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Abstract

We introduce causal Markov Decision Processes (C-MDPs), a new formalism for sequential de-
cision making which combines the standard MDP formulation with causal structures over state
transition and reward functions. Many contemporary and emerging application areas such as dig-
ital healthcare and digital marketing can benefit from modeling with C-MDPs due to the causal
mechanisms underlying the relationship between interventions and states/rewards. We propose the
causal upper confidence bound value iteration (C-UCBVI) algorithm that exploits the causal struc-
ture in C-MDPs and improves the performance of standard reinforcement learning algorithms that
do not take causal knowledge into account. We prove that C-UCBVI satisfies an Õ(HS

√
ZT ) re-

gret bound, where T is the the total time steps, H is the episodic horizon, and S is the cardinality of
the state space. Notably, our regret bound does not scale with the size of actions/interventions (A),
but only scales with a causal graph dependent quantity Z which can be exponentially smaller than
A. By extending C-UCBVI to the factored MDP setting, we propose the causal factored UCBVI
(CF-UCBVI) algorithm, which further reduces the regret exponentially in terms of S. Furthermore,
we show that RL algorithms for linear MDP problems can also be incorporated in C-MDPs. We
empirically show the benefit of our causal approaches in various settings to validate our algorithms
and theoretical results.

Keywords: Reinforcement learning; Causality; Markov Decision Process (MDP).

1. Introduction

In reinforcement learning (RL), the agent interacts with the environment sequentially aiming to
maximize its cumulative reward within a given time period. The environment is generally modeled
as a Markov Decision Process (MDP) that is not fully known to the agent. At every round t, the
agent observes the current state st and performs an action at according to the policy learned so
far. Then the environment returns a reward r(st, at) and transitions the agent to the next state st+1

according to the underlying state transition dynamics. The performance is usually evaluated by
cumulative regret, i.e., the reward difference between the optimal policy and the agent’s policy.

Many RL algorithms have been developed for the tabular setting (Jaksch et al., 2010; Bartlett and
Tewari, 2012; Osband et al., 2013; Azar et al., 2017; Zhang and Ji, 2019; Wang et al., 2020; Zhang
et al., 2020) where the state and action spaces have small cardinalities. Their regret or sample
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complexity bounds all scale with the number of states S and actions A which can be very large in
practice.

In healthcare applications, the doctor adjusts several features to achieve some desirable clinical out-
comes (Liu et al., 2020). For example, different dose levels on medicines, types of exercises, amount
of exercises, sleeping time among other conditions may affect patients’ overall health condition. Pa-
tients in different states (as captured by, say, BMI, blood pressure, status of organs/body systems)
usually respond differently to a given treatment. As the treatment actions are taken, the state of pa-
tients will change accordingly. In digital marketing, online advertising companies aim at attracting
customers to buy products by sending marketing emails. Marketers adjust several variables such
as types of products, email content, the time of day to send the email, purposes (promotion, on-
line events, etc.) of the email, in order to improve the likelihood of a customer buying products.
Customer in different dynamic states, such as loyalty levels and willingness to shop, and different
intrinsic states, such as gender, age, and purchasing power, behave differently after receiving com-
mercial emails. These examples can be modeled as MDPs where the reward variable is the overall
health condition or the actual purchase. In both cases, the number of interventions and states are
exponentially large.

To circumvent the curse of dimensionality where A is enormous, we take a causal approach. In
the healthcare problem, the medical and life-style treatments do not affect the state transition or
reward directly but indirectly through a few key variables (that cannot be manipulated directly, e.g.,
micronutrient levels, blood oxygen level etc.) that have a direct causal effect on next states and
rewards. Similarly, in the digital marketing problem, interventions on email features affect the
state transition and the actual purchase (reward) through key variables such as interest/demand for
products, price performance, engagement and whether any product has been added to the cart or not.
The causal relations among manipulable variables, key variables and other variables in the system
can be represented by a causal graph. If we have such prior causal knowledge, we do not need
to treat all interventions independently as standard RL approaches do. Instead, we can connect the
intervention set with the low dimensional key variables in order to reduce the amount of exploration.
Based on the above idea, we introduce a new formalism: causal MDPs (C-MDPs), and prove that
the regret of our algorithm causal upper confidence bound (C-UCBVI) no longer scales with A,
however, it only scales with a causal graph dependent quantity Z. We show that there can be cases
where Z is exponentially smaller than A.

Furthermore, in order to deal with problems where both S and A are large, we propose two ap-
proaches under different assumptions on low-dimensional structures. Firstly, when the state space
can be factorized as S = S1×· · ·×Sm, we introduce causal factored MDPs (CF-MDPs). Structured
relations among states can be exploited when the agent has prior understandings on the environment.
For example, in the healthcare problem, we may know that at one time-step, the state of an organ
is usually influenced by the states of its closely related parts, not the entire body. Combining our
causal approach with factored MDP techniques, we propose causal factored UCBVI (CF-UCBVI)
algorithm. We analyze its regret and prove that the explicit dependence on the state size S can be
eliminated. In a nutshell, we deal with largeA using causal relations while dealing with large S with
state factorizations. This approach is different from factored MDPs which directly factorize S ×A.
In Section 2, we discuss the differences in more detail. We show that whenA is exponentially large
but cannot be factorized with S , standard factored MDP approaches can fail and our causal approach
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is necessary. We emphasize that 1) neither factored MDP nor our causal approach can imply one
another and 2) the type of available prior knowledge on S and A should determine which method
one should use. Secondly, when the state transition and reward functions can be modeled linearly
with feature vectors over the state and key variable pairs, we show that RL algorithms for standard
linear MDPs (Jin et al., 2019) can be incorporated in C-MDPs.

Our Contributions. We summarize our main contributions below:

1. We study a new formalism: causal MDPs, in which we search for good interventions over an ex-
ponentially large space. In the bandit literature, causal bandits have been studied recently (Lat-
timore et al., 2016; Sen et al., 2017; Lu et al., 2019; Nair et al., 2020) where researchers have
used causal graphs to model the relations among interventions and the reward. In this paper,
we extend the idea behind causal bandits to MDPs. We propose causal upper confidence bound
(C-UCBVI) algorithm that enjoys Õ(HS

√
ZT ) regret. In our regret bound, Z is a causal graph

dependent quantity that can be exponentially smaller than the number of actions A. Our result is
superior to the guarantees available for standard RL algorithms whose regret scales with A.

2. Building on causal MDPs, we propose two approaches to deal with cases when the state space
is also enormous. In our first approach, we introduce causal factored MDPs. We propose causal
factored upper confidence bound (CF-UCBVI) algorithm that achieves Õ(H

∑m
i=1

√
SiS[Ii]ZT )

regret when we factorize S as S1×· · ·×Sm. In this result, Si and S[Ii] denotes the cardinalities
for Si and S restricted to scope Ii 1, which can both be exponentially smaller than the number
of states S. In the second approach, we show that existing linear MDP algorithm can be well
adapted to causal MDP problems and achieve Õ(

√
d3H3T ) regret, where d is the dimension for

features over the state and key variable pairs. Both approaches reduce S dependency from the
regret.

Our key idea is that we use prior causal knowledge such as causal graphs to obtain conditional
independence relations among action, reward and state variables and use them to develop efficient
algorithms.

2. Related work

Our work on causal (factored) MDPs is directly inspired by recent work on causal bandit prob-
lems (Bareinboim et al., 2015; Lattimore et al., 2016; Sen et al., 2017; Lee and Bareinboim, 2018;
Lu et al., 2019; Nair et al., 2020), where the arms of the bandit problem are interventions on a set of
variables and their relations with the reward are captured by a causal graph (Pearl, 2000). In causal
bandits, the causal graph is composed of manipulable/non-manipulable variables and the reward
variable. For causal (factored) MDPs, we need to consider two types of graphs: one is the reward
graph and the other is the state transition graph. Our proposed causal MDP algorithms that exploit
these two types of causal graphs in order to learn the MDP dynamics efficiently.

