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Abstract—In many image-classification applications, under-
standing the reasons of model’s prediction can be as critical
as the prediction’s accuracy itself. Various feature-based local
explainers have been designed to provide explanations on the
decision of complex classifiers. Nevertheless, there is no consensus
on evaluating the quality of different explanations. In response
to this lack of comprehensive evaluation, we introduce the c-Eval
metric and its corresponding framework to quantify the feature-
based local explanation’s quality. Given a classifier’s prediction
and the corresponding explanation on that prediction, c-Eval is
the minimum-distortion perturbation that successfully alters the
prediction while keeping the explanation’s features unchanged.
To show that c-Eval captures the importance of input’s features,
we establish a connection between c-Eval and the features
returned by explainers in affine and nearly-affine classifiers. We
then introduce the c-Eval plot, which not only displays a strong
connection between c-Eval and explainers’ quality, but also helps
automatically determine explainer’s parameters.

Index Terms—Explainable/Interpretable Machine Learning,
Feature-based Local Explainers, Metric, Image Classification.

I. INTRODUCTION

With the pervasiveness of machine learning in many emerg-

ing domains, especially in critical applications such as health-

care or autonomous systems, it is utmost important to un-

derstand why a machine learning model makes such a pre-

diction. For example, deep convolutional neural networks

(CNNs) have been deployed to detect skin cancer at a level

of competence comparable to dermatologists [1]. However,

doctors and experts cannot rely on these predictions blindly.

Providing additional intelligible explanations such as a high-

lighted skin region that contributes to the prediction will aid

doctors significantly in making their diagnoses. Along this

direction, many machine learning explainers supporting users

in interpreting the predictions of complex neural networks on

given inputs, called local explainers, have been proposed and

studied, such as SHAP [2], LIME [3], Grad-CAM (GCam) [4],

and DeepLIFT [5], among others [6]–[13]. Since the output

of these explainers, called explanation, is either a subset or

weights of the input’s features, these explainers are often

referred as feature-based local explainers.

Even though it is important to evaluate the explanations,

the evaluation task remains challenging [14], [15]. One major
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challenge is the lack of ground-truth explanations. In fact, most

feature-based explanations have been evaluated only through

a small set of human-based experiments which apparently

does not imply the global guarantee on their quality [2], [5].

Another challenge is the diversity in the presentation/format of

explanations. Fig. 1 shows an example of three explanations

generated by LIME, GCam, and SHAP explainers for the

prediction Pembroke made by the Inception-v3 image clas-

sifier [16]. All of them highlight the region containing the

Pembroke; however, their formats vary from picture segments

in LIME, heat-map in GCam to pixel importance-weights in

SHAP. Furthermore, explainers might be designed for different

objectives as there is a fundamental trade-off between the

interpretability and the accuracy of explanations [2], [3]. In

fact, utilizing for the interpretability of explanation might cost

its consistency with the explained prediction. The diversity

in presentations and the difference in objectives are great

roadblocks to the evaluation of explanations.

(a) Original (b) LIME (c) GCam (d) SHAP

Fig. 1: Explanations generated by three feature-based local

explainers for the prediction Pembroke of Inception-v3 model.

Contribution. Our work focuses on evaluating explanations

of feature-based local explainers. Specifically, we evaluate the

power of the explanations toward the model’s prediction, i.e.

if only the features including in the explanation are observed,

how certain the model is on the explained prediction. We

first introduce a novel metric, c-Eval, to evaluate the quality

of explanations. The metric is based on the intuition that if

certain features are important to the prediction, it is difficult

to change the prediction when those features are kept intact.

The power of an explanation is therefore quantified by the

minimum amount of perturbation on features outside of the

explanation that can alter the prediction.

We further provide analysis showing a connection between
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the importance of features containing in an explanation and

its corresponding c-Eval in multi-class affine classifiers. For

general non-affine classifiers, our experimental results based

on c-Eval suggest an existence of nearly-affine decision sur-

faces in many modern classifiers. This observation encourages

an adoption of the c-Eval metric in evaluating explanations of

predictions made by a broad range of image classifiers.

Additionally, we introduce the c-Eval plot, an approach

based on c-Eval to visualize explainers’ behaviors on a given

input. Using LIME explainer as an example, we show how

c-Eval plot helps us gain more trust on LIME and select

appropriate parameters for the explainers. We also heuristi-

cally demonstrate the behaviors of c-Eval in adversarial-robust

models. Our results show that the c-Eval computed in robust

models is highly correlated with the non-robust counterpart,

which strengthens and validates the applications of c-Eval.

