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Abstract
Neural networks (NNs) have been extremely suc-
cessful across many tasks in machine learning.
Quantization of NN weights has become an im-
portant topic due to its impact on their energy
efficiency, inference time and deployment on
hardware. Although post-training quantization
is well-studied, training optimal quantized NNs
involves combinatorial non-convex optimization
problems which appear intractable. In this work,
we introduce a convex optimization strategy to
train quantized NNs with polynomial activations.
Our method leverages hidden convexity in two-
layer neural networks from the recent literature,
semidefinite lifting, and Grothendieck’s identity.
Surprisingly, we show that certain quantized NN
problems can be solved to global optimality prov-
ably in polynomial time in all relevant parameters
via tight semidefinite relaxations. We present nu-
merical examples to illustrate the effectiveness of
our method.

1. Introduction
In this paper we focus on training quantized neural net-
works for efficient machine learning models. We consider
the combinatorial and non-convex optimization of minimiz-
ing empirical error with respect to quantized weights. We
focus on polynomial activation functions, where the training
problem is still non-trivial to solve.

Recent work has shown that two-layer neural networks with
ReLU (Pilanci & Ergen, 2020; Sahiner et al., 2021a) and
leaky ReLU activations (Lacotte & Pilanci, 2020b) can be
trained via convex optimization in polynomial time with
respect to the number of samples and neurons. Moreover,
degree-two polynomial activations can be trained to global
optimality in polynomial time with respect to all problem
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dimensions using semidefinite programming (Bartan & Pi-
lanci, 2021). In this work, we take a similar convex duality
approach that involves semidefinite programming. However,
our method and theoretical analysis are substantially differ-
ent since we consider quantized weights, which involves
a discrete non-convex optimization problem. The fact that
the first layer weights are discrete renders it a combinato-
rial NP-hard problem and thus we cannot hope to obtain a
similar result as in (Bartan & Pilanci, 2021) or (Pilanci &
Ergen, 2020). In contrast, in (Bartan & Pilanci, 2021) it is
shown that with the constraint ‖uj‖2 = 1 and `1-norm reg-
ularization on the second layer weights, the global optimum
can be found in fully polynomial time and that the problem
becomes NP-hard in the case of quadratic regularization (i.e.
weight decay).

The approach that we present in this paper for training quan-
tized neural networks is significantly different from others
in the quantization literature. In particular, our approach
involves deriving a semidefinite program (SDP) and design-
ing a sampling algorithm based on the solution of the SDP.
Our techniques lead to a provable guarantee for the differ-
ence between the resulting loss and the optimal non-convex
combinatorial loss. To the best of our knowledge, this is the
first method that provides provably optimal neural networks
with quantized parameters.

1.1. Prior work

Recently, there has been a lot of research effort in the realm
of compression and quantization of neural networks for
hardware implementations. In (Zhu et al., 2016), the au-
thors proposed a method that reduces network weights into
ternary values by performing training with ternary values.
Experiments in (Zhu et al., 2016) show that their method
does not suffer from performance degradation and achieve
16x compression compared to the original model. The au-
thors in (Gong et al., 2014) focus on compressing dense
layers using quantization to tackle model storage problems
for large-scale models. The work presented in (Han et al.,
2015) also aims to compress deep networks using a com-
bination of pruning, quantization and Huffman coding. In
(Lin et al., 2015), the authors present a quantization scheme
where they use different bit-widths for different layers (i.e.,
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bit-width optimization). Other works that deal with fixed
point training include (Lin & Talathi, 2016), (Gupta et al.,
2015), (Hwang & Sung, 2014). Furthermore, (Anwar et al.,
2015) proposes layer-wise quantization based on `2-norm
error minimization followed by retraining of the quantized
weights. However, these studies do not address optimal ap-
proximation. In comparison, our approach provides optimal
quantized neural networks.

In (Allen-Zhu & Li, 2020), it was shown that the degree
two polynomial activation functions perform comparably to
ReLU activation in practical deep networks. Specifically, it
was reported in (Allen-Zhu & Li, 2020) that for deep neural
networks, ReLU activation achieves a classification accu-
racy of 0.96 and a degree two polynomial activation yields
an accuracy of 0.95 on the Cifar-10 dataset. Similarly for
the Cifar-100 dataset, it is possible to obtain an accuracy of
0.81 for ReLU activation and 0.76 for the degree two poly-
nomial activation. These numerical results are obtained for
the activation σ(t) = t+ 0.1t2. Furthermore, in encrypted
computing, it is desirable to have low degree polynomials as
activation functions. For instance, homomorphic encryption
methods can only support additions and multiplications in
a straightforward way. These constraints make low degree
polynomial activations attractive for encrypted networks.
In (Gilad-Bachrach et al., 2016), degree two polynomial
approximations were shown to be effective for accurate
neural network predictions with encryption. These results
demonstrate that polynomial activation neural networks are
a promising direction for further exploration.

Convexity of infinitely wide neural networks was first con-
sidered in (Bengio et al., 2006) and later in (Bach, 2017).
A convex geometric characterization of finite width neural
networks was developed in (Ergen & Pilanci, 2020a; Ergen
& Pilanci, 2019; Bartan & Pilanci, 2019). Exact convex
optimization representations of finite width two-layer ReLU
neural network problems were developed first in (Pilanci
& Ergen, 2020) and extended to leaky ReLU (Lacotte &
Pilanci, 2020b) and polynomial activation functions (Bartan
& Pilanci, 2021). These techniques were also extended to
other network architectures including three-layer ReLU (Er-
gen & Pilanci, 2021), autoencoder (Sahiner et al., 2021b),
autoregressive (Gupta et al., 2021), batch normalization (Er-
gen et al., 2021) and deeper networks (Ergen & Pilanci,
2020b).

1.2. Notation

We use X ∈ Rn×d to denote the data matrix throughout the
text, where its rows xi ∈ Rd correspond to data samples and
columns are the features. y ∈ Rn denotes the target vector.
We use `(ŷ, y) for convex loss functions where ŷ is the vec-
tor of predictions and `∗(v) = supz(v

T z− `(z, y)) denotes
its Fenchel conjugate. tr refers to matrix trace. sign(·) is

the elementwise sign function. We use the notation Z � 0
for positive semidefinite matrices (PSD). We use ◦ for the
Hadamard product of vectors and matrices. The symbol ⊗
denotes the Kronecker product. We use λmax(·) to denote
the largest eigenvalue of its matrix argument. If the input
to diag(·) is a vector, then the result is a diagonal matrix
with its diagonal entries equal to the entries of the input
vector. If the input to diag(·) is a matrix, then the result is a
vector with entries equal to the diagonal entries of the input
matrix. 1̄ refers to the vector of 1’s. Sd×d represents the set
of (d× d)-dimensional symmetric matrices.

2. Lifting Neural Network Parameters
We focus on two-layer neural networks with degree two
polynomial activations σ(t) := at2+bt+c. Let f : Rd → R
denote the neural network defined as

f(x) =
m∑
j=1

σ(xTuj)αj (1)

where x ∈ Rd is the input sample, uj ∈ Rd and αj ∈ R
are the first and second layer weights, respectively. This
is a fully connected neural network with m neurons in the
hidden layer. We focus on the setting where the first dm
weights (i.e., uj ∈ Rd, j = 1, . . . ,m) in the hidden layer
are constrained to be integers.

The results are extended to neural networks with vector
outputs, i.e., f : Rd → RC , in Section B of the Appendix.

