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Abstract
Fisher’s Linear Discriminant Analysis (FLDA) is
a statistical analysis method that linearly embeds
data points to a lower dimensional space to maxi-
mize a discrimination criterion such that the vari-
ance between classes is maximized while the vari-
ance within classes is minimized. We introduce
a natural extension of FLDA that employs neu-
ral networks, called Neural Fisher Discriminant
Analysis (NFDA). This method finds the optimal
two-layer neural network that embeds data points
to optimize the same discrimination criterion. We
use tools from convex optimization to transform
the optimal neural network embedding problem
into a convex problem. The resulting problem
is easy to interpret and solve to global optimal-
ity. We evaluate the method’s performance on
synthetic and real datasets.

1. Introduction
In this work, we develop a novel natural extension of
Fisher’s Linear Discriminant Analysis (FLDA) using neural
network embeddings. The method of FLDA is used to find
a linear combination of features that separates two or more
classes (Fisher, 1936). An advantage of FLDA is that it does
not make any distribution assumptions on the data. This is
in contrast to the method of Linear Discriminant Analysis
(LDA), which makes multivariate Gaussian assumptions for
the class conditional probabilities. FLDA aims to find a pro-
jection that minimizes the sample variance within classes
and maximizes the sample variance across classes in the
projected space. The resulting projection has various useful
interpretations for dimension reduction and classification
problems.

In this work, we develop a nonlinear neural network based

1Department of Electrical Engineering, Stanford Univer-
sity, CA, USA. Correspondence to: Burak Bartan <bbar-
tan@stanford.edu>, Mert Pilanci <pilanci@stanford.edu>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

variant of FLDA, which we term Neural Fisher Discrimi-
nant Analysis (NFDA). Our method aims to combine the
representation power of neural networks with the optimal
separation criterion of the FLDA method. We provide al-
gorithms for finding the optimal weights for the two-layer
neural network transformation that maximizes the ratio of
between-class variance to within-class variance for binary
and multiclass problems. We show by proving matching
lower and upper bounds that our algorithms find the global
optimum of this objective.

The proposed NFDA method involves different algorithms
depending on the activation function considered. We con-
sider ReLU activation g(t) = max(0, t) and degree-two
polynomial activations g(t) = at2 + bt + c in this work.
Furthermore, we present the NFDA method for both binary
class and multiclass problems. We start by introducing the
binary case, since the multiclass case requires a more so-
phisticated analysis due to the vector valued second layer
weights. This results in the multiclass NFDA method gener-
ating K − 1 times more neurons for a multiclass problem
with K classes compared to the binary class NFDA method.

1.1. Related Work

Degree-two polynomial activations have a significant com-
putational advantage over other activation functions. In
particular, it is possible to reformulate the training problem
with degree-two activations into a tractable convex program
that is solvable in fully-polynomial time as shown in (Bartan
& Pilanci, 2021). Moreover, a compact parameterization
of the neural network parameter space considerably simpli-
fies the neural network training problem. In this work, we
explore a similar parameterization approach. The NFDA
method for polynomial activation returns a more compact
neural network compared to the NFDA method for ReLU.
Furthermore, polynomial activation functions have found
practical use in recent work including neural network infer-
ence on encrypted data (Gilad-Bachrach et al., 2016) and are
shown to perform comparable to other activation functions
(Allen-Zhu & Li, 2020) such as ReLU.

Neural network based Fisher discriminant analysis meth-
ods have been proposed in the literature in works including
(Stuhlsatz et al., 2012; Wu et al., 2017; Dı́az-Vico & Dor-
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ronsoro, 2020; Dorfer et al., 2016). The proposed techniques
in these works mostly require training neural networks using
backpropagation. In contrast, in this work we prove that
optimal two-layer neural network transformations could be
obtained by feature lifting and solving a linear system, fol-
lowed by eigenvalue decomposition if it is a multiclass prob-
lem. Hence, our proposed methodology does not depend on
any heuristics and guarantees globally optimal solutions.

1.2. Notation

For neural network weights, we use w
(1)
j for first layer

weights and w
(2)
j for second layer weights for the j’th neu-

ron in the hidden layer. Also, we use θ := {w(1)
j , w

(2)
j }mj=1

to represent all of the parameters of the network. The nota-
tion 1[·] : R→ {0, 1} denotes the indicator function and it
outputs 1 if its argument is true and 0 otherwise. We will
use [K] to denote the set of integers {1, . . . ,K}.

The notation D = Diag(v) is used to refer to the diagonal
matrix with diagonal entries equal to the entries of its input,
Djj = vj . Moreover, vec(·) denotes the vectorized version
of its argument. We will use ek for the k’th unit vector of
the appropriate dimension. The i’th sample of the dataset
is xi while the notation x̄i corresponds to the feature lifted
version of the i’th sample. The exact feature lifting depends
on the activation function and is defined explicitly in the text.
Similarly, X is the input matrix whose rows are different
samples and X̄ is the feature lifted dataset.

2. Preliminaries
2.1. Fisher’s Linear Discriminant Analysis

Suppose x1, . . . , xn ∈ Rd represent observations from two
classes. Let the class labels be such that yi ∈ {0, 1}. We
will use X ∈ Rn×d to denote the data matrix where the
i’th row of X is the i’th data sample xi. Let us define the
sample mean vectors and covariance matrices for each class
k = 0, 1 as follows:

µk := EX [x |x ∼ class k]

=
1

nk

∑
yi=k

xi , (1)

Σk := EX [(x− µk)(x− µk)
T |x ∼ class k]

=
1

nk − 1

∑
yi=k

(xi − µk)(xi − µk)
T , (2)

where we used the notation EX for the empirical mean
with respect to the dataset X and EX [· |x ∼ class k] is the
empirical class conditional expectation when the label of
the sample x is equal to class k. Also, nk is the number of
samples in the k’th class.

In FLDA, we consider finding a linear feature map w ∈ Rd

such that the ratio of the variance between classes to the
variance within the classes is maximized in the projection
space wTx. Note that the class conditional mean βk and
variance σ2

k of the mapped features z = wTx are given by:

βk := wTµk, (3)

σ2
k := wTΣkw, (4)

for k = 0, 1. Then, the ratio of the sample variances can be
written as (β0 − β1)

2/(σ2
0 + σ2

1). The goal of FLDA is to
find the transformation that maximizes this ratio:

w∗ = argmax
w

(β0 − β1)
2

σ2
0 + σ2

1

. (5)

This can be written as a ratio of two quadratics:

w∗ = argmax
w

wT (µ0 − µ1)(µ0 − µ1)
Tw

wT (Σ0 +Σ1)w
. (6)

An optimal solution to this problem is given by w∗ = c(Σ0+
Σ1)

−1(µ0 − µ1) where c ∈ R is an arbitrary non-zero
constant.