Related Work. Despite the recent development of explain-

able AI, works focusing on evaluating explanations of local

feature-based explainers are quite limited. To our knowledge,

there are two works that can be considered to be relevant to

c-Eval: the AOPC score [17] and the log-odds score [5]. The

AOPC score, which is introduced to evaluate heat-maps, is the

average of the differences between the soft-outputs of the input

image and those of some random perturbations. These random

perturbations are generated sequentially based on the heat-

maps on the input’s features. Once may think to extend AOPC

to evaluate explainers, such as mask-form explanation LIME;

however, it is ambiguous due to an absence of the importance

ordering. Furthermore, the AOPC requires a large number

of random perturbations to generate stable evaluations while

computing c-Eval is a deterministic process requiring only one

perturbation per evaluation. On the other hand, Shrikumar et.

al [5] use the log-odds score, measuring the difference between

the input image and the modified image whose some pixels are

erased, to evaluate explanations [5]. In this measurement, the

erased pixels are chosen greedily based on the importance-

weights given by the explanation. Then, the explanation is

evaluated based on how many erased pixels are needed to alter

the original predicted label. However, the log-odds method is

proposed without detailed analysis and it is only applicable to

small gray-scale images, such as MNIST [18].

Organization. The rest of the paper is organized as fol-

lows. Section II introduces notations and formulates c-Eval.

Section III shows how to compute c-Eval. The relationship

between c-Eval and the importance of input features is demon-

strated in Section IV. The c-Eval plot, a visualization method

based on c-Eval to examine explainers’ behavior, is presented

in Section V-A. Section V-B includes our demonstration of

c-Eval on adversarial-robust models. Our experimental eval-

uations on explanations to validate the usage of c-Eval are

demonstrated in Section VI. Finally, Section VII concludes

the paper with a discussion on future directions.

II. C-EVAL OF EXPLANATION

In this section, we introduce our notions and describe the

formulation of the c-Eval metric. We model a neural network

as a function f whose input and output are vectors x ∈ Rn

and y ∈ Rm. For a given vector x, xi is the element ith of x.

The predicted label of the model’s prediction y = f(x) is l =
argmax1≤j≤m yj . Given gf , a feature-based local explainer

on the classifier f , an explanation of prediction f(x) is a

subset of features/elements of x, i.e. ex = gf (x) ⊆ x. We

call ex the explanatory features and x\ex the non-explanatory

features of prediction f(x) generated by gf .

In feature-based explanations, the explainer may simply

return ex = x as an explanation for prediction f(x). We

can interpret this naive explanation as because the input is x

so the prediction is f(x). Note that this explanation is not

desirable since it neither gives us any additional information

on the prediction nor strengthens our trust on the model. A

better answer is a smaller set of explanatory features that are

important to the prediction. Thus, it is a common practice

for explainers to impose cardinality constraints on ex for

more compact explanations [3], [13]. When evaluating the

explanations, we assume that they are all subjected to the same

cardinality constraint |ex| ≤ k for a fix given integer k.

We denote a perturbation scheme hgf : Rn → Rn with

respect to (w.r.t) explainer gf to be a function from the input’s

space Rn to itself. The resulted perturbation hgf (x) is only

allowed to be different from x on non-explanatory features of

f(x), i.e. x \ ex:

hgf (x)i =

{

xi if xi ∈ ex

xi + δi if xi /∈ ex,
(1)

where δi ∈ R is the perturbation on component ith. A

perturbation hgf (x) is considered successful under the p-norm

constraint c if the predicted label of the model on hgf (x) is

different from the original predicted label on x and the p-norm

difference between x and hgf (x) is bounded by c:

arg max
1≤j≤m

f(hgf (x)) 6= l

||hgf (x)− x||p ≤ c. (2)

We denote this p-norm difference between x and hgf (x) as

the perturbing distortion. c-Eval is then defined as follows:

Definition 1. An explainer gf (or the corresponding explana-

tion ex) of a prediction f(x) is c-Eval if no perturbing scheme

hgf can change the model prediction on x while keeping the

perturbing distortion less than or equal to c.