2.1. Bilinear activation networks

Now we introduce a simpler architecture with bilinear acti-
vation X → uTX v and binary quantization given by

f ′(X ) =

m′∑
j=1

uTj X vjαj

with uj , vj ∈ {−1,+1}d, αj ∈ R, ∀j (2)

where X ∈ Rd×d is the lifted version of the input x ∈ Rd as
will be defined in the sequel. We show that this architecture
is sufficient to represent multi-level integer quantization
and degree two polynomial activations without any loss
of generality. In addition, these networks can be mapped
to the standard network in (1) in a straightforward way as
we formalize in this section. Hence, some of our results
leverage the above architecture for training and transform
a bilinear activation network into a polynomial activation
network.

Theorem 1 (Reduction to binary quantization and bilinear
activation). The following multi-level (i.e. M + 1 levels)
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quantized neural network

f(x) =
m∑
j=1

σ(xTuj)αj where

uj ∈ {−M,−M + 2, . . . , 0, . . . ,M − 2,M}d, αj ∈ R, ∀j

can be represented as a binary quantized bilinear activation
network

f ′(X ) =
m′∑
j=1

uTj X vjαj where uj , vj ∈ {−1,+1}dM+1,

X :=

[
ax̃x̃T b

2 x̃
b
2 x̃

T c

]
and x̃ := x⊗ 1M . Conversely, any

binary quantized bilinear activation network f ′(X ) of this
form can be represented as a multi-level quantized neural
network f(x).

In the remainder of this section, we provide a constructive
proof of the above theorem by showing the reduction in
three steps: Reducing to binary quantization, lifting and
reducing to bilinear activation.

2.2. Reducing multi-level quantization to binary

In this section, we show that the two level binary quantiza-
tion {−1, 1} model is sufficient to model other quantization
schemes with integer levels. Hence, we can focus on binary
quantized neural network models without loss of general-
ity. Suppose that q represents a hidden neuron quantized to
M + 1 levels given by

q ∈ QdM := {−M,−M + 2, . . . , 0, . . . ,M − 2,M}d .
(3)

Then we equivalently have

qTx =

d∑
i=1

qixi =

d∑
i=1

M∑
k=1

uk+(i−1)Mxi = uT x̃ , (4)

where x̃ = x ⊗ 1M = [x1, x1, . . . , x2, x2, . . . , ]
T ∈ RdM

since
∑M
k=1 uk+(i−1)M ∈ QM ∀i. Therefore, stacking the

input data x by replication as x̃ ∈ RdM enables M +1 level
quantization to be represented as binary quantization.

2.3. Lifting dimensions

We first show that binary quantized networks with degree
two polynomial activations are equivalent to binary quan-
tized networks with quadratic activations. Note that the
network output can be expressed as

f(x) =

m∑
j=1

(
a(xTuj)

2 + b(xTuj) + c
)
αj

=
m∑
j=1

ũTj

[
axxT b

2x
b
2x

T c

]
ũjαj (5)

where we defined the augmented weight vectors ũj :=
[uTj , 1]T . Consequently, we can safely represent
this via the relaxation ũj ∈ {−1,+1}d+1 since

ũTj

[
axxT b

2x
b
2x

T c

]
ũj = (−ũj)T

[
axxT b

2x
b
2x

T c

]
(−ũj)

and we can assume (ũj)d+1 = 1 without loss of generality.

2.4. Reduction to bilinear activation

Now we show that we can consider the network model

f(x) =
m∑
j=1

uTj

[
axxT b

2x
b
2x

T c

]
︸ ︷︷ ︸

X

vjαj =
m∑
j=1

uTj X vjαj

(6)

where {uj , vj}mj=1 are the model parameters to represent
networks with quadratic activation without loss of generality.
Using the symmetrization identity

2uTAv = (u+ v)TA(u+ v)− uTAu− vTAv , (7)

we can express the neural network output as

2f(x) =

=
m∑
j=1

(
(uj + vj)

T

[
axxT b

2x
b
2x

T c

]
(uj + vj)αj

−uTj
[
axxT b

2x
b
2x

T c

]
ujαj − vTj

[
axxT b

2x
b
2x

T c

]
vjαj

)
.

Note that 1
2 (uj + vj) ∈ {−1, 0, 1}d and the above can be

written as a quantized network with quadratic activation and
3m hidden neurons.

3. Convex Duality of Quantized Neural
Networks and SDP Relaxations

We consider the following non-convex training problem for
the two-layer polynomial activation network

p∗ = min
s.t.uj∈{−1,1}d,αj∈R j∈[m]

`

 m∑
j=1

σ(Xuj)αj , y

+

+βd
m∑
j=1

|αj | .

(8)

Here, `(·, y) is a convex and Lipschitz loss function, σ(t) :=
at2 + bt+ c is a degree-two polynomial activation function,
m is the number of neurons, β is the regularization parame-
ter.

It is straightforward to show that this optimization problem
is NP-hard even for the case when m = 1, σ(t) = t is
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the linear activation and `(u, y) = (u− y)2 is the squared
loss via a reduction to the MaxCut problem (Goemans &
Williamson, 1995).

Note that we scale the regularization term by d to account
for the fact that the hidden neurons have Euclidean norm√
d, which simplifies the notation in the sequel. Taking

the convex dual with respect to the second layer weights
{αj}mj=1, the optimal value of the primal is lower bounded
by

p∗ ≥ d∗ = max
|vTσ(Xu)|≤βd ,∀u∈{−1,1}d

−`∗(−v)

= max
max

u:u∈{−1,1}d |vTσ(Xu)|≤βd
−`∗(−v). (9)

Remarkably, the above dual problem is a convex program
since the constraint set is an intersection of linear constraints.
However, the number of linear constraints is exponential
due to the binary quantization constraint.

We now describe an SDP relaxation which provides a lower-
bounding and tractable dual convex program. Our formula-
tion is inspired by the SDP relaxation of MaxCut (Goemans
& Williamson, 1995), which is analogous to the constraint
subproblem in (9). Let us assume that the activation is
quadratic σ(u) = u2, since we can reduce degree two
polynomial activations to quadratics without loss of gen-
erality as shown in the previous section. Then, we have
|vTσ(Xu)| = |uT (

∑n
i=1 vixix

T
i )u|.

The constraint maxu:u2
i=1,∀i |vT (Xu)2| ≤ βd can be equiv-

alently stated as the following two inequalities

q∗1 = max
u:u2

i=1,∀i
uT

(
n∑
i=1

vixix
T
i

)
u ≤ βd ,

q∗2 = max
u:u2

i=1,∀i
uT

(
−

n∑
i=1

vixix
T
i

)
u ≤ βd . (10)

The SDP relaxation for the maximization
maxu:u2

i=1,∀i u
T
(∑n

i=1 vixix
T
i

)
u is given by

q̂1 = max
U�0, Uii=1,∀i

tr

(
n∑
i=1

vixix
T
i U

)
, (11)

where U ∈ Sd×d. This is a relaxation since we removed the
constraint rank(U) = 1. Hence, the optimal value of the
relaxation is an upper bound on the optimal solution, i.e.,
q̂1 ≥ q∗1 . Consequently, the relaxation leads to the following
lower bound:

d∗ ≥ max
q∗1≤βd, q∗2≤βd

−`∗(−v) ≥ max
q̂1≤βd, q̂2≤βd

−`∗(−v) .

(12)

More precisely, we arrive at d∗ ≥ dSDP where

dSDP := max
v
− `∗(−v)

s.t. max
U�0, Uii=1,∀i

tr

(
n∑
i=1

vixix
T
i U

)
≤ βd

max
U�0, Uii=1,∀i

tr

(
−

n∑
i=1

vixix
T
i U

)
≤ βd .