There is another line of work on causal reinforcement learning (Zhang and Bareinboim, 2016, 2019;
Namkoong et al., 2020; Zhang, 2020; Wang et al., 2021) studying MDPs or dynamic treatment
regimes with unobserved confounders. Our paper does not focus on confounding issues. We model
the related variables by causal graphs following the idea behind causal bandits.

1. We provide formal definitions in Section 3.
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A classic approach to deal with exponentially large state and action spaces is to use factored MDPs.
Recent work has provided formal regret guarantees for factored MDPs (Osband and Van Roy, 2014;
Xu and Tewari, 2020; Tian et al., 2020). The key idea is to factorize the state set (S) and state-action
set (S ×A): S = S1×· · ·×Sm, S ×A = X1×· · ·×Xn. The state transition and reward dynamics
are generated based on these two factorization structures. However, in practice, actions do not
always have local effect on the outcomes and thus cannot always be factorized together with states
as described above. For example, it is almost impossible to directly factorize the Cartesian product
between the state of organs/BMI/etc. and the treatments (which serves as actions), because some
medical treatments, especially life-style treatments usually affect all of the organs/BMI/etc. Same
for email campaign, all the email features affect the loyalty building and the actual purchase to some
degree. In these cases, the state-action set can only be written as: S×A = S1×· · ·×Sm×A. Under
this condition, existing factored-MDP algorithms cannot avoid a dependence onA in their regret, so
our causal approaches are necessary. We emphasize that our causal approaches and factored MDP
approaches have their advantages under different assumptions. Causal approaches are preferred
when there is prior causal knowledge on S,A and the outcomes, while factored MDP approaches
are preferred when actions have local effect on the outcomes so that A can be factorized with S .

Function approximation methods (Jin et al., 2019; Yang and Wang, 2020; Zhou et al., 2020; Ayoub
et al., 2020) are also powerful tools to handle large state and action spaces when certain feature
maps are available. Our methods instead exploit a different type of side information: the underlying
causal graph, to address problems with large S and A. To reduce sample complexity, dynamic
Bayesian networks (DBNs) are also used to model state transitions for every action (Boutilier et al.,
2000), where an action may lead to sparse connections among state variables at consecutive time
steps. In contrast, in our setting each manipulable variable at time t will connect with all other
manipulable variables at time t+ 1. We do have conditional independence between actions and the
reward, actions and state transitions at each time step, but not across different time steps. Outside
of RL, similar ideas of causal modeling in time-dependent systems have also been studied (Blondel
et al., 2017; Srinivasan et al., 2021).

3. Preliminaries

We follow standard RL/graphical terminology and notation in Azar et al. (2017) and Koller and
Friedman (2009) to state the casual (factored) MDP problems.

Causal Graph. A directed acyclic graph G is used to model the causal structure over a set of
random variables X = {X1, . . . , XN}. We write the domain for variable X as Dom(X) and
the joint distribution over X along graph G at state s as P (·|s). The parents of a variable Xi,
denoted by PaXi , include all variables Xj such that there is an edge from Xj to Xi in G. A size m
intervention (action) corresponds to do(Xsub = x) such that |Xsub| = m, which assigns the values
x = {x1, . . . , xm} to the corresponding variables. For each variable X ∈ Xsub, the intervention
also removes all edges from PaX to X and the resulting graph defines a probability distribution
P (Xc

sub|s, do(Xsub = x)) over Xc
sub := X \Xsub. We use | · | to denote the cardinality of a set.

MDP. A tabular episodic MDP is defined by a tuple (S,A,P, R,H), where S and A are the set
of states and actions with cardinalities |S| = S and |A| = A, H is the planning horizon in each
episode, P is the state transition matrix such that P(·|s, a) gives the distribution over next state if an
action a is taken on state s, and R : S ×A → [0, 1] is the deterministic reward function over a state
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action pair. The agent interacts with the environment in a sequence of episodes: an initial state s1 is
picked arbitrarily by an adversary. At each step h ∈ [H], the agent observes state sh ∈ S , picks an
action ah ∈ A and receives reward R(sh, ah). The episode ends when sH+1 is reached.

The policy is expressed as a mapping π : S × [H] → A. We use V π
h : S → R to denote the

value function at step h under policy π, so that V π
h (s) gives the expected sum of remaining rewards

received under policy π, starting from sh = s, until the end of episode:

V π
h (s)

def
= E

[
H∑

h′=h

R(sh′ , π(sh′ , h
′))|sh = s

]
.

We use Qπh : S ×A → R to denote Q-value function at step h under policy π so that Qπh(s, a) gives
the expected sum of remaining rewards received under policy π, starting from sh = s, ah = a, till
the end of the episode:

Qπh(s, a)
def
= R(s, a) + E

[
H∑

h′=h+1

R(sh′ , π(sh′ , h
′)) | sh = s, ah = a

]
.

An optimal policy π∗ gives the optimal value V ∗h (s) := supπ V
π
h (s) for all s ∈ S and h ∈ [H].

The policy π at every step h defines the state transition kernel Pπh and the reward function rπh as

Pπh(y|s) def
= P(y|s, π(s, h)) and rπh(s)

def
= R(s, π(s, h)) for all s. For every V : S → R the right

linear operators P· and Pπh· are also defined as (PV )(s, a)
def
=
∑

s′∈S P(s′|s, a)V (s′) for all (s, a)

and (PπhV )(s)
def
=
∑

s′∈S Pπh(s′|s)V (s′) for all s, respectively.

Causal MDP (C-MDP). In causal MDPs, the actions are composed by interventions. At every
state s, we define two causal graphs: the reward graph GR(s) and the state transition graph GS(s).
We denote the reward and state variable by R and S. The learner can intervene on variables XI ,
while the parent variables of R: ZR := PaR and the parent variables of S: ZS := PaS cannot be
intervened. 2 Precisely, the action (intervention) set is:

A = {do(Xsub = x) | Xsub ∈ XI ,x ∈ Dom(Xsub)}.

At every state s, causal graphs GR(s) and GS(s) contain variables XR = XI ∪ ZR ∪ R and
XS = XI ∪ ZS ∪ S, respectively. Note that the identity of variables on causal graphs does not
vary by state, but the underlying distributions can change. In Figure 1, we use a digital marketing
example to explain these notations.

In our causal MDP algorithms, a learner is given the intervention set A, the identity of parent
variables Z := ZR ∪ ZS and conditional distributions of z ∈ Z given a (s, a) ∈ S × A pair:
P (z|s, a), where Z denotes the domain set for Z. We use Z as the size of Z . At each step h ∈
[H], the learner observes a reward R(sh, ah) and the realizations of Z: zh. Using these causal

2. Otherwise, one can simply restrict the intervention set to those only intervening over PaR ∪ PaS, then the problem is
trivially reduced to a standard MDP problem.
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Figure 1: Reward causal graph (left) and state transition causal graph (right) at the current state st
for the digital marketing problem. In each graph, all variables can be categorized into three layers:
the outcome variable on top layer corresponds to the green node, i.e. the reward variable (R) and
the state variable (S); the manipulable variables regarding to emails on bottom layer are in blue
(XI ); direct parent variables of the outcome variables (ZR and ZS) are marked in orange between
the green and blue. We use grey arrows to describe the complex causal relationships between
any connected two layers. At every time t, marketers adjust the blue nodes and passively observe
the values of nodes in orange and green afterwards. Other than P (z|s, a) quantities, our causal
MDP algorithms only require the knowledge of the identity of manipulable variables, the outcome
variables and their corresponding direct parents, instead of the entire causal structures including all
graph edges.

information, one can re-write the state-transition and reward functions as follows:

P(s′|s, a) =
∑
z∈Z

P(s′|s,Z = z)P (Z = z|s, a),

R(s, a) =
∑
z∈Z

R(s,Z = z)P (Z = z|s, a),

where R(s,Z = z)
def
= E[R|s, z] denotes the expected reward given a state and parent pair. We next

define a q-value function: qπh : S × Z → R, such that qπh(s, z) gives the expected sum of rewards
received under policy π, starting from sh = s, zh = z, till the end of the episode:

qπh(s, z)
def
= R(s, z) + E

[
H∑

h′=h+1

R(sh′ , π(sh′ , h
′)) | sh = s, zh = z

]
.