Based on Definition 1, a good feature-based explanation is

supposed to be c-Eval with large c. Because, if the explanatory

features ex had high power to the prediction f(x), modifying

values on the non-explanatory features x \ ex have negligible

impact to the model’s prediction. As the perturbation scheme

hgf is only on non-explanatory features, hgf must make

significant modifications to successfully alter the predicted

label. Consequently, for a given explanation ex, the greatest

value of c (in eq. (2)) such that there is no hgf can successfully
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change the predicted label would imply the power of features

in ex. Thus, we denote:

cf,x(ex) = sup c s.t. @hgf satisfying (2). (3)

In short, for every c ≤ cf,x(ex), there is no perturbation

scheme on non-explanatory features that can alter the label

of prediction while keeping the perturbing distortion less than

c. We call cf,x(ex) the c-Eval of explanation ex.

To this point, we have formulated the definition of c-Eval

and described our intuition on the connection between c-
Eval of an explanation and the importance of the explanatory

features. Based on that connection, we propose to use c-
Eval as a quantitative metric to evaluate the representative

power of neural networks’ explanations. Before discussing

on computing c-Eval in Section III and strengthening the

relationship between c-Eval and the power of explanatory

features in Section IV, we now emphasize some properties

and several remarks on the usage of c-Eval.

Range of c-Eval. When there is no element in the set

of explanatory features, we have cf,x(ex) = cf,x(∅) is the

minimum amount of perturbation onto all input’s features to

successfully change the original prediction. In this case, the

successful perturbation hgf will return a perturbation known

as the minimally distorted adversarial examples [19]. On the

other hand, when explainer gf returns all features of the input

image, there is no perturbation hgf can alter the prediction’s

label and we set cf,x(x) = ∞ by convention.

Similar explanations’ size. We limit the usage of c-Eval to

explanations of the same or comparable sizes. The reason is

an explainer can naively include a lot of unnecessary features

in its explanations and trivially increase the corresponding c-
Eval. However, this restriction does not prevent the usage of c-
Eval in evaluating explanations of different explainers. In fact,

we can always fix a compactness parameter k (number of input

features, number of pixels or number of image’s segments as

explanatory features) and take the top-k important elements

as an explanation. When comparing different explainers using

c-Eval, we will specify how compactness parameters of ex-

planations are chosen. For most experiments in this paper, k
is chosen to be 10% of the number of input features.

Normalize c-Eval among inputs. Given a compactness

parameter k, for different inputs x, the amount of minimum

perturbing distortion resulting in successful perturbations can

vary significantly depending on the raw features’ values and

formats. For instance, a RGB image can be encoded using

255 integer values or a range of float values between 0 and 1.

Hence, for meaningful statistical results, some experiments use

the normalize ratio between c-Eval of ex and c-Eval of empty

explanation, i.e. Cf,x(ex) = cf,x(ex)/cf,x(∅), to evaluate ex.

The choice of norm for c-Eval. To our knowledge, there

has been no research on which distance metric is optimal to

measure the interpretability of explanations. There is also no

consensus on the optimal distance metric of human perceptual

similarity [19]. Because of the followings reasons, we consider

the L2-norm, i.e. p = 2, throughout this work: (i) L2-norm

has been used to generate explanation for neural networks’

predictions [3], (ii) our computation of c-Eval is related to the

generation of adversarial samples, whose initial work [20] used

L2-norm, and (iii) there exists efficient algorithms to minimize

L2-norm in adversarial generation [21], [22].

III. COMPUTING c-EVAL

Given an explanation, it is not straight-forward to compute

its c-Eval by using formula (3). Instead, we solve for the

successful perturbation scheme with the smallest distortion.

Specifically, we compute c-Eval based on the following equiv-

alent definition:

cf,x(ex) = inf c s.t. ∃hgf satisfying (2). (4)

Based on (4), the c-Eval of explanation ex can be obtained

by solving for the minimum perturbation scheme hgf on non-

explanatory features.

The computation of c-Eval can be summarized through

an example shown in Fig. 2. Given an input image and an

explanation for the prediction on that image, we compute

the minimal perturbing distortion successful perturbation on

non-explanatory features of that image using the Perturbation

block. The c-Eval of the explanation is then approximated

by the norm of the difference between the minimal distortion

perturbation and the input image.

In Fig. 2, we generate an explanation of LIME explainer

for a Bernese mountain dog prediction on the given input

image. The explanation in this case includes roughly 10% the

total number of input pixels. After that, a perturbed instance

hgf (x) is generated using our modified version of Carlini-

Wagner (CW) attack [19] where the perturbation is only on the

non-explanatory features. Then, the c-Eval is the norm of the

difference between the input image and the perturbed image.