(13)

The dual of the SDP in the constraint (11) is given by the
dual of the MaxCut SDP relaxation, which can be stated as

min
z∈Rd

d · λmax

(
n∑
i=1

vixix
T
i + diag(z)

)
s.t. 1̄

T
z = 0 . (14)

Since the primal problem is strictly feasible, it follows from
Slater’s condition that the strong duality holds between the
primal SDP and the dual SDP. This allows us to reformulate
the problem in (13) as

max
v,z1,z2

− `∗(−v)

s.t. λmax

(
n∑
i=1

vixix
T
i + diag(z1)

)
≤ β

λmax

(
−

n∑
i=1

vixix
T
i + diag(z2)

)
≤ β

1̄
T
z1 = 0, 1̄

T
z2 = 0 , (15)

where the variables have dimensions v ∈ Rn, z1, z2 ∈ Rd
and λmax denotes the largest eigenvalue. Expressing the
largest eigenvalue constraints as linear matrix inequalities
yields

dSDP := max
v,z1,z2

− `∗(−v)

s.t.
n∑
i=1

vixix
T
i + diag(z1)− βId � 0

−
n∑
i=1

vixix
T
i + diag(z2)− βId � 0

1̄
T
z1 = 0, 1̄

T
z2 = 0 . (16)

Next, we find the dual optimization problem. First we ex-
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press the Lagrangian:

L(v, z1, z2, Z1, Z2, ρ1, ρ2) =

= −`∗(−v)−
n∑
i=1

vix
T
i (Z1 − Z2)xi + β tr(Z1 + Z2)

−
d∑
j=1

(Z1,jjz1,j + Z2,jjz2,j) +
d∑
j=1

(ρ1z1,j + ρ2z2,j)

(17)

where Z1, Z2 ∈ Sd×d and ρ1, ρ2 ∈ R are the Lagrange
multipliers. Maximizing the Lagrangian with respect to
v, z1, z2 leads to the following convex program

min
Z1,Z2,ρ1,ρ2

`


x

T
1 (Z1 − Z2)x1

...
xTn (Z1 − Z2)xn

 , y
+ β tr(Z1 + Z2)

s.t. Z1,jj = ρ1, Z2,jj = ρ2, j = 1, . . . , d

Z1 � 0, Z2 � 0 . (18)

Finally, we obtain p∗ ≥ dSDP where

dSDP := min
Z1,Z2,ρ1,ρ2

` (ŷ, y) + βd(ρ1 + ρ2)

s.t. ŷi = xTi (Z1 − Z2)xi, i = 1, . . . , n

Z1,jj = ρ1, Z2,jj = ρ2, j = 1, . . . , d

Z1 � 0, Z2 � 0 . (19)

Remarkably, the above SDP is a polynomial time tractable
lower bound for the combinatorial non-convex problem p∗.

3.1. SDP relaxation for bilinear activation networks

Now we focus on the bilinear architecture f(x) =∑m
j=1(xTuj)(x

T vj)αj and provide an SDP relaxation for
the corresponding non-convex training problem. It will be
shown that the resulting SDP relaxation is provably tight,
where a matching upper bound can be obtained via random-
ization. Moreover, the resulting feasible solutions can be
transformed into a quantized neural network with polyno-
mial activations as we have shown in Section 2. Consider
the non-convex training problem for the two-layer network
with the bilinear activation given by

p∗b = min
s.t.uj ,vj∈{−1,1}d,αj∈R ∀j∈[m]

g
(
{uj , vj , αj}mj=1

)
(20)

where

g
(
{uj , vj , αj}mj=1

)
=

= `

 m∑
j=1

((Xuj) ◦ (Xvj))αj , y

+ βd
m∑
j=1

|αj | .

(21)

Here ◦ denotes the Hadamard, i.e., direct product of two vec-
tors. Repeating an analogous duality analysis (see Section
A.3 for the details), we obtain a tractable lower-bounding
problem given by

p∗b ≥ dbSDP := min
Q,ρ

` (ŷ, y) + βdρ

s.t. ŷi = 2xTi Zxi, i = 1, . . . , n

Qjj = ρ, j = 1, . . . , 2d

Q =

[
V Z
ZT W

]
� 0 . (22)

The above optimization problem is a convex SDP, which
can be solved efficiently in polynomial time.

4. Main result: SDP Relaxation is Tight
We now introduce an existence result on covariance ma-
trices which will be used in our quantized neural network
construction.

Theorem 2 (Trigonometric covariance shaping). Suppose
that Z∗ ∈ Rd×d is an arbitrary matrix such that ∃V,W :[
V Z∗

Z∗T W

]
� 0 and Vjj = Wjj = 1 ∀j. Then, there exists

a PSD matrix Q ∈ R2d×2d � 0 satisfying Qjj = 1 ∀j and

arcsin(Q(12)) = γZ∗ (23)

where Q =

[
Q(11) Q(12)

Q(21) Q(22)

]
, γ = ln(1 +

√
2), and arcsin

is the elementwise inverse sine function.

Our construction is based on randomly generating quantized
neurons whose empirical covariance matrix is matched to
the optimal solution of the convex SDP. The above theo-
rem is an existence result which will be crucial in our sam-
pling algorithm. The important observation is that, if we

let
[
u
v

]
∼ sign(N (0, Q)) with some Q � 0, Qjj = 1 ∀j,

then E
[
u
v

] [
u
v

]T
= 2

π arcsin(Q), which is referred to as

Grothendieck’s Identity (Alon & Naor, 2004). Therefore,
E[uvT ] = arcsinQ(12) = γZ∗, which is proportional to
the target covariance matrix. This algorithm is inspired by
Krivine’s analysis of the Grothendieck’s constant and its ap-
plications in approximating the cut norm using semidefinite
programming (Alon & Naor, 2004).

Proof of Theorem 2. Note that the condition ∃V,W :[
V Z∗

Z∗T W

]
� 0 and Vjj = Wjj = 1 ∀j implies that

there exists unit norm vectors x1, . . . , xd, y1, . . . , yd such
that Z∗ij = xTi yj . Consequently, applying Lemma 4.2 of
(Alon & Naor, 2004) and Grothendieck’s Identity completes
the proof.
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Algorithm 1 Sampling algorithm for quantized neural net-
works

1. Solve the SDP in (22). Define the scaled matrix Z∗s ←
Z∗/ρ∗.

2. Solve the problem

Q∗ := arg min
Q�0,Qjj=1∀j

‖Q(12) − sin(γZ∗s )‖2F .

(24)

3. Sample the first layer weights u1, . . . , um, v1, . . . , vm

from multivariate normal distribution as
[
u
v

]
∼

sign(N (0, Q∗)) and set the second layer weights as
αj = ρ∗ π

γm , ∀j.

4. (optional) Transform the quantized bilinear activation
network to a quantized polynomial activation network.

4.1. Sampling algorithm for approaching the global
optimum

Now we present our sampling algorithm which generates
quantized neural networks parameters based on the solution
of the lower-bounding convex SDP. The algorithm is listed
in Algorithm 1. We explain each step of the algorithm
below.

1. Solve the SDP in (22) to minimize the training loss.
Denote the optimal solution as Z∗ and ρ∗ and define
the scaled matrix Z∗s ← Z∗/ρ∗.