2.2. Multiclass Fisher’s LDA

Consider a dataset with K classes and let the class labels
be such that yi ∈ {0, . . . ,K − 1}. In multiclass FLDA, the
goal is to find a linear transformation z = WTx where W ∈
Rd×(K−1) such that the within-class scatter is minimized
while the between-class scatter is maximized. Before we
give the exact form of this objective, we define the within-
class SW and between-class scatter matrices SB as follows:

SW :=
K−1∑
k=0

Sk, where Sk :=
∑
yi=k

(xi − µk)(xi − µk)
T

(7)

SB :=

K−1∑
k=0

nk(µk − µ)(µk − µ)T (8)

where µ is the mean of all the samples, µ := 1
n

∑n
i=1 xi.

The scatter matrices in the transformed domain are equal to
WTSWW and WTSBW , respectively.

Multiclass FLDA problem is typically formulated as a max-
imization of the ratio of the determinants of the scatter
matrices in the transformed domain:

W ∗ = argmax
W

det(WTSBW )

det(WTSWW )
, (9)

where det(·) is the matrix determinant. The optimal trans-
formation W ∗ is given by the eigenvectors of S−1

W SB corre-
sponding to the largest K−1 eigenvalues. More specifically,
the j’th column of W ∗ is equal to the j’th eigenvector of
S−1
W SB when the eigenvectors are sorted in descending or-

der of their corresponding eigenvalues.
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3. Neural Fisher Discriminant Analysis for
Binary Class Problems

Recall that in Fisher’s LDA, the goal is to find the optimal
linear transformation that maximizes the ratio of variances.
It is easy to see that a more expressive mapping than linear
can potentially improve the performance due to increased
representational power. In particular, we will consider two-
layer neural networks

f(x) :=
m∑
j=1

g(xTw
(1)
j )w

(2)
j (10)

where w
(1)
j ∈ Rd and w

(2)
j ∈ R, j = 1, . . . ,m denote

the first and second layer weights. g : R → R is the
activation function. Let θ := {w(1)

j , w
(2)
j }mj=1 denote all

of the parameters of the network. Let us define the sample
mean and variance in the neural network domain:

βk(θ) := EX [f(x) |x ∼ class k] , (11)

σ2
k(θ) := EX [(f(x)− βk(θ))

2 |x ∼ class k] . (12)

Finding the neural network transformation f (parameterized
by θ) that maximizes the ratio of the between-class vari-
ance to within-class variance can be posed as the following
optimization problem:

θ∗ = argmax
θ

(β0(θ)− β1(θ))
2

σ2
0(θ) + σ2

1(θ)
. (13)

In the remainder of this section, we present algorithms for
solving this optimization problem optimally. In the sequel,
we will refer to this problem as the NFDA problem. To the
best of our knowledge, global optimization of this objective
to find optimal neural networks has not been considered
in the literature. We note that the solution of this problem
depends on the type of activation function g. We first focus
on the solution when g is the ReLU activation and then
consider the polynomial activation.

3.1. ReLU Activation

Let the activation function g be the ReLU activation g(t) =
(t)+ = max(0, t). We will show that the optimal solution
to the NFDA problem in (13) can be obtained via applying
a specific feature lifting to the input and solving the FLDA
on the lifted features. The details of the method are given in
Algorithm 1. Theorem 3.1 states the main result for NFDA
for binary class problems for ReLU networks.

The feature lifting step of Algorithm 1 requires multiplying
the input by the diagonal matrices Dj , j = 1, . . . , P defined
as

Dj := Diag(1[Xh̄j ≥ 0]), (14)

where 1[Xh̄j ≥ 0] is an n-dimensional vector of 0’s and
1’s. Intuitively, multiplying the input matrix X by these
0-1 valued diagonal matrices Dj corresponds to masking
certain rows of the data, which parallels the action of ReLU
activation on its input. A full explanation can be found in
the proof of Theorem 3.1.

Note that the number of unique matrices Dj depends on
the input matrix X . It is easy to see that a low-rank matrix
X will have a low number of unique Dj’s. A simple way
to obtain the matrices Dj is to randomly sample i.i.d. h̄j

vectors from the standard normal distribution and evaluate
Diag(1[Xh̄j ≥ 0]). We denote the number of distinct
matrices Dj by P . It is known that the maximal number
of distinct matrices Dj = Diag(1[Xh̄j ≥ 0]) is upper
bounded by

P ≤ 2r
(e(n− 1)

r

)r

. (15)

Here, r := rank(X) ≤ d, and the above number is polyno-
mial in n for any fixed matrix rank r, or dimension d. In
(Pilanci & Ergen, 2020), the enumeration of Dj arises in
formulating convex programs for training two-layer ReLU
networks. Theorem 3.1 assumes that all P distinct Dj ma-
trices are enumerated, which can be done in time O(nr)
(Edelsbrunner et al., 1986). We note that as rank(X) grows,
this will become infeasible. Hence, in the numerical simula-
tions, we rely on an approximation by considering P ′ < P
distinct Dj matrices. This approximation has been shown
to still capture the representational power of ReLU suffi-
ciently well in recent works including (Pilanci & Ergen,
2020; Sahiner et al., 2021). As will be shown in the nu-
merical results section, picking a low P ′ leads to good
performance in our setting as well.

Theorem 3.1 (NFDA for binary class and ReLU activation).
Algorithm 1 solves the NFDA problem in (13) for ReLU
activation g(t) = max(0, t) optimally when the number of
neurons satisfies m ≥ m∗. The threshold m∗ is equal to

m∗ =
P∑

j=1

(1[u∗
j ̸= 0] + 1[v∗j ̸= 0]) , (19)

where u∗
j and v∗j are the solutions to the LP in (21).

We now give the proof sketch for Theorem 3.1, which con-
sists of two main components; finding a upper bounding
tractable optimization problem via relaxations and decom-
posing the solution of the upper bounding problem to prove
a matching lower bound. The full proof is provided in the
appendix.