The reported c-Eval computed in the L2-norm is 0.6297. For

the sake of demonstration, we construct a ”dummy square”

of the same size as the LIME explanation, which include the

center region of the original image. We consider this mask as

an explanation for the prediction and compute the c-Eval for

it, which is 0.6154. The c-Eval of LIME is larger than that of

the dummy square, i.e. the amount of perturbation required to

change the prediction while fixing the explanatory features of

LIME is greater. This result aligns with our expectation that

LIME explanation should be better than a dummy square in

explaining the model’s prediction.

For the computation of c-Eval, the only step required further

specifications is the Perturbation step (Fig. 2) determining the

minimum distortion perturbation on non-explanatory features

hgf (x). We use the CW attack for this step since it has been

widely considered as the state-of-the-art algorithm generating

minimal distortion adversarial samples of neural networks. In

this attack, the solver searches for an optimal difference δ

minimizing D(x,x+ δ) + λl(x+ δ), where D is a distance

metric between the perturbation and the original input, l is a

loss function such that l(x + δ) ≤ 0 if and only if the label

of x + δ is different from the original label and λ > 0 is a

constant weight used to adjust the priority of the algorithm.

Note that δ also need to satisfy the box-constraints, i.e. x+δ
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A. c-Eval plot

In Section II, we restrict the c-Eval analysis on explanations

of similar sizes. That restriction is just for a fair comparison

among explanations of different explainers. In practice, the

explanation’s size is normally determined based on the appli-

cations and the specific inputs. Given an explainer, by varying

explanation’s size k, we obtain a sequence of explanations and

their corresponding c-Eval. Therefore, on a given input image,

each explainer will be associated with a sequence of c-Eval

values. By plotting this sequence as a function of k, we can

observe the behaviors of explainers on that input and select an

appropriate size for the explanation accordingly. We call the

resulting plot the c-Eval plot.

Fig. 9: c-Eval plot of LIME with different sample rates. Higher

sample rates result in better explanations and c-Eval plot

reflects that expectation.

We now discuss an experiment based on the c-Eval plot

to heuristically show that it correctly evaluates the expla-

nations and improve our understanding on the behavior of

the explainer. Specifically, we study the LIME explainer with

different number of samplings. In LIME, the sampling size de-

termines how many perturbations are conducted in finding the

explanation. The higher the number, the better the explanation

and the higher the running time complexity [3]. Since there

is no concrete rule on how this parameter should be chosen,

how can we verify that a LIME explanation is free from under-

sampling error? What is an appropriate number of explanatory

features to explain the prediction? In the following, we show

how c-Eval plot reflects the impact of the number of samplings

on LIME’s performance and help us determine appropriate

values for that parameter.

The experiments are conducted on Inception-v3 with the

input image as in the experiment in Fig. 2. We first seg-

mentized that image into 100 feature segments. Then, we

explain them using LIME with 100, 1000, 4000 and 10000
samples. We plot the the c-Eval sequences {cf,x(e

k
x
)}nk=1

,

i.e. the c-Eval plot in fig. 9. For some numbers of segments

(the explanation’s size k = 5, 10, 20 or 30) and for each

setting of LIME (red for 100, blue for 1000, green for 4000
and purple for 10000 samples), we provide the corresponding

explanations for illustration in Fig. 9. The result shows distinct

gaps in the c-Eval among different numbers of samplings. It

is clear that the higher the number of samples, the higher

the c-Eval. This observation is consistent with our expectation

that the explanations at higher numbers of samples are better.

Additionally, using c-Eval plot, we can deduce that there is not

much improvement in the explanations’ quality by increasing

the number of samples from 4000 to 10000. This implies c-
Eval can be used as a metric to support automatically tuning

of explainer’s parameters. It also helps us gain trust in LIME

in the sense that, if we aim for top-5 important features among

100 features, LIME with 2000 samples might be reliable since

there is not much gain in c-Eval by increasing that number

from 1000 to 10000. We also observe that, given the number

of samples, there is a diminishing return in c-Eval after a

certain number of explanatory features. For instance, if we

only use 1000 samples, 20 explanatory features (roughly 20%
of the input image) is enough to explain the prediction.

