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The outbreak of novel coronavirus disease (COVID-19) has resulted in changes in productivity and daily
life patterns, and as a result electricity consumption (EC) has also shifted. In this paper, we construct
estimates of EC changes at the metropolitan level across the continental U.S., including total EC and
residential EC during the initial two months of the pandemic. The total and residential data on the state level
were broken down into the county level, and then metropolitan level EC estimates were aggregated from
the counties included in a given metropolitan statistical areas (MSA). Here we show that the reduction in
total EC is related to the shares of certain industries in an MSA, whereas regardless of the incidence level
or economic structure, the residential sector shows a trend of increasing EC across the continental U.S..
Since the metropolitan areas account for 86% of the total population and 87% of the total EC of the
continental U.S, the analytical result in this paper can provide important guidelines for future social-
economic crises.
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Introduction

COVID-19 broke out and spread rapidly in the U.S., compelling human society to reduce activities
involving physical contact. Enforcement of shelter-in-place orders in many states led to transformations
in people's working and living styles, such as the rise of the work-from-home model and decreased
commuting needs’. As a result, the demand for energy resources, such as gasoline, jet fuel, coal, and
natural gas, experienced a sharp decrease?*. The drastic minimization of human activities also
impacted the environment, both positively and negatively. While greenhouse gas emissions underwent
a dramatic decline®7 and air quality, beach cleanliness, and environmental noise levels improved,
increased waste, especially medical waste, was recognized as a challenge®?. In addition, the electric
power industry was also significantly affected during the pandemic, which will be the topic of this work.
On the electricity generation side, the share of renewable power generation has increased continually
during the COVID-19 pandemic'®'2, This is due primarily to policy support and the continuously
decreasing cost of renewables despite lags in the supply chain and delays in the deployment process’3.
Meanwhile on the electricity demand side, total electricity consumption (EC) decreased and EC
composition changed', with the daily peak demand decreasing and arriving during later hours'®, and
power infrastructure maintenance was affected due to supply chain disruptions'®. To secure both the
power supply and their employees’ health, the electric power industry overall reacted rapidly and
effectively by encouraging employees to work from home, monitoring employee health conditions, and
extending employee shift times to reduce infection'®. Despite the clear overall trends within the electric
power industry, the implications of the pandemic on the power grid differ from region to region across
the continental U.S.. For example, while a significant reduction in demand occurred in the midcontinent
area, the electricity demand in Florida remained almost unchanged?”. In addition, the sensitivity of total
demand to the mobility of the retail sector has varied between cities'®. However, detailed shifting
patterns of nationwide EC are not available. Because EC and economic production are frequently linked,
it is well known that the gross domestic product (GDP), as an index of economic production, can forecast
EC'9-22, However, EC is not only linked to economic output, but also to economic structure, which can
affect the EC projection?324, In other words, changes in the economic structure can cause shifts in
EC25%, This study considers metropolitan statistical areas (MSAs) as the basic unit and explores the
connection between economic structure and electricity consumption (EC) shift patterns following the
beginning of the pandemic in the U.S. In summary, county level EC has been calculated using the GDP,
population, and state level EC data. Then MSA-level EC estimates are aggregated from county level
EC data. The estimates cover 380 MSAs in the continental U.S. out of the total 384 MSAs rigorously
defined by the United States Office of Management and Budget. EC estimates for the remaining 4 MSAs
located in Hawaii and Alaska were not calculated. These 380 MSAs account for 86% of the total
population and 87% of the total EC of the continental U.S., while the rural areas account for 14% of the
total population and 13% of the total EC. Thus, understanding the EC patterns and economic structures
of these MSAs is of great importance. The studied time periods are April-May 2019 and April-May 2020,
and the data for these time periods includes total EC and residential sector EC. The April-May time
period was selected because the first two months of the pandemic in the U.S. are critical to
understanding the pandemic impact on EC, as there was no preparation or organized response to such
a social-economic emergency. The detailed data resources and analysis procedures are discussed in
the "Methods" section.

The metropolitan level perspectives in this study help to demonstrate the connection between EC and
economic structure because MSAs accommodate a high population density and integrate sizeable
industries.

Based on the above motivations, this paper constructs estimates of metropolitan level EC variation from
April-May 2019 to April-May 2020 in the U.S.. Here we show that there is an evident pattern shift of total
EC, and the patterns are different for different economic structures in metro areas. Meanwhile, although
there is a nominal residential load increase of a few percentage points across all pandemic incidence
levels and economic structures, the increase amount of residential load is not related to particular levels
of pandemic severity or particular economic structures.