Upper bound: First, we note that the ReLU activation can
be equivalently written as a dot product times the indicator
function (xTw

(1)
j )+ = (xTw

(1)
j )1[xTw

(1)
j ≥ 0]. Next, we

relax the NFDA problem by introducing the variables hj
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Algorithm 1 Binary NFDA for ReLU activation
Input: Dataset X ∈ Rn×d, y ∈ Rn

Generate h̄j , j = 1, . . . , P
Compute X̄ =

[
D1X . . . DPX

]
∈ Rn×dP

Form mean vectors and covariance matrices for the lifted
input samples x̄i ∈ RdP :

µ̄k =
1

nk

∑
yi=k

x̄i (16)

Σ̄k =
1

nk − 1

∑
yi=k

(x̄i − µ̄k)(x̄i − µ̄k)
T (17)

Solve the system w̄∗ = (Σ̄0 + Σ̄1)
−1(µ̄0 − µ̄1)

Solve the linear program (LP) in (21)
Output: Optimal weights:

(w
(1)
j , w

(2)
j ) =

{
(u∗

j , 1) 1 ≤ j ≤ P

(v∗j−P ,−1) P < j ≤ 2P
(18)

and replacing the indicator term with 1[xThj ≥ 0]. Let
us denote the optimal value of the original NFDA problem
by p∗1 and the relaxed problem by p∗2. It follows that we
have p∗2 ≥ p∗1. We relax the problem again by considering
the enumeration of all possible unique vectors 1[Xh̄j ≥ 0].
The solution of the relaxed problem (with optimal value p∗3)
gives an upper bound for the optimal value of the original
problem, p∗3 ≥ p∗2 ≥ p∗1. The resulting transformation after
the relaxations is equivalent to a linear transformation on the
lifted input. More specifically, we obtain the transformation
fr2(x) given as

fr2(x) =
[
w

(1)
1

T
. . . w

(1)
P

T
]

︸ ︷︷ ︸
w̄T

x1[xT h̄1 ≥ 0]
...

x1[xT h̄P ≥ 0]


︸ ︷︷ ︸

x̄

(20)

where x̄ ∈ RdP is the lifted input and w̄ ∈ RdP is the vector
of weights. Hence, we can solve the relaxed optimization
problem optimally by solving a linear system. We show that
this linear system is the same as the problem that arises in
FLDA except that it is in the lifted input space. The solution
of the FLDA problem for the lifted data X̄ gives us an upper
bound on the optimal value of the original problem.

Lower bound: The main strategy behind establishing the
lower bound is decomposing the solution w̄∗ obtained from
solving the upper bounding FLDA problem such that we
arrive at a feasible set of weights for a two-layer ReLU
network. This cone decomposition method has first been
proposed and analyzed in recent work (Mishkin et al., 2022).

We formulate an auxiliary optimization problem that decom-
poses the blocks w

(1)
j

∗
of w̄∗ into uj ∈ Rd and vj ∈ Rd

for j = 1, . . . , P such that the signs of (xT
i uj) and (xT

i vj)
match the signs of (xT

i h̄j). More explicitly, this corresponds
to solving the following linear program

find uj , vj

s.t. uj − vj = w
(1)
j

∗
, ∀j ∈ [P ]

(2Dj − I)Xuj ≥ 0, ∀j ∈ [P ]

(2Dj − I)Xvj ≥ 0, ∀j ∈ [P ]. (21)

The solution of the LP provides neural network weights as
given in (18). Note that the objective evaluates to p∗3 for
these weights. Since any two-layer ReLU network weights
are at most as good as the optimal weights, the weights in
(18) are in fact a lower bounding solution, that is, p∗3 ≤ p∗1.
Hence, we obtain p∗3 = p∗1 and this concludes the proof that
Algorithm 1 optimally solves the NFDA problem in (13).

3.2. Polynomial Activation

Suppose now that the hidden layer activation is the second
degree polynomial activation function g(t) = at2 + bt+ c
where a, b, c ∈ R are tunable coefficients. For polynomial
activation, the high-level strategy to solve the NFDA prob-
lem follows that of ReLU activation. The type of feature lift-
ing and the recovery method for the neural network weights
are the main differences between the NFDA methods for
polynomial activation and ReLU activation. In particular,
the feature lifting for polynomial activation is a quadratic
function. Furthermore, the optimal weights are constructed
via eigenvalue decomposition.

The steps of the proposed method are listed in Algorithm
2. After obtaining the linear system solution w̄∗, we re-
cover neural network weights by computing the eigenvalue
decomposition of Z∗ which is constructed by reshaping w̄∗:

Z∗ :=

[
Z∗
1 Z∗

2

Z∗
2
T Z∗

4

]
=

[
vec−1(w̄∗

1:d2) w̄∗
d2+1:d2+d

w̄∗T
d2+1:d2+d w̄∗

d2+d+1

]
,

(22)

where the notation wi:j is used to point to the entries of w
from the i’th index to the j’th. Here, the operator vec−1

stands for the inverse vectorization operation which reshapes
the first d2 entries of w̄∗ into a d× d matrix. The blocks of
the matrix Z∗ ∈ R(d+1)×(d+1) have the following dimen-
sions: Z∗

1 ∈ Rd×d, Z∗
2 ∈ Rd, Z∗

4 ∈ R.

Theorem 3.2 states the main result for the NFDA method
for polynomial activation.

Theorem 3.2 (NFDA for binary class and polynomial acti-
vation). Algorithm 2 solves the problem (13) for polynomial
activation g(t) = at2 + bt+ c optimally when the number
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Algorithm 2 Binary NFDA for polynomial activation
Input: Dataset X ∈ Rn×d, y ∈ Rn

Compute lifting X̄ =

x̄
T
1
...
x̄T
n

 ∈ Rn×(d2+d+1), where

x̄i =

a vec(xix
T
i )

bxi

c

 ∈ Rd2+d+1

Form mean vectors and covariance matrices for the lifted
input as in (16)
Solve the system w̄∗ = (Σ̄0 + Σ̄1)

−1(µ̄0 − µ̄1)
Construct Z∗ from w̄∗ as in (22)
Compute the eigendecomposition Z∗ =

∑
j uju

T
j αj

where uj’s are eigenvectors and αj’s are eigenvalues.
Output: Optimal weights:

(w
(1)
j , w

(2)
j ) = (cj/dj , αjd

2
j ), j = 1, . . . ,m∗ (23)

where uj =

[
cj
dj

]
∈ Rd+1 and cj ∈ Rd, dj ∈ R

of neurons satisfies m ≥ m∗. The threshold m∗ is equal to

m∗ = rank(Z∗) , (24)

where Z∗ is as defined in (22).

The proof of Theorem 3.2 is provided in the appendix. The
proof relies on the compact parameterization of polynomial
activation networks in terms of the eigendecomposition.
More specifically, we show that the neural network transfor-
mation can be written as

f(x) =
m∑
j=1

g(xTw
(1)
j )w

(2)
j

=

〈a vec(xxT )
bx
c


︸ ︷︷ ︸

x̄

,

vec
(∑m

j=1 w
(1)
j w

(1)
j

T
w

(2)
j

)∑m
j=1 w

(1)
j w

(2)
j∑m

j=1 w
(2)
j


︸ ︷︷ ︸

w̄

〉
,

(25)

where ⟨·, ·⟩ indicates dot product. We note that this is unlike
the ReLU network where we relaxed the problem multiple
times before we obtain a linear transformation on the lifted
input. In this case, we show that we can directly obtain a
linear transformation on the quadratically lifted input.

