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Abstract—In many image-classification applications, under-
standing the reasons of model’s prediction can be as critical
as the prediction’s accuracy itself. Various feature-based local
explainers have been designed to provide explanations on the
decision of complex classifiers. Nevertheless, there is no consensus
on evaluating the quality of different explanations. In response
to this lack of comprehensive evaluation, we introduce the c-Eval
metric and its corresponding framework to quantify the feature-
based local explanation’s quality. Given a classifier’s prediction
and the corresponding explanation on that prediction, c-Eval is
the minimum-distortion perturbation that successfully alters the
prediction while keeping the explanation’s features unchanged.
To show that c-Eval captures the importance of input’s features,
we establish a connection between c-Eval and the features
returned by explainers in affine and nearly-affine classifiers. We
then introduce the c-Eval plot, which not only displays a strong
connection between c-Eval and explainers’ quality, but also helps
automatically determine explainer’s parameters.

Index Terms—Explainable/Interpretable Machine Learning,
Feature-based Local Explainers, Metric, Image Classification.

I. INTRODUCTION

With the pervasiveness of machine learning in many emerg-
ing domains, especially in critical applications such as health-
care or autonomous systems, it is utmost important to un-
derstand why a machine learning model makes such a pre-
diction. For example, deep convolutional neural networks
(CNNs) have been deployed to detect skin cancer at a level
of competence comparable to dermatologists [1]. However,
doctors and experts cannot rely on these predictions blindly.
Providing additional intelligible explanations such as a high-
lighted skin region that contributes to the prediction will aid
doctors significantly in making their diagnoses. Along this
direction, many machine learning explainers supporting users
in interpreting the predictions of complex neural networks on
given inputs, called local explainers, have been proposed and
studied, such as SHAP [2], LIME [3], Grad-CAM (GCam) [4],
and DeepLIFT [5], among others [6]-[13]. Since the output
of these explainers, called explanation, is either a subset or
weights of the input’s features, these explainers are often
referred as feature-based local explainers.

Even though it is important to evaluate the explanations,
the evaluation task remains challenging [14], [15]. One major
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challenge is the lack of ground-truth explanations. In fact, most
feature-based explanations have been evaluated only through
a small set of human-based experiments which apparently
does not imply the global guarantee on their quality [2], [5].
Another challenge is the diversity in the presentation/format of
explanations. Fig. 1 shows an example of three explanations
generated by LIME, GCam, and SHAP explainers for the
prediction Pembroke made by the Inception-v3 image clas-
sifier [16]. All of them highlight the region containing the
Pembroke; however, their formats vary from picture segments
in LIME, heat-map in GCam to pixel importance-weights in
SHAP. Furthermore, explainers might be designed for different
objectives as there is a fundamental trade-off between the
interpretability and the accuracy of explanations [2], [3]. In
fact, utilizing for the interpretability of explanation might cost
its consistency with the explained prediction. The diversity
in presentations and the difference in objectives are great
roadblocks to the evaluation of explanations.

(a) Original (c) GCam

(b) LIME

(d) SHAP

Fig. 1: Explanations generated by three feature-based local
explainers for the prediction Pembroke of Inception-v3 model.

Contribution. Our work focuses on evaluating explanations
of feature-based local explainers. Specifically, we evaluate the
power of the explanations toward the model’s prediction, i.e.
if only the features including in the explanation are observed,
how certain the model is on the explained prediction. We
first introduce a novel metric, c-Eval, to evaluate the quality
of explanations. The metric is based on the intuition that if
certain features are important to the prediction, it is difficult
to change the prediction when those features are kept intact.
The power of an explanation is therefore quantified by the
minimum amount of perturbation on features outside of the
explanation that can alter the prediction.

We further provide analysis showing a connection between
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the importance of features containing in an explanation and
its corresponding c-Eval in multi-class affine classifiers. For
general non-affine classifiers, our experimental results based
on c-Eval suggest an existence of nearly-affine decision sur-
faces in many modern classifiers. This observation encourages
an adoption of the c-Eval metric in evaluating explanations of
predictions made by a broad range of image classifiers.

Additionally, we introduce the c-Eval plot, an approach
based on c-Eval to visualize explainers’ behaviors on a given
input. Using LIME explainer as an example, we show how
c-Eval plot helps us gain more trust on LIME and select
appropriate parameters for the explainers. We also heuristi-
cally demonstrate the behaviors of c-Eval in adversarial-robust
models. Our results show that the c-Eval computed in robust
models is highly correlated with the non-robust counterpart,
which strengthens and validates the applications of c-Eval.

Related Work. Despite the recent development of explain-
able AI, works focusing on evaluating explanations of local
feature-based explainers are quite limited. To our knowledge,
there are two works that can be considered to be relevant to
c-Eval: the AOPC score [17] and the log-odds score [5]. The
AOPC score, which is introduced to evaluate heat-maps, is the
average of the differences between the soft-outputs of the input
image and those of some random perturbations. These random
perturbations are generated sequentially based on the heat-
maps on the input’s features. Once may think to extend AOPC
to evaluate explainers, such as mask-form explanation LIME;
however, it is ambiguous due to an absence of the importance
ordering. Furthermore, the AOPC requires a large number
of random perturbations to generate stable evaluations while
computing c-Eval is a deterministic process requiring only one
perturbation per evaluation. On the other hand, Shrikumar et.
al [5] use the log-odds score, measuring the difference between
the input image and the modified image whose some pixels are
erased, to evaluate explanations [5]. In this measurement, the
erased pixels are chosen greedily based on the importance-
weights given by the explanation. Then, the explanation is
evaluated based on how many erased pixels are needed to alter
the original predicted label. However, the log-odds method is
proposed without detailed analysis and it is only applicable to
small gray-scale images, such as MNIST [18].