2. Find the 2d × 2d covariance matrix Q∗ by solving

(24) with Q =

[
Q(11) Q(12)

Q(21) Q(22)

]
where the notation

Q(ij) denotes a d× d block matrix. γ = ln(1 +
√

2),
and sin(·) is the element-wise sine function. The ob-
jective value is guaranteed to be zero due to Theo-
rem 2. Therefore we have arcsin(Q∗(12)) = γZ∗s and
Q∗ � 0, Q∗jj = 1 ∀j.

3. Sample u1, . . . , um, v1, . . . , vm via
[
u
v

]
∼

sign(N (0, Q∗)). Since E[uvT ] = 2
π arcsinQ∗(12) =

2γ
π Z
∗
s as a corollary of Theorem 2, we have

E[ 1
m

∑m
j=1 ujv

T
j ] = 2γ

π Z
∗
s . We set αj = ρ∗ π

γm , ∀j
to obtain E[

∑m
j=1 ujv

T
j αj ] = 2Z∗sρ

∗ = 2Z∗. This is
as desired since the SDP computes the predictions via
ŷi = 2xTi Zxi.

4. This optional step can be performed as described in
Section 2.

The extension of the sampling algorithm to the vector output
networks is given in Section B.

4.2. Concentration around the mean

We establish a probabilistic bound on the convergence of
the empirical sum 1

m

∑m
j=1 ujv

T
j in the step 3 of the sam-

pling algorithm to its expectation. Our technique involves
applying Matrix Bernstein concentration bound for sums of
i.i.d. rectangular matrices (Tropp, 2015) to obtain:

P

∥∥∥∥∥∥ 1

m

m∑
j=1

ujv
T
j − E[u1v

T
1 ]

∥∥∥∥∥∥
2

≥ ε


≤ exp

(
− mε2

(2γ/π)2‖Z∗s ‖22 + d(c′ + 2ε/3)
+ log(2d)

)
(25)

for all ε > 0.

We summarize this analysis in the following theorem, which
is our main result.
Theorem 3 (Main result). Suppose that the number of neu-
rons satisfies m ≥ c1

L2
cR

4
md log(d)
ε2 . Let Lc denote the Lip-

schitz constant of the vectorized loss function under the
`-infinity norm, i.e. |`(z)− `(z′)| ≤ Lc‖z − z′‖∞, and de-
fine Rm := maxi∈[n] ‖xi‖2. Then, Algorithm 1 generates a
quantized neural network with weights ûj , v̂j ∈ {−1,+1}d

and α̂j = ρ∗π

m log(1+
√

2)
, j = 1, . . . ,m that achieve near

optimal loss, i.e.,∣∣∣`( m∑
j=1

((Xûj) ◦ (Xv̂j))α̂j , y
)
−

`
( m∑
j=1

((Xu∗j ) ◦ (Xv∗j ))α∗j , y
)∣∣∣ ≤ ε (26)

with probability at least 1 − c2e−c3ε
2m/d for certain con-

stants c1, c2, c3 when the regularization coefficient satis-
fies β ≤ ε

d min
(

1∑
j |α̂j |

, 1∑
j |α∗j |

)
. The weights u∗j , v

∗
j ∈

{−1,+1}d, α∗j ∈ R, j = 1, . . . ,m are the optimal network
parameters for the non-convex combinatorial problem in
(21).
Remark 1. For loss functions of the form `(z) =
1
n

∑n
i=1 φ(zi), where φ(·) is a scalar Lc-Lipschitz loss

satisfying |φ(s) − φ(s′)| ≤ Lc|s − s′|, the vectorized
loss function `(z) is Lc-Lipschitz under the infinity norm.
This fact follows from

∣∣ 1
n

∑n
i=1 φ(zi) − 1

n

∑n
i=1 φ(z′i)

∣∣ ≤
1
n

∑n
i=1 Lc|zi − z′i| ≤ Lc‖z − z′‖∞. Examples of 1-

Lipschitz loss functions include hinge loss, logistic loss and
`1 loss, which satisfy our assumption with Lc = 1.
Remark 2. Our main result also holds when β → 0. In
this regime, the constraint β ≤ ε

d min
(

1∑
j |α̂j |

, 1∑
j |α∗j |

)
is

always satisfied.



Training Quantized Neural Networks to Global Optimality via Semidefinite Programming

The proof of Theorem 3 is provided in Section A.2. To the
best of our knowledge, this is the first result on polynomial-
time optimal trainability of quantized neural networks. We
remark that one can transform the near optimal quantized bi-
linear activation network to a near optimal quantized polyno-
mial activation network with the mapping shown in Section
2. Consequently, this result also applies to approximating
the solution of (8).

Additionally, note that the second layer weights are all identi-
cal, which allows us to represent the sampled neural network
using 2md bits and only one scalar floating point variable.
One can employ the reduction in Section 2.2 to train optimal
multi-level quantized neural networks using the above result
in polynomial time.

Furthermore, it is interesting to note that, overparameteriza-
tion is a key component in enabling optimization over the
combinatorial search space of quantized neural networks in
polynomial time. In contrast, the problems in (21) and (8)
are NP-hard when m = 1.

5. Numerical Results
In this section, we present numerical results that verify our
theoretical findings. Additional numerical results can be
found in the Appendix.

We compare the performance of the proposed SDP based
method against a backpropagation based method that we
describe in the next subsection. We have used CVXPY
(Diamond & Boyd, 2016; Agrawal et al., 2018) for solv-
ing the convex SDP. In particular, we have used the open
source solver SCS (splitting conic solver) (O’Donoghue
et al., 2016; 2019) in CVXPY, which is a scalable first order
solver for convex cone problems. Furthermore, in solving
the non-convex neural network training problems that we
include for comparison, we have used the stochastic gradi-
ent descent (SGD) algorithm with momentum in PyTorch
(Paszke et al., 2019).

The experiments have been carried out on a MacBook with
2.2 GHz 6-Core Intel Core i7 processor and 16 GB of RAM.

5.1. Planted dataset experiment

Figure 1 shows the cost as a function of the number of
neurons m. The neural network architecture is a two-
layer fully connected network with bilinear activation, i.e.,
f(x) =

∑m
j=1(xTuj)(x

T vj)αj . This experiment has been
done using a planted dataset. The plot compares the method
described in Section 4 against a backpropagation based
quantization method.

The algorithm in Section 4 solves the relaxed SDP and
then samples binary weights as described previously. This
procedure results in 2md binary weights for the first layer.

a) Training error

b) Test error

Figure 1. Objective against the number of neurons m. Dataset
X has been synthetically generated via sampling from standard
Gaussian distribution and has dimensions n = 100, d = 20. The
target vector y has been computed via a planted model with 10
planted neurons. In the planted model, the first layer weights are
binary and the second layer weights are real and non-negative.
The regularization coefficient is β = 10−4. The lower bound is
obtained by solving the SDP in Section 3. Plots a and b show the
cost on the training and test sets, respectively. The test set has been
generated synthetically by sampling from the same distribution as
the training set.

The second layer weights are all equal to ρ∗π/(γm). This
network requires storage of 2md bits and a single real
number. Furthermore, post-training quantization using
backpropagation works as follows. First, we train a two-
layer neural network with bilinear activation in PyTorch
(Paszke et al., 2019) with m neurons using stochastic gra-
dient descent (SGD). We fix the second layer weights to
1/m during training. After training, we form the matrices
Ẑ =

∑m
j=1 sign(uj) sign(vTj ) and Z∗ =

∑m
j=1 ujv

T
j

1
m .