4. Neural Fisher Discriminant Analysis for
Multiclass Problems

Note that for multiclass problems, second layer weights are
vector valued, in contrast to the binary class case. More

specifically, we have f(x) :=
∑m

j=1 g(x
Tw

(1)
j )w

(2)
j where

w
(1)
j ∈ Rd and w

(2)
j ∈ RK−1 denote the first and second

layer weights.

We will define the scatter matrices in the neural network
transformed domain. We will use θ to represent the weights
of the neural network as before. Sample mean and covari-
ance matrix for the transformed data points in class k are as
follows

µk(θ) = EX [f(x) |x ∼ class k] , (26)
Σk(θ) =

= EX [(f(x)− µk(θ))(f(x)− µk(θ))
T |x ∼ class k] .

(27)

Next, we define the within-class SW (θ) and between-class
scatter matrices SB(θ) as follows

SW (θ) :=
K−1∑
k=0

Sk(θ), where

Sk(θ) :=
∑
yi=k

(f(xi)− µk(θ))(f(xi)− µk(θ))
T (28)

SB(θ) :=
K−1∑
k=0

nk

(
µk(θ)− µ(θ)

)(
µk(θ)− µ(θ)

)T
(29)

where µ(θ) = 1
n

∑n
i=1 f(xi). Now, we are ready to present

the optimization problem for finding the optimal neural net-
work transformation that maximizes the ratio of the between-
class scatter to the within-class scatter:

θ∗ = argmax
θ

det(SB(θ))

det(SW (θ))
. (30)

This is the main optimization problem that we focus on
in this section. We will show how we approach and solve
this problem for the ReLU activation first and then poly-
nomial activation. The techniques that we have used for
the binary class problems in proving matching upper and
lower bounds are mostly applicable in the multiclass case.
The main difference from the binary class problem is that
the multiclass formulation requires an additional step of
optimization problem relaxation.

4.1. ReLU Activation

We now give the algorithm for solving the multiclass NFDA
problem in (30) for ReLU activation and the corresponding
main result. The steps are given in Algorithm 3. Note that
the feature lifting is the same as the binary class NFDA al-
gorithm. Differently from the binary class case, we compute
the eigendecomposition of S̄−1

W SB for solving the FLDA
for the lifted input. Moreover, note that the binary NFDA
method can generate at most 2P neurons while multiclass
NFDA could generate up to 2P (K − 1) neurons.
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Algorithm 3 Multiclass NFDA for ReLU activation
Input: Dataset X ∈ Rn×d, y ∈ Rn

Generate h̄j , j = 1, . . . , P
Compute lifting X̄ =

[
D1X . . . DPX

]
∈ Rn×dP

Compute the mean vectors and covariance matrices for
the lifted input as in (16) and µ̄ = 1

n

∑n
i=1 x̄i

Form the scatter matrices

S̄W =
K−1∑
k=0

Σ̄k,

S̄B =
K−1∑
k=0

nk(µ̄k − µ̄)(µ̄k − µ̄)T (31)

Solve the system S̄−1
W S̄B and find W̄ ∗ by computing the

eigenvectors corresponding to largest K − 1 eigenvalues
Solve the linear program in (33)
Output: Optimal weights:

(u∗
j,k, ek) and (v∗j,k,−ek), ∀j ∈ [P ], ∀k ∈ [K − 1]

(32)

The LP for recovering the neural network weights is as
follows:

find uj,k, vj,k

s.t. uj,k − vj,k = w
(1)
j,k

∗
, ∀j ∈ [P ], ∀k ∈ [K − 1]

(2Dj − I)Xuj,k ≥ 0, ∀j ∈ [P ], ∀k ∈ [K − 1]

(2Dj − I)Xvj,k ≥ 0, ∀j ∈ [P ], ∀k ∈ [K − 1] ,
(33)

where the variables are uj,k, vj,k ∈ Rd, j = 1, . . . , P , k =

1, . . . ,K−1. Here, w(1)
j,k

∗
denote the blocks of W̄ ∗. Denote

the solution to this LP by u∗
j,k, v

∗
j,k. The optimal weights are

then as given in (32). The main result is stated in Theorem
4.1. The full proof is given in the appendix.

Theorem 4.1 (Multiclass NFDA for ReLU activation). Al-
gorithm 3 solves the multiclass NFDA problem (30) for
ReLU activation g(t) = max(0, t) optimally when the num-
ber of neurons satisfies m ≥ m∗. The threshold m∗ is equal
to

m∗ =
P∑

j=1

K−1∑
k=1

(1[u∗
j,k ̸= 0] + 1[v∗j,k ̸= 0]) , (34)

where u∗
j,k and v∗j,k are the solutions to the LP in (33).

4.2. Polynomial Activation

Unlike the binary NFDA for polynomial activation, we need
to relax the problem to arrive at a linear transformation on

Algorithm 4 Multiclass NFDA for polynomial activation
Input: Dataset X ∈ Rn×d, y ∈ Rn

Compute lifting X̄ =

x̄
T
1
...
x̄T
n

 ∈ Rn×(d2+d+1), where

x̄i =

a vec(xix
T
i )

bxi

c

 ∈ Rd2+d+1

Compute mean vectors and covariance matrices for the
lifted input as in (16)
Form the scatter matrices as in (31)
Solve the system S̄−1

W S̄B and find W̄ ∗ by computing the
eigenvectors corresponding to largest K − 1 eigenvalues
Construct Z∗

k from columns w̄∗
k of W̄ ∗ for every k =

1, . . . ,K − 1 using (22)
For every k, compute the eigendecomposition Z∗

k =∑
j uj,ku

T
j,kαj,k where uj,k’s are eigenvectors and αj,k’s

are eigenvalues.
Output: Optimal weights:

(cj,k/dj,k, αj,kd
2
j,kek), ∀k ∈ [K − 1], ∀j ∈ [rank(Z∗

k)]

(36)

where uj,k =

[
cj,k
dj,k

]
∈ Rd+1, and cj,k ∈ Rd, dj,k ∈ R

the lifted input. After the relaxation, we obtain the following
transformation

fr(x) =

K−1∑
k=1

〈a vec(xxT )
bx
c


︸ ︷︷ ︸

x̄

,

vec
(∑m

j=1 w
(1)
j,kw

(1)
j,k

T
w

(2)
j,k

)∑m
j=1 w

(1)
j,kw

(2)
j,k∑m

j=1 w
(2)
j,k


︸ ︷︷ ︸

w̄k

〉
ek

= W̄T x̄ (35)

where the lifted input is x̄ ∈ Rd2+d+1 and the weight matrix
is W̄ ∈ R(d2+d+1)×(K−1). The columns of W̄ are denoted
w̄k ∈ Rd2+d+1.