Organization. The rest of the paper is organized as fol-
lows. Section II introduces notations and formulates c-Eval.
Section IIT shows how to compute c-Eval. The relationship
between c-Eval and the importance of input features is demon-
strated in Section IV. The c-Eval plot, a visualization method
based on c-Eval to examine explainers’ behavior, is presented
in Section V-A. Section V-B includes our demonstration of
c-Eval on adversarial-robust models. Our experimental eval-
uations on explanations to validate the usage of c-Eval are
demonstrated in Section VI. Finally, Section VII concludes
the paper with a discussion on future directions.

II. c-EVAL OF EXPLANATION

In this section, we introduce our notions and describe the
formulation of the c-Eval metric. We model a neural network
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as a function f whose input and output are vectors = € R"
and y € R™. For a given vector x, x; is the element it of x.
The predicted label of the model’s prediction y = f(x) is | =
arg maxi<;<m ¥;. Given gy, a feature-based local explainer
on the classifier f, an explanation of prediction f(x) is a
subset of features/elements of x, i.e. e, = gf(:c) C x. We
call e, the explanatory features and x\ e,, the non-explanatory
features of prediction f(x) generated by g;.

In feature-based explanations, the explainer may simply
return e, = x as an explanation for prediction f(x). We
can interpret this naive explanation as because the input is x
so the prediction is f(x). Note that this explanation is not
desirable since it neither gives us any additional information
on the prediction nor strengthens our trust on the model. A
better answer is a smaller set of explanatory features that are
important to the prediction. Thus, it is a common practice
for explainers to impose cardinality constraints on e, for
more compact explanations [3], [13]. When evaluating the
explanations, we assume that they are all subjected to the same
cardinality constraint |e,| < k for a fix given integer k.

We denote a perturbation scheme hy, : R" — R"™ with
respect to (w.r.t) explainer gy to be a function from the input’s
space R™ to itself. The resulted perturbation hg, (x) is only
allowed to be different from & on non-explanatory features of

fl@), ie. @\ eq:

T if z; € ey
h ), = 1
gf( ) {xz+5z iffEi¢6m7 ( )
where §; € R is the perturbation on component i". A

perturbation h () is considered successful under the p-norm
constraint c if the predicted label of the model on Ay, (x) is
different from the original predicted label on « and the p-norm
difference between x and hy, (x) is bounded by c:

arg max fhg (z)) #1

thf (x) — fc”p <ec 2)
We denote this p-norm difference between x and h,, () as
the perturbing distortion. c-Eval is then defined as follows:

Definition 1. An explainer gy (or the corresponding explana-
tion eg,) of a prediction f(x) is c-Eval if no perturbing scheme
hg, can change the model prediction on x while keeping the
perturbing distortion less than or equal to c.

Based on Definition 1, a good feature-based explanation is
supposed to be c-Eval with large c. Because, if the explanatory
features e, had high power to the prediction f(x), modifying
values on the non-explanatory features x \ e, have negligible
impact to the model’s prediction. As the perturbation scheme
hg, is only on non-explanatory features, hg, must make
significant modifications to successfully alter the predicted
label. Consequently, for a given explanation e, the greatest
value of ¢ (in eq. (2)) such that there is no h, , can successfully
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change the predicted label would imply the power of features
in eg. Thus, we denote:

3)

In short, for every ¢ < c¢jg(eq), there is no perturbation
scheme on non-explanatory features that can alter the label
of prediction while keeping the perturbing distortion less than
c. We call c(f@(em) the c-Eval of explanation e.

To this point, we have formulated the definition of c-Eval
and described our intuition on the connection between c-
Eval of an explanation and the importance of the explanatory
features. Based on that connection, we propose to use c-
Eval as a quantitative metric to evaluate the representative
power of neural networks’ explanations. Before discussing
on computing c-Eval in Section Il and strengthening the
relationship between c-Eval and the power of explanatory
features in Section IV, we now emphasize some properties
and several remarks on the usage of c-Eval.

Range of c-Eval. When there is no element in the set
of explanatory features, we have cfz(€r) = cfo(0) is the
minimum amount of perturbation onto all input’s features to
successfully change the original prediction. In this case, the
successful perturbation hy, will return a perturbation known
as the minimally distorted adversarial examples [19]. On the
other hand, when explainer g returns all features of the input
image, there is no perturbation h,, can alter the prediction’s
label and we set ¢y () = oo by convention.

Similar explanations’ size. We limit the usage of c-Eval to
explanations of the same or comparable sizes. The reason is
an explainer can naively include a lot of unnecessary features
in its explanations and trivially increase the corresponding c-
Eval. However, this restriction does not prevent the usage of c-
Eval in evaluating explanations of different explainers. In fact,
we can always fix a compactness parameter & (number of input
features, number of pixels or number of image’s segments as
explanatory features) and take the top-k important elements
as an explanation. When comparing different explainers using
c-Eval, we will specify how compactness parameters of ex-
planations are chosen. For most experiments in this paper, k
is chosen to be 10% of the number of input features.

