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ABSTRACT: Polymer synthesis routes result in macromolecules with molecular
weight dispersity ĐM that depends on the polymerization mechanism. The lowest
dispersity polymers are those made by anionic and atom-transfer radical
polymerization, which exhibit narrow distributions ĐM = Mw/Mn ∼ 1.02−1.04.
Even for small dispersity, the chain length can vary by a factor of two from the
average. The impact of chain length dispersity on the viscoelastic response remains
an open question. Here, the effects of dispersity on stress relaxation and shear
viscosity of entangled polyethylene melts are studied using molecular dynamics
simulations. Melts with chain length dispersity, which follow a Schulz−Zimm (SZ)
distribution with ĐM = 1.0−1.16, are studied for times up to 800 μs, longer than the
terminal time. These systems are compared to those with binary and ternary
distributions. The stress relaxation functions are extracted from the Green−Kubo
relation and from stress relaxation following a uniaxial extension. At short and
intermediate time scales, both the mean squared displacement and the stress relaxation function G(t) are independent of ĐM. At
longer times, the terminal relaxation time decreases with increasing ĐM. In this time range, the faster motion of the shorter chains
results in constraint release for the longer chains.

■ INTRODUCTION

Dispersity in polymers’ molecular weight is inherent to the
statistical nature of their synthesis routes, where variability in
chain lengths results in a different number average molecular
weight Mn and weight average molecular weight Mw. The
degree of dispersity is defined as ĐM = Mw/Mn.

1 The lowest
dispersity is found in anionic and atom-transfer polymer-
ization2,3 in which ĐM is of the order of 1.02−1.04. For most
commodity polymers, ĐM is significantly higher, which strongly
influences mechanical and rheological responses. As we have
previously shown, even dispersity as small as ĐM = 1.02−1.04
is sufficient to affect the chain mobility.4 The current study
probes the effects of low dispersity on the stress relaxation at
the crossover from ideal monodispersed polymers to realistic
ones. Through fine tuning of dispersity, we show that
dispersity increases the mobility of the long chains relative to
long chains in a monodispersed melt of a similar chain length.
This, in turn, leads to a decrease in the time required to fully
relax the stress in polymer melts.
Experimentally, Graessley and co-workers have shown that

the viscoelastic response of a polymer melt is highly sensitive
to chain dispersity, particularly for high molecular weights.5,6

However, following the effect of ĐM on the relaxation of
individual chains remains a challenge experimentally. Theoret-
ically, dispersed melts have mainly been treated by extending
models of monodispersed melts to include chain length
dispersity.1,7 These studies have largely focused on linear
viscoelasticity of entangled polymer melts8−16 and clearly

demonstrate that the dynamics of linear chains in dispersed
polymeric melts cannot be described solely by classical
reptation theory.
Computations enable a systematic study of the effects of

dispersity in polymer chain length on viscoelastic response.
However, to capture the viscoelastic response for polymers
with dispersity correctly, especially in the entangled regime,
requires probing large systems for long times. Therefore most
numerical simulations have largely focused on monodispersed
(ĐM = 1) systems. Dispersed systems have mostly been
modeled by blends of two chain lengths,17−23 with only a few
studies of polymer melts with a distribution of chain
lengths.17,24−32 Rorrer and Drogan28−31 studied entangled
melts using a lattice dynamic Monte Carlo method with three
unique chain lengths to represent different degrees of
dispersity. Recently, we directly probed the mobility of
dispersed entangled polymer melts with distribution as narrow
as experimentally attainable for long entangled polymers.4 We
showed that while the average diffusion constant of the chains
increases weakly with increasing ĐM, the mobility of the
shortest and longest chains deviate considerably from the
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average. This enhanced diffusion of the shorter chains results
in constraint release for the longer chains, leading to a faster
motion of the long chains than in a monodispersed melt of
long chains. Building on our previous study of chain mobility
for narrow distributions of molecular weight, we resolve the
effects of low chain length dispersion on the stress relaxation
and shear viscosity. Understanding this low dispersity regime
opens the way to evaluate the degree of dispersity that affects
mechanical properties.
Using a coarse grained (CG) model for polyethylene (PE)

