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Abstract. We equip the basic local crossing bimodules in Ozsváth–Szabó’s theory of bor-

dered knot Floer homology with the structure of 1-morphisms of 2-representations, categori-

fying the Uq(gl(1|1)+)-intertwining property of the corresponding maps between ordinary

representations. Besides yielding a new connection between bordered knot Floer homology

and higher representation theory in line with work of Rouquier and the second author, this

structure gives an algebraic reformulation of a “compatibility between summands” property

for Ozsváth–Szabó’s bimodules that is important when building their theory up from local

crossings to more global tangles and knots.
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1. Introduction

Ozsváth–Szabó’s theory [OSz18, OSz19b, OSz19a, OSz20] of bordered knot Floer homol-

ogy, or bordered HFK, has proven to be highly efficient for computations (see [OSz] for a

fast computer program based on the theory). It works by assigning certain dg algebras to

sets of n tangle endpoints (oriented up or down) and certain A∞ bimodules to tangles; one

recovers HFK for closed knots by taking appropriate tensor products of these bimodules.

In [Man19], the second author showed that the dg algebras of bordered HFK categorify

representations of the quantum supergroup Uq(gl(1|1)) and that the tangle bimodules cat-

egorify intertwining maps between these representations. While [Man19] did not consider

a categorified action of the quantum group on the bordered HFK algebras, such an action

(for Khovanov’s categorification U [Kho14] of the positive half Uq(gl(1|1)+) = C(q)[E]
(E2)

) was

defined in [LM21], compatibly (via [LP20, MMW20]) with a more general family of higher

actions defined in [MR20].

Since Ozsváth–Szabó’s tangle bimodules categorify intertwining maps between represen-

tations, it is natural to ask whether the bimodules themselves intertwine the higher actions

of U on the bordered HFK algebras. Since a higher action of U on a dg algebra A amounts

to a dg bimodule E over A together with some extra data, one (roughly) asks whether tangle

bimodules X satisfy X ⊗A E ∼= E ⊗A X. A structured way to require such commutativity is

to equip X with the data of a 1-morphism between 2-representations of U .
The main result of this paper is that one can naturally equip Ozsváth–Szabó’s local cross-

ing bimodules with this 1-morphism structure.

Theorem 1.1. Ozsváth–Szabó’s local bimodules P and N , for a positive and negative cross-

ing between two strands, can be equipped with the structure of 1-morphisms of 2-representations

over U , encoding the commutativity of P and N with the 2-action bimodule E.

In fact, the algebra over which P and N are defined has two natural 2-actions of U , and
we prove Theorem 1.1 for both 2-actions. Below we comment a bit more on the motivation

and potential applications for Theorem 1.1, as well as future directions for study.

Remark 1.2. Theorem 1.1 is an algebraic expression of an important “compatibility be-

tween summands” property of the bordered HFK bimodules. Indeed, like the general strands

algebras A(Z) of bordered Heegaard Floer homology, Ozsváth–Szabó’s bordered HFK alge-

bras have a direct sum decomposition indexed by Z (in Heegaard diagram terms this index

describes occupancy number, while representation-theoretically it encodes a gl(1|1) weight

space decomposition). The A∞ bimodules for tangles respect this decomposition, and there

is a certain compatibility between the bimodule summands for different k. In [OSz18], this

compatibility is encoded in a graph from which one can define all summands of the bimod-

ules. Because of how the 2-action bimodules E interact with the index of the direct sum

decomposition, Theorem 1.1 is a more algebraic way to formulate this compatibility.

In [OSz18], this compatibility is the key ingredient in the “global extension” of the two-

strand crossing bimodules to bimodules, over larger algebras, for n strands with one crossing
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between two adjacent strands (this extension is necessary when using the theory of [OSz18] to

compute HFK for knots). The global extension is one of the most technical parts of [OSz18];

the main hoped-for application of the results of this paper is a more algebraic treatment of

the global extension, based on higher representation theory.

Remark 1.3. The 1-morphism structure of Theorem 1.1 can be interpreted as an instance of

an extra layer of the connection between higher representation theory and cornered Heegaard

Floer homology, beyond what was explored in [MR20]. This extra layer involves 3-manifolds,

not just 1- and 2-manifolds, and begins to relate to the parts of cornered Heegaard Floer

homology that use holomorphic disk counts and domains in Heegaard diagrams with corners.