Then, the solution of the problem minc∈R ‖cẐ − Z∗‖2F is
used to determine the second layer weights as c. The optimal
solution is given by c = 〈Ẑ,Z∗〉

〈Z∗,Z∗〉 . This procedure results in
2md bits for the first layer and a single real number for the
second layer and hence requires the same amount of storage
as the SDP based method.
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In addition to low storage requirements, this particular net-
work is very efficient in terms of computation. This is very
critical for many machine learning applications as this trans-
lates to shorter inference times. For the two-layer neural
network with bilinear activation, the hidden layer computa-
tions are 2md additions since the weights are {+1,−1} and
the bilinear activation layer performs m multiplications (i.e.
(xTuj)(x

T vj) j = 1, . . . ,m). The second layer requires
only m additions and one multiplication since the second
layer weights are the same.

Figure 1 shows that the SDP based method outperforms
the backpropagation approach. Also, we observe that the
cost of the SDP based method approaches the lower bound
rapidly as the number of neurons m is increased. Further-
more, plot b shows that the test set performance for the SDP
based method is also superior to the backpropagation based
method.

We note that another advantage of the SDP based sampling
method over backpropagation is that we do not need to solve
the SDP for a fixed number of neurons m. That is, the SDP
does not require the number of neurons m as an input. The
number of neurons is used only during the sampling process.
This enables one to experiment with multiple values for the
number of neurons without re-solving the SDP.

5.2. Real dataset experiment

Figure 2 compares the backpropagation approach and the
SDP based method on a real dataset from UCI machine
learning repository (Dua & Graff, 2017). The dataset is
the binary classification ”breast-cancer” dataset and has
n = 228 training samples and 58 test samples and the
samples are d = 9 dimensional. Figure 2 shows the classifi-
cation accuracy against time for various methods which we
describe below. The regularization coefficient β is picked
for each method separately by searching the value that yields
the highest accuracy and the resulting β values are provided
in the captions of the figures.

Figure 2 shows the training and test accuracy curves for
backpropagation without quantization by the blue solid
curve. After the convergence of the backpropagation, we
quantize the weights as described in the previous subsec-
tion, and the timing and accuracy for the quantized model
are indicated by the cyan cross marker. The timing and
accuracy of the SDP based method are shown using the red
cross marker. Figure 2 demonstrates that the SDP based
method requires less time to return its output. We observe
that quantization reduces the accuracy of backpropagation
to a lower accuracy than the SDP based method’s accuracy.

It is important to note that in neural network training, since
the optimization problems are non-convex, it takes consid-
erable effort and computation time to determine the hy-

a) Training accuracy

b) Test accuracy

Figure 2. Classification accuracy against wall-clock time. Breast
cancer dataset with n = 228, d = 9. The number of neurons is
m = 250 and the regularization coefficient is β = 0.1 for the SDP
based method and β = 0.1 for the backpropagation.

perparameters that will achieve convergence and good per-
formance. For instance, among the hyperparameters that
require tuning is the learning rate (i.e. step size). We have
performed the learning rate tuning for the backpropagation
algorithm offline and hence it is not reflected in Figure 2.
Remarkably, the proposed convex SDP based method does
not require this step as it is readily handled by the convex
SDP solver.

Figure 3 shows results for the UCI repository dataset ”iono-
sphere”. This is a binary classification dataset with n = 280
training samples and 71 test samples. The samples are
d = 33 dimensional. The experiment setting is similar to
Figure 2 with the main difference that the number of neu-
rons is 10 times higher (i.e., m = 2500). We observe that
the SDP based method outperforms the quantized network
trained with backpropagation on both training and test sets.
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a) Training accuracy

b) Test accuracy

Figure 3. Classification accuracy against wall-clock time. Iono-
sphere dataset with n = 280, d = 33. The number of neurons is
m = 2500 and the regularization coefficient is β = 10 for the
SDP based method, β = 10−6 for backpropagation.

6. Conclusion
We introduced a convex duality based approach for training
optimal quantized neural networks with degree two poly-
nomial activations. We first presented a lower-bounding
semidefinite program which is tractable in polynomial time.
We also introduced a bilinear activation architecture, and
the corresponding SDP lower-bound. We showed that bi-
linear architectures with binary quantization are sufficient
to train optimal multi-level quantized networks with poly-
nomial activations. We presented a sampling algorithm to
generate quantized neural networks using the SDP by lever-
aging Grothendieck’s identity and the connection to approx-
imating the cut norm. Remarkably, we showed that mild
overparameterization is sufficient to obtain a near-optimal
quantized neural network via the SDP based sampling ap-
proach. Numerical experiments show that our method can
generate significantly more accurate quantized neural net-
works compared to the standard post-training quantization
approach. Moreover, the convex optimization solvers are
faster than backpropagation in small to medium scale prob-

lems.

An immediate open question is to extend our results to
deeper networks and different architectures, such as ReLU
networks. For instance, our algorithm can be applied with
polynomial approximations of ReLU. Moreover, one can
apply our algorithm layerwise to optimally quantize a pre-
trained neural network by knowledge distillation.

We acknowledge that our current numerical results are lim-
ited to small and medium datasets due to the memory con-
straints of standard SDP solvers. However, one can design
custom optimization methods to obtain approximate solu-
tions of the SDP for larger dimensional instances. The
SDPs can also be defined and solved in deep learning frame-
works with appropriate parameterizations. Random projec-
tion and sketching based optimizers for high-dimensional
convex programs (Yurtsever et al., 2021; 2017; Lacotte &
Pilanci, 2020a) and randomized preconditioning (Lacotte
et al., 2020; Lacotte & Pilanci, 2020d;c; Ozaslan et al., 2019;
Lacotte & Pilanci, 2021) can address these computational
challenges. We leave this as an important open problem.

From a complexity theoretical perspective, it is remarkable
that overparameterization breaks computational barriers in
combinatorial and non-convex optimization. Specifically, it
is straightforward to show that training a quantized neural
network whenm = 1, i.e., a single neuron is NP-hard due to
the connection to the MaxCut problem. However, allowing
m = O(d log d) enables optimization over a combinatorial
search space in polynomial time. Exploring the other in-
stances and limits of this phenomenon is another interesting
research direction.
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A. Proofs
A.1. Proof of Theorem 1

Proof. First we show that the multiplication of the input x ∈ Rd by a multi-level quantized weight vector q ∈ QdM can be
represented by the dot product of a function of the input, i.e., x̃ and a binary quantized weight vector u, that is, qTx = uT x̃.
Here, u is a binary vector of size dM with entries satisfying

qi :=
M∑
k=1

uk+(i−1)M , i = 1, . . . , d . (27)

For instance, for M = 4, we have q1 = u1 + u2 + u3 + u4. Note that because uj’s are from the set {−1,+1}, we have
that q1 ∈ {−4,−2, 0, 2, 4}, which is equal to the set for (4 + 1 = 5)-level quantization, i.e., Q4. The second entry of the q
vector similarly satisfies q2 = u5 + u6 + u7 + u8 ∈ Q4. The same holds for all the entries q1, . . . , qd.

Next, plugging in (27) in the dot product qTx yields

qTx =
d∑
i=1

qixi =
d∑
i=1

M∑
k=1

uk+(i−1)Mxi

=
d∑
i=1

M∑
k=1

uk+(i−1)M x̃k+(i−1)M

= uT x̃ (28)

where we defined x̃ :=
[
x1, x1, . . . , x1, x2, x2, . . . , x2, . . . , xd, xd, . . . , xd

]T ∈ RdM . This shows that the dot product qTx
is equal to the dot product uT x̃ where u is a dM -dimensional vector with binary entries.