with four methylene groups per CG bead,33−35 we examine
stress relaxation of dispersed entangled polymer melts with
dispersity ĐM and compare the results to a monodispersed
polymer melt. This CG model was shown33,34 to capture both
the structure and dynamics of uniform PE melts. Here, we
compare the chain mobility, stress relaxation, and shear
viscosity for a Schulz−Zimm (SZ) distribution of molecular
weights,1,36,37 with binary and ternary distributions with the
same weight averaged molecular weight Mw. The Schulz−
Zimm distribution describes the molecular weight distribution
of polymer melts synthesized by anionic and atom-transfer
radical polymerization. We focus on low dispersity (1.0 ≤ ĐM
≤ 1.16) to match the optimal synthesis routes for attaining the
lowest possible ĐM experimentally.

■ MODEL AND METHODS
The current study uses a CG model with four methylene
groups per CG bead.33,35,38 This CG scheme is chosen since
for more than five methylene groups per bead, additional
constraints are needed to prevent chains from cross-
ing.33,34,39,40 This CG potential was previously derived from
an atomistic simulation of C96H194

33,34 at T = 500 K and
density 0.76 g/cm3 using an iterative Boltzmann procedure
with pressure corrections.33,34 The atomistic simulations used
the Optimized Potentials for Liquid Simulations (OPLS) force
fields of Jorgensen et al.41,42 potential with modified dihedral
coefficients to better reproduce the properties of long
alkanes.43 A tabulated CG angle and bond potentials were
determined by Boltzmann inversion of the atomistic bond and
angle distributions. Torsion CG terms were omitted. The
detailed description of the CG development is given by
Salerno et al.33,38 and Peters et al.35 For the monodispersed
system studied here, the mean squared end-to-end distance
⟨R2⟩/Mw = 1.31 Å2 mol/g, which is in very good agreement
with the experimental value of 1.25 Å2 mol/g for polyethylene
at 413 K was determined from small-angle neutron
scattering.44 The packing length was p = 1.8 Å compared to
the experimental value of p = 1.69 Å at 413 K.44

To model the distributions of chain lengths, we used the
Schulz−Zimm distribution1,36,37 that commonly captures the
length distribution in chromatography with ĐM = 1.0−1.16
and Mw = 35.8 kg/mol.4 This corresponds to 2560 CH2
monomers or 640 CG beads per chain for the monodispersed
system. For comparison, we also studied binary and ternary
blends with ĐM = 1.04, as shown in Figure 1. Experimentally,
the entanglement molecular weight for PE is Me ∼ 1.1−1.2 kg/
mol,45,46 which corresponds to about 20 CG beads. Using this
experimental value for Me, the number of entanglements per
chain Z = Mw/Me ∼ 30−33. To represent the Schulz−Zimm
distribution, one melt of Nc = 2000 chains was studied for 1.02
≤ ĐM ≤ 1.08 and Nc = 4000 chains for ĐM = 1.16. There are
398, 524, 671, and 940 unique chain lengths for ĐM = 1.02,
1.04, 1.08, and 1.16 respectively. For the largest dispersity ĐM

= 1.16, the chains range in length from 94 to 1834 CG beads.
For ĐM = 1.0, two systems of Nc = 1000 chains were studied.
The binary system contained 1000 chains of M = 41.3 kg/mol
and 1000 chains of 27.6 kg/mol. The tertiary system contained
666 chains of M = 45.3, 34.5, and 27.9 kg/mol each.
Simulations were performed using the Large Atomic

Molecular Massive Parallel Simulator (LAMMPS) molecular
dynamics code with a time step of 20 ps.47 The chains were
built following the procedure described by Auhl et al.48 with
periodic boundary conditions. All simulations were run at a
constant density ρ = 0.76 g/cm3 and temperature T = 500 K. A
Langevin thermostat with a weak damping constant of 100 ps
was applied to maintain the temperature.34