By definition, Qπh(s, a) can be written as
∑

z∈Z P (Z = z|s, a)qπh(s, z). A causal MDP is then
defined as an MDP equipped with dynamic causal graphs GR,GS and can be represented by a tuple
MC =

(
S,A,P, R,H,GR,GS

)
.

Causal Factored MDP (CF-MDP). A causal factored MDP is a causal MDP whose reward and
state-transition dynamics have some conditional independence structures. To formally describe this
problem, we first present some related factored MDP definitions.

Definition 1 (Scope operation for factored set S = S1 × . . .× Sm) For any subset of indices I ⊆
{1, . . . ,m}, define the scope set S[I] ,

⊗
i∈I Si. For any s ∈ S , define the scope variable

s[I] ∈ S[I] to be the value of the variables si ∈ Si with indices i ∈ I . For singleton sets I , we write
s[{i}] as s[i] for simplicity.
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We use PX ,Y as a set of functions mapping elements of a finite set X to probability mass functions
over a finite set Y .

Definition 2 (Factored state transition in CF-MDPs) The transition function class P is factored
over S × Z = S1 × · · · × Sm × Z and S = S1 × · · · × Sm with scopes I1, . . . , Im if and only
if, for all P ∈ P , s, s′ ∈ S, z ∈ Z , there exist some {Pi ∈ PS[Ii]×Z,Si}mi=1 such that P(s′|s, z) =∏m
i=1 Pi (s′[i]|s[Ii], z).

Definition 3 (Factored deterministic reward functions) The reward function R is factored over
S × Z = S1 × · · · × Sm × Z with scopes J1, . . . , Jm, i.e. for all s ∈ S, z ∈ Z , we have
R(s, z) =

∑m
i=1Ri(s[Ji], z).

A causal factored MDP is then defined to be a causal MDP with factored rewards and factored transi-
tions. We can write it as a tupleMCF =

(
{Si}mi=1,A, {Ii}mi=1, {Pi}mi=1, {Ji}mi=1, {Ri}mi=1, H,GR,GS

)
.

Notably, we do not factorize Z in the state transition and reward function classes.

Regret. We denote the number of episodes by K, starting state and policy by sk,1 and πk for each
episode. We measure the performance of the learner over T = KH steps by the total expected
regret:

RK :=

K∑
k=1

(V ∗1 (sk,1)− V πk
1 (sk,1)).

The goal of learner is to follow a sequence of policies π1, . . . , πK that minimizes RK .

In this paper, we focus on the setting where the reward functions R and {Ri}mi=1 are known. This
assumption is just used for simplicity, because reward estimation is not the main difficulty of RL
problems (Azar et al., 2017; Liao et al., 2021).

Assumption 1 (Causal (Factored) MDP Regularity) For C-MDPs, we assume S , A, Z are finite
sets with cardinalities S and A and Z, respectively. The immediate rewards R(s, z) , E[R|s, z] ∈
[0, 1] are known for s ∈ S, z ∈ Z . For CF-MDPs, S[Ii] and S[Ji] are finite sets with cardinalities
S[Ii] and S[Ji]. The immediate rewards in every reward scope Ri(s[Ji], z) ∈ [0, 1] are known for
s[Ji] ∈ S[Ji], z ∈ Z, i = 1, . . . ,m.

4. Causal UCBVI

In this section, we propose and analyze an efficient algorithm for causal MDPs. We generalize
upper confidence bound value iteration (Azar et al., 2017) algorithm (UCBVI) to its causal coun-
terpart and show that the regret bound of our causal algorithm only scale with a factor which can be
exponentially smaller than the size of interventions.

UCBVI is near-optimal when causal information is non-available. Azar et al. (2017) showed that
under conditions T ≥ H3S3A and SA ≥ H , using a Hoeffding “exploration bonus”, one can
achieve a high probability regret bound of Õ(H

√
SAT ) while using a Bernstein-Freedman “explo-

ration bonus”, one can further achieve a minimax regret Õ(
√
HSAT ), that matches the established

lower bound Ω(
√
HSAT ) of (Jaksch et al., 2010) up to logarithmic factors. However, in the causal

MDP setting, the intervention set is huge that makes UCBVI and other standard RL algorithms
impractical since their regret all scale with

√
A.
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Algorithm 1 C-UCBVI

1: Input: action set A, states S , identity of parent variables Z, P (z|s, a) terms.
2: Initialize dataH = φ, Qk,h(s, a) = H for all k, h, s, a.
3: for episode k = 1, . . . ,K do
4: for step h = 1, . . . ,H do
5: Take action ak,h = argmaxa∈AQk,h(s, a) and observe values of parent variables zk,h.
6: UpdateH = H ∪ (sk,h, ak,h, zk,h, sk,h+1).
7: end for
8: Qk,h(s, a) = C-UCB-Q-values(H).
9: end for

To overcome this issue, we propose causal UCBVI (C-UCBVI) in Algorithm 1. At every episode k,
C-UCBVI calls Algorithm 2 to update the state transition probabilities P(s′|s, z) by the frequencies
of corresponding state-Z-state and state-Z tuples using past data. We then follow the idea of UCBVI
that updates the upper bounds of value functions and Q functions at every level h by value iteration
using an empirical Bellman operator and a confidence bonus. However, instead of directly updating
the upper confidence bound of Q functions over state-action pairs, our algorithm updates the upper
bounds of q-value functions using Hoeffding “exploration bonus” (Algorithm 3) over state-Z pairs
denoted by qk,h(s, z). We then update the upper confidence bound of Q function for every (s, a)
pair as following:

Qk,h(s, a) =
∑
z∈Z

P (z|s, a)qk,h(s, z).

Upper bound for value functions are then updated by Vk,h(s) = maxa∈AQk,h(s, a).

Given these estimated value functions, the learner at state s performs the action that maximizes
Qk,h(s, a) among all a ∈ A. The environment reveals the values of variables Z denoted by zk,h.
In summary, C-UCBVI only estimates the state transition probabilities and q-value functions for all
(s, z) ∈ S ×Z pairs.

We present our theoretical results for C-UCBVI in Theorem 4.

Theorem 4 With probability ≥ 1− δ, the regret of C-UCBVI (Algorithm 1) is bounded by:

RK = Õ
(
HS
√
ZT
)
. (1)

We omit small order terms that do not depend on T = KH .

Above result shows that the regret of C-UCBVI does not scale with
√
A, instead scales with:

√
Z.

Suppose XI and Z contain N and n variables, respectively, and for simplicity we assume every
variable in XI ∪Z can take on k different values. In practical applications, N is usually greater than
n, for example, in digital marketing, the number of email features can be a lot more than the number
of key variables such as price performance and demand. In this case, Z = kn is exponentially
smaller than A = kN . In summary, C-UCBVI outperforms standard RL algorithms as long as
Z ≤ A. The whole proof is in Section A.
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Algorithm 2 C-UCB-Q-values
1: Input: Bonus algorithm (Algorithm 3), DataH.
2: Nk(s, z, y) =

∑
(s′,z′,y′)∈H 1(s′ = s, z′ = z, y′ = y) for all (s, z, y) ∈ S × Z × S .