Results

COVID-19 incidence map on the metropolitan level during April-May 2020. After the first COVID-
19 case was confirmed in the state of Washington in January 2020, it spread throughout the U.S. at an
unexpected speed. Most states issued stay-at-home orders before the end of March, shutting down
unessential places to restrain the pandemic’s spread. The pandemic entered a plateau in the U.S.
during April and May. However, when it came to the end of May, the reopening process and mass
gathering activities accelerated pandemic spread and increased electricity consumption (EC). To
analyze the impact of a stay-at-home order on EC during the pandemic, this paper specifies the time
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window between April 1st and May 31st, 2020. The information from these first two months represents
initial and unprepared responses to the COVID-19 pandemic, and thus has the most significant
implication for a similar future social-economic emergency leading to a lockdown.
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Fig. 1 COVID-19 incidence map. COVID-19 Incidence map of 380 metropolitans in the continental
U.S. during April-May 2020.

Figure 1 shows the COVID-19 incidence map of the 380 MSAs in the continental U.S. during the two-
month window from April to May 2020 (See Equation (2) in the “COVID-19 incidence level calculation”
subsection of the “Methods” section for incidence level calculation). The map data is referenced from
US Census Bureau?’. The pandemic situation on the west coast (Washington, Oregon, and California)
was moderate, and the situation along the southeastern coast (North Carolina, South Carolina, Georgia,
and Florida) was mild. However, states along the northeastern coast were experiencing high-to-critical
levels of COVID-19 incidence. The largest critical area was the MSA of New York-Newark-Jersey City,
NY-NJ-PA, which encompasses 20 million people. Along the northeastern coast, there were two other
MSAs at critical incidence levels: Vineland-Bridgeton, NJ and Salisbury, MD-DE. The incidence level
map shows geographical relevance among these areas since the adjacent MSAs to New York-Newark-
Jersey City, NY-NJ-PA also experienced a high incidence of COVID-19 at this time.

Economic structure features. Based on the economic structure described by the 20 selected GDP-
related variables, the areas of different incidence levels are categorized into separate clusters,
respectively (See “Economic structure clustering analysis” subsection in the “Methods” section). Figure
2 shows the cluster centers of low (Cluster | and Il), medium (Cluster Ill, IV, and V), and high incidence
level (Cluster VI, VII, and VIII) MSAs. For simplicity, Figure 2 shows the categories that demonstrate
statistically significant difference among each cluster (i.e., difference from MSA averages), while all
other categories with no significant difference among different clusters are combined into “Other
categories.” Further, GDP categories are rearranged as follows: 1) management, administrative, and
educational services are combined as “MAE service”; 2) information, finance/insurance, and
professional services are combined as “high-end services”; and 3) the “Other categories” include
construction, wholesale trade, retail trade, accommodation/food services, arts/entertainment/recreation,
and other services. The 11 MSAs in critical incidence level do not show significant clustering trends, so
they are not included in the economic clustering analysis below. For comparison, the average economic
composition of all the 380 MSAs is displayed as different sections in the bar chart in Figure 2. The
clusters' unique economic characteristics are summarized as follows.
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¢ In terms of agriculture/forestry, Cluster V and VI have a higher percentage when compared to the
MSA average level. Furthermore, one can also observe that the share of manufacturing of these
two clusters is larger than the average level.

¢ Regarding the mining industry, Cluster Il and IV have a higher proportion than the MSA average
level. Similarly, the transportation/warehousing of these two clusters is also above the average
level.

e Asforreal estate/leasing, Cluster | and VIl have a higher share than the MSA average. Also, their
percentage of public administration is greater than the MSA average.

¢ Another noteworthy point is that Cluster Ill and VIl have a higher percentage of high-end services

and MAE services.

e The MSA average is shown by the last bar of the figure for easy comparison.
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Fig. 2 Cluster centers of MSA economic structure.

EC variation on the metropolitan level after COVID-19. Following the initial outbreak of COVID-19,
the stay-at-home trend led to fewer human activities in industrial and commercial sectors. Therefore,
total EC experienced a remarkable decrease, while residential EC enlarged widely since people stayed
at home for much longer periods of time than usual.
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Fig. 3 Spatial heterogeneity in EC change on metropolitan level after COVID-19. a. Total electricity
consumption change. b. Residential electricity consumption change.

Figure 3 shows the EC change in the U.S. on the metropolitan level after the pandemic began. The
map data is referenced from US Census Bureau?’. It shows the overall trend that total EC declined
while residential EC increased, which is reasonable due to the implementation of the work-from-home
model, although some regions experienced the opposite change.