Normalize c-Eval among inputs. Given a compactness
parameter k, for different inputs «, the amount of minimum
perturbing distortion resulting in successful perturbations can
vary significantly depending on the raw features’ values and
formats. For instance, a RGB image can be encoded using
255 integer values or a range of float values between 0 and 1.
Hence, for meaningful statistical results, some experiments use
the normalize ratio between c-Eval of e, and c-Eval of empty
explanation, i.e. Cf z(ez) = ¢fo(ez)/cr.o(D), to evaluate eg.

The choice of norm for c-Eval. To our knowledge, there
has been no research on which distance metric is optimal to
measure the interpretability of explanations. There is also no
consensus on the optimal distance metric of human perceptual
similarity [19]. Because of the followings reasons, we consider
the Lo-norm, i.e. p = 2, throughout this work: (i) Lo-norm
has been used to generate explanation for neural networks’

craz(ez) =supc st Bhy, satisfying (2).
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predictions [3], (ii) our computation of c-Eval is related to the
generation of adversarial samples, whose initial work [20] used
Ls-norm, and (iii) there exists efficient algorithms to minimize
Lo-norm in adversarial generation [21], [22].

III. COMPUTING c-EVAL

Given an explanation, it is not straight-forward to compute
its c-Eval by using formula (3). Instead, we solve for the
successful perturbation scheme with the smallest distortion.
Specifically, we compute c-Eval based on the following equiv-
alent definition:

4)

Based on (4), the c-Eval of explanation e, can be obtained
by solving for the minimum perturbation scheme h,, on non-
explanatory features.

The computation of c-Eval can be summarized through
an example shown in Fig. 2. Given an input image and an
explanation for the prediction on that image, we compute
the minimal perturbing distortion successful perturbation on
non-explanatory features of that image using the Perturbation
block. The c-Eval of the explanation is then approximated
by the norm of the difference between the minimal distortion
perturbation and the input image.

In Fig. 2, we generate an explanation of LIME explainer
for a Bernese mountain dog prediction on the given input
image. The explanation in this case includes roughly 10% the
total number of input pixels. After that, a perturbed instance
hg,(x) is generated using our modified version of Carlini-
Wagner (CW) attack [19] where the perturbation is only on the
non-explanatory features. Then, the c-Eval is the norm of the
difference between the input image and the perturbed image.
The reported c-Eval computed in the Lo-norm is 0.6297. For
the sake of demonstration, we construct a “dummy square”
of the same size as the LIME explanation, which include the
center region of the original image. We consider this mask as
an explanation for the prediction and compute the c-Eval for
it, which is 0.6154. The c-Eval of LIME is larger than that of
the dummy square, i.e. the amount of perturbation required to
change the prediction while fixing the explanatory features of
LIME is greater. This result aligns with our expectation that
LIME explanation should be better than a dummy square in
explaining the model’s prediction.

For the computation of c-Eval, the only step required further
specifications is the Perturbation step (Fig. 2) determining the
minimum distortion perturbation on non-explanatory features
hg,(x). We use the CW attack for this step since it has been
widely considered as the state-of-the-art algorithm generating
minimal distortion adversarial samples of neural networks. In
this attack, the solver searches for an optimal difference d
minimizing D(x, x + §) + M(x + §), where D is a distance
metric between the perturbation and the original input, [ is a
loss function such that {(z 4+ §) < 0 if and only if the label
of  + ¢ is different from the original label and A > 0 is a
constant weight used to adjust the priority of the algorithm.
Note that § also need to satisfy the box-constraints, i.e.  + 8

craleg) =infc st Ih,, satisfying (2).
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Input image

Successful perturbations avoiding the masks
New label: Appenzeller’

Difference between
input image and the

successful perturbations

/ Explanation

Model
(Inception-v3)

Proéves‘iof computing c-Eval for an

Label: ‘Bemese
mountain dog”

KDummy mask

Computing c-Eval for a dummy square mask for comparision

Fig. 2: Example comparing the importance of features including in an explanation and features in a dummy mask using c-Eval.

must be in a valid value-range imposed by the dataset. Then,
the optimal perturbation 4§ is learnt via gradient-descents.

A naive modification of the CW attack so that it only
perturbs non-explanatory features is by blocking the back-
ward update on explanatory features in the gradient descents.
However, the rate of convergence of a such modification
may reduce significantly if many J; components with high
gradients are blocked. Unfortunately, the situation happens
frequently as most existing explainers tend to include high-
gradient components as explanatory features.

To overcome this problem, we introduce perturbation vari-
ables d., € [0,1]"1¢=| representing perturbations on non-
explanatory features. We then use a mapping s : [0, 1}"_|em| —
R™ that transforms the perturbation information in §._ into 4.
The mapping guarantees that for any explanatory feature ¢,
0; = 0. By using s, we can guarantee that the optimization
steps focus on non-explanatory features. To solve for d._, we
use Adam [23] optimizer with the following objective:

D(x,x + s5(d.,)) + M(x + s(de,))- ®)

One drawback of CW attack is the high running-time com-
plexity. However, from the perspective of c-Eval, we might not
need exactly the minimal distortion perturbation to evaluate the
explanations. Suppose that we have an algorithm searching for
successful perturbations on non-explanatory features of x. If
ex is important to the prediction, it will be difficult for the
algorithm to find successful perturbations by perturbing only
on x \ e,. Thus, the resulted distortion will be higher than that
when e, is not important. The intuition here is very similar to
the definition of c-Eval in previous section. The only difference
is in the space of the perturbation schemes. Thus, we extend
our definition of c-Eval to the “c-Eval with respect to a class
of perturbing scheme H” as follows.