The input-output relationship for the two-layer fully connected neural network with polynomial activation is f(x) =∑m
j=1 σ(xT qj)αj =

∑m
j=1

(
aqTj xx

T qj + bqTj x+ c
)
αj where qj ∈ QdM and αj ∈ R, j = 1, . . . ,m. Using the fact that

we can represent a dot product with multi-level quantized weights as a dot product with binary quantized weights, we
equivalently have

f(x) =

m∑
j=1

(
auTj x̃x̃

Tuj + buTj x̃+ c
)
αj . (29)

We can rewrite this as a neural network with quadratic activation:

f(x) =

m∑
j=1

[
uTj 1

] [ax̃x̃T b
2 x̃

b
2 x̃

T c

] [
uj
1

]
αj

=
m∑
j=1

ũTj X ũjαj (30)

where we have defined ũj ∈ {−1,+1}dM+1, j = 1, . . . ,m, and X ∈ R(dM+1)×(dM+1).

This representation can be seen as a bilinear activation network with u′j = uj and v′j = uj , j = 1, . . . ,m. The proof of the
converse follows from the symmetrization identity (7).

A.2. Proof of Theorem 3

Proof. We begin by applying the matrix Bernstein concentration bound on the matrices (ujv
T
j − E[ujv

T
j ]), j = 1, . . . ,m,

which we note are (d × d)-dimensional zero-mean i.i.d. matrices. We obtain the following upper bound on the spectral
norm of these matrices

‖ujvTj − E[ujv
T
j ]‖ ≤ ‖ujvTj ‖2 + ‖E[ujv

T
j ]‖2

≤ ‖ujvTj ‖2 + E[‖ujvTj ‖2]

= ‖uj‖2‖vj‖2 + E[‖uj‖2‖vj‖2]

≤ d+ d = 2d , (31)
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for j = 1, . . . ,m where we use the triangle inequality in the first line and Jensen’s inequality in the second line. Next, we
define Sj := ujv

T
j − E[ujv

T
j ] and S :=

∑m
j=1 Sj , then the matrix variance of the sum (which we will plug in the matrix

concentration bound formula) is given by

σ2 = max{‖E[SST ]‖2, ‖E[STS]‖2} = max


∥∥∥∥∥∥
m∑
j=1

E[SjS
T
j ]

∥∥∥∥∥∥
2

,

∥∥∥∥∥∥
m∑
j=1

E[STj Sj ]

∥∥∥∥∥∥
2

 (32)

where the second equality follows because Sj’s are zero-mean.

E[SjS
T
j ] = E

[(
ujv

T
j − E[ujv

T
j ]
) (
ujv

T
j − E[ujv

T
j ]
)T ]

= dE[uju
T
j ]− E[ujv

T
j ]E[vju

T
j ]

= dE[uju
T
j ]− (2γ/π)2Z∗sZ

∗
s
T

= dE[uju
T
j ]− (2γ/πZ∗s )2 . (33)

Next, we bound the spectral norm of E[SST ] as

‖E[SST ]‖2 =

∥∥∥∥∥∥
m∑
j=1

E[SjS
T
j ]

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
m∑
j=1

(
dE[uju

T
j ]− (2γ/πZ∗s )2

)∥∥∥∥∥∥
2

=
∥∥mdE[u1u

T
1 ]−m(2γ/πZ∗s )2

∥∥
2

≤ md
∥∥E[u1u

T
1 ]
∥∥

2
+
∥∥m(2γ/πZ∗s )2

∥∥
2

= md
∥∥E[u1u

T
1 ]
∥∥

2
+m(2γ/π)2‖Z∗s ‖22

= md(2γ/π)‖ arcsin(Q(11))‖2 +m(2γ/π)2‖Z∗s ‖22 . (34)

The last line follows from the identity E[u1u
T
1 ] = 2γ/π arcsin(Q(11)). We note that the upper bound for ‖E[SST ]‖2 is also

an upper bound for ‖E[STS]‖2. Hence, the matrix variance is upper bounded by σ2 ≤ c′md+m(2γ/π)2‖Z∗s ‖22 where
c′ ≥ 0 is a constant. Applying the matrix Bernstein concentration bound yields

P

∥∥∥∥∥∥
m∑
j=1

(ujv
T
j − E[ujv

T
j ])

∥∥∥∥∥∥
2

≥ mε

 ≤ 2d exp

(
−m2ε2

σ2 + 2dmε/3

)
. (35)

Plugging in the expression for the variance, we obtain

P

∥∥∥∥∥∥ 1

m

m∑
j=1

ujv
T
j − E[u1v

T
1 ]

∥∥∥∥∥∥
2

≥ ε

 ≤ 2d exp

(
−m2ε2

c′md+m(2γ/π)2‖Z∗s ‖22 + 2dmε/3

)

= 2d exp

(
− mε2

(2γ/π)2‖Z∗s ‖22 + d(c′ + 2ε/3)

)
= exp

(
− mε2

(2γ/π)2‖Z∗s ‖22 + d(c′ + 2ε/3)
+ log(2d)

)
. (36)

Let us denote the optimal solution of the original non-convex problem as Z∗nc =
∑m
j=1 u

∗
j (v
∗
j )Tα∗j where the weights

u∗j , v
∗
j ∈ {−1,+1}d, α∗j ∈ R, j = 1, . . . ,m are optimal network parameters for the non-convex combinatorial problem

in (21) . Solving the SDP gives us an unquantized solution Z∗ and via the sampling algorithm, we obtain the quantized
solution given by Ẑ =

∑m
j=1 ûj v̂

T
j α̂j .

We now introduce some notation. We will denote the loss term in the objective by L(Z) and the regularization term by
R(Z), that is,

L(Z) := `


x

T
1 Zx1

...
xTnZxn

 , y
 , R(Z) := d

m∑
j=1

|αj | when Z =

m∑
j=1

ujv
T
j αj . (37)
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We now bound the difference between the losses for the unquantized solution of the SDP, i.e., Z∗, and the quantized weights
Ẑ =

∑m
j=1 ûj v̂

T
j α̂j :

|L(Ẑ)− L(Z∗)| ≤ Lc

∥∥∥∥∥∥∥∥

xT1 (

∑m
j=1 ûj v̂

T
j
ρ∗π
γm − 2Z∗)x1

...
xTn (

∑m
j=1 ûj v̂

T
j
ρ∗π
γm − 2Z∗)xn


∥∥∥∥∥∥∥∥
∞

(38)

where we substituted α̂j = ρ∗ π
γm . The scaling factor of 2 in front of Z∗ is due to the scaling factor in the SDP, i.e.,

ŷi = 2xTi Zxi. Plugging in Z∗/ρ∗ = Z∗s = π
2γ E[u1v

T
1 ] yields

|L(Ẑ)− L(Z∗)| ≤ Lc

∥∥∥∥∥∥∥
ρ∗π

γ

x
T
1 ( 1

m

∑m
j=1 ûj v̂

T
j − E[u1v

T
1 ])x1

...
xTn ( 1

m

∑m
j=1 ûj v̂

T
j − E[u1v

T
1 ])xn


∥∥∥∥∥∥∥
∞

= Lc
ρ∗π

γ
max

i=1,...,n

∣∣xTi (
1

m

m∑
j=1

ûj v̂
T
j − E[u1v

T
1 ])xi

∣∣
≤ Lc

ρ∗π

γ
max

i=1,...,n
(ε‖xi‖22) = Lc

ρ∗π

γ
εR2

m (39)

which holds with probability at least 1 − exp
(
− mε2

(2γ/π)2‖Z∗s ‖22+d(c′+2ε/3)
+ log(2d)

)
as a result of the matrix Bernstein

concentration bound. Therefore, when the number of sampled neurons satisfies the inequality

mε2

(2γ/π)2‖Z∗‖22 + d(c′ + 2ε/3)
≥ 2 log(2d) ,

this probability is at least 1− exp(− log(2d)) = 1− exp(−Cε2m/d), where C > 0 is a constant independent of d, m and
ε.