Coarse graining reduces the number of degrees of freedom,
creating a smoother free-energy landscape compared with fully
atomistic simulations. This results in faster dynamics for the
CG polymer chain than for the fully atomistic model.49−52 To
overlay the mean squared displacement (MSD) of the chains
from the atomistic and CG simulations, time in the CG
simulations is scaled by a temperature-dependent, dimension-
less dynamic scaling factor α. For the current model at T = 500
K, α = 6.2.33,38 In all of the results presented here, time was
scaled by α. The systems studied were run for 4.0−6.8 × 109

time steps or the equivalent of 496−840 μs. All results
presented here are for the weight averaged MSD. All
simulations were run on Sandia’s computer clusters. A billion
time steps took 430 or 900 h or between 0.75 and 1.5 million-
core h for the 2000 chain systems (1.02 ≤ ĐM ≤ 1.08)
depending on the specific cluster and number of nodes used.
For the 4000 chain, ĐM = 1.16 system, a billion steps took 800
h on our fastest cluster. The actual time to complete the runs is
two to three times longer.
The stress relaxation modulus G(t) was measured for each

system using the Green−Kubo relation G(t) = (V/kBT)
⟨σαβ(t)σαβ(0)⟩, where σαβ(t) are the off-diagonal components
xy, xz, and yz of the stress and V is the volume. The normal
stress decay after deforming polymer chains in a melt by a
small step strain was also measured.53 This was done by
deforming the system by an elongation λ in the x-direction Lx
= λL while shrinking the simulation cell in the other two
directions Ly = Lz = L/√(λ) to keep the density of the system
constant. Using the stress−strain description for classical
rubber elasticity,54 G(t) is given by

Figure 1. Chain length distribution P(M) versus molecular weight M
for ĐM = 1.04. Results for our system of 2000 chains (blue) are
compared to the analytic Schulz−Zimm formula (black). Results for
binary (red) and ternary (green) distributions with ĐM = 1.04 are also
shown for arbitrary weight to fit on the graph.
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Here, we use λ = 1.2 following Hsu and Kremer,53 who applied
this method to determine G(t) for the standard bead spring
model.55

Nonequilibrium MD simulations were carried out to
measure the shear viscosity η as a function of the shear rate.
We integrate the SLLOD (which adopts the transpose of the
qp-DOLLS tensor56) equations of motion57,58 with a damping
constant of 1 ps (unscaled). The shear viscosity is calculated
using η = −σxz/γ , where σxz is the xz component of stress along
the flow and gradient directions, respectively, and γ is the strain
rate. After an initial overshoot, σxz reaches a plateau for γ t≫ 1.
This plateau is used to estimate the shear viscosity η. Note that
including the dimensionless scaling factor α decreases the
effective shear rate γ and increases the effective viscosity η
compared to the unscaled values.38

■ RESULTS
The mean squared displacement of the center of mass g3(t) =
⟨(rcm(t) − rcm(0))⟩

2 and the center four CG beads of the chain
g1(t) = ⟨(ri(t) − ri(0))⟩

2 for the Schulz−Zimm, binary, and
ternary distributions with the Mw = 35.8 kg/mol and ĐM =
1.04 are shown in Figure 2. These results show that for a fixed

dispersity, the mobility of the chains and the monomers do not
depend on the functional form (Shulz−Zimm, binary, or
ternary) of the distribution, at least for small dispersity. From
the crossover in g1(t) from the early Rouse relaxation t1/2

regime to the t1/4 reptation regime, we estimate the tube
diameter dT and entanglement time τe. From the results shown
in Figure 2, the crossover time te* ∼ 14 ns and g1(te*) ∼ 4.9
nm2. Assuming that the distribution of segment displacement
along the tube is Gaussian on the scale of the tube diameter
dT,