Figure 3a illustrates the total change in EC at the metropolitan level in the April-May two-month window
in both 2019 and 2020. It can be seen that the electricity demand shrinks in most regions of the country.
The sharpest decline (-15.18%) occurred in Muskegon in the state of Michigan, and other MSAs in
Michigan also experienced more than a 12% decrease in total EC, where the 95% confidence interval
(Cl) of the average value is [-14.67%, -13.89%] (n=15, and the alpha used here is 0.95, which is the
default threshold value). Similarly, MSAs in the midwestern states (lllinois, Indiana, lowa, Kansas,
Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin)
decreased by about 8.88% in total EC, where the 95% Cl is [-9.71%, -8.06%] (n=96). EC decreases in
the northeast (New York, Connecticut, Maine, Massachusetts, New Hampshire, New Jersey,
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Pennsylvania, Rhode Island, and Vermont) were about 7.45%, where the Cl is [-7.89%, -7.01%] (n=51).
On the west coast, the decreasing patterns in Oregon (Cl = [-2.13%, -1.33%], n=8) were lighter than in
California (CI = [-7.13 %, -6.63 %], n=26) and Washington (CI = [-7.08%, -4.04%]). Decreases in the
southeast (Alabama, Florida, Georgia, Kentucky, Maryland, Mississippi, North Carolina, South Carolina,
Tennessee, Virginia and West Virginia) were somewhat significant (Cl = [-9.69%, -8.07%], n=114).
However, MSAs in Florida saw notably smaller decreases in EC, where the Cl is [-3.65%, -3.17%]
(n=22).

Despite the overall decrease in EC, some MSAs in the south consumed more electricity after the
pandemic took hold. The total EC of MSAs in Louisiana, Texas, and New Mexico increased slightly,
where the Cls are [0.69%, 1.21%], [1.32%, 2.14%)], and [2.70%, 3.51%], respectively, and the sample
sizes are 9, 25, and 4, respectively. MSAs in Arizona consumed much more electricity, where the Cl is
[8.59 %, 9.85%] (n=7). The largest increase in total EC occurred in Sierra Vista-Douglas, AZ (10.47%).
The total ECs of regions in the states of North Dakota, Idaho, and Nevada also increased slightly.
Figure 3b depicts the variation of residential electricity on the metropolitan scale between April-May
2019 and April-May 2020. Nationally, the residential sector saw an increasing trend. The largest
increase in residential-sector EC occurred in Phoenix-Mesa-Chandler, AZ (29.05%). Other MSAs in
Arizona and Nevada also experienced remarkable expansions of more than 20% in residential EC,
where the 95% Cls are [26.88%, 28.65%] and [24.30%, 25.92%], respectively, and the sample sizes
are 7, and 3, respectively. MSAs in other southern states of Texas, Louisiana, and Florida also
increased largely in the residential sector, where the Cls are [8.83%, 9.95%], [7.23%, 8.04%], and
[7.53%, 9.23%], respectively, and the sample size ares 25, 9, and 22, respectively. The northeastern
regions (New York, Connecticut, Maine, Massachusetts, New Hampshire, New Jersey, Pennsylvania,
Rhode Island, and Vermont) also experienced a large expansion in residential EC, where the Cl is
[8.32%, 10.18%], n=51. Similar increases in residential-sector EC were also observed in California and
Oregon, where the 95% Cls are [9.71%, 10.73%] and [7.61%, 9.38%], respectively, and the sample
sizes are 26, and 8, respectively. In contrast, the increases in the state of Washington were moderate,
where the Cl is [3.40%, 4.88%], n=13. Similarly, slight increases of residential EC occurred in the central
U.S. regions (Oklahoma, Kansas, Missouri, lllinois, Indiana, and Kentucky), where the aggregated ClI
for these six states is [4.99%, 6.54%], n=48 and each individual state’s variation pattern is similar, as
shown in the colored map in Figure 3b. Also, we may observe a few transitional states such as Virginia,
where the residential sector EC reduced very slightly, with the CI being [-1.62%, -0.81%] (n=7) which
is lower than the Cls of the northeastern states and higher than the southeastern states; for example,
residential EC dropped by no more than 1% in Richmond, VA.

By comparison, residential EC in parts of the southeastern region changed in the opposite direction.
Decreases occurred in North Carolina, South Carolina, Georgia, and Alabama, where the Cl is [-5.25%,
-4.42%)], n=51. The largest reduction occurred in Florence, SC which decreased by 8.77% in the
residential sector. The results show EC changes across the U.S. at the metropolitan level. It can be
observed that although EC variation patterns differed from region to region, the overall trend in EC was
towards a decrease in total EC and an increase in residential EC.