Definition 2. An explainer gy (or the corresponding explana-
tion eg) of a prediction f(x) is c-Eval with respect to the class
of perturbing schemes H if no perturbing scheme hy, € H can
change the model prediction on x while keeping the perturbing
distortion less than or equal to c.

930

Definition 2 helps us avoid the difficulty in finding the
minimum-distortion perturbation scheme h,,. Instead of ex-
amining all perturbations scheme satisfying the p-norm con-
straint within distance ¢, we can focus on the optimal h, ; in
a much smaller set of perturbation schemes H. By narrowing
down the choices of hy e the computation of c-Eval can be
tractable without much loss in performance. Specifically, we
propose to focus on the set of perturbations generated by the
Gradient-Sign-Attack (GSA) [24], and the Iterative-Gradient-
Attack (IGA) [25] due to their low running time complexity.
Given an image x, GSA sets the perturbation x’ as

(©)

where J; is the [ component of the loss function used to train
the neural network and € is a small constant. On the other
hand, IGA initializes '(®) = & and updates it iteratively as

' =z — esign(VJ(z)),

/() = clip,, . (m'(i) - a.sign(VJl(:c'(i)))> @)
where the clip function ensures that /(¥ is in the -
neighborhood of the original image. To adopt GSA and IGA
into the context of c-Eval where the perturbation is on non-
explanatory features, we simply block the backward step of
gradient-descent algorithm on explanatory features.

Fig. 3 demonstrates the distortions generated by different
attacks. The experiment setup is the same as in the experiment
of Fig. 2. The Ls-norm of the distortions generated by
GSA and IGA on LIME explanation are 1.3120 and 0.9804,
respectively. The corresponding c-Eval for the dummy square
are 1.2962 and 0.9696. We can see that the distortions in
GSA and IGA are more spreading out due to the nature of
the attacks, which constitutes higher total distortions. Even
though the distortions in GSA and IGA are larger than those
computed by CW attack, their results still imply that LIME
explanation is better than the dummy square and align with
our intuition on their explaining power.

Fig. 4 is the scatter plot of c-Eval of 30 explanations in
Inception-v3 computed by different perturbations methods.
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(a) LIME-CW

(b) LIME-GSA

(c) LIME-IGA

SR R 2

(d) Dummy-CW () Dummy-GSA (f) Dummy-IGA

Fig. 3: Distortions between perturbations and the original
images. The notations 'LIME’ and ’Dummy’ stand for LIME
explanation and dummy explanation in experiment of Fig. 2.
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Fig. 4: Scatter plot of c-Eval computed by gradient-based
attacks vs c-Eval computed by CW attack.

The results demonstrate the strong correlations of c-Eval
computed by GSA as well as IGA to c-Eval obtained from CW
attack. Based on these correlations, we will use GSA and IGA
instead of CW attack to compute c-Eval for some experiments
in this work due to their lower running-time complexity.

IV. c-EVAL AND THE IMPORTANCE OF FEATURES

This section illustrates a relationship between c-Eval and the
importance of features returned by local explainers. We first
demonstrate this relationship in multi-class affine classifiers.
We show that c-Eval determines the minimum distance from
the explained data point (the input image) to the nearest
decision hyperplane in a lower-dimension space restricted by
the choice of explanatory features. A high c-Eval implies
that the chosen explanatory features are more aligned with
the minimum projection’s direction, i.e. they are features
determining the prediction on the data point. We further extend
the analysis of c-Eval to general non-affine classifiers. Our
experiments based on c-Eval suggest an existence of nearly-
affine decision surfaces in several well-known classifiers.
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A. c-Eval in affine classifiers

We consider an affine classifier f(z) = WTx + b where
W and b are given model’s parameters. Given an explanation
ez, c-Eval is the solution of the following program:

min ||d]|2 ®)
s.t3Jj: 'ij(m +0)+b; > 'qu;(a: +6) +bj,,
Vi € em,(si =0,

where wj; is the 4™ column of W, jy = arg max; f(x) is the
original prediction and 4§ is the vector of §; defined in (1).

When e, = (), there is no restriction on entries of . The
optimization program (8) computes the distance between x
and the complement of convex polyhedron P:

P= ﬂ{az  fio(x) > fi(2)},

Jj=1

©)

where « is located inside P. The optimal ¢y ,(0) of (8) is a
distance from @ to the closest decision hyperplane F; = {x :
fjo(®) = fj(x)} of P. For the sake of demonstration, Fig. 5
describes an example in 2-dimension space where cy 5 (0) is
plotted in the green line.

Fig. 5: c-Eval in 2D affine classifier. Explanation {x5} is better
than {z} since the distance from @ to hyperplane F; without
changing x5 is larger than that distance without changing z;.