59 the entanglement time τe = (9/π)te* ∼ 40 ns and tube
diameter dT = √(3π/2)g1(te*) ∼ 4.8 nm. At these early times,
the results are consistent with previous studies by Rorrer and
Dorgran29 and Peters et al.4 who found that τe does not
depend on the degree of dispersity.
Further insight into the mobility of the chains is obtained by

comparing the weight averaged MSD and that of the individual
components for the binary and ternary systems, as shown in
Figure 3. At early times, there is no difference in the motion of
the center beads for the individual components and the motion
averaged over all chains. However, at longer times, differences

in the mobility of the shorter and longer chains become
evident. These observations are similar to those obtained when
probing the shortest and longest chains in the Schulz−Zimm
distribution of chain lengths.4 In all cases, the shorter chains
move significantly faster than the average. For the binary
mixture, the shorter chains with M = 27.6 kg/mol have a
diffusion constant DS = 1.8 × 10−13 m2/s and the longer chains
with M = 41.3 kg/mol have DL = 8.1 × 10−14 m2/s, compared
to the weight averaged diffusion constant D = 1.23 × 10−13

m2/s.
Current results further validate previous studies by Peters et

al.4 who showed that in agreement with earlier Monte Carlo
simulations of Rorrer and Dorgan,29 the average chain mobility
increases and the terminal time τd, when the MSD becomes
diffusive, decreases as ĐM increases. The weight averaged
diffusion constant D increases by 50% as ĐM increases from 1.0
to 1.16 for PE.33 Results for a uniform melt (ĐM = 1.0) and the
lowest dispersity ĐM = 1.02 are nearly indistinguishable. At
early times, the motion of the inner monomers does not
depend on ĐM, as all of the chains, even for ĐM =1.16, are
much longer than the entanglement length for Mw = 35.8 kg/
mol. Comparing the MSD for the shortest and longest 5% of
the chains for the Schulz−Zimm distribution, the shorter
chains were observed to move significantly faster than the
average as the dispersity increases. In the dispersed melts, the
longer chains move faster than in a uniform melt of long
chains. This increase in the mobility of the long chains occurs
even for low dispersity. This increase in the mobility of the
long chains is attributed to constraint release due to the shorter
chains. This enhanced mobility is expected to affect the
viscoelastic response.
The stress relaxation G(t) for dispersity in the range ĐM =

1.0−1.16 for the Schulz−Zimm distribution was calculated in
two ways: from the stress autocorrelation function shown in
Figure 4 and from the stress relaxation after extension shown in

Figure 2. Weight averaged mean squared displacement of the center
of mass g3(t) (open) and center four CG beads g1(t) (solid) for
Schulz−Zimm (black), binary (red), and (green) tertiary with ĐM =
1.04.

Figure 3. Averaged mean squared displacement of the center of mass
g3(t) (open) and center for CG beads g1(t) (solid) for weight average
(purple) and components for (a) binary distribution and (b) ternary
distribution for ĐM = 1.04.
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Figure 5. As shown in Figure 4, at short times, G(t) decays
rapidly as the chains locally relax within their tube,

independent of ĐM. Only after the chains have reached the
diffusive regime does G(t) relax to zero at a time τd, which
decreases with increasing ĐM. From the results shown in
Figure 4, we estimate that the plateau modulus GN

0 ∼ 1.8−2.0
MPa, which using the expression = ρG RT

MN
0 4

5 e
gives an

entanglement length of Me = 1.1−1.3 kg/mol, consistent
with the experiment. However, much longer chains are needed
to obtain a more definitive value for GN

0. Currently, such
computations are not feasible.

Determination of the stress relaxation function G(t) from
fluctuations in the off-diagonal components of the stress tensor
usually requires simulations several times the longest relaxation
time. An alternative method is to follow the experimental
procedure and apply a small strain and measure stress
relaxation. Although computationally more efficient than the
stress autocorrelation function, the challenge is to apply a
strain small enough to be able to reliably measure the stress yet
remain in the linear response regime, which we were able to do
in this study. Following Hsu and Kremer,53 we applied a
uniaxial strain of λ = 1.2. Results for G(t) at strain rates of 8.1
× 106/s and 9.0 × 105/s are shown in Figure 5a. The results for
the two rates are similar except at very early times (t < ∼200
ns). G(t) for the binary, ternary, and SZ distributions with ĐM
= 1.04 and for the SZ distribution with ĐM = 1.16 are shown in
Figure 5b. We find that the plateau modulus GN