EC variation and economic structure. Economic structure reflects the industry and commercial
components of a specific area, impacting EC. As such, reductions in EC caused by lockdown policies
are interconnected with the economic structure. For example, in the New York Area, the decline in
electricity demand is mainly attributed to reduced commercial sector consumptions?.
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Fig. 4 Total EC variation among different clusters. Box and whisker plots of total EC variation; boxes
depict the upper and lower quartiles of the data; black solid lines depict the median values; whiskers
depict the range of the data excluding outliers (outliers are defined as observations larger than 1.5 x the
inter-quartile range from the upper or lower quartiles); grey dashed line depicts the median value of the
total EV variation of 380 MSAs. Two-sided Wilcoxon rank sum tests between each Cluster and all the
MSAs are performed. Cluster I: n=44, W=-1.8603, p=0.079; Cluster Il: n=19, W=-2.5246, *p=0.0116;
Cluster 1ll: n=110, W=0.7088, p=0.4784; Cluster IV: n=42, W=-4.2970, **p<1e-5; Cluster V: n=120,
W=3.8057, **p=0.0001; Cluster VI: n=13, W=0.4556, p=0.6487; Cluster VII: n=16, W=-0.1427,
p=0.8865; Cluster VIII: n=5, W=-0.1921, p=0.8476.

Figure 4 shows the boxplot of total EC variation between April-May 2019 and April-May 2020 on the
metropolitan level among different economic structure clusters. If we connect Figure 4 and Figure 2 to
build some connections between Total EC and economic structures, the following observations can be
presented.

e The total EC change indicates that Clusters Il and IV have significantly higher EC changes than
the average. Both of them have a sizable mining industry (about 7%) while other economic
categories are similar to MSA Average, as shown in Figure 2. Thus, it can be inferred that MSAs
with a high proportion of mining industry saw less of a decrease in total EC than other MSAs,
which is evidenced by a significant difference in total EC change between ll-and-IV and other
MSAs (Wilcoxon rank sum test; **p<1e-4, n1=61, n,=319). This is reasonable, because the mining
industry forms a significant portion of total electricity demand.

» Another significant observation is that both Clusters V and VI have a significantly higher proportion
of agriculture/forestry and manufacturing, while their other economic categories are similar to
MSA-average. The total EC of both clusters saw a statistically greater decline than the average
change of total EC. However, the difference of total EC changes between Cluster VI and the MSA
average is not statistically significant. It can be ascribed to higher mining industry share of Cluster
VI than Cluster V.

e Clusters Ill and VIl share similar economic structure characteristics, with a concentration on
intelligence-intensive services such as the economic category of high-end services (i.e.,
information, finance/insurance, professional services) and the category of MAE (i.e., management,
administrative, and educational) services. However, the total EC of Clusters Ill and VIl does not
demonstrate statistically significant differences from the total EC of other MSAs (Wilcoxon rank
sum test: p=0.3919, ns=126, n,=154). Thus, it can be concluded that the load reduction in the
high-end services and MAE services is aligned with average load reduction. The possible reason
is that while the computing loads of high-end and MAE services are shifted from offices to homes,
the HVAC loads in commercial buildings should reduce. This makes the reduction pattern of high-
end and MAE services similar to other economic categories.
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o Both Cluster | and VIl feature a disproportionately high share of the real estate/leasing and public
administration industries in their economic structure, where the total EC change for Cluster | and
VIIl is less than in other clusters (Wilcoxon rank sum test: *p=0.0452, ns=49, n,=331).
e Regarding the impacts of the pandemic, total EC changes among difference incidence MSAs do
not show an obvious pattern.
In summary, based on the observation, economic structures more dependent on either the mining
industry or real estate/leasing exhibited consistency in EC levels after the start of the COVID-19
pandemic, whereas manufacturing-dependent economic structures exhibited significant reductions in
total EC. Further, while the EC of intelligence-intensive services (e.g., high-end services, MAE services)
was expected to stay close to a pre-pandemic level because these loads were simply transferred from
offices to homes, the actual EC decrease is considerable. Although there is no actual data to support a
rigorous investigation of the reason for the change in EC, a possible explanation is that although work
can be transferred to home offices, a commercial building’s air conditioning and lightning loads reduced
and was not transferred to home offices while residential home air conditioning loads remain after the
pandemic.
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Fig. 5 Residential EC variation among different clusters. Box and whisker plots of residential EC
variation; boxes depict the upper and lower quartiles of the data; black solid lines depict the median
values; whiskers depict the range of the data excluding outliers (outliers are defined as
observations larger than 1.5 x the inter-quartile range from the upper or lower quartiles); grey dashed
line depicts the median value of the residential EV variation of 380 MSAs. Two-sided Wilcoxon rank
sum tests between each Cluster and all the MSAs are performed. Cluster |: n=44, W=0.5926, p=0.5535;
Cluster II: n=19, W=-0.7817, p=0.4344; Cluster lll: n=110, W=0.8901, p=0.3734; Cluster IV: n=42, W=-
3.0518, **p=0.0023; Cluster V: n=120, W=1.6488, p=0.0992; Cluster VI: n=13, W=0.6684, p=0.4283;
Cluster VII: n=16, W=-1.6477, p=0.0994; Cluster VIII: n=5, W=-1.8465, p=0.0648.