The resulting method is listed in Algorithm 4. Theorem 4.2
gives the main result for multiclass NFDA for polynomial
activation.
Theorem 4.2 (Multiclass NFDA for polynomial activation).
Algorithm 4 solves the multiclass NFDA problem (30) for
polynomial activation g(t) = at2 + bt+ c optimally when
the number of neurons satisfies m ≥ m∗. The threshold m∗

is equal to

m∗ =
K−1∑
k=1

rank(Z∗
k) , (37)
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Figure 1. Two spirals dataset.

where Z∗
k is as defined in Algorithm 4.

The proof of Theorem 4.2 is given in the appendix. The
proof idea combines the techniques used in proving Theo-
rem 3.2 for binary class polynomial activation NFDA and
Theorem 4.1 for multiclass ReLU activation NFDA.

5. Numerical Results
In this section, we provide numerical simulation results
on various binary and multiclass datasets. We have imple-
mented the NFDA algorithms in Python. In the numerical
implementation of the NFDA methods, it is important to
note that the linear system solution step of the algorithms
can be prone to numerical stability issues. A common solu-
tion to this issue is to introduce regularization. For instance,
for the multiclass NFDA method, this corresponds to solv-
ing the linear system (S̄W + βI)−1S̄B , where β > 0 is
the regularization coefficient. Finally, we use CVXPY (Di-
amond & Boyd, 2016) to numerically solve the LP that
appears in the NFDA methods for ReLU activation.

5.1. Two Spirals Dataset

We have tested the performance of the binary NFDA method
on the two spirals dataset (Chalup & Wiklendt, 2007) shown
in Figure 1. This dataset has two classes where the blue
crosses correspond to class 0 and orange circles correspond
to class 1. The version of the dataset that we have used in
our simulations has 120 samples. The samples are d = 2
dimensional. We have run the FLDA and NFDA methods
on this dataset. These methods reduce the dimension of
the samples to 1 since this is a binary class problem. Then,
we plot the histograms of the tranformed samples as shown
in Figure 2. For the NFDA method, we have used P ′ =
100 unique Dj matrices. This figure demonstrates that the
transformation due to NFDA moves the two classes further
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Figure 2. Histograms of the transformed samples of the two spirals
dataset for FLDA and NFDA. Blue and orange colors correspond
to classes 0 and 1, respectively.

apart compared to FLDA. This is as expected since NFDA
transformation is more general and has higher representation
power compared to FLDA.

To incorporate a bias term into the model, we have concate-
nated a constant term to each data sample, i.e. [xT

i ; 1]. This
corresponds to modifying the model such that the input to
the neurons in the hidden layer is xTw

(1)
j + bj .

We have plotted the resulting decision boundaries in Fig-
ure 3. The classification of a test sample after dimension
reduction is determined by proximity to the mean of the
two classes in the transformed domain. The FLDA decision
boundary is linear since FLDA is a linear model. We have
plotted the decision boundaries for NFDA for different reg-
ularization coefficient choices β in plots b, c, d of Figure 3.
As we increase β from plot b to d, the decision boundary
becomes less noisy as expected.

5.2. MNIST Dataset

We have tested the performance of the multiclass NFDA on
the MNIST handwritten digit recognition dataset (LeCun
et al., 2010). Each data sample is a 28 × 28 dimensional
gray-scale image that shows a handwritten digit from 0 to 9.

We have used all of the n = 60000 training samples of the
MNIST dataset in this simulation. Both FLDA and NFDA
methods map data points into a 9-dimensional space since
there are 10 classes. We have generated t-SNE (van der
Maaten & Hinton, 2008) plots for the 9-dimensional outputs
of these methods to visualize in 2 dimensions the separation
between classes in the projected space. The resulting t-SNE
plots are shown in Figure 4. For the NFDA method, we have
used the ReLU activation with P ′ = 20. These figures show
that the separation among classes is better for the proposed
NFDA method compared to FLDA.
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Figure 3. Visualization of decision boundaries for the two spirals
dataset. β is the regularization coefficient.
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Figure 4. t-SNE plots for MNIST. Samples of the same class are
shown using the same color.
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Figure 5. Visualization of the optimal transformations for the Yale
Face dataset.

5.3. Face Images Dataset

The Yale Face dataset contains a total of 165 grayscale im-
ages of people’s faces. The dataset includes 11 images per
subject where each of these images corresponds to differ-
ent configurations such as different lighting, glasses or no
glasses, sleepy face expression, etc. For this simulation,
we have resized the images to 18× 24 pixels and we have
selected 5 subjects. The class labels indicate different sub-
jects. Consequently, we work with a 5-class dataset which
contains 11 images for each class.

We have plotted the projection directions resulting from
the FLDA method as images in Figure 5-a. For the NFDA
method, we have clustered the neurons into 4 groups and
the centroids of the clusters are shown as images in Figure
5-b. We have used P ′ = 15 for the NFDA method with
ReLU activation. The projection directions when viewed
as images show the discriminative features of the images.
The images for NFDA look more diverse compared FLDA,
demonstrating the discriminative power of the method. The
NFDA method is able to find more discriminative features
due to the neural network structure.

6. Conclusion
We have introduced the NFDA problem for two-layer neural
networks. The goal is to find the optimal two-layer neural
network weights that maximize the between-class scatter
while minimizing the within-class scatter analogous to the
Fisher’s Linear discriminant analysis problem. We have
then developed a methodology for solving this problem for
ReLU and polynomial activation functions optimally via
relaxations and decomposition methods. It is important to
emphasize that the proposed methodology solves the prob-
lems exactly and involves simple and transparent steps. Our
solution is obtained the same way as FLDA applied to the
lifted space. Consequently, the solution is projected back to
the original space where the optimal network weights are de-
termined. It is important to note that, unlike previous work,
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our approach obviates the need for non-convex optimization
heuristics.
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A. Proofs
This section contains the proofs of the theorems.

Proof of Theorem 3.1. Note that we can rewrite the ReLU network as follows

f(x) =
m∑
j=1

(xTw
(1)
j )+w

(2)
j =

m∑
j=1

(xTw
(1)
j )1[xTw

(1)
j ]w

(2)
j . (38)

Let us denote the optimal value of the original problem in (13) by p∗1. We now relax the problem by considering the mapping

fr1(x) =
m∑
j=1

(xTw
(1)
j )1[xThj ≥ 0]w

(2)
j (39)

where we introduced the variables hj ∈ Rd. Note that this is a relaxation since picking hj = wj , j = 1, . . . ,m leads to p∗1.
Note that the variables of the relaxed problem are w

(1)
j , w

(2)
j , hj , j = 1, . . . ,m. We will denote the optimal value of the

maximization problem with the relaxed mapping by p∗2. It follows that the solution of this problem gives an upper bound for
the solution of the original problem p∗2 ≥ p∗1.

