask R-CNN on COCO.

We detail these comparisons in Tables 1 and 2. We note
that BoundaryFormer achieves a slight edge in mask quality
over Mask R-CNN and is competitive with the boundary-
preserving variant [6] while significantly outperforming the
best contour-based method [20]. At the same time, we ob-
serve that both models attain the same box performance —
indicating that both tasks (mask or polygon prediction) pro-
vide multi-task training benefits to the underlying detector
when trained end-to-end. While we find the best results us-
ing R-CNN as an underlying architecture, BoundaryFormer

Method Backbone | Detector AP APsy | APppox

Mask R-CNN [10] R50-FPN | R-CNN | 352 56.3 38.6
Mask R-CNN* [10] R50-FPN | R-CNN | 35.8 56.8 38.8
BMask R-CNN [6] R50-FPN | R-CNN | 36.6 56.7 39.4
BMask R-CNN* [6] R50-FPN | R-CNN | 36.4 56.3 37.8

DANCE [20] R50-FPN | FCOS 34.5 55.3 40.2

BoundaryFormer (ours) | R50-FPN FCOS 35.8 55.7 40.2
BoundaryFormer (ours) | R50-FPN | R-CNN | 36.1 56.7 38.8

Table 1. Results on MS-COCO val: We compare Boundary-
Former to the state of the art in contour/boundary prediction [20]

as well as mask-based counterparts. * indicates re-trained with
Adam [12].

can still match Mask R-CNN when using FCOS. Perfor-
mance appears to be slightly worse despite performing bet-
ter with respect to box AP. We hypothesize this might be
due to FCOS using only P3-P7 within its FPN whereas R-
CNN includes P2 and thus might learn enhanced features
relevant to boundary prediction.

4.3. Cityscapes

Cityscapes [7] consists of a diverse set of street scenes
across European cities. The dataset is relatively small com-
pared to COCO — consisting of only 2975 training images,
however, each image is of a high resolution and annotation
quality. Furthermore, it is notable for its large amount of oc-
clusion [10] which causes a significant number of instances
to be fragmented into multiple simple polygons. This cre-
ates problems for boundary prediction which usually only
consists of predicting and matching to a single ground-truth
polygon. While we compare to other methods which in-
clude mitigations (e.g., initialization from masks [14]), we
emphasize that BoundaryFormer uses no special handling
and does not deviate from the standard training process.

We highlight the performance of our method with re-
spect to both ImageNet and COCO initializations. COCO
initializations are made using a model trained under the
standard 1x training schedule, i.e., the models in Table 1.
Mask R-CNN [10] and BoundaryFormer results are the av-
erage of three runs to account for well-known instabilities
in Cityscapes training.

We observe that BoundaryFormer is still able to achieve
parity with Mask R-CNN despite being at a significant dis-
advantage by predicting a single polygon for fragmented
objects. Surprisingly, when initializing BoundaryFormer
from COCO, it significantly exceeds Mask R-CNN in final
performance which might indicate a polygonal representa-
tion transfers well.

4.4. Ablation studies

We provide ablations for the hyperparameters of both
the supervision (the rasterization process) and some model-
specific hyperparameters/justifications.

Polygonal ground-truth from masks? While we promote
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Method Backbone Detector | Schedule | Output Supervision AP APs AP75 APg APy APy
Mask R-CNN [10] R50-FPN R-CNN 1x masks masks 36.1 57.3 38.7 19.7 38.0 47.1
Mask R-CNN [10] RI01-FPN | R-CNN 3% masks masks 39.2 61.1 423 224 414 50.7
BMask R-CNN [6] R50-FPN R-CNN 1x masks masks 36.6 57.0 39.6 194 38.7 48.0
BMask R-CNN [6] RI101-FPN | R-CNN 1x masks masks 383 59.2 413 20.3 40.8 50.2
DeepSnake [25] R50-FPN | CenterNet - polygons polygons 30.5 - - - - -

PolarMask [25] R101-FPN FCOS 2% polygons polygons 32.1 53.7 33.1 14.7 33.8 453
DANCE [20] R50-FPN FCOS 1x polygons | polygons + panoptic | 34.6 55.9 36.4 19.3 37.2 43.9
DANCE [20] R101-FPN FCOS 3X polygons | polygons + panoptic | 38.1 60.2 40.5 21.5 40.7 48.8
BoundaryFormer (ours) | RSO-FPN R-CNN 1x polygons masks 36.4 57.2 39.0 19.6 38.6 479
BoundaryFormer (ours) | R1I0I-FPN | R-CNN 1x polygons masks 37.7 58.8 40.5 20.4 40.2 49.0
BoundaryFormer (ours) | R101-FPN | R-CNN 3 polygons masks 394 60.9 42.6 22.1 42.0 51.2

Table 2. Results on MS-COCO test-dev: We evaluate and compare BoundaryFormer on the MS-COCO test-dev set with larger backbones
and longer training schedules, showing that its performance scales as expected while staying competitive with strong mask-based baselines.