Figure 5 shows the boxplot of residential EC variation between April-May 2019 and April-May 2020 at
the metropolitan level among different economic structure clusters. The figure shows that the residential
EC change in Cluster IV is higher than the average level. Cluster VIII is above the average level, but
the difference is not statistically significant. The reason is that the small size of observations of Cluster
VIl results in the statistical insignificance. Overall, the median values among other clusters were not
significantly different.

In summary, total EC variation is shown to be mainly related to economic structure, whereas residential
EC is shown to have increased regardless of economic structure and COVID-19 incidence level.

Observation and verification from other reports. Metropolitan level EC data across the nation is not

available because the grid is operated by the power system operator which is across administrative
divisions, and the reductions are reported among the service territory rather than each MSA. However,
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partial estimates of electricity demand reduction for regions can be verified by reports from the California
Energy Commission (CEC) and other power grid operators such as the Midcontinent Independent
System Operator (MISO) and PJM.

The CEC reported that, in California, average weekday total EC reduced by 9% in April 2020 compared
to the same period in 201928, In our estimation, the average MSA level reduction in total EC in California
is 6.9%, where the 95% Cl is [-7.1%, -6.6%], n=26 in April-May 2020 compared to the same two-month
period in 2019. Because the reduction on weekends is roughly 5%-10% lower than on weekdays'+1,
the numbers from the CEC report are consistent with our estimates. In addition, the CEC observed that,
in California, the increase of the residential EC ranged from 8.9% to 12.4% from January to May 2020.
In contrast, we estimated that the reduction in MSA demand in the residential sector in California was
about 10.2% between April-May 2019 and April-May 2020, which is almost the middle of the CEC-
reported range [8.9%, 12.4%], n=26. MISO, which covers most parts of 11 states in the midwestern
U.S. and Manitoba in Canada, observed a 9.34% decrease in total EC during April-May 2020 as
compared to April-May 20192°. In our estimates among the states in the MISO service territories (North
Dakota, South Dakota, Minnesota, lowa, Wisconsin, Michigan, lllinois, Indiana, Arkansas, Mississippi,
and Louisiana), the average level of metropolitan reduction in total electricity demand is 8.0%, where
the 95% Cl is [-9.1%, -6.9%], n=84. In addition, PJM, a regional transmission organization that operates
electricity markets, reported about a 10%-14% decrease in the first half May 2020 and 6%-11%
decrease between May 16 to June 3, 2020%. In our estimates, the MSAs in the PJM service territory
(Delaware, lllinois, Indiana, Kentucky, Maryland, Michigan, New Jersey, North Carolina, Ohio,
Pennsylvania, Virginia, West Virginia, and the District of Columbia) experienced a 9.3% reduction in
total electricity demand during April-May 2020, where the 95% Cl is [-10.1%, -8.8%], n=118. Although
the territories of MISO and the time-windows of the reports from the CEC and PJM are not exactly the
same as in our estimates, our estimated reduction in total EC is essentially consistent with these reports.
In summary, the constructed metropolitan level electricity demand estimate is consistent with actual
measurements from the CEC, MISO, and PJM. The reports from these operators confirm the credibility
of our estimates of the EC variation on the metropolitan level for the two-month window of April-May in
2019 and 2020.

Sensitivity analysis. The source data is critical to the results, which are updated and modified over
time by the publisher. The COVID-19 data at the county level have been updated, resulting in changes
in two MSAs out of a total of 380. GDP data at the MSA level were updated with 2019 data, which
affects the economic structure of the MSAs. However, as shown in Supplementary Table 1, the gap
between GDP categories within the same clusters is not significant.

The U.S. Energy Information Administration also updates the EC data at the state level, including the
EC for 2020, which influences the EC estimates at the MSA level. As illustrated in Supplementary Table
2, the EC change with the updated data is relatively small in comparison to the previous version data.
However, in the subsequent pattern analysis of EC variation, only Cluster V of residential EC changed
from significant (*p=0.0369, n=104) to insignificant (p=0.0992, n=120), while the Wilcoxon rank sum
tests of other clusters remained unchanged.

In summary, although the data were updated and modified during the development and revision of this
paper, the analysis of the EC variation patterns persist with robustness. This further demonstrates the
credibility and robustness of the EC patterns related to the clusters.