Next, consider the change of variables w(1)
j ← w

(1)
j w

(2)
j

fr1(x) =

m∑
j=1

(xTw
(1)
j )1[xThj ≥ 0] . (40)

This variable change does not change the optimal value of the optimization problem.

We note that the indicator term makes the problem complicated since hj is also a variable. Consider all possible values of
1[xT

i hj ≥ 0] for all the samples xi of the dataset. Let us represent this as the vector 1[Xhj ≥ 0]. The number of unique
vectors 1[Xhj ≥ 0] for all possible hj ∈ Rd is upper bounded by

P ≤ 2 rank(X)
( e(n− 1)

rank(X)

)rank(X)

(41)

for rank(X) ≤ n (Pilanci & Ergen, 2020). Then, the following mapping will lead to a relaxation of the maximization
problem:

fr2(x) =
P∑

j=1

(xTw
(1)
j )1[xT h̄j ≥ 0] , (42)

where h̄j’s are no longer variables, but instead come from the enumeration such that all possible distinct vectors 1[Xh̄j ≥ 0]
can be obtained. This results in a relaxation since all possible vectors 1[Xh̄j ≥ 0], j = 1, . . . , P include the optimal vectors
1[Xh∗

j ≥ 0], j = 1, . . . ,m. Let us denote the optimal value of the relaxation with the mapping fr2(x) by p∗3. Then, we
have p∗3 ≥ p∗2 ≥ p∗1.

Note that the mapping fr2(x) can be written as

fr2(x) =
[
w

(1)
1

T
. . . w

(1)
P

T
]

︸ ︷︷ ︸
w̄T

x1[xT h̄1 ≥ 0]
...

x1[xT h̄P ≥ 0]


︸ ︷︷ ︸

x̄

(43)

where x̄ ∈ RdP is the lifted input and w̄ ∈ RdP is the vector that we wish to find. The sample mean for the relaxed mapping
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fr2(x) = w̄T x̄ can be computed as follows:

βk(θ) = EX [fr2(x)|x ∼ class k]

=
1

nk

∑
yi=k

w̄T x̄i = w̄T 1

nk

∑
yi=k

x̄i︸ ︷︷ ︸
µ̄k

= w̄T µ̄k . (44)

The sample variance can be computed as follows:

σ2
k(θ) = EX [(fr2(x)− βk(θ))

2|x ∼ class k]

= EX [(w̄T x̄− w̄T µ̄k)
2|x ∼ class k]

= w̄T EX [(x̄− µ̄k)(x̄− µ̄k)
T |x ∼ class k]w̄

= w̄T 1

nk − 1

∑
yi=k

(x̄i − µ̄k)(x̄i − µ̄k)
T

︸ ︷︷ ︸
Σ̄k

w̄

= w̄T Σ̄kw̄ . (45)

Next, we can write the objective as a ratio of two quadratics like in the FLDA method:

w̄∗ = argmax
w̄

w̄T (µ̄0 − µ̄1)(µ̄0 − µ̄1)
T w̄

w̄T (Σ̄0 + Σ̄1)w̄
. (46)

It follows that the solution to this problem is given by w̄∗ = c(Σ̄0 + Σ̄1)
−1(µ̄0 − µ̄1) where c ∈ R is a constant.

Let us denote the blocks of the solution w̄∗ as w(1)
j

∗
, j = 1, . . . , P . We have already shown through relaxations that the

optimal value of (46), denoted p∗3, is an upper bound on the optimal value of the original problem, p∗3 ≥ p∗1. We will now
show a method for decomposing w

(1)
j

∗
’s such that the decomposed weights form a feasible two-layer ReLU network. This

will enable us to establish a matching lower bound.

In order to find feasible network weights, consider the representation of the ReLU network given in (38) where each neuron
is of the form (xTw

(1)
j )1[xTw

(1)
j ]w

(2)
j . The main idea behind constructing feasible weights is to find weights uj and vj

such that the signs of xT
i uj and xT

i vj are the same as the signs of xT
i h̄j for i = 1, . . . , n. Note that this is equivalent to the

following two inequalities

(21[xT
i hj ≥ 0]− 1)(xT

i uj) ≥ 0, i = 1, . . . , n,

(21[xT
i hj ≥ 0]− 1)(xT

i vj) ≥ 0, i = 1, . . . , n . (47)

Using the above idea, we now give a linear problem (LP) formulation for computing the desired decomposition

find uj , vj

s.t. uj − vj = w
(1)
j

∗
, ∀j ∈ [P ]

(21[xT
i h̄j ≥ 0]− 1)(xT

i uj) ≥ 0, ∀i ∈ [n], ∀j ∈ [P ]

(21[xT
i h̄j ≥ 0]− 1)(xT

i vj) ≥ 0, ∀i ∈ [n], ∀j ∈ [P ]. (48)

We note that w(1)
j

∗
’s are the solution of the Fisher’s LDA problem and h̄j’s come from the enumeration. The variables of

the above LP are uj , vj ∈ Rd, j = 1, . . . , P .
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Let us plug the solution u∗
j , v

∗
j of the LP in the relaxed mapping fr2(xi) in (42):

fr2(xi) =
P∑

j=1

(xT
i (u

∗
j − v∗j ))1[x

T
i h̄j ≥ 0]

=
P∑

j=1

xT
i u

∗
j 1[x

T
i h̄j ≥ 0]−

P∑
j=1

xT
i v

∗
j 1[x

T
i h̄j ≥ 0]

=
P∑

j=1

xT
i u

∗
j 1[x

T
i u

∗
j ≥ 0]−

P∑
j=1

xT
i v

∗
j 1[x

T
i v

∗
j ≥ 0]

=
P∑

j=1

(xT
i u

∗
j )+ −

P∑
j=1

(xT
i v

∗
j )+ (49)

which holds for i = 1, . . . , n. Recall the original neural network mapping was defined as f(xi) =
∑m

j=1(x
T
i w

(1)
j )+w

(2)
j .

Note that the last line above is a ReLU neural network with first layer weights u∗
1, . . . , u

∗
P , v

∗
1 , . . . , v

∗
P and second layer

weights 1, . . . , 1,−1, . . . ,−1. Let us denote this solution as θ∗2P . The original objective in (13) evaluates to p∗3 at θ = θ∗2P
due to (49) for m = 2P . This implies that p∗3 is a lower bound on p∗1, i.e., p∗3 ≤ p∗1. Hence, we have shown that p∗1 = p∗3 for
m = 2P .