Next, we obtain upper and lower bounds on the non-convex optimal value. Since the SDP solution provides a lower bound,
and the sampled quantized network provides an upper bound, we can bound the optimal value of the original non-convex
problem as follows

L(Ẑ) + βR(Ẑ) ≥ L(Z∗nc) + βR(Z∗nc) ≥ L(Z∗) + βR(Z∗) . (40)

We have already established that |L(Ẑ)− L(Z∗)| ≤ ρ∗π
γ LcR

2
mε with high probability. It follows

L(Ẑ)− L(Z∗nc) = L(Ẑ)− L(Z∗) + L(Z∗)− L(Z∗nc)

≤ ρ∗π

γ
LcR

2
mε+ L(Z∗)− L(Z∗nc)

≤ ρ∗π

γ
LcR

2
mε+ βR(Z∗nc) (41)

where we have used (40) and that R(Z∗) ≥ 0 to obtain the last inequality. Furthermore, (40) implies that L(Z∗nc)−L(Ẑ) ≤

βR(Ẑ). If we pick the regularization coefficient β such that it satisfies β ≤
ρ∗π
γ LcR

2
mε

R(Z∗nc)
and β ≤

ρ∗π
γ LcR

2
mε

R(Ẑ)
, we obtain the

following approximation error bound

|L(Z∗nc)− L(Ẑ)| ≤ 2
ρ∗π

γ
LcR

2
mε . (42)

Rescaling ε by 2ρ
∗π
γ LcR

2
m, i.e., replacing ε with 1

2 ρ
∗π
γ LcR2

m

ε, we obtain the claimed approximation result.
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A.3. Duality Analysis for Bilinear Activation

This subsection has the details of the duality analysis that we have carried out to obtain the SDP in (22) for the bilinear
activation architecture. The derivations follow the same strategy as the duality analysis in Section 3. The non-convex
problem for training such a network is stated as follows:

p∗b = min
s.t.uj ,vj∈{−1,1}d,αj∈R ∀j∈[m]

`

 m∑
j=1

((Xuj) ◦ (Xvj))αj , y

+ βd
m∑
j=1

|αj | . (43)

Taking the convex dual with respect to the second layer weights {αj}mj=1, the optimal value of the primal is lower bounded
by

p∗ ≥ d∗ = max
max

u,v∈{−1,1}d |νT ((Xu)◦(Xv))|≤βd
−`∗(−ν) (44)

where ν ∈ Rn is the dual variable.

The constraint maxu,v∈{−1,1}d |νT ((Xu) ◦ (Xv))| ≤ βd can be equivalently stated as the following two inequalities

q∗1 = max
u2
i=v

2
i=1,∀i

uT

(
n∑
i=1

νixix
T
i

)
v ≤ βd ,

q∗2 = max
u2
i=v

2
i=1,∀i

uT

(
−

n∑
i=1

νixix
T
i

)
v ≤ βd. (45)

We note that the second constraint q∗2 ≤ βd is redundant since the change of variable u← −u in the first constraint leads to
the second constraint:

q∗1 = max
u2
i=v

2
i=1,∀i

uT

(
n∑
i=1

νixix
T
i

)
v = max

(−ui)2=v2i=1,∀i
(−u)T

(
n∑
i=1

νixix
T
i

)
v = max

u2
i=v

2
i=1,∀i

uT

(
−

n∑
i=1

νixix
T
i

)
v = q∗2 .

(46)

In the sequel, we remove the redundant constraint q∗2 ≤ βd. The SDP relaxation for the maximization
maxu2

i=v
2
i=1,∀i u

T
(∑n

i=1 νixix
T
i

)
v is given by (see, e.g., (Alon & Naor, 2004))

q̂1 = max

K=

 V Z
ZT W

�0, Kjj=1,∀j

tr

(
n∑
i=1

νixix
T
i Z

)
. (47)

The dual of the above SDP relaxation can be derived via standard convex duality theory, and can be stated as

min
z1,z2 s.t. 1̄T z1+1̄T z2=0

2d λmax

([
diag(z1)

∑n
i=1 νixix

T
i∑n

i=1 νixix
T
i diag(z2)

])
. (48)

Then, we arrive at

d∗ ≥ dSDP := max
ν,z1,z2

− `∗(−ν)

s.t.
[

diag(z1)
∑n
i=1 νixix

T
i∑n

i=1 νixix
T
i diag(z2)

]
− β

2
I � 0

1̄
T
z1 + 1̄

T
z2 = 0 . (49)
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Next, we will find the dual of the above problem. The Lagrangian is given by

L(ν, z1, z2, Q, ρ) =

= −`∗(−ν)− tr

(
Q

[
diag(z1)

∑n
i=1 νixix

T
i∑n

i=1 νixix
T
i diag(z2)

])
+
β

2
tr(Q) + ρ

d∑
j=1

(z1,j + z2,j)

= −`∗(−ν)−
d∑
j=1

(Vjjz1,j +Wjjz2,j)− 2
n∑
i=1

νix
T
i Zxi +

β

2
tr(Q) + ρ

d∑
j=1

(z1,j + z2,j) (50)

Maximizing the Lagrangian with respect to ν, z1, z2 yields the problem

min
Q,ρ

`


2xT1 Zx1

...
2xTnZxn

 , y
+

β

2
tr(Q)

s.t. Vjj = ρ, Wjj = ρ, j = 1, . . . , d

Q =

[
V Z
ZT W

]
� 0 . (51)

Finally, we obtain the following more concise form for the convex program

min
Q,ρ

` (ŷ, y) + βdρ

s.t. ŷi = 2xTi Zxi, i = 1, . . . , n

Qjj = ρ, j = 1, . . . , 2d

Q =

[
V Z
ZT W

]
� 0 . (52)

B. Vector Output Networks
We will assume the following vector output neural network architecture with bilinear activation

f(x) =

m∑
j=1

(xTuj)(x
T vj)α

T
j (53)

where the second layer weights αj ∈ RC , j = 1, . . . ,m are C-dimensional vectors. We note that f(x) : Rd → R1×C . The
output of the neural network for all the samples in the dataset can be concisely represented as Ŷ = f(X) ∈ Rn×C . We use
Y ∈ Rn×C to denote the target matrix. The training problem can be formulated as

p∗ = min
uj ,vj∈{−1,1}d,αj∈RC j∈[m]

`

 m∑
j=1

((Xuj) ◦ (Xvj))α
T
j , Y

+ βd
m∑
j=1

‖αj‖1 . (54)

Or,

p∗ = min
uj ,vj∈{−1,1}d, j∈[m]

min
αj∈RC , j∈[m], Ŷ

`
(
Ŷ , Y

)
+ βd

m∑
j=1

‖αj‖1 s.t. Ŷ =
m∑
j=1

((Xuj) ◦ (Xvj))α
T
j . (55)

The dual problem for the inner minimization problem is

max
ν
−`∗(−ν) s.t. |νTk ((Xuj) ◦ (Xvj))| ≤ βd, ∀j, k . (56)