0 = 1.8 MPa in
agreement with the results from the stress autocorrelation
function, except at early times where the system begins to relax
while being extended. At early time, the decay of G(t) depends
on the strain rate and differs from that obtained from the
autocorrelation function and MSD, presumably due to the
finite strain rates used in this approach, while the diffusive
times τd are comparable for the two methods.
Another way to characterize the viscoelastic response is to

measure the shear viscosity η as a function of the shear rate γ .
The start-up viscosity as a function of time for ĐM = 1.04 and
1.16 is shown in Figure 6a for the three values of the shear rate
γ . At early times, after the shear is imposed, there is an
overshoot in the shear viscosity, which is independent of the
dispersity for the values of ĐM studied here. The steady-state
shear viscosity is shown in Figure 6b for five systems. Over the
entire range of accessible shear rates, which are all in the
nonlinear regime due to computational limitations, the

Figure 4. Stress relaxation modulus G(t) using the Green−Kubo
formula for Schulz−Zimm distribution with ĐM = 1.0−1.16 with Mw
= 35.8 kg/mol at 500 K.

Figure 5. (a) G(t) using the stress−strain formula, eq 1 for strain
rates 8.1 × 106/s (open symbols) and 9.0 × 105/s (closed symbols)
for binary (circles) and ternary (triangles) blends. (b) G(t) for ĐM =
1.04 (red) and 1.16 (orange) for Schulz−Zimm formula, 1.04 binary
(black) and 1.04 ternary (blue) for an extension rate of 1.45 × 105/s.
Lines are the guide to the eye. Results are offset by a factor of 10 for
clarity.

Figure 6. (a) Shear viscosity η as a function of time for the three shear
rates for ĐM = 1.04 (solid) and 1.16 (open). (b) Shear viscosity η as a
function of the strain rate γ for Mw = 35.8 kg/mol and ĐM = 1.0, 1.04
for Schulz−Zimm, binary, and ternary, and 1.16 for Schulz−Zimm.
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difference between the five systems is negligible. The fact that
η is independent of ĐM is consistent with the experimental
results of Struglinski and Graessley, who found that the zero
shear rate viscosity is essentially independent of ĐM over a very
large range of dispersity.5 Accessing the linear regime
computationally, where the viscosity is independent of the
shear rate remains a challenge. Unfortunately, it is also not
possible to determine the strain rate at which shear-thinning
begins and study its dependence on ĐM. In summary, while the
stress relaxation G(t) at long times decays faster as ĐM
increases, there is no sign of this behavior in the shear
viscosity, at least for the range of the shear rates currently
accessible computationally.

■ CONCLUSIONS
Here, using a CG polyethylene model with four CH2 groups
per CG bead, we have studied the effects of chain length
dispersity on chain mobility and stress relaxation at the onset
of dispersity. The range of dispersity studied covers the lowest
accessible experimentally by polymer synthesis routes. This
study found that weight averaged chain mobility increases as
dispersity increases but does not depend on the form of the
distribution for the narrow distributions studied here. The
increased diffusion of the shorter chains results in constraint
release for the longer chains, leading to the faster motion of the
longer chains in the dispersed melts than in a uniform melt of
the longer chains. On the entanglement time scale τe, both the
MSD and the stress autocorrelation function G(τe) are
independent of the dispersity index ĐM. At longer times, the
stress autocorrelation function decreases faster with increasing
dispersity, consistent with the decrease in the terminal
relaxation time τd. Further simulations with much larger ĐM
are currently underway with the long-term goal of accessing
the linear regime.
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