We note that for m ≥ 2P , the lower bound p∗3 ≤ p∗1 still holds since we can pick the extra weights as zero and this would
achieve the same objective without the extra weights. Next, when m ≥ P , the upper bound p∗3 ≥ p∗1 still holds since in that
case we could combine the neurons with the same indicator vector and this would reduce the total number of neurons down
to P . Therefore, we obtain that p∗3 = p∗1 for m ≥ 2P .

Finally, we note that the LP can be stated more compactly. First, recall the definition of the diagonal matrices Dj :=
Diag(1[Xh̄j ≥ 0]) ∈ Rn×n, j = 1, . . . , P . Then, the inequality constraints of the LP in (48) takes the following form

(2Dj − I)(Xuj) ≥ 0, ∀j ∈ [P ]

(2Dj − I)(Xvj) ≥ 0, ∀j ∈ [P ]. (50)

This concludes the proof.

Proof of Theorem 3.2. The transformation by a two-layer neural network with polynomial activation can be written as
follows:

f(x) =
m∑
j=1

g(xTw
(1)
j )w

(2)
j

=
m∑
j=1

a(xTw
(1)
j )2w

(2)
j + b(xTw

(1)
j )w

(2)
j + cw

(2)
j

=

〈a vec(xxT )
bx
c


︸ ︷︷ ︸

x̄

,

vec
(∑m

j=1 w
(1)
j w

(1)
j

T
w

(2)
j

)∑m
j=1 w

(1)
j w

(2)
j∑m

j=1 w
(2)
j


︸ ︷︷ ︸

w̄

〉
(51)

where ⟨·, ·⟩ denotes dot product and vec(·) is the vectorization operation. Note that above we have defined the lifted input
x̄ ∈ Rd2+d+1 and the weight vector w̄ ∈ Rd2+d+1. The above shows that f(x) is equivalent to a linear transformation on
the lifted space.

The sample mean and variances can be found using the same derivations that we have used in the ReLU activation (see
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proof of Theorem 3.1 for more details):

βk(θ) = EX [f(x)|x ∼ class k]

= w̄T µ̄k , (52)

σ2
k(θ) = EX [(f(x)− βk(θ))

2|x ∼ class k]

= w̄T Σ̄kw̄ . (53)

Next, we can write the objective as a ratio of two quadratics as in the FLDA method:

w̄∗ = argmax
w̄

w̄T (µ̄0 − µ̄1)(µ̄0 − µ̄1)
T w̄

w̄T (Σ̄0 + Σ̄1)w̄
. (54)

It follows that the solution to this problem is given by w̄∗ = c(Σ̄0 + Σ̄1)
−1(µ̄0 − µ̄1) where c ∈ R is a constant.

We now show how to recover neural network weights from the solution w̄∗. Construct the matrix Z∗ from w̄∗ as follows:

Z∗ =

[
Z∗
1 Z∗

2

Z∗
2
T Z∗

4

]
=

[
vec−1(w̄∗

1:d2) w̄∗
d2+1:d2+d

w̄∗T
d2+1:d2+d w̄∗

d2+d+1

]
(55)

where the notation wi:j is used to point to the entries of w from the i’th index to the j’th. vec−1 refers to the inverse
vectorization which is simply a reshape operation. The blocks of the matrix Z∗ ∈ R(d+1)×(d+1) have the following
dimensions: Z∗

1 ∈ Rd×d, Z∗
2 ∈ Rd, Z∗

4 ∈ R.

Next, compute the eigenvalue decomposition of Z∗. Let the eigenvalue decomposition be Z∗ =
∑

j uju
T
j αj . Let

uj =

[
cj
dj

]
∈ Rd+1 where cj ∈ Rd, dj ∈ R. The blocks of Z∗ can be written in terms of eigenvectors uj’s and eigenvalues

αj’s as follows:

Z∗ =
∑
j

[
cj
dj

] [
cj
dj

]T
αj

=
∑
j

[
cj/dj
1

] [
cj/dj
1

]T
(αjd

2
j )

=

[∑
j(cj/dj)(cj/dj)

T (αjd
2
j )

∑
j(cj/dj)(αjd

2
j )∑

j(cj/dj)
T (αjd

2
j )

∑
j(αjd

2
j )

]
(56)

where we have assumed that dj’s are all nonzero.

The assumption that dj’s are nonzero is without loss of generality. To see this, we will give a probabilistic argument.
Consider rewriting f(x) = tr(x̃Z) where x̃ is equal to x̄ reshaped into a matrix. Sample a random orthogonal matrix Q
such that QQT = QTQ = I . Next, note that f(x) = tr(x̃Z) = tr(QT x̃QQTZQ). The last entries of the eigenvectors of
QTZQ will be random and the probability of them being zero is equal to zero. Hence, if any of the dj’s turn out to be zero,
then we can consider this random rotation by Q.

Note that the above way of decomposing the blocks of Z∗ allows us to construct the neural network weights:

(w
(1)
j , w

(2)
j ) = (cj/dj , αjd

2
j ), j = 1, . . . , rank(Z∗). (57)

This concludes the proof.

Proof of Theorem 4.1. The steps of this proof follow the same outline as the proof for the binary class NFDA.

We begin by relaxing the problem the same way as the binary class case and obtain the following mapping:

fr1(x) =
m∑
j=1

(xTw
(1)
j )1[xThj ≥ 0]w

(2)
j . (58)
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The optimal value p∗2 of this relaxation satisfies p∗2 ≥ p∗1. In the next step, we cannot apply the change of variables this time
to remove the second layer weights w(2)

j since they are vectors. Instead we will rewrite the second layer weights as a sum of
unit vectors ek, k = 1, . . . ,K − 1 with the appropriate scaling:

fr1(x) =
m∑
j=1

K−1∑
k=1

(xTw
(1)
j )1[xThj ≥ 0]w

(2)
j,kek. (59)

where w
(2)
j,k is the k’the entry of w(2)

j . Let us define the variables w(1)
j,k ∈ Rd such that w(1)

j,k = w
(1)
j w

(2)
j,k . Since we do not

restrict w(1)
j,k to be the same for different k, this also leads to a relaxation of the optimization problem. Plugging these

variables in the above mapping, we obtain

fr1(x) =
m∑
j=1

K−1∑
k=1

(xTw
(1)
j,k)1[x

Thj ≥ 0]ek. (60)

Next, we will relax the problem one more time by considering all possible vectors 1[xThj ≥ 0]. This will result in the
following mapping:

fr2(x) =
P∑

j=1

K−1∑
k=1

(xTw
(1)
j,k)1[x

T h̄j ≥ 0]ek. (61)

The optimal value p∗3 for the new relaxation satisfies p∗3 ≥ p∗1. We can write fr2(x) as a linear transformation on the lifted
inputs as follows:

fr2(x) =


w

(1)
1,1

T
w

(1)
2,1

T
. . . w

(1)
P,1

T

w
(1)
1,2

T
w

(1)
2,2

T
. . . w

(1)
P,2

T

...