3: Nk(s, z) =
∑

y∈S Nk(s, z, y) for all (s, z) ∈ S × Z .
4: Let K = {(s, z) ∈ S × Z, Nk(x, z) > 0}.
5: Estimate P̂k(y|s, z) = Nk(s,z,y)

Nk(s,z)
for all (s, z) ∈ K.

6: Initialize Vk,H+1(s) = 0 for all s ∈ S .
7: for h = H,H − 1, . . . , 1 do
8: for (s, z) ∈ S × Z do
9: if (s, z) ∈ K then

10: bk,h(s, z) = bonus(Nk(s, z))

11: qk,h(s, z) = min(H,R(s, z) + P̂kVk,h+1(s, z) + bk,h(s, z))
12: else
13: qk,h(s, z) = H
14: end if
15: end for
16: for (s, a) ∈ S ×A do
17: Qk,h(s, a) =

∑
z∈Z P (PaR = z|s, a)qk,h(s, z)

18: end for
19: Vk,h(s) = maxa∈AQk,h(s, a)
20: end for
21: Output: Q-values Qk,h(s, a) for all (s, a) ∈ S ×A.

Algorithm 3 Bonus for C-UCBVI

1: Input: δ > 0,Nk(s, z), L = log(5SHKZT/δ).
2: b = 7HL

√
S

Nk(s,z)
.

3: Output: b.

5. Causal factored-UCBVI

In this section, we study causal factored MDPs, where states s ∈ S ⊂ Rm can be factorized
into scopes. We propose causal factored UCBVI (CF-UCBVI) in Algorithm 4 (Section C) whose
structure is similar to C-UCBVI. We mainly discuss their differences in this section.

CF-UCBVI builds on C-UCBVI in terms of incorporating causal graph with the UCB value iteration
idea. It calls CF-UCB-Q-values (Algorithm 5 in Section C) which returns upper confidence bounds
on the Q-values, however, we construct the UCB bonus terms differently. Since we have prior
knowledge of states factorization scopes, Algorithm 5 no longer needs to directly estimate P(s′|s, z)
by counts. Instead, at every episode k, we estimate the transitions in each scope Pi(s′[i]|s[Ii], z) by
P̂k,i(s′[i]|s[Ii], z) (see full definition in Algorithm 5). Using these scope-wise estimates, P(s′|s, z)

can be estimated by
∏m
i=1 P̂k,i(s′[i]|s[Ii], z). We calculate the confidence bonus terms for every

visited (s[Ii], z) pair according to Algorithm 6 (Section C). The remaining procedures are quite
similar to C-UCBVI. We update UCBs on q-values computed by value iteration using an empirical
Bellman operator and the confidence bonus terms. See details in Algorithm 5 (Section C).
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Theorem 5 (Regret of CF-UCBVI) With probability ≥ 1− δ, the regret of CF-UCBVI is:

RK = Õ

(
H

m∑
i=1

√
SiS[Ii]ZT

)
.

We omit small order terms that do not depend on T = KH .

In Theorem 5, the regret bound consists a reduced term
∑m

i=1

√
SiS[Ii] involving scope-wise state

space parameters. The bound reduces to (1) when m = 1, otherwise, it improves the regret expo-
nentially when S is high-dimensional. We provide the proof in Section B.

6. Causal linear MDPs

In this section, we consider function approximations on causal MDP dynamics. In particular, we
show that linear MDP algorithms for non-causal MDPs can be well-incorporated with causal MDPs.

In linear MDPs, P(s′|s, a) and R(s, a) are modeled by two linear functions and their corresponding
feature functions are assumed to be known (Jin et al., 2019). In causal MDPs, since we already know
the identity of parent variables Z that directly affect the state transition and reward, it is natural to
instead model P(s′|s, z) and R(s, z) via linear functions. We formally present the definition below.

Definition 6 (Causal linear MDP) A causal linear MDP is a causal MDP equipped with a feature
map φ : S × Z → Rd, where there exists d unknown measures µ = (µ(1), . . . , µ(d)) over S and an
unknown vector ω ∈ Rd, such that for any (s, z) ∈ S × Z , we have

P(s′|s, z) =
〈
φ(s, z), µ(s′)

〉
and R(s, z) = 〈φ(s, z), ω〉 .

Without loss of generality, we assume ‖φ(s, z)‖ ≤ 1 for all (s, z), and max{‖µ(S)‖ , ‖ω‖} ≤
√
d.

One can re-write the state transition probability and the reward function for every (s, a) ∈ S × A
using above features and the unknown linear coefficients in below.

R(s, a) = 〈
∑
z∈Z

P (z|s, a)φ(s, z), ω〉 and P(s′|s, a) = 〈
∑
z∈Z

P (z|s, a)φ(s, z), µ(s′)〉.

To this point, we demonstrate that linearly modeling the state transition and reward functions using
parent variables is a special case of standard linear MDPs where the feature vector for every (s, a) ∈
S × A is ψ(s, a) ,

∑
z∈Z P (z|s, a)φ(s, z). Thus, we can easily extend linear MDP algorithms to

our causal linear MDP setting. For example, applying Least-Squares Value Iteration with UCB (Jin
et al., 2019) algorithm with features ψ(s, a), one can achieve Õ(

√
d3H3T ) regret.

7. Experiments

In this section, we conduct several experiments to validate the theoretical findings of our causal
approaches. We compare our causal algorithms C-UCBVI and CF-UCBVI with two standard non-
causal MDP or factored MDP algorithms: UCBVI (Azar et al., 2017) and F-UCBVI (Tian et al.,
2020). Throughout, we use a causal factored MDP environment that allows us to compare the
performance of all four algorithms. The state space is consisted of ds-dimensional binary vectors,
i.e. S = S1× . . .×Sds , Si = {0, 1}. There are n manipulable variables X1, . . . , Xn, taking values

10
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Figure 2: Cumulative regret v.s. number of episodes. m = n = 3, H = 5. We plot the averated
cumulative regret in red, blue, green and black curves, and 1-standard deviation for each method
within the yellow shadow area.

from {1, . . . ,m}, n non-manipulable parent variables of the reward and state variables Z1, . . . , Zn,
taking values from {1, 2}. The reward variable and the state transition variable directly depends
on their parent variables Z1, . . . , Zn. In each experiment below, we set H differently and always
guarantee that Z = 2n <= mn = A.

Intervention set: An intervention is denoted by a = do(X1 = i1, . . . , Xn = in), where i1, . . . , in ∈
{1, . . . ,m}. This means only non-parent variables can be intervened, while the parent variables of
the reward are not under control.

Reward generation. We generate reward for every scope-wise state-Z pair R(si, z) uniformly
from [0, 1]. By factored MDP assumption, we calculate the state-Z pair rewards by R(s, z) =∑ds

i=1R(si, z) and the state-action pair rewards byR(s, a) =
∑

z∈Z R(s, z)P (z|s, a), whereP (z|s, a)
quantities are sampled from dirichlet distribution Dir(1Z) for every (s, a) pair.

State transition. We generate the scope-wise state-Pa-state transition probabilities from Dirichlet
distribution Dir(12). By factored MDP assumption, we calculate the state-action-state transition
probabilities by P(s′|s, z) =

∏ds
i=1 P(s′i|si, z). In this example, Ii = {i}, i = 1, . . . , ds.

Experiment 1: We begin with a simple case where m = 4 and n = 3. In this setting, we
set the horizon H = 5, the dimension of state variable ds = 3 and compare the performance of
all four algorithms: UCBVI, C-UCBVI, F-UCBVI and CF-UCBVI over K = 5000 episodes. We
repeat every algorithm for 10 times and calculate the averaged regrets and their 1-standard deviation
confidence intervals at every episode. Regret comparison plot is displayed in Figure 2.