B. c-Eval on adversarial-trained models

Since c-Eval is computed based on adversarial generation,

there might exist concerns regarding the applications of c-
Eval on adversarial-robust models. First, as adversarial-robust

models are more resistant to perturbations, is it feasible to

generate successful perturbations on robust models? Second, if

we are able to obtain those perturbations, are the c-Eval values

of the corresponding explanations reliable? In the following,

we address those concerns through experiments on MNIST

dataset using the LeNet model [28]. Specifically, we show that

the c-Eval computed on non-robust and robust models have

strong correlation. This correlation implies that the behaviors

of c-Eval are similar on non-robust and robust models.

We use Advertorch [22], a Python toolbox for adversarial

robustness research, to train three LeNet classifiers on the

MNIST dataset. The first model, denoted as non-robust model,

is trained normally. The second is alternatively trained between

images from MNIST and the corresponding adversarial sam-

ples generated at each iteration. Here, the normalized L2-norm

distortion between each adversarial sample and its original

image is bounded by ε = 0.3. The third model is trained in

the same manner as the second but the distortion bound ε is set

to 0.5. All three classifiers archive more than 95% accuracy on

test set. For the two adversarial-trained models, their accuracy

on adversarial samples are all greater than 94%.

Using 4000 images in the test set, we generate their predic-

tions made by the three LeNet classifiers and the correspond-

ing top-10% LIME explanations. For all three classifiers, we

are able to obtain the successful perturbations using IGA and

the corresponding c-Eval for all explanations. The successful

perturbations for all inputs of adversarial-trained models can

be computed because the models are only robust against ad-

versarial with bounded distortion. In c-Eval, the perturbations

are not limited by the amount of distortion.

Fig. 10 is the scatter plot of c-Eval of 300 (randomly

chosen from 4000) explanations of predictions from the three

classifiers. The Pearson correlations between c-Eval of the first
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Fig. 11: The distributions and the averages of c-Eval of 8
explainers on classifier 1 provided by [2] and on classifier 2

provided by [5] on 1000 images in MNIST dataset.

the computed c-Evals using IGA also reflect the explainers’

performance. Finding optimal perturbation schemes resulting

in a good measurement of c-Eval is not considered in this

work; however, the experiments suggest that non-optimal

perturbation schemes can be used to obtain reasonable mea-

surement of c-Eval.

C. Simulations on Caltech101 dataset

For experiments on large images, we study the perfor-

mance of LIME, SHAP, GCam, DeepLIFT on 700 images

in Caltech101 dataset [29] with the VGG19 classifier [26]. As

LIME, SHAP, and GCam explainers are designed for medium-

size to large-size images, we expect they should outperform

DeepLIFT. Furthermore, the results from [2] implies SHAP

should perform better than LIME. On the other hand, as GCam

are designed for fully-connected convolution networks (e.g.

VGG19), we expect its performance here to be much better

than that in previous experiments on MNIST dataset.

Segment-wise features are used on the Caltech101 dataset.

Since the outputs of some explainers are importance weights of

pixels, we convert them all into a subsets of image segments as

explanations for fair comparison. Specifically, the importance

weight of each segment is the sum of the importance weights

of all pixels inside that segment. Then, the top k segments with

maximum weight are selected as the segment-wise explanation

SHAP LIME GCam DEEP

1

1.5

2

2.5

3

3.5

4

4.5

5

Average C(e
x
)/C

0

(a) GSA.

SHAP LIME GCam DEEP

1

1.2

1.4

1.6

1.8

2

Average C(e
x
)/C

0

(b) IGA.

Fig. 12: Distributions of c-Eval computed by GSA and IGA

for four explainers in Caltech101 dataset.

of the examined explainer. For the results in Fig. 12, the

number of segments is selected such that roughly 20% of the

original input image is covered by the explanation.

The computed c-Eval in our experiments on Caltech101 are

reported in Fig. 12a and Fig. 12b. Here, we use GSA and

IGA to compute c-Eval respectively. The observation is that

the statistical behavior of c-Eval aligns with our expectation

on the performance of all four explanation method on this

dataset. In fact, by design, GCam is expected to perform better

in Caltech101 than MNIST. On the other hand, DeepLIFT

is not designed and stress-tested on larger models trained on

dataset that are significantly bigger than MNIST. More will

be discussed in Subsection VI-E. For the improvement of

GCam and the degradation of DeepLIFT from the MNIST

dataset and CIFAR10 to the Caltech101 dataset, For better

intuition on the improvement of GCam and the degradation

of DeepLIFT from the MNIST dataset and CIFAR10 to the

Caltech101 dataset, we suggest readers check the our examples

shown in the Appendix of our other report [31].