For each explanatory feature in e,, the optimization space of
(8) is reduced by one dimension. The optimization program (8)
then solves for the shortest distance from @ to the complement
of polyhedron P in a lower dimension. A more important sub-
set e, implies more restrictive constraints on the optimization
(8) and a larger distortion/distance ||d]|. In 2-dimension space
as depicted in Fig. 5, under an assumption that F; is also the
closest hyperplane of P to @, ¢ z(eq = {x1}) is the distance
from x to F; when the feature x; is unchanged. Similarly, the
c-Eval ¢y z(ez = {z2}) is the length of the blue line in the
figure. In this case, allowing changing x5 is easier to alter the
original prediction jo than x1, i.e. ¢y o({z1}) < ¢ro({z2}).
It implies that x5 is more important to the prediction than z;.

To this point, we see that under the affine assumption on
classier f, c-Eval of an explanation is the length of the pro-
jection from the data point to the decision hyperplanes in the
space of non-explanatory features. Therefore, the explanation
with high c-Eval contains features whose dimensions are more
aligned with the shortest distance vector from the data point to
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the decision hyperplane. Thus, c-Eval reflects the importance
of features in the explanation.

B. c-Eval in general non-affine classifiers.

For more general classifiers, the set P in equation (9) de-
scribing the region of prediction jg is no longer a polyhedron.
However, our observation based on c-Eval suggests that many
well-known image classifiers might be nearly affine in a wide-
range of local predictions. Therefore, it is still applicable to
evaluate models’ explanations using c-Eval.

() » ¢ (2)

¢/ N

Fig. 6: c-Eval in non-linear classifier. When f is nearly affine,

cra(0) ~ éra(D).

Our observation is based on a property of c-Eval in affine
classifier. Given an explanation e,, we have shown that
¢rz(eg) is the distance from x to F; without changing
features in e. Similarly, cs (2 \ ez) is the distance from « to
F; without changing the complement of e,. As in the case of
2-dimension in Fig 5, ¢y 5(() is the height to the hypotenuse
of the right triangle whose sides are ¢y z(eg) and ¢; (¢ \ ez).
Thus, we have the following equalities:

1 B 1 n 1 (10)
cra0)?  cralea)?  cra(@\ eg)?
& ¢1.0(0) ! (11)

V1/era(ea)? +1/cra(@\ ez)?
for any explanation e,. We denote the expression on the right-
hand-side of (11) by éy,4(0).

For non-linear classifiers f, equation (11) does not hold in
general. However, if the decision surface F; is nearly affine,
we should have ¢y 5(0) ~ ¢7,(0) for all e, as described in
Fig. 6. By testing different classifiers, we observe that this
necessary condition hold for many data points of common
image classifiers such as Inception-v3 [16], VGG19 [26] and
ResNet50 [27]. Specifically, in experiment on Inception-v3
shown in Fig. 7, we generate a 8 x 8 GCam explanation
on the Inception-v3 and iteratively compute cyz(e5) and
ctz(x \ ez) using CW attack. Here, we vary the number of
explanatory features k in e, and compute the corresponding
¢r,2(0) using equation (11). The value of cf o (0) is drawn
using the purple straight-dot-line for reference. We can see
that the two lines for ¢y ,(0)) and ¢é;o(0) are close to each
other. The experiments on VGG19 and ResNet50 are plotted
in Fig. 8. Due to running-time complexity, we use GSA to
compute the c-Eval on the same input image as for Inception-
v3. Note that the Lo distortion is computed based on the input
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Original image

L2 Distance

0.2

15 20
Number of segments in e,

Explanation

Fig. 7: Example of nearly affine instance on Inception-v3.
Here, ¢y, ¢, Cest and cp are ¢f o(ex), ¢f.o(x\ €x), ér,2(0) and
cy,=(0) respectively. Since cf () ~ é74(0) for all number
of segments from the explanation, we might infer that the
decision surface is nearly affine in this example.

space of each model. We can see that ¢ ,(0) and cy (D)
are close to each others in both models. It is interesting that
different models share this same property, which encourage us
to use c-Eval to evaluate explanations of those classifiers.

L2 Distance

10 15 20 25 30 35 40 15 20 25 30 35

Number of Segments in ey Number of Segments in ey

(a) VGG19 (b) ResNet50

Fig. 8: The condition ¢ () ~ ¢f4(0) also holds for VGG19
and ResNet50, which also suggests the existence of nearly-
affine decision surfaces in these models.

V. BEYOND C-EVAL

In the following Subsection V-A, we introduce the c-Eval
plot, which is a visualization of explainers’ behavior on a given
input based on c-Eval. Using examples on LIME explainer, we
demonstrate that c-Eval plot helps us determine appropriate
tuning parameters for the explainer and strengthens the usage
of c-Eval in evaluating the importance of explanatory features.
On the other hand, since c-Eval relies on the generation of
successful perturbations, Subsection V-B discusses c-Eval’s
behaviors in adversarial-robust models. We show that c-Eval
computed in adversarial-robust models is strongly correlated
with its non-robust counterpart. The result implies that c-Eval
is applicable in adversarial-robust models.
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A. c-Eval plot

In Section II, we restrict the c-Eval analysis on explanations
of similar sizes. That restriction is just for a fair comparison
among explanations of different explainers. In practice, the
explanation’s size is normally determined based on the appli-
cations and the specific inputs. Given an explainer, by varying
explanation’s size k, we obtain a sequence of explanations and
their corresponding c-Eval. Therefore, on a given input image,
each explainer will be associated with a sequence of c-Eval
values. By plotting this sequence as a function of %k, we can
observe the behaviors of explainers on that input and select an
appropriate size for the explanation accordingly. We call the
resulting plot the c-Eval plot.