In this causal factored MDP environment, the regret plot shows that the only algorithm that uses
causal knowledge and factored state space structure: CF-UCBVI outperforms other three algorithms
while UCBVI has the highest regret. C-UCBVI and F-UCBVI use one of the structure properties,
so their regret curves lie in the middle. It is hard to compare C-UCBVI and F-UCBVI. In general,
when the causal relations are stronger than factored state structure relations, C-UCBVI outperforms
F-UCBVI and vice versa. In this environment, it happens that C-UCBVI performs better.

Experiment 2: m = 3, 4, 5, 6, 7;n = 3. In this experiment, we fix n = 3 while changing the
domain range of non-parent variables m from 3 to 7. The number of interventions increases ex-

11
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Figure 3: Cumulative regret v.s. m, n =
3 fixed, H = 2, number of episodes
K = 5000.

Figure 4: Cumulative regret v.s. d =
2, 3, 4, 5, fix m = 2, n = 3, horizon
H = 2, number of episodes K = 5000.

ponentially as m increases, however, the number of parent variables value assignments Z does not
vary. For each algorithm, the cumulative regret after K = 5000 episodes is averaged over 10
simulations. Regret comparison plot is displayed in Figure 3.

As we increase the number of interventions, the regret curves show that the performances of C-
UCBVI and CF-UCBVI are stable. The other two algorithms incur higher regrets when the inter-
vention size becomes bigger. At every fixed m value, the performance rank is the same as Figure 2.

Experiment 3: vary state dimension ds = 2, 3, 4, 5. In this section, we fixm = 3 and n = 3 and
compare three algorithms: C-UCBVI, F-UCBVI and CF-UCBVI across different state dimension
settings: ds = 2, 3, 4, 5. We set K = 5000 and repeat every algorithm for 10 times and compute the
final averaged regret. We do not plot the regret curve for UCBVI because it does not converge until
the end of 5000 episodes and thus the cumulative regret v.s. state dimension curve for UCBVI can-
not reflect the true relation between ds and the regret of UCBVI. We can observe this phenomenon
in Figure 2 where ds is only 2 and the UCBVI curve (in black) is almost straight up to K = 5000.
Since we increase ds from 2 to 5 in this experiment, UCBVI converges even slower. Thus, we
present the regret comparison among remaining three algorithms in Figure 4.

We observe that the regrets of F-UCBVI and CF-UCBVI algorithm do not vary too much, however,
the regret of C-UCBVI increases significantly as ds increases. This phenomenon matches with
our theories. C-UCBVI is the only algorithm out of the three who does not exploit the factored
MDP environment, so its performance is the most sensitive to ds. Due to the ignorance of causal
knowledge in F-UCBVI, the regret curve of F-UCBVI stays at a higher value comparing to the other
two methods.

8. Discussion

In this paper, we studied the causal (factored) MDPs. We proposed C-UCBVI and CF-UCBVI
algorithms for the causal and causal factored MDP settings. Their regret bounds offer potentially
exponential improvements over that of standard RL algorithms. In addition, we extended the causal
MDP problem to its linear MDP variation.

12
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There are several interesting directions we left for future work. First, we note that our approach
can be easily adapted to an action hybrid setting, where some actions A1 lead to factored structure
together with states and othersA2 do not factorize with states, instead form a causal graph with small
cardinality of total combinations for key or parent variables. One can combine F-UCBVI and CF-
UCBVI by separately estimating the two types of state transition probabilities P(s′|s, a) where a ∈
A1 and a ∈ A2 using factored MDP techniques and our causal approach. Secondly, when the prior
knowledge expressed in causal graphs and other causal quantities is mildly violated, a sensitivity
analysis for our results can provide useful guidance to practitioners. Finally, our causal algorithms
need background knowledge of certain conditional probabilities associated with the causal graphs.
It will be promising to develop a causal algorithm that can learn the causal information and the MDP
environment simultaneously and achieve lower regret than standard non-causal RL algorithms.
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Appendix A. Proof for Theorem 4

A.1. Main Proof

Proof

The regret of C-UCBVI up to episode K is:

RK =
K∑
k=1

(V ∗1 (sk,1)− V πk
1 (sk,1)) .

Define the value function difference terms at level h in episode k by ∆k,h := V ∗h −V
πk
h and ∆̃k,h :=

Vk,h − V πk
h . Define their realizations at state sk,h by δk,h := ∆k,h(sk,h) and δ̃k,h := ∆̃k,h(sk,h).

Under these notations, the regret can be written as:

RK =
K∑
k=1

δk,1.

At first step, we show that the optimism property, i.e. Vk,h(s) term upper bound the optimal value
function V ∗h (s) for all (k, h, s) tuples, holds with high probability. Since we have no knowledge on
the optimal value functions appearing as a key term in regret, it is hard to directly bound terms δk,1.
Lemma 7 shows that we can instead bound δ̃k,1, which depends mostly on the information provided
by the algorithm.

Lemma 7 (Optimism) Define optimism events as follows:

E = {Vk,h(s) ≥ V ∗h (s), ∀k, h, s},

we have P (E) ≥ 1− δ.

This can be proved by backward induction over h for every k such that {qk,h(s, z) ≥ q∗h(s, z), ∀k, h, s, z}
holds with high probability, where q∗h(s, z)

def
= maxπ q

π
h(s, z). By the construction way of Qk,h

functions in Algorithm 1, Lemma 7 can then be proved using definitions of value functions q,Q and
V . See proof details in Section A.2.

According to Lemma 7, the regret is upper bounded by:

RK =

K∑
k=1

δk,1 ≤
K∑
k=1

δ̃k,1, (2)

with probability 1 − δ. In order to divide each δ̃k,1 into several pieces, we bound every δ̃k,h in a
recursion way in terms of δ̃k,h+1. At every episode k, level h, we define the state transition kernel,
weighted bonus and useful martingale terms as follows:

P̂πkk,h(y|sk,h) =
∑
z∈Z

P̂k(y|sk,h, z)P (z|sk,h, πk(sk,h, h))

bk,h :=
∑
z

bk,h(sk,h, z)P (z|sk,h, πk(sk,h, h))

εk,h := Pπkh ∆̃k,h+1 − ∆̃k,h+1(sk,h+1)

εk,h := εk,h(sk,h),
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where bk,h(sk,h, z) = 7HL
√

S
Nk(sk,h,z)

denotes the output of Algorithm 3 with inputNk(sk,h, z) >

0 and δ > 0. See definition for L (a logarithmic term) in Algorithm 3. In particular, we set
P̂k(y|sk,h, z) = 0 and bk,h(sk,h, z) = H

√
S when Nk(sk,h, z) = 0.

Using above definition and procedures in Algorithm 1 and Algorithm 2, we bound δ̃k,h recursively
as follows:

δ̃k,h ≤ δ̃k,h+1 + εk,h + bk,h +
[
(P̂πkk,h − Pπkh )V ∗h+1

]
(sk,h)

+
[
(P̂πkk,h − Pπkh )(Vk,h+1 − V ∗h+1)

]
(sk,h). (3)

Thus, it remains to bound each term separately in above inequality.

We bound the estimation error term in Claim 1.

Claim 1 For δ > 0, with probability at least 1− δ, the error term in (3) can be bounded by:∣∣∣(P̂πkk,h − Pπkh )V ∗h+1(sk,h)
∣∣∣ ≤∑

z∈Z
bk,h(sk,h, z)P (z|sk,h, πk(sk,h, h)) = bk,h.