We have introduced the dual variable ν ∈ Rn×C and its columns are denoted by νk ∈ Rn, k = 1, . . . , C . The optimal value
of the primal is lower bounded by

p∗ ≥ d∗ = max
max

u,v∈{−1,1}d |ν
T
k ((Xu)◦(Xv))|≤βd ,∀k

−`∗(−ν) . (57)
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The constraints of the above optimization problem can be equivalently stated as the following inequalities

q∗1,k = max
u2
i=v

2
i=1,∀i

uT

(
n∑
i=1

νk,ixix
T
i

)
v ≤ βd, k = 1, . . . , C,

q∗2,k = max
u2
i=v

2
i=1,∀i

uT

(
−

n∑
i=1

νk,ixix
T
i

)
v ≤ βd, k = 1, . . . , C . (58)

As we have shown in Section A.3, the second set of inequalities q∗2,k ≤ βd are implied by the first and hence we remove
them. The SDP relaxation for the maximization maxu2

i=v
2
i=1,∀i u

T
(∑n

i=1 νk,ixix
T
i

)
v is given by

q̂1,k = max

K=

 V Z
ZT W

�0, Kjj=1,∀j

tr

(
n∑
i=1

νk,ixix
T
i Z

)
. (59)

We have previously given the dual of this problem as

min
zk,1,zk,2 s.t. 1̄T zk,1+1̄T zk,2=0

2d λmax

([
diag(zk,1)

∑n
i=1 νk,ixix

T
i∑n

i=1 νk,ixix
T
i diag(zk,2)

])
, (60)

where we define the variables zk,1 ∈ Rd, zk,2 ∈ Rd, k = 1, . . . , C . This allows us to establish the following lower bound

d∗ ≥ dSDP := max
ν,{zk,1,zk,2}Ck=1

− `∗(−ν)

s.t.
[

diag(zk,1)
∑n
i=1 νk,ixix

T
i∑n

i=1 νk,ixix
T
i diag(zk,2)

]
− β

2
I � 0, k = 1, . . . , C

1̄
T
zk,1 + 1̄

T
zk,2 = 0, k = 1, . . . , C . (61)

Next, we find the dual of this problem. First, we write the Lagrangian:

L(ν, {zk,1, zk,2, Qk, ρk}Ck=1) =

= −`∗(−ν)−
C∑
k=1

tr

(
Qk

[
diag(zk,1)

∑n
i=1 νk,ixix

T
i∑n

i=1 νk,ixix
T
i diag(zk,2)

])
+
β

2

C∑
k=1

tr(Qk) +
C∑
k=1

ρk(1̄
T
zk,1 + 1̄

T
zk,2)

= −`∗(−ν)−
C∑
k=1

(
diag(Vk)T zk,1 + diag(Wk)T zk,2

)
− 2

C∑
k=1

n∑
i=1

νk,ix
T
i Zkxi +

β

2

C∑
k=1

tr(Qk)

+
C∑
k=1

ρk(1̄
T
zk,1 + 1̄

T
zk,2) , (62)

where we have introduced Qk =

[
Vk Zk
ZTk Wk

]
. Maximization of the Lagrangian with respect to ν, zk,1, zk,2, k = 1, . . . , C

leads to the dual problem given by

min
{Qk,ρk}Ck=1

`


2xT1 Z1x1 . . . 2xT1 ZCx1

...
. . .

...
2xTnZ1xn . . . 2xTnZCxn

 , Y
+

β

2

C∑
k=1

tr(Qk)

s.t. Vk,jj = ρk, Wk,jj = ρk, k ∈ [C], j ∈ [d]

Qk =

[
Vk Zk
ZTk Wk

]
� 0, k ∈ [C]. (63)
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More concisely,

min
{Qk,ρk}Ck=1

`
(
Ŷ , Y

)
+ βd

C∑
k=1

ρk

s.t. Ŷik = 2xTi Zkxi, i ∈ [n], k ∈ [C]

Qk,jj = ρk, k ∈ [C], j ∈ [2d]

Qk =

[
Vk Zk
ZTk Wk

]
� 0, k ∈ [C]. (64)

where Vk, Zk,Wk are d× d-dimensional matrices.

B.1. Sampling Algorithm for Vector Output Networks

We now give the sampling algorithm:

1. Solve the SDP in (64) and define the matrices Z∗s,k ← Z∗k/ρ
∗
k, k = 1, . . . , C .

2. Find Q∗k, k = 1, . . . , C by solving the problem

Q∗k := arg min
Q�0,Qjj=1∀j

‖Q(12) − sin(γZ∗s,k)‖2F . (65)

3. Carry out the following steps for each k = 1, . . . , C:

a. Sample m/C pairs of the first layer weights uj , vj via
[
uj
vj

]
∼ sign(N (0, Q∗k)).

b. Set the second layer weights for these neurons to αj = ρ∗kC
π
γmek where ek ∈ RC is the k’th unit vector.

4. (optional) Transform the quantized bilinear activation network to a quantized polynomial activation network as
described in Section 2.

Figure 4 shows the classification accuracy on a UCI machine learning repository with C = 4 classes. We perform one-hot
encoding on the output and use the vector output SDP and sampling method developed in this section. We observe that the
accuracy of the sampling method approaches the accuracy of the lower bounding SDP as m is increased.

a) Training accuracy b) Test accuracy

Figure 4. Vector output network experiment showing multiclass classification accuracy against the number of sampled neurons m. The
dataset is statlog vehicle multiclass with C = 4 classes and dimensions n = 676, d = 18. The regularization coefficient is β = 1. The
blue solid line shows the accuracy when we predict the labels using the lower bounding SDP in (64) without quantization. The green
curve with circle markers shows the accuracy for the quantized network when we use the sampling method that we designed for the vector
output case.
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C. Further Details on Step 4 of the Sampling Algorithm
As stated in Step 4 of the sampling algorithm given in subsection 4.1, it is possible to transform the bilinear activation
architecture to a quadratic activation neural network with 3m neurons. The first layer weights of the quadratic activation
network can be obtained, via the symmetrization identity, as 1/2(uj + vj) ∈ {−1, 0,+1}d, uj ∈ {−1,+1}d, vj ∈
{−1,+1}d, j = 1, . . . ,m. The second layer weights are picked as stated in Step 3 for the first m neurons and the remaining
2m neurons have the opposite sign.

D. Additional Numerical Results
Figure 5 shows the accuracy against time for the credit approval dataset. For this dataset, we similarly observe shorter
run times and better classification accuracies for the SDP based sampling method. Furthermore, increasing the number of
neurons (plots c,d) improves the accuracy for both methods, which is in consistency with the experiment result shown in
Figure 1.

a) Training accuracy, m = 500 b) Test accuracy, m = 500

c) Training accuracy, m = 2500 d) Test accuracy, m = 2500

Figure 5. Classification accuracy against wall-clock time. Credit approval dataset with n = 552, d = 15. The number of neurons m
is specified in the sub-caption for each plot. The regularization coefficient is β = 10 for the SDP based method and β = 0.001 for
backpropagation.

D.1. ReLU network comparison

Figure 6 compares the SDP based sampling method with a two-layer ReLU network. We train the ReLU network using
backpropagation and quantize the first layer weights post-training. The second layer weights are only scaled to account for
the quantization of the first layer weights and not restricted to be identical. Thus, unlike the previous figures, the comparison
in Figure 6 unfairly favors the ReLU network. We observe that the SDP approach can still outperform SGD in this case.
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a) Training accuracy b) Test accuracy

Figure 6. Classification accuracy against wall-clock time showing comparison with a two-layer ReLU network. Ionosphere dataset with
n = 280, d = 33. For the SDP based sampling method, m = 2500 and the regularization coefficient is β = 10. For the ReLU network,
m = 5000 and β = 10−7.