Limitations. In this article, the nationwide estimates of EC on the metropolitan level in the U.S. are
implemented with limited data. This limitation underlying the “Methods” section of this paper can be
explored in the future: 1) The EC estimates rely on the assumption that the linear relationships between
GDP-Total EC and Population-Residential EC are extrapolated from counties in California to other
counties across the continental U.S. Although the linear relationship at the state level implies the
effectiveness for the sum of the EC of all the counties in a state which is also the basis for the estimates
of EC at the MSA level, its validity remains to be confirmed by other available county level EC data.
However, such data is not readily available at this time, and is difficult to collect. Also, in the
extrapolation, uncertainties can be introduced by the degraded linearity between the county level EC,
GDP, and population in other states. Data transformation can be applied to assure the linearity. 2) The
modeling of EC has drawn attention from many researchers and various methods have been
proposed3'-34, Although this article provides an easy-to-implement and effective way to estimate the
EC on the MSA level, the accuracy of the estimation method will benefit from more data sources and
more refined modeling methods, climate variables such as cooling-degree-days and other economic
variables such as GDP per capita can be introduced as control variables to enhance the model of EC35:36.
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Further, a more comprehensive survey on the energy supply during the pandemic can lend from panel
data analysis involving economics, electricity, petroleum, and gas®7:38,

Discussion

This paper proposes an easy-to-implement and effective method for estimating EC change under a
widely applied lockdown policy, and reveals the connections between EC change and economic
structure. By considering the economic features of regions as they relate to potential pandemics or
other social-economic crises as a set of new regulation rules or constraints, power grid administrators
can improve energy resource planning and power grid operation such that the future power systems
will be pandemic-ready. Our EC change estimation method may potentially change the model of power
grid constraints. A most recent example is the ongoing trend of incorporating of cyber-physical security
(CPS) into power system operation and planning, in addition to classic physics-based security
constraints. In other words, power grid constraint models may evolve from physics-only (conventional
practices) to physics-and-CPS constraint models (as in some ongoing research works), and eventually
to physics-CPS-and-pandemic all-inclusive constraint models (future studies). Thus, the impact of this
work will be fundamental and substantial.

Our estimates of electricity consumption (EC) variation at the U.S. metropolitan level reveal the impacts
of a large-scale lockdown policy following the outbreak of COVID-19 on both total EC and residential
sector EC. Our estimates also show how EC variation is affected by the economic structure of different
MSAs.

Our estimates indicate an overall decrease in total EC and an increase in residential sector consumption.
Although total EC decreases in most MSAs, the reduction differs from region to region. Based on in-
depth analysis of economic structures, we have found that the reduction in total EC is related to the
shares of certain industries in an MSA. High percentage shares in the mining industry and real
estate/leasing are related to smaller decreases in total EC, whereas a large reduction in total electricity
demand is related to a high share in manufacturing. In contrast, regardless of the incidence level or
economic structure, the residential sector shows a trend of increasing EC across the continental U.S..
Seemingly, the increase in residential consumption was brought by the shelter-in-place orders issued
during the April-May 2020 time period. Following the pandemic, some organizations may allow
employees to work from home permanently, indicating that the pandemic may affect people's lifestyles
and the society over a longer time scale than the temporary lockdown time. As a possible result,
variations in both total and residential sector EC caused by the pandemic may never completely return
to pre-pandemic levels.

The comparison of EC variation between different incidence levels is shown in Supplementary Table 3.
One can observe that the total EC in lower incidence MSAs experienced less of a decrease than the
MSAs in higher incidence levels, whereas the change in residential EC between MSAs at different
incidence levels was not significant. Another interesting observation is that the correlation between
COVID-19 incidence-level and EC varies with respect to time. In the April-May time window at the state
level, the Pearson coefficients between COVID-19 incidence and EC (total, residential) increased from
(0.21, 0.22) to (0.36, 0.40), respectively, whereas the Pearson coefficients between COVID-19 deaths
and EC (total, residential) increased from (0.17, 0.18) to (0.23, 0.24). This indicates that the relationship
between EC and the pandemic is dynamic rather than static. Although the coefficients are not high in
the early stage of the pandemic, as it spread out, EC can be employed as another metric of the
pandemic.

Methods
COVID-19 incidence level calculation. The incidence is a measure of epidemiology spread rate, as
given by the following equation:
C

I_P/IOO,OOO ()
in which [ is the incidence, C is the daily new confirmed cases, and P is the population. The seven-day
moving average is applied when calculating C to eliminate the statistic’s fluctuation between weekdays
and weekends. The four levels of COVID-19 are defined as®:

0, Low
_JIL10), Medium (2)
" ]110,25), High

[25,400), Critical

The population of MSAs was aggregated from 2019 county annual resident population estimates40.
COVID-19 case data for each MSA was aggregated from U.S. county COVID-19 case data*'. The
incidence of COVID-19 on the metropolitan level was then calculated by Equation (1). During the 61
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days from April 15t to May 31st, the most frequent incidence level was chosen as the metropolitan
incidence level.