Proof [Proof for Claim 1] We first use Lemma 2 in Osband and Van Roy (2014) to show an L1 bound
for the empirical transition function. It ensures that for any s, z ∈ S × Z such that Nk(s, z) > 0,

we have
∥∥∥P(·|s, z)− P̂k(·|s, z)

∥∥∥
1
≤
√

2S
Nk(s,z)

log
(

2
δ′k

)
with probability at least 1− δ′k. Simply set

δ′k = δ/2SZk2, by a union bound over k, s, z we have

P

(∥∥∥P(·|s, z)− P̂k(·|s, z)
∥∥∥
1
≤

√
2S

Nk(s, z)
log

(
2

δ′k

)
, ∀k ∈ N, s ∈ S, z ∈ Z s.t. Nk(s, z) > 0

)
≥ 1− δ. (4)

Next, we bound the estimation error term, which is the main interest of this claim. By writing out
the expression and above inequality, with probability at least 1− δ, for all k, h we have:

∣∣∣(P̂πkk,h − Pπkh )V ∗h+1(sk,h)
∣∣∣ =

∣∣∣∣∣∣
∑
y∈S

(
P(y|sk,h, πk(sk,h, h))− P̂k(y|sk,h, πk(sk,h, h))

)
V ∗h+1(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈S

∑
z∈Z

(
P(y|sk,h, z)− P̂k(y|xk,h, z)

)
P (z|sk,h, πk(sk,h, h))V ∗h+1(y)

∣∣∣∣∣∣
≤ H

∑
z∈Z

P (z|sk,h, πk(sk,h, h))
∥∥∥P(·|sk,h, z)− P̂k(·|sk,h, z)

∥∥∥
1

≤ H
∑

z:Nk(sk,h,z)>0

P (z|sk,h, πk(sk,h, h))

√
2S

Nk(sk,h, z)
log

(
2

δ′k

)
from (4)

+H
∑

z:Nk(sk,h,z)=0

√
SP (z|sk,h, πk(sk,h, h)) (by Cauchy-Schwarz on 1-norm)

≤ bk,h,
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where the last inequality can be seen from the definition of bk,h.

In Claim 1, the only information about value function V we use is its upper bound H . Thus, under
exact the same approach, we bound in higher-order error term as follows: with probability at least
1− δ, for all k, h we have

∣∣∣(P̂πkk,h − Pπkh )(Vk,h+1 − V ∗h+1)(xk,h)
∣∣∣ ≤ bk,h.

Combining the recursion in (3) and above two claims, we have

δ̃k,h ≤
H∑
j=h

εk,j + 3bk,j . (5)

We bound the summation on bonus terms in Claim 2.

Claim 2 For any δ, with probability at least 1− δ, we have:

K∑
k=1

H∑
h=1

bk,h ≤ 14HL
√

2STL+ 14HSL
√
ZT +H

√
SSZ. (6)
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Proof [Proof for Claim 2]

K∑
k=1

H∑
h=1

bk,h =
K∑
k=1

H∑
h=1

∑
z∈Z

bk,h(sk,h, z)P (z|sk,h, πk(sk,h, h))

=

K∑
k=1

H∑
h=1

∑
z:Nk(sk,h,z)>0

7HL

√
S

Nk(sk,h, z)
P (z|sk,h, πk(sk,h, h))

+
K∑
k=1

H∑
h=1

∑
z:Nk(sk,h,z)=0

H
√
SP (z|sk,h, πk(sk,h, h))

= 7HL
√
S

K∑
k=1

H∑
h=1

∑
s∈S

∑
z:Nk(s,z)>0

P (z|s, πk(s, h))

√
1

Nk(s, z)
1{sk,h=s}

+H
√
S

K∑
k=1

H∑
h=1

∑
s∈S

∑
z:Nk(s,z)=0

P (z|s, πk(s, h))1{sk,h=s}

= 7HL
√
S

K∑
k=1

H∑
h=1

∑
s∈S

∑
z:Nk(s,z)>0

√
1

Nk(s, z)
1{sk,h=s}

(
P (z|s, πk(s, h))− 1{zk,h=z}

)
︸ ︷︷ ︸

(a)

+ 7HL
√
S

K∑
k=1

H∑
h=1

∑
s∈S

∑
z:Nk(s,z)>0

√
1

Nk(s, z)
1{sk,h=s,zk,h=z}︸ ︷︷ ︸

(b)

+H
√
S

K∑
k=1

H∑
h=1

∑
s∈S

∑
z:Nk(s,z)=0

(P (z|s, πk(s, h))− 1{zk,h=z})1{sk,h=s}︸ ︷︷ ︸
(a′)

+H
√
S

K∑
k=1

H∑
h=1

∑
s∈S

∑
z∈Z

1{zk,h=z,sk,h=s,Nk(s,z)=0}︸ ︷︷ ︸
(b′)

We bound term (a) and (a′) in above using Azuma inequality, with probability 1− δ we have

(a) ≤ 7HL
√
S

√
2T log

(
1

δ

)
≤ 7HL

√
2STL,

(a′) ≤ H
√
S

√
2T log

(
1

δ

)
≤ 7H

√
2STL
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We bound term (b) using pigeon-hole theorem,

(b) ≤ 7HL
√
S
∑
s∈S

∑
z∈Z

∫ NK(s,z)

0

√
1

x
dx

= 7HL
√
S
∑
s∈S

∑
Z∈Z

2
√
NK(s, z)

≤ 14HLS
√
ZT (by Cauchy-Schwarz).

We bound term (b′) byH
√
SSZ due to its indicator function’s property. Combine (a), (a′), (b) and

(b′) we conclude the result.

Now we bound the summation over εk,h terms, which are the only terms in (3) remaining to bound
to this point. By Azuma inequality we have:

K∑
k=1

H∑
h=1

εk,h =
K∑
k=1

H∑
h=1

∑
y∈S

P (y|sk,h, πk(sk,h, h))∆̃k,h+1(y)− ∆̃k,h+1 (sk,h+1)


≤ 2H

√
KH log

(
1

δ

)
≤ 2H

√
TL.

Back to (5), combining above bound with Claim 2, we have

RK ≤
K∑
k=1

δ̃k,1 ≤
K∑
k=1

H∑
h=1

εk,h + 3bk,h = Õ
(
HS
√
ZT
)
,

with probability at least 1− δ. (after replacing original δ by dividing some constant number C.) We
ignore small order terms which do not have non-logarithmic dependency on T .

A.2. Proof for Lemma 7

Proof We start from proving below lemma:

Lemma 8 For any δ > 0, with probability at least 1− δ, we have:∣∣∣((P− P̂k)V
∗
h+1

)
(s, z)

∣∣∣ ≤ bk,h(s, z).

Proof [Proof for Lemma 8] We follow the proof for Claim 1 and use Inequality (4) and definition
of bk,h(s, z) to get

P
(∣∣∣((P− P̂k)V

∗
h+1

)
(s, z)

∣∣∣ > bk,h(s, z), ∀k, h, z
)

≤P

(∥∥∥P(·|s, z)− P̂(·|s, z)
∥∥∥
1
> 7L

√
S

Nk(s, z)
, ∀k, h, z s.t. Nk(s, z) > 0

)
≤ δ.
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Define q∗h(s, z) by maxπ q
π
h(s, z), which is the maximal q value that can be achieved by any policy.

We use induction to prove {qk,h(s, z) ≥ q∗h(s, z)} holds with high probability.

For h = H , qk,H(s, z) ≥ min{H,R(s, z)+bk,H(s, z)} ≥ R(s, z) = q∗H(s, z). Suppose qk,h′(s, z) ≥
q∗h′(s, z) holds for h′ = h+ 1, . . . ,H , and we know

Vk,h′(s)− V ∗h′(s) = max
a

Qk,h′(s, a)−Q∗h′(x, π∗(s, h′))

≥ Qk,h′(s, π∗(x, h′))−Q∗h′(s, π∗(s, h′))

=
∑
z∈Z

P (z|x, π∗(s, h′))
(
qk,h′(s, z)− q∗h′(s, z)

)
≥ 0(by induction).

Now we show at h, {qk,h(s, z) ≥ q∗h(s, z)} also holds with high probability.