- 100 samples

- 1000 samples
- 4000 samples
- 10000 samples

+ime

Fig. 9: c-Eval plot of LIME with different sample rates. Higher
sample rates result in better explanations and c-Eval plot
reflects that expectation.

We now discuss an experiment based on the c-Eval plot
to heuristically show that it correctly evaluates the expla-
nations and improve our understanding on the behavior of
the explainer. Specifically, we study the LIME explainer with
different number of samplings. In LIME, the sampling size de-
termines how many perturbations are conducted in finding the
explanation. The higher the number, the better the explanation
and the higher the running time complexity [3]. Since there
is no concrete rule on how this parameter should be chosen,
how can we verify that a LIME explanation is free from under-
sampling error? What is an appropriate number of explanatory
features to explain the prediction? In the following, we show
how c-Eval plot reflects the impact of the number of samplings
on LIME’s performance and help us determine appropriate
values for that parameter.

The experiments are conducted on Inception-v3 with the
input image as in the experiment in Fig. 2. We first seg-
mentized that image into 100 feature segments. Then, we
explain them using LIME with 100, 1000, 4000 and 10000
samples. We plot the the c-Eval sequences {cyq(ef)}?_,,
i.e. the c-Eval plot in fig. 9. For some numbers of segments
(the explanation’s size & = 5,10,20 or 30) and for each
setting of LIME (red for 100, blue for 1000, green for 4000
and purple for 10000 samples), we provide the corresponding
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explanations for illustration in Fig. 9. The result shows distinct
gaps in the c-Eval among different numbers of samplings. It
is clear that the higher the number of samples, the higher
the c-Eval. This observation is consistent with our expectation
that the explanations at higher numbers of samples are better.
Additionally, using c-Eval plot, we can deduce that there is not
much improvement in the explanations’ quality by increasing
the number of samples from 4000 to 10000. This implies c-
Eval can be used as a metric to support automatically tuning
of explainer’s parameters. It also helps us gain trust in LIME
in the sense that, if we aim for top-5 important features among
100 features, LIME with 2000 samples might be reliable since
there is not much gain in c-Eval by increasing that number
from 1000 to 10000. We also observe that, given the number
of samples, there is a diminishing return in c-Eval after a
certain number of explanatory features. For instance, if we
only use 1000 samples, 20 explanatory features (roughly 20%
of the input image) is enough to explain the prediction.

B. c-Eval on adversarial-trained models

Since c-Eval is computed based on adversarial generation,
there might exist concerns regarding the applications of c-
Eval on adversarial-robust models. First, as adversarial-robust
models are more resistant to perturbations, is it feasible to
generate successful perturbations on robust models? Second, if
we are able to obtain those perturbations, are the c-Eval values
of the corresponding explanations reliable? In the following,
we address those concerns through experiments on MNIST
dataset using the LeNet model [28]. Specifically, we show that
the c-Eval computed on non-robust and robust models have
strong correlation. This correlation implies that the behaviors
of c-Eval are similar on non-robust and robust models.

We use Advertorch [22], a Python toolbox for adversarial
robustness research, to train three LeNet classifiers on the
MNIST dataset. The first model, denoted as non-robust model,
is trained normally. The second is alternatively trained between
images from MNIST and the corresponding adversarial sam-
ples generated at each iteration. Here, the normalized Lo-norm
distortion between each adversarial sample and its original
image is bounded by € = 0.3. The third model is trained in
the same manner as the second but the distortion bound ¢ is set
to 0.5. All three classifiers archive more than 95% accuracy on
test set. For the two adversarial-trained models, their accuracy
on adversarial samples are all greater than 94%.

Using 4000 images in the test set, we generate their predic-
tions made by the three LeNet classifiers and the correspond-
ing top-10% LIME explanations. For all three classifiers, we
are able to obtain the successful perturbations using IGA and
the corresponding c-Eval for all explanations. The successful
perturbations for all inputs of adversarial-trained models can
be computed because the models are only robust against ad-
versarial with bounded distortion. In c-Eval, the perturbations
are not limited by the amount of distortion.

Fig. 10 is the scatter plot of c-Eval of 300 (randomly
chosen from 4000) explanations of predictions from the three
classifiers. The Pearson correlations between c-Eval of the first

Authorized licensed use limited to: University of Florida. Downloaded on August 20,2022 at 15:08:18 UTC from IEEE Xplore. Restrictions apply.



35
30
25
20
15 '

10

05

c-Eval of advesarial-trained models

s epsilon=0.3
» epsilon=0.5

00«

00 05 10 15 20 25 30 35
c-Eval of non-robust model

Fig. 10: Correlation between c-Eval on non-robust and
adversarial-trained models.

model and those of the other two adversarial-trained models
are 0.765 and 0.764 respectively. We asset this is a fairly high
correlation when we take into account that these are three
models trained separately. In fact, on average, less than 75% of
the explanatory features are shared between non-robust model
and any of the others. We also observe the model with higher
bound in the distortion in the training has higher average c-
Eval. This aligns with our intuition on how c-Eval is computed.