w
(1)
1,K−1

T
w

(1)
2,K−1

T
. . . w

(1)
P,K−1

T


︸ ︷︷ ︸

W̄T


x1[xT h̄1 ≥ 0]
x1[xT h̄2 ≥ 0]

...
x1[xT h̄P ≥ 0]


︸ ︷︷ ︸

x̄

(62)

where we defined the lifted input x̄ ∈ RdP and the linear transformation matrix W̄ ∈ RdP×(K−1). Next, we note that the
solution to the relaxation with the linear mapping fr2(x) = W̄T x̄ is equal to the FLDA solution on the lifted input x̄, which
is given by the eigenvectors of S̄−1

W S̄B corresponding to the largest K − 1 eigenvalues. The scatter matrices S̄W and S̄B are
defined in the lifted space as follows:

S̄W =
K−1∑
k=0

Σ̄k, where (63)

Σ̄k =
∑
yi=k

(x̄i − µ̄k)(x̄i − µ̄k)
T , and µ̄k =

1

nk

∑
yi=k

x̄i

S̄B =
K−1∑
k=0

nk(µ̄k − µ̄)(µ̄k − µ̄)T (64)

where µ̄ = 1
n

∑n
i=1 x̄i. Let us denote the FLDA solution on the lifted input space by W̄ ∗.

We next decompose W̄ ∗ to obtain feasible ReLU network weights by formulating a linear program. Let w(1)
j,k

∗
denote the

blocks of W̄ ∗. Consider the LP:

find uj,k, vj,k

s.t. uj,k − vj,k = w
(1)
j,k

∗
, ∀j ∈ [P ], ∀k ∈ [K − 1]

(21[xT
i h̄j ≥ 0]− 1)(xT

i uj,k) ≥ 0, ∀i ∈ [n], ∀j ∈ [P ], ∀k ∈ [K − 1]

(21[xT
i h̄j ≥ 0]− 1)(xT

i vj,k) ≥ 0, ∀i ∈ [n], ∀j ∈ [P ], ∀k ∈ [K − 1]. (65)
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Let us denote the solution of the LP by u∗
j,k, v

∗
j,k. Plugging the solution in the expression for fr2(xi) leads to

fr2(xi) =
P∑

j=1

K−1∑
k=1

(xT
i (u

∗
j,k − v∗j,k))1[x

T
i h̄j ≥ 0]ek

=
P∑

j=1

K−1∑
k=1

xT
i u

∗
j,k 1[x

T
i u

∗
j,k ≥ 0]ek −

P∑
j=1

K−1∑
k=1

xT
i v

∗
j,k 1[x

T
i v

∗
j,k ≥ 0]ek

=
P∑

j=1

K−1∑
k=1

(xT
i u

∗
j,k)+ek −

P∑
j=1

K−1∑
k=1

(xT
i v

∗
j,k)+ek (66)

for i = 1, . . . , n. The last line above is a ReLU network with weights (u∗
j,k, ek) and (u∗

j,k,−ek), j = 1, . . . , P and
k = 1, . . . ,K − 1. The objective evaluated for these weights is equal to p∗3 for m = 2P (K − 1) due to (66). Since any
ReLU network weights would lead to a lower bound, we have p∗3 ≤ p∗1. Hence, we arrive at p∗1 = p∗3 for m = 2P (K − 1).
The result still holds for m ≥ 2P (K − 1) due to the same argument that we provided in proof of Theorem 3.1.

Proof of Theorem 4.2. The transformation by a two-layer neural network with polynomial activation can be written as
follows:

f(x) =

m∑
j=1

g(xTw
(1)
j )w

(2)
j

=

m∑
j=1

a(xTw
(1)
j )2w

(2)
j + b(xTw

(1)
j )w

(2)
j + cw

(2)
j

=

m∑
j=1

K−1∑
k=1

(
a(xTw

(1)
j )2w

(2)
j,k + b(xTw

(1)
j )w

(2)
j,k + cw

(2)
j,k

)
ek (67)

where in the last line, we wrote w
(2)
j ’s as a sum of scaled unit vectors.

Next, we will define the variables w(1)
j,k ∈ Rd and replace the first layer weights with them. Since we do not restrict w(1)

j,k to
be the same for different k, this is in fact a relaxation. Let fr(x) denote the relaxed transformation. Similarly to the binary
class case, we now represent fr(x) as a linear transformation on the lifted input:

fr(x) =
m∑
j=1

K−1∑
k=1

(
a(xTw

(1)
j,k)

2w
(2)
j,k + b(xTw

(1)
j,k)w

(2)
j,k + cw

(2)
j,k

)
ek

=
K−1∑
k=1

〈a vec(xxT )
bx
c


︸ ︷︷ ︸

x̄

,

vec
(∑m

j=1 w
(1)
j,kw

(1)
j,k

T
w

(2)
j,k

)∑m
j=1 w

(1)
j,kw

(2)
j,k∑m

j=1 w
(2)
j,k


︸ ︷︷ ︸

w̄k

〉
ek

= W̄T x̄ (68)

where the lifted input is x̄ ∈ Rd2+d+1 and the weight matrix is W̄ ∈ R(d2+d+1)×(K−1). The columns of W̄ are denoted
w̄k ∈ Rd2+d+1.

The scatter matrices are defined the same way as (63). The optimal solution W̄ ∗ is the solution to the FLDA problem on the
lifted input space as in the ReLU activation case.

Denote the optimal value for fr(x) by p∗2 and let the optimal value of the original problem be p∗1 as usual. Then, we have
p∗2 ≥ p∗1 due to the relaxation.

We now decompose W̄ ∗ into neural network weights which will prove the lower bound and also reveal how the neural
network weights are recovered. The method is similar to the binary class case with the difference that we repeat it K−1 times
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for every column w̄∗
k of W̄ ∗. The procedure is as follows: Construct Z∗

k from w̄∗
k using (22). Then, compute the eigenvalue

decomposition of Z∗
k where uj,k =

[
cj,k
dj,k

]
, j = 1, . . . , rank(Z∗

k) are eigenvectors and αj,k, j = 1, . . . , rank(Z∗
k) are

eigenvalues. We repeat this for k = 1, . . . ,K − 1, which concludes the steps.

Without loss of generality, we assume that dj,k’s are nonzero. Then, we construct the neural network weights as
(cj,k/dj,k, αj,kd

2
j,kek). The total number of neurons is equal to

∑K−1
k=1 rank(Z∗

k).

Note that a neural network with the above weights will evaluate to p∗2 when plugged in the original maximization problem
and this implies that p∗2 ≤ p∗1. Finally, this concludes the proof that p∗2 = p∗1.