Economic structure clustering analysis. The GDP data in 20192 is used to represent the pre-
pandemic economic structure, where the missing values of 2019 were filled in using the data from 2015
to 2018. There are 35 lines of data in each MSA, with each line accounting for a category. However, 20
categories listed in Supplementary Table 4 were selected as the representative variables to address
the overlap in the source data.

In some cases, there are missing values introduced from part of the data being hidden by the Bureau
of Economic Analysis to avoid disclosing confidential information, such as Agriculture/Forestry from
2018 to 2019 in Supplementary Table 4. To address the missing values, the data were processed in
four steps: 1) If the categories have valid observations within recent four years (2015-2018), the missing
values are filled in with the average value of the valid values; 2) The GDP data of 2019 were scaled
into percentage between 0 and 1 from quantity; 3) Regarding the categories that all the five observations
are absent, they are filled with (1 — s)/n, where s is the sum of the non-zero categories and n is the
number of missing categories; and 4). The scaled GDP data suffered from skewness to the right that
can degrade the further clustering analysis. Therefore, a fifth root transformation was applied to alleviate
the skewness issue. The data of Asheville, NC is given in Supplementary Table 4 as a snapshot of the
source and preprocessed data.

Given the high-dimensionality of the economic structure data, k-means*® was used for clustering, more
details can be found in Supplementary Note 1. The distance metric used in this study is the Euclidean
distance, and the elbow method is used to determine the number of clusters. Clustering analysis of
economic structure, which can be used to classify MSAs according to their economic characteristics,
will be used to further investigate the EC variation patterns in this paper.

EC estimates. The estimates can be done in two steps which are described as follows.

In the first step, we used GDP and population as indicators of total and residential EC respectively. EC
is categorized into four sectors: residential, commercial, industrial, and transportation. This study
analyzed the variation of total EC, residential EC, and the proportion of the residential sector. However,
EC data on the metropolitan level is not directly available. Therefore, estimates were constructed for
further study.

Metropolitan level EC, including total consumption and residential consumption, was estimated through
EC data at the state level from the U.S. Energy Information Administration (EIA). First, the total and
residential data on the state level were broken down into the county level. Second, metropolitan level
EC estimates were aggregated from the counties included in a given MSA.

Figure 6 shows the EC against GDP and population. Figure 6a indicates that in 2019 in California, the
county level total EC* had a linear relationship with the total GDP“2. Figure 1b indicates that in the
second quarter of 2020, the total EC#® was linearly related with the total GDP4¢ at the state level in the
continental US. Figure 6¢ shows that residential EC has a linear relationship with the population of each
county in California in 2019. Figure 1d indicates that in the U.S., during the second quarter of 2020,
state level residential EC could be roughly represented by the population of the year 202040, From
Figure 6b and 6d, it can be observed that the four states, namely Florida, Texas, New York, and
California, deviate from the linear regression line. Further, the GDP and population range on the state
level is much wider than the county level. As a result, inaccuracy can be introduced if we apply linear
regression model built from state level to estimate the county level EC. To overcome the drawback
mentioned above, linear proportional model at the county level is applied for the following reasons. First,
Figure 6a (or 6¢) indicates the linear relationship between total EC and GDP (or between residential
EC and population) on the county level in California. Second, due to county-level data unavailability at
other states, the linear proportional model with state-specific coefficients is applied at the county level
in each state, which is modeled by Equations 3 and 4. Third, as such, the estimates on county level
within a state can avoid the impacts from other states.

GDP, EC, and population are closely related to each other, and both GDP and population can be an
indicator of EC. As shown in Supplementary Table 5, the population outperforms the GDP in the
ordinary least squares (OLS) regression analysis on the total/residential EC. However, given the
widespread adoption of work-from-home policies, it is more prudent to use GDP and the intensity of
information technology to measure total EC. Additionally, it can be observed that when both GDP and
population are included in the model, the sign of the GDP coefficient becomes negative, which is
consistent with the high degree of collinearity between GDP and population. The Pearson correlation
coefficient between GDP and population at the county level in California and the state level are 0.9562
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and 0.9753, respectively. Thus, the GDP is used to estimate the total EC, whereas the population is
used to estimate the residential EC.
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Fig. 6 EC relationship with GDP and population. a. Total EC and total GDP of each county in
California in 2020; b. Total EC and total GDP of each state in the U.S. in 2020 Q2; c. Residential EC
and population estimates of each county in California in 2020; d. Residential EC in 2020 Q2 and
population estimates for 2020 for each state in the U.S. The error bars of a to d represents 95%
confidence prediction limits. The units of x-axis of a and b are millions of dollars, and the units of y-axis
of ato d are GWh.