VI. EXPERIMENTAL RESULTS

In this section, we use c-Eval to experimentally evaluate ex-
planations generated by different feature-based local explain-
ers on small gray-scale hand-writing images MNIST [18] and
large color object images Caltech101 [29]. We also provide
experimental results showing that evaluations of explanations
based on c-Eval on MNIST dataset align with previous results
obtained from log-odd scoring function [5], which is specif-
ically designed for MNIST dataset only. To demonstrate the
statistic behavior of c-Eval on large number of samples, the re-
ported c-Eval is not precisely ¢y 5 (ez) but the ratio of ¢y 5 (ex)
over ¢y (). This ratio is indicated by the notation C(e;)/Co
in the legend of each figure. The ground-truth quality rankings
of explanations are obtained from previous results in assessing
explainer’s performance using human-based experiments [2],
[5]. The studied classifier models and explainers are selected
based on those previous experiments accordingly. The system
specifications and the codes for our implementations are
specified in subsection VI-A. For reference, we also provide
experiments on small-size color image dataset CIFAR10 [30],
which can be found in our other report [31]. In the Appendix
of that report, we also provide some explanations of images
from MNIST, Caltech101 and CIFARI1O datasets along with
their computed c-Eval for visualization.

A. System specifications and source code

Our experiments in this paper are conducted in Python. The
computing platform is a Linux server equipped with two Intel
Xeon E5-2697 processors supporting 72 threads. Our system
memory comprises twelve 32 GB DDRA4 sticks, each operates
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at 2400 MHz. The source code for our experiments can be
found at [32].

B. Simulations on MNIST dataset

For the MNIST dataset [18], we study 8 different feature-
based local explainers: LIME [3], SHAP [2], GCam [4],
DeepLIFT (DEEP) [5], Integrated Gradients [33], Layerwise
Relevance Propagation (LRP) [6], Guided-Backpropagation
(GB) [7] and Simonyan-Gradient (Grad) [8]. Followings are
brief descriptions of these explainers.

In LIME, the importance of each picture segment is approx-
imated with a heuristic linear function using random perturba-
tion. SHAP, which relies on the theoretical analysis of Shapley
value in game theory, assigns each pixel a score indicating the
importance of that pixel to the classifier’s output. Since SHAP
is a generalized version of LIME, we expect SHAP expla-
nation to be more consistent with the classifier than LIME,
hence SHAP’s c-Evals are expected to be higher statistically.
Previous work [2] also provided human-based experiments to
support this claim. DeepLIFT, Integrated Gradients, LRP, GB
and Grad are backward-propagation methods to evaluate the
importance of each input neuron to the final output neurons
of the examined classifier. Previous experiment results using
log-odds function in [5] suggest that GB and Grad perform
worse than the other three in MNIST dataset. The final studied
explainer GCam is an image explainer designed specifically
for fully-connected convolutional networks. It exploits the last
convolution layer to explain the model’s prediction. Since
GCam is not designed for classifiers of low-resolution images,
we expect its performance and the corresponding c-Eval in the
MNIST dataset are limited.

Our experiments on the MNIST dataset are conducted in
pixel-wise manner, i.e. the outputs of explainers are image pix-
els. For each input image, each explainer except LIME is set
to return 10% the number of image pixels as explanation. For
LIME, since the algorithm always returns image segments as
explanations, we set the returned pixels to be as close to 10%
of the total number of pixels as possible. On another note, the
implementations of LRP are simplified into GradientxInput
based on the discussion in [5]. The c-Eval and the statistical
results of explanations are reported in Fig. 11.

Different classifiers: Figs. 11a and 11b are the distributions
of c-Evals on 1000 explanations in MNIST dataset on classifier
1 provided by [2] and classifier 2 provided by [5]. The notation
I5 and I10 indicate the Integrated-Gradient method with 5
and 10 interpolations [33]. We can see that the evaluation
based on c-Eval is consistent between classifiers as well as
previous attempts of evaluating explainers in [2] and [5]. For
the consistency in the behavior of c-Eval and log-odds function
in [5], please see the discussion in subsection VI-D.

Different gradient-based perturbation schemes: Figs. 11c
and 11d demonstrate the usage of IGA instead of GSA as
shown in Figs. 11a and 11b. Comparing the distributions in
Fig. 11c to Fig. 11a and Fig. 11d to Fig. 11b, the relative c-
Eval of explainers are similar between perturbation schemes
and consistent with previous experiments in Fig. 4. Thus,
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Fig. 11: The distributions and the averages of c-Eval of 8
explainers on classifier 1 provided by [2] and on classifier 2
provided by [5] on 1000 images in MNIST dataset.

the computed c-Evals using IGA also reflect the explainers’
performance. Finding optimal perturbation schemes resulting
in a good measurement of c-Eval is not considered in this
work; however, the experiments suggest that non-optimal
perturbation schemes can be used to obtain reasonable mea-
surement of c-Eval.

C. Simulations on Caltechl0l1 dataset

For experiments on large images, we study the perfor-
mance of LIME, SHAP, GCam, DeepLIFT on 700 images
in Caltech101 dataset [29] with the VGG19 classifier [26]. As
LIME, SHAP, and GCam explainers are designed for medium-
size to large-size images, we expect they should outperform
DeepLIFT. Furthermore, the results from [2] implies SHAP
should perform better than LIME. On the other hand, as GCam
are designed for fully-connected convolution networks (e.g.
VGG19), we expect its performance here to be much better
than that in previous experiments on MNIST dataset.