Generalizing from Theorem 1.1, there should be a general family of Heegaard diagrams (with

the diagrams underlying the bordered HFK bimodules as special cases) whose bimodules

can be upgraded to 1-morphisms of 2-representations, and the data needed for this upgrade

should come from counting holomorphic disks whose domains have positive multiplicities at

the corners of the Heegaard diagram.

Remark 1.4. This paper is focused on the local two-strand aspects of bordered HFK, since

these are the elementary building blocks to which one wants to apply a global extension

procedure to obtain n-strand tangle invariants. One could also ask whether the globally-

extended n-strand tangle bimodules of bordered HFK give 1-morphisms of 2-representations

of U ; we expect this to be true. Furthermore, the local bimodules considered here are

adapted to two strands pointing in the same direction (downwards, in the conventions of

[OSz18]). For strands with other orientations, one has a choice of more elaborate theories

from [OSz18, OSz19b, OSz19a], some involving curved dg algebras. We expect that the

bimodules of these more elaborate theories also give 1-morphisms of 2-representations of U ,
once (e.g.) 2-representations are appropriately defined on the curved dg algebras.

Remark 1.5. Since it follows from [LP20, MMW20] that the local Ozsváth–Szabó algebras

appearing in this paper are quasi-isomorphic to certain (larger) dg strands algebras A(Z),

it is natural to ask whether there are bimodules corresponding to P and N over the larger

algebras, and if so, whether these bimodules give 1-morphisms between the 2-representation

structures on A(Z) defined directly in [MR20]. The answer in both cases appears to be

“yes;” the authors of [MMW20] hope to address this question in work in preparation.

Remark 1.6. Along with E, there is another odd generator F of Uq(gl(1|1)); since we are

discussing actions of E here, it is natural to ask about F as well. While the framework of

[MR20] is based on a categorification of Uq(gl(1|1)+) and fundamentally gives us E but not

F , one can categorify at least a relative F ′ of F by taking homomorphisms of left A-modules

from the E bimodule into A (as discussed e.g. in [LM21, Theorem 1.3] with slightly different

conventions, as well as in [MR20]). If we take E to be projective on the left (“type DA”) as in

this paper, then the bimodule F ′ := HomA on left(E ,A) will be projective on the right (“type

AD”), so since X is type DA and has higher A∞ actions on the right, it’s more natural to

look at the bimodules E ⊗A X and X ⊗A E than the bimodules F ′ ⊗A X and X ⊗A F ′.
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If we did define F ′ ⊗A − and − ⊗A F ′ appropriately, then we would expect adjunctions

in the homotopy category (E ⊗A −) ⊣ (F ′ ⊗A −) and (− ⊗A F ′) ⊣ (− ⊗A E). Specifying

maps X ⊗A E → E ⊗A X and X ⊗A F ′ → F ′ ⊗A X would be equivalent, up to homotopy,

to specifying maps X ⊗A E → E ⊗A X and E ⊗A X → X ⊗A E .
In our case, we will show that E ⊗AX and X⊗A E are literally the same up to a renaming

of basis elements, so that neither direction is singled out and we have maps both ways giving

an isomorphism. Based on the above, after making the right definitions one would get a

map X ⊗A F ′ → F ′ ⊗A X up to homotopy; since we only have an adjunction one way, it’s

not immediate that this map would be an isomorphism in the homotopy category, although

it seems likely that X ⊗A F ′ ∼= F ′ ⊗A X is still true here. We will not investigate further,

though; work in preparation of the second author at the decategorified level suggests that in

some settings, but not the one under consideration, one should legitimately have actions of

both odd generators E and F of gl(1|1), whereas here we only have E along with whatever

modifications we want to do to it algebraically.

Organization. In Section 2 we review algebraic definitions from bordered Heegaard Floer

homology, including a matrix-based notation from [Man20] that will be useful here. In Sec-

tion 3 we review what we need from Ozsváth–Szabó’s theory of bordered HFK. In Section 4

we review the relevant input from higher representation theory and define 2-actions of U on

the local bordered HFK algebras. In Section 5 we show that Theorem 1.1 holds for Ozsváth–

Szabó’s local positive-crossing bimodule P , and in Section 6 we do the same for the local

negative-crossing bimodule N .