If qk,h(s, z) = H , it trivially holds. So we consider the case

qk,h(s, z) = R(s, z) +
(
P̂kVk,h+1

)
(s, z) + bk,h(s, z).

Then we have

qk,h(s, z)− q∗h(s, z) =
(
P̂kVk,h+1

)
(s, z) + bk,h(s, z)−

(
PV ∗h+1

)
(s, z)

≥
(

(P̂k − P)V ∗h+1

)
(s, z) + bk,h(s, z) (by induction)

≥ 0 (hold with probability at least 1− δ by Lemma 8).

Up to here we show that with probability at least 1 − δ, {qk,h(s, z) ≥ q∗h(s, z)} holds. Using the
same argument above we have {Vk,h(s) ≥ V ∗h (s), ∀k, h, s} holds with probability 1− δ.

Appendix B. Proof for Theorem 5

Proof Throughout the proof, define P̂k(s′|s, z)
def
=
∏m
i=1 P̂k,i(s′[i]|s[Ii], z) for all (s′, s, z) ∈

S × S × Z . When Nk(s[Ii], z) = 0, we set P̂k,i(s′[i]|s[Ii], z) = 0. We define the scope-wise

bonus function by bk,h(s[Ii], z) = 7HL
√

Si
Nk(s[Ii],z)

when Nk(s[Ii], z) > 0 in Algorithm 6 and

bk,h(s[Ii], z) = H
√
Si when Nk(s[Ii], z) = 0 for i = 1, . . . ,m.

The regret of CF-UCBVI up to episode K is:

RK =

K∑
k=1

(V ∗1 (sk,1)− V πk
1 (sk,1)) .
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Define the value function difference terms at level h in episode k by ∆k,h := V ∗h −V
πk
h and ∆̃k,h :=

Vk,h − V πk
h . Define their realizations at state sk,h by δk,h := ∆k,h(sk,h) and δ̃k,h := ∆̃k,h(sk,h).

Under these notations, the regret can be written as:

RK =

K∑
k=1

δk,1.

Similar to the proof for Theorem 4, at the first step, we show that the optimism property, i.e. Vk,h(s)
term upper bound the optimal value function V ∗h (s) for all (k, h, s) tuples, holds with high proba-
bility. Since we have no knowledge on the optimal value functions in the regret, it is hard to directly
bound terms δk,1. Lemma 9 shows that we can instead bound δ̃k,1, which depends mostly on the
information provided by the algorithm.

Lemma 9 (Optimism (Factored)) Define optimism events as follows:

E = {Vk,h(s) ≥ V ∗h (s), ∀k, h, s},

we have P (E) ≥ 1− δ.

Proof [Proof for Lemma 9] We start from proving below lemma.

Lemma 10 For any δ > 0, with probability 1− δ, we have:∣∣∣((P− P̂k
)
V ∗h+1

)
(s, z)

∣∣∣ ≤ m∑
i=1

bk,h (s[Ii], z) .

Proof [Proof for Lemma 10:] Following the same idea of Claim 1 by using Lemma 1 and Lemma 2
in Osband and Van Roy (2014), we have

P

(∣∣∣((P− P̂k
)
V ∗h+1

)
(s, z)

∣∣∣ > m∑
i=1

bk,h (s[Ii], z)

)

≤P

(∥∥∥P(·|s, z)− P̂k(·|s, z)
∥∥∥
1
>

1

H

m∑
i=1

bk,h(s[Ii], z)

)
(by |V ∗h+1(y)| ≤ H , ∀y ∈ S)

≤
∑
i∈[m]

P

(∥∥∥Pi(·|s[Ii], z)− P̂k,i(·|s[Ii], z)
∥∥∥
1
>

1

H
bk,h(s[Ii], z)

)

=
∑

i∈[m]:Nk(s[Ii],z)>0

P

(∥∥∥Pi(·|s[Ii], z)− P̂k,i(·|s[Ii], z)
∥∥∥
1
> 7L

√
Si

Nk(s[Ii], z)

)

+
∑

i∈[m]:Nk(s[Ii],z)=0

P
(∥∥∥Pi(·|s[Ii], z)− P̂k,i(·|s[Ii], z)

∥∥∥
1
>
√
Si

)

≤
m∑
i=1

δ∑m
j=1 S[Ii]Z

S[Ii]Z = δ (Union bound over (s[Ii], z)).

23



LU MEISAMI TEWARI

The remaining proof for Lemma 9 simply follows the proof for Lemma 7 using Lemma 10.

At every episode k, level h, we define the state transition kernel, weighted bonus and useful martin-
gale terms as follows:

P̂πkk,h(y|s) :=
∑
z∈Z

P̂k(y|sk,h, z)P (z|sk,h, πk(sk,h, h))

:=
∑
z∈Z

m∏
i=1

P̂k,i(y|sk,h[Ii], z)P (z|sk,h, πk(sk,h, h))

bk,h :=
∑
z∈Z

m∑
i=1

bk,h(sk,h[Ii], z)P (z|sk,h, πk(sk,h, h))

εk,h := P πkh ∆̃k,h+1 − ∆̃k,h+1(sk,h+1)

εk,h := εk,h(sk,h).

Using above definition and procedures in Algorithm 4 and Algorithm 5, we again bound δ̃k,h recur-
sively as follows:

δ̃k,h ≤ δ̃k,h+1 + εk,h + bk,h +
[
(P̂πkk,h − Pπkh )V ∗h+1

]
(sk,h)

+
[
(P̂πkk,h − Pπkh )(Vk,h+1 − V ∗h+1)

]
(sk,h). (7)

We bound the estimation error term in above decomposition in Claim 3.

Claim 3 For δ > 0, with probability at least 1− δ, the error term can be bounded by:∣∣∣(P̂πkk,h − Pπkh )V ∗h+1(sk,h)
∣∣∣ ≤∑

z∈Z

m∑
i=1

bk,h(s[Ii], z)P (z|sk,h, πk(sk,h, h)) = bk,h.

Proof We haveP
(∥∥∥P(·|s, z)− P̂k(·|s, z)

∥∥∥
1
>
∑m

i=1
1
H bk,h(s[Ii], z)

)
≤ δ from the proof of Lemma 10

(the first inequality to the end), then with probability > 1− δ, we have

∣∣∣(P̂πkk,h − Pπkh )V ∗h+1(sk,h)
∣∣∣ =

∣∣∣∣∣∣
∑
y∈S

(
P(y|sk,h, πk(sk,h, h))− P̂k(y|sk,h, πk(sk,h, h))

)
V ∗h+1(y)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
y∈S

∑
z∈Z

(
P(y|sk,h, z)− P̂k(y|sk,h, z)

)
P (z|sk,h, πk(sk,h, h))V ∗h+1(y)

∣∣∣∣∣∣
≤ H

∑
z∈Z

P (z|sk,h, πk(sk,h, h))
∥∥∥P(·|s, z)− P̂k(·|s, z)

∥∥∥
1

≤ H
∑
z∈Z

m∑
i=1

P (z|sk,h, πk(sk,h, h))
1

H
bk,h(s[Ii], z) = bk,h.
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In Claim 3, the only information about value function V we use is its upper bound H . Therefore,
under exact the same approach, we bound the higher-order error term as follows: with probability
at least 1− δ, for all k, h we have

∣∣∣((P̂πkk,h − Pπkh )(Vk,h+1 − V ∗h+1)
)

(sk,h)
∣∣∣ ≤ bk,h,

due to the fact that |Vk,h+1(y)− V ∗h+1(y)| ≤ H, ∀y ∈ S .