As a result, the county level total EC was estimated through the county GDP share in the state, while
the residential EC was done based on the proportion of county population in the state. These are given
in (3) and (4):

_GDP2, (3)

in which ECT. is the total EC of a county, GDP2. is the annual GDP in current dollars of the county,
GDP2;s is the annualized quarterly GDP in current dollars of the according state, and ECTs is the total
EC of the corresponding state.

ECR, :%ECRg 4)

s

in which ECRc is the residential EC of a county, Pc is the population estimate of the county, Ps is the
population estimate of the according state, and ECRs is the residential EC of the corresponding state.
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The estimates from April-May 2019 and April-May 2020 were constructed. Then, the estimates of
metropolitan EC could be aggregated based on the county level data:
ECTysa y = ECTcoumy.y
a2 (5)
ECR;,, =D ECR_,.
where y is the year that can be 2019 or 2020.
Therefore, the EC change after COVID-19 can be calculated as:
ECTMSA,zozo - ECTMSA.ZO]Q
ECTMSA.2019
—ECT,

MSA,2019

Teer =

ECT, (6)

MSA,2020

ECTMSA‘ZOIQ

In the second step, we estimated the GDP of 2020. The 2019 GDP by county and 2019 Q2 to 2020 Q2
quarterly GDP by state were released by the U.S. Bureau of Economic Analysis*6. However, the 2020
GDP by county was calculated from annualized quarterly GDP growth by state. It is assumed that GDP
growth in April and May were consistent with the growth in Q2.
First, the base of the county GDP growth was measured by the chain-type quantity indexes for real
GDP (inflation-adjusted) by state, as shown in (7),
0 GDPS&,ZOZOQZ
Peaoo = GDPS

Teer =

(7)

in which the p?2,,, is the base GDP growth rate of a county in 2020, and GDP8s 202002 and GDP8s 201902
are the annualized quarterly GDP chain-type quantity indexes for real GDP by the state in 2020 Q2 and
2019 Q2, respectively. Second, the GDP growth rate of each county was adjusted by the information
technology intensity based on the assumption that the production of industries after COVID-19 was
proportional to their intensity of information technology and that part of each county’s workforce could
work from home#’. The information technology intensity for each industry is shown in Supplementary
Figure 1. We imposed a discount factor on the GDP growth rate caused by the non-information
industries as shown in (8):

5,2019Q2

Pl =11 Tyg) = (1= Tos)] (8)

in which pi‘é{,zo is the penalty coefficient of the county, Twusa is the information technology intensity gain

of the corresponding MSA as shown in (9), and Tys, is the mean value of Tusa.

_ ~ deDPZk.MSA 9
Tusa =2, GDP2,,, )

where dk is the percentage of digital workers by industry*”, GDP2,msa is the GDP in current dollars by
industry of the MSA, and GDP2usa is the total GDP in current dollars of the MSA.
Finally, the 2020 GDP by county was calculated by the 2019 GDP and 2020 growth rate as:

GDPZC.ZOZO = (pgzozo - p:;]ozo)GDP;‘zow (1 0)

where GDP2c 2020 is the county GDP in 2020, and GDP2c 2019 is the county GDP in 2019.
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Fig. 7 Data processing and computation flow

Data processing and computation. The data processing and computation flow is depicted in Figure
3, where MSA stands for metropolitan statistical area, CTY for county, and STA for state. The green
boxes denote the source data, which include COVID-19 data at the county level, GDP data at the county,
metropolitan, and state level, population data at the county, metropolitan, and state level, EC data at
the state level, and data on information technology intensity. Yellow boxes denote pre-processed data,
which includes COVID-19 and economic structure data at the metropolitan level, where missing value
filing and data transformation are applied. Orange boxes denote the computed results, which include
the level of incidence at the metropolitan level, metropolitan clusters, and EC and its variation at the
metropolitan level. The source data were obtained in the CSV format. Then the data were preprocessed
(i.e., cleaned, aggregated, and transformed) and computed by NumPy*® and pandas*®. The clustering
analysis and other statistical analysis were performed with Scikit-learn®® and SciPy?'. All the tools
mentioned above are open-source and can be accessed by the public.

Data availability

The EC, economic structure, and COVID data of MSAs generated in this study have been deposited in
the figshare database under accession code https://doi.org/10.6084/m9.figshare.20493345.v2. A copy
of the raw data are available at https://doi.org/10.6084/m9.figshare.20493345.v2. All the raw data can
be accessed by public with the referenced link.

Code availability
All codes used in this research are available from the author upon request.
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