D. Similarity of c-Eval and log-odds functions in MNIST

To evaluate importance scores obtained by different methods

on MNIST dataset, the authors of DeepLIFT designs the

log-odds function as follows. Given an image that originally

belongs to a class, they identify which pixels to erase to

convert the original image to other target class and evaluate

the change in the log-odds score between the two classes.

The work conducted experiments of converting 8 to 3, 8
to 6, 9 to 1 and 4 to 1. In Fig. 13, we adopt c-Eval into

the MNIST dataset to compare c-Eval of explainers with

the corresponding log-odds scores. The figure displays the

c-Eval of studied explainers on images with predictions 4, 8
and 9 respectively. We conduct the experiments using both

GSA and IGA perturbation schemes. Besides the DeepLIFT in

experiments for label 4 and 8, all relative ranking of explainers

in c-Eval is consistent with the ranking resulted from log-

odds computations shown in [5]. This result implies that our

general frameworks of evaluating explainers based on c-Eval

are applicable to this specific study on the MNIST dataset.
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(d) c-Eval of label 8 with IGA
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(e) c-Eval of label 9 with GSA
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(f) c-Eval of label 9 with IGA

Fig. 13: We compute the c-Eval for 6 explainers on 1000

images of MNIST for labels 4, 8 and 9 to show the similarity

between c-Eval and log-odds function in [5].

E. Overall evaluations of explanations using c-Eval

Many interesting results and deductions can be drawn from

experiments on MNIST and Caltech101. The result is also

consistent with our experiments on CIFAR10 reported in [31].

We discuss several key observations in the followings.

Our first comment is about the correlation of c-Eval and the

portion of predicted object captured by different explanations.

In CIFAR10 and especially Caltech101 (see [31]), it is clear

to us that most explanations containing the essential features

of the predicted label have high c-Eval.

Our second attention is on the relative performance of

GCam in three datasets. Since GCam is designed for con-

volutional neural networks such as the VGG19, we expect

high relevant explanations from GCam in its experiments on

Caltech101. However, as GCam exploits the last layer of the

neural networks to generate the explanations [4], we have

low expectation on its capability of explaining predictions on

MNIST and CIFAR10 dataset. The reason is that the models

used in those two later dataset are too different from the

VGG19. In fact, the adaptation of VGG19 on CIFAR10 [34]

contains only 4 neurons in the last convolutional layer, which

results in only 4 regions of the images that GCam can choose

as region of high important. The distributions of c-Eval of

GCAM shown in Fig. 12b also reflect that expectation.

DeepLIFT is a back-propagation method and it is not only

sensitive to the classifier structure but also the selection of

reference image [5]. The experimental setups of DeepLIFT in

the MNIST dataset shown in Fig. 11 are taken directly from

the source code of the explainer’s paper. Our adoptions of

DeepLIFT to CIFAR10 and Caltech101 are conducted without

calibration on the reference image as the calibration procedure

for color images is not provided. This might be the reason for

the degradation of explainer’s quality in these two datasets. It

is clear that c-Eval captures this behavior.

Our final remark is on the exceptionally high c-Eval of

SHAP shown in all three datasets. This result encourages us

to take a deeper look at explanations produced by SHAP.

From our observation, it shows that SHAP captures some

important features that are overlooked by others. Let’s consider

the explanation of number 4 as an example. SHAP is the

only explainer detecting that the black area on top of number

4 is important (see examples in [31]). In fact, this area is

essential to the prediction since, if these pixels are white

instead of black, the original prediction should be 9 instead of

4. Without the c-Eval computations, it is non-trivial to identify

this beneficial behavior in SHAP explainer.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduce c-Eval to evaluate explanations

of various feature-based explainers. Extensive experiments

show that c-Eval of explanation reflects the importance of

features included in the explanation. This study leads to several

interesting research questions for the future work. For exam-

ple, the distributions of c-Eval in Fig. 11 advocates that there

is a fundamental difference between the quality of black-box

explainers (SHAP, LIME and GCam) and back-propagation

explainers (DEEP, Integrated Gradients, LRP, GB and Grad),

which is ambiguous prior to this work. From the novelty of c-
Eval, we expect that knowledge on the explanation maximizing

c-Eval will offer us a much clearer view on predictions made

by modern neural networks.
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