Combining the recursion in 7 and above two claims, we have

δ̃k,h ≤
H∑
j=h

εk,j + 3bk,j . (8)

Claim 4 For any δ, with probability at least 1− δ, we have:

K∑
k=1

H∑
h=1

bk,h = O

(
HL
√
ZT

m∑
i=1

√
SiS[Ii] +HL

√
TL

m∑
i=1

√
Si +HZ

m∑
i=1

√
SiSi

)
.
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Proof

K∑
k=1

H∑
h=1

bk,h

=
K∑
k=1

H∑
h=1

∑
z∈Z

m∑
i=1

bk,h(sk,h[Ii], z)P (z|sk,h, πk(sk,h, h))

=

K∑
k=1

H∑
h=1

∑
z∈Z

m∑
i=1

7HL

√
Si

Nk(sk,h[Ii], z)
P (z|sk,h, πk(sk,h, h))1{Nk(sk,h[Ii],z)>0}

+

K∑
k=1

H∑
h=1

∑
z∈Z

m∑
i=1

H
√
SiP (z|sk,h, πk(sk,h, h))1{Nk(sk,h[Ii],z)=0}

=7HL

m∑
i=1

√
Si

∑
s[Ii]∈S[Ii]

∑
s[−Ii]∈S[−Ii]

K∑
k=1

H∑
h=1

∑
z∈Z

P (z|s, πk(s, h))

√
1

Nk(s[Ii], z)
1{sk,h=s,Nk(s[Ii],z)>0}

+H

m∑
i=1

√
Si

∑
s[Ii]∈S[Ii]

∑
s[−Ii]∈S[−Ii]

K∑
k=1

H∑
h=1

∑
z∈Z

P (z|s, πk(s, h))1{sk,h=s,Nk(s[Ii],z)=0}

= 7HL

m∑
i=1

√
Si

∑
s[Ii]∈S[Ii]

s[−Ii]∈S[−Ii]

K∑
k=1

H∑
h=1

∑
z:

Nk(s[Ii],z)>0

√
1

Nk(s[Ii], z)
1{sk,h=s}

(
P (z|s, πk(s, h))− 1{zk,h=z}

)
︸ ︷︷ ︸

(a)

+ 7HL
m∑
i=1

√
Si

∑
s[Ii]∈S[Ii]

∑
s[−Ii]∈S[−Ii]

K∑
k=1

H∑
h=1

∑
z:Nk(s[Ii],z)>0

√
1

Nk(s[Ii], z)
1{sk,h=s,zk,h=z}︸ ︷︷ ︸

(b)

+H
m∑
i=1

√
Si

∑
s[Ii]∈S[Ii]

∑
s[−Ii]∈S[−Ii]

K∑
k=1

H∑
h=1

∑
z∈Z

1{sk,h=s,Nk(s[Ii],z)=0}

(
P (z|s, πk(s, h))− 1{zk,h=z}

)
︸ ︷︷ ︸

(a′)

+H

m∑
i=1

√
Si

∑
s[Ii]∈S[Ii]

∑
s[−Ii]∈S[−Ii]

K∑
k=1

H∑
h=1

∑
z∈Z

1{sk,h=s,zk,h=z,Nk(s[Ii],z)=0}︸ ︷︷ ︸
(b′)

We bound terms (a) and (a′) using Azuma inequality, with probability 1− δ we have

(a) ≤ 7HL

m∑
i=1

√
Si

√
2T log

(
1

δ

)
≤ 7HL

m∑
i=1

√
2SiTL,

(a′) ≤ H
m∑
i=1

√
Si

√
2T log

(
1

δ

)
≤ H

m∑
i=1

√
2SiTL.
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We next bound term (b) as follows.

(b) ≤ 7HL

m∑
i=1

√
Si

∑
s[Ii]∈S[Ii]

K∑
k=1

H∑
h=1

∑
z∈Z

√
1

Nk(s[Ii], z)
1{sk,h[Ii]=s[Ii],zk,h=z}

≤ 7HL
m∑
i=1

√
Si

∑
s[Ii]∈S[Ii]

∑
z∈Z

∫ NK(s[Ii],z)

0

√
1

x
dx

= 7HL
m∑
i=1

√
Si

∑
s[Ii]∈S[Ii]

∑
z∈Z

2
√
NK(s[Ii], z)

≤ 14HL
m∑
i=1

√
SiS[Ii]ZT (by Cauchy-Schwarz).

Term (b′) can be bounded by H
∑m

i=1

√
SiSiZ by its indicator function. Combine (a), (a′) and

(b), (b′) we conclude the result.

Now we bound the summation over εk,h terms, which are the only terms in (7) remaining to bound
to this point. By Azuma inequality,

K∑
k=1

H∑
h=1

εk,h =

K∑
k=1

H∑
h=1

∑
y∈S

P(y|sk,h, πk(sk,h, h))∆̃k,h+1(y)− ∆̃k,h+1 (sk,h+1)


≤ 2H

√
KH log

(
1

δ

)
≤ 2H

√
TL.

Back to (8), we have

RK ≤
K∑
k=1

δ̃k,1 ≤
K∑
k=1

H∑
h=1

εk,h + 3bk,h = Õ

(
H

m∑
i=1

√
SiS[Ii]ZT

)
,

ignoring small order terms which do not have non-logarithmic dependency on T .

Appendix C. Algorithms
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Algorithm 4 CF-UCBVI

1: Input: action setA, states S and its scopes IP1 , . . . , I
P
m, identity of parent variables Z, P (z|s, a)

terms.
2: Initialize dataH = φ, Qk,h(s, a) = H for all k, h, s, a.
3: for episode k = 1, . . . ,K do
4: for step h = 1, . . . ,H do
5: Take action ak,h = argmaxa∈AQk,h(s, a) and observe values of parent variables zk,h.
6: UpdateH = H ∪ (sk,h, ak,h, zk,h, sk,h+1).
7: end for
8: Qk,h(s, a) = C-UCB-factored-Q-values(H).
9: end for

Algorithm 5 CF-UCB-Q-values
1: Input: Bonus algorithm, DataH.
2: for i = 1, . . . ,m do
3: Nk(s[Ii], z, y[i]) =

∑
(s′[Ii],z′,y′[i])

1(s′[Ii] = s[Ii], z
′ = z, y′[i] = y[i]), for (s[Ii], z, y[i]) ∈

S[Ii]×Z × Si.
4: Nk(s[Ii], z) =

∑
y[i]∈Si Nk(s[Ii], z, y[i]), for (s[Ii], z) ∈ S[Ii]×Z .

5: Let Ki = {(s[Ii], z) ∈ S[Ii]×Z, Nk(s[Ii], z) > 0}.
6: Estimate P̂k,i(y[i]|s[Ii], z) = Nk(s[Ii],z,y[i])

Nk(s[Ii],z)
for all (s[Ii], z) ∈ Ki.

7: end for
8: Initialize Vk,H+1(x) = 0 for all s ∈ S .
9: for h = H,H − 1, . . . , 1 do

10: for (s, z) ∈ S × Z do
11: for i = 1, . . . ,m do
12: if (s[Ii], z) ∈ Ki then
13: bk,h(s[Ii], z) = bonus(Nk(s[Ii], z))
14: else
15: qk,h(s, z) = H
16: break
17: end if
18: end for
19: qk,h(s, z) = min{H,

∑m
i=1R(s[Ji], z) + P̂kVk,h+1(s, z) +

∑m
i=1 bk,h(s[Ii], z)} if

qk,h(s, z) has not been assigned a value.
20: end for
21: for (s, a) ∈ S ×A do
22: Qk,h(s, a) =

∑
z∈Z P (z|s, a)qk,h(s, z)

23: end for
24: Vk,h(s) = maxa∈AQk,h(s, a)
25: end for
26: Output: Q-values Qk,h(s, z) for all (s, z) ∈ S × Z .
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Algorithm 6 Bonus for CF-UCBVI

1: Input: δ > 0, Nk(s[Ii], z), L = log(5
∑m

i=1 S[Ii]HKZT/δ).

2: b = 7HL
√

|Si|
Nk(s[Ii],z)

.
3: Output: b.
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