Segment-wise features are used on the Caltech101 dataset.
Since the outputs of some explainers are importance weights of
pixels, we convert them all into a subsets of image segments as
explanations for fair comparison. Specifically, the importance
weight of each segment is the sum of the importance weights
of all pixels inside that segment. Then, the top k£ segments with
maximum weight are selected as the segment-wise explanation
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Fig. 12: Distributions of c-Eval computed by GSA and IGA
for four explainers in Caltech101 dataset.

of the examined explainer. For the results in Fig. 12, the
number of segments is selected such that roughly 20% of the
original input image is covered by the explanation.

The computed c-Eval in our experiments on Caltech101 are
reported in Fig. 12a and Fig. 12b. Here, we use GSA and
IGA to compute c-Eval respectively. The observation is that
the statistical behavior of c-Eval aligns with our expectation
on the performance of all four explanation method on this
dataset. In fact, by design, GCam is expected to perform better
in Caltech101 than MNIST. On the other hand, DeepLIFT
is not designed and stress-tested on larger models trained on
dataset that are significantly bigger than MNIST. More will
be discussed in Subsection VI-E. For the improvement of
GCam and the degradation of DeepLIFT from the MNIST
dataset and CIFAR10 to the Caltech101 dataset, For better
intuition on the improvement of GCam and the degradation
of DeepLIFT from the MNIST dataset and CIFARI10 to the
Caltech101 dataset, we suggest readers check the our examples
shown in the Appendix of our other report [31].

D. Similarity of c-Eval and log-odds functions in MNIST

To evaluate importance scores obtained by different methods
on MNIST dataset, the authors of DeepLIFT designs the
log-odds function as follows. Given an image that originally
belongs to a class, they identify which pixels to erase to
convert the original image to other target class and evaluate
the change in the log-odds score between the two classes.
The work conducted experiments of converting 8 to 3, 8
to 6, 9 to 1 and 4 to 1. In Fig. 13, we adopt c-Eval into
the MNIST dataset to compare c-Eval of explainers with
the corresponding log-odds scores. The figure displays the
c-Eval of studied explainers on images with predictions 4,8
and 9 respectively. We conduct the experiments using both
GSA and IGA perturbation schemes. Besides the DeepLIFT in
experiments for label 4 and 8, all relative ranking of explainers
in c-Eval is consistent with the ranking resulted from log-
odds computations shown in [5]. This result implies that our
general frameworks of evaluating explainers based on c-Eval
are applicable to this specific study on the MNIST dataset.
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Fig. 13: We compute the c-Eval for 6 explainers on 1000
images of MNIST for labels 4,8 and 9 to show the similarity
between c-Eval and log-odds function in [5].

E. Overall evaluations of explanations using c-Eval

Many interesting results and deductions can be drawn from
experiments on MNIST and Caltech101. The result is also
consistent with our experiments on CIFAR10 reported in [31].
We discuss several key observations in the followings.

Our first comment is about the correlation of c-Eval and the
portion of predicted object captured by different explanations.
In CIFARI10 and especially Caltech101 (see [31]), it is clear
to us that most explanations containing the essential features
of the predicted label have high c-Eval.

Our second attention is on the relative performance of
GCam in three datasets. Since GCam is designed for con-
volutional neural networks such as the VGG19, we expect
high relevant explanations from GCam in its experiments on
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Caltech101. However, as GCam exploits the last layer of the
neural networks to generate the explanations [4], we have
low expectation on its capability of explaining predictions on
MNIST and CIFAR10 dataset. The reason is that the models
used in those two later dataset are too different from the
VGG19. In fact, the adaptation of VGG19 on CIFARI10 [34]
contains only 4 neurons in the last convolutional layer, which
results in only 4 regions of the images that GCam can choose
as region of high important. The distributions of c-Eval of
GCAM shown in Fig. 12b also reflect that expectation.

DeepLIFT is a back-propagation method and it is not only
sensitive to the classifier structure but also the selection of
reference image [5]. The experimental setups of DeepLIFT in
the MNIST dataset shown in Fig. 11 are taken directly from
the source code of the explainer’s paper. Our adoptions of
DeepLIFT to CIFAR10 and Caltech101 are conducted without
calibration on the reference image as the calibration procedure
for color images is not provided. This might be the reason for
the degradation of explainer’s quality in these two datasets. It
is clear that c-Eval captures this behavior.

Our final remark is on the exceptionally high c-Eval of
SHAP shown in all three datasets. This result encourages us
to take a deeper look at explanations produced by SHAP.
From our observation, it shows that SHAP captures some
important features that are overlooked by others. Let’s consider
the explanation of number 4 as an example. SHAP is the
only explainer detecting that the black area on top of number
4 is important (see examples in [31]). In fact, this area is
essential to the prediction since, if these pixels are white
instead of black, the original prediction should be 9 instead of
4. Without the c-Eval computations, it is non-trivial to identify
this beneficial behavior in SHAP explainer.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we introduce c-Eval to evaluate explanations
of various feature-based explainers. Extensive experiments
show that c-Eval of explanation reflects the importance of
features included in the explanation. This study leads to several
interesting research questions for the future work. For exam-
ple, the distributions of c-Eval in Fig. 11 advocates that there
is a fundamental difference between the quality of black-box
explainers (SHAP, LIME and GCam) and back-propagation
explainers (DEEP, Integrated Gradients, LRP, GB and Grad),
which is ambiguous prior to this work. From the novelty of c-
Eval, we expect that knowledge on the explanation maximizing
c-Eval will offer us a much clearer view on predictions made
by modern neural networks.
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