Method model init| poly init |e2e| sup AP APs
Mask R-CNN* [10] | ImageNet N/A - |masks| 342 60.7
Mask R-CNN* [10]| COCO N/A - |masks| 36.5 62.0

DeepSnake [25] ImageNet | extreme pts| v' | poly | 28.2 -

UPSNet [14] COCO |pred masks| - |masks| 37.8 -
PolyTransform [14] | COCO |pred masks| - | both | 40.2 -
BoundaryFormer | ImageNet| ellipse v’ |masks| 34.7 60.8
BoundaryFormer CcOoCco ellipse v/ |masks| 383 629

Table 3. Results on Cityscapes val: We establish that Boundary-
Former can maintain parity with Mask R-CNN even on the dif-
ficult Cityscapes dataset. Additionally, when using a model ini-
tialized from COCO, BoundaryFormer shows improved transfer
ability over Mask R-CNN and is competitive with PolyTransform,
which requires the use of a mask head to initialize its contours.
Lastly, BoundaryFormer is the only model that both relies solely
on ground-truth masks for supervision and is end-to-end differen-
tiable. * indicates re-trained with Adam [12].

the usage of masks directly as supervision of our model
for both performance and flexibility, contour models that
require access to polygonal ground-truth could resort to
generating contours from masks themselves when masks
are the only available annotation source. Therefore, we
re-generate the COCO training dataset (where polygonal
ground-truth is available) and replace the existing segmen-
tations with those generated using a border following al-
gorithm (i.e., cv2.findContours) in order to retrain
DANCE [20]. In Table 4, we observe sharp decreases in
resulting performance as measured by the unmodified MS-
COCO val set — indicating that generating polygons from
masks can introduce errors. While it’s plausible this could
be improved, we believe it acts as an unnecessary barrier in
producing an accurate, certain model.

DANCE [20] ‘ Polygons (verbatim) Polygons (from masks)

Mask AP | 345 23.1

Table 4. Comparison in training a point-based supervised
model using verbatim polygons from annotators or those gen-
erated using standard algorithms from masks.

Rasterization smoothness (7): The rasterization smooth-
ness dictates the (inverse) steepness of the sigmoidal func-
tion in Equation 1. While it must be sufficiently large to
allow good gradient flow, it should also be small enough to
accurately reflect what will be predicted at inference time,
i.e., the hard rasterization of the predicted polygons. We
find that lower values of 7 are required (i.e. sharper), how-
ever, within that lower range, the performance is generally
robust with values around 7 = 0.1 to be sufficient. Larger
values, e.g., 7 = 1.0 lack sufficient sharpness for optimal
results and mask AP drops to 35.6.

Rasterization resolution (X’ x Y’): Like Mask R-CNN,
each instance is supervised at a fixed resolution with respect
to some mask loss. We investigate the impact of the choice
of resolution on resulting performance. In our experiments,
we find that 64 x 64 performs well with performance satu-
rating at larger resolutions. However, this might be a conse-
quence of the lower quality annotations in COCO and these
characteristics might change on higher quality annotations,
e.g., LVIS [8].

X'xY'| 14x14 20x20 40x40 64x64 80 x 80

Mask AP ‘ 34.5 35.5 35.9 36.1 36.1
Number of control points/layers (K, L): We investigate
the tradeoff in performance given the number of initial
points, number of layers, and whether to use a coarse to fine
strategy (i.e., K1 # Kp). We find that even with only two
layers, the model still performs reasonably well — suffering
only a 1 point drop in Mask AP. Furthermore, we find using
less points to lead to similar drop, however, we observe no
degradation in performance when comparing our coarse to
fine strategy to a dense one.

L/K1/Kp|2/32/64]3/16/64] 4/4/32 | 4/8/64 |4/64/64|4/16/128

Mask AP | 350 | 357 | 352 | 361 | 361 | 362

5. Qualitative Analysis

We briefly investigate the general qualitative quality of
predicted polygons in Table 4. Furthermore, we observe
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Figure 4. BoundaryFormer is able to predict high quality instance segmentations over the MS-COCO dataset: Predicted boundary
points are shown in black. The resulting rasterized mask is overlayed onto the instance in color.

some robustness to fragmented objects in Figure 5b where
multiple polygons are required for to make a perfect predic-
tion. Nonetheless, BoundaryFormer has implicitly learned
a reasonable single-polygon approximation — likely owing
to its supervision in the form of masks. Finally, we exhibit
the approximations our coarse to fine strategy learns in Fig-
ure 5a and improvements in quality it makes as more and
more points become available.

A4444

> w o v

ground truth

(b)
Figure 5. Progressive refinement and fragment robustness (a)
illustrates the progressive improvement in boundary quality over
layers. (b) shows some implicitly learned robustness to frag-
mented objects (ground-truth is shown in the top-left).

6. Conclusion

We presented BoundaryFormer, a simple baseline for re-
gressing instance segmentations as polygonal boundaries
rather than predicting dense masks. Despite regressing
polygons, this model relies on supervision only through
masks. Combined with a strong point-based architecture
and supervision in pixel space, BoundaryFormer can match
and outperform mask-based counterparts across a variety of
datasets. As a result, we believe that many tasks that have
historically been mask-based, e.g., semantic and panoptic
segmentation can now be revisited. Furthermore, we hope
downstream tasks that have relied on non-differentiable
mask predictions can now consider using the sparse repre-
sentation of a polygon and the end-to-end differentiability
it provides. Finally, we believe further research can allevi-
ate some limitations: predicting fragmented objects faith-
fully, incorporating additional mask-based advancements,
and finding more efficient architectures. While this work
predicts a sparse representation, it nonetheless requires the
full, dense form of an object’s mask for supervision — rais-
ing the issue of whether the supervision could be made
sparser and more boundary-centric.
Societal impact: Our work is concerned with predicting ex-
tents of objects within images. Like other systems of detec-
tion and recognition, both bias learned from datasets as well
as misuse could cause societal harm. However, we believe
our work is consistent with the existing risks in advancing
such systems.
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