Acknowledgments. The second author would like to thank Zoltán Szabó for many useful

conversations over the years related to bordered HFK and the topics of this paper. A.M. is

partially supported by NSF grant DMS-2151786.

2. Bordered algebra

2.1. DA bimodules. We will work with DA bimodules, as defined by Lipshitz–Ozsváth–

Thurston [LOT15, Section 2.2.4], over associative algebras with no differentials. We will

assume that these associative algebras A are defined over a field k of characteristic 2 and

come equipped with a finite collection of orthogonal idempotents {I1, . . . , In} such that

I1 + · · ·+ In = 1. We will refer to the Ij as distinguished idempotents.

Remark 2.1. An equivalent perspective is to view A as a k-linear category with objects

{I1, . . . , In}.

For such an algebra A, we will let IA denote the ring of idempotents of A, i.e. a finite

direct product of copies of k (one for each idempotent Ij), viewed as a subalgebra of A.

We will also assume that A is equipped with two Z-gradings which we will call the intrinsic

and homological gradings; we let [1] denote an upward shift by 1 in the homological grading

(we use upward rather than downward shifts because, following the conventions of [LOT15,

OSz18], we use differentials that decrease the homological grading by 1).
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Figure 1. A DA module operation graph showing a term a⊗x′ of the action
of δ1i on x⊗ b1 ⊗ · · · ⊗ bi−1; this notation allows i = 1 in which case there are
no edges to the right of the vertical line from x to x′.

Figure 2. The DA bimodule relations in Definition 2.2.

Definition 2.2. Let A and B be graded associative algebras over a field k of characteristic

2. A DA bimodule over (A,B) is given by the data (X, (δ1i )
∞
i=1) where X is a Z⊕ Z-graded

bimodule over (IA, IB) and, for i ≥ 1,

δ1i : X ⊗ B[1]⊗(i−1) → A[1]⊗X

(tensor products are over IA or IB as appropriate) is a bidegree-preserving morphism of

bimodules over (IA, IB) such that the DA bimodule relations are satisfied, i.e. such that∑︂
j1+j2=i+1

(µA ⊗ idX) ◦ (idA⊗δ1j1) ◦ (δ
1
j2
⊗ idB⊗(j1−1))

+
i−2∑︂
j=1

δ1i−1 ◦ (idB⊗(j−1) ⊗µB ⊗ idB⊗(i−j−2))

= 0

for all i ≥ 1, where µA and µB are the multiplication operations on A and B.

We will often refer to (X, (δ1i )
∞
i=1) simply asX. We say thatX is strictly unital if δ12(x, 1) =

1 ⊗ x for all x ∈ X and δ1i (x, b1, . . . , bi−1) = 0 if i > 2 and any bj is in the idempotent ring

IB.

If we have a k-basis for X and x, x′ are basis elements with a⊗ x′ appearing as a nonzero

term of δ1i (x⊗ b1 ⊗ · · · ⊗ bi−1) (where a ∈ A and b1, . . . , bi−1 ∈ B), we will sometimes depict

the situation using a “DA module operation graph” as in [LOT15, Definition 2.2.45]. See

Figure 1 for an example. In this notation, the DA bimodule relations are shown in Figure 2.
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Figure 3. The general pattern for the operation δ⊠,1
i on X ⊠ Y .

Remark 2.3. For all DA bimodules (X, (δ1i )
∞
i=1) considered in this paper, X will be finite-

dimensional over k, as well as left and right bounded in the sense of [LOT15, Definition

2.2.46].

Remark 2.4. If X is a DA bimodule over (A,B), then A ⊗IA X is an A∞ bimodule over

(A,B) such that the left action of A has no higher A∞ terms and such that, as a left

A-module, X is a direct sum of projective modules A · I for distinguished idempotents I

of A (disregarding the differential). One can think of the definition of DA bimodule as a

convenient way of specifying and reasoning about such A∞ bimodules.

2.2. The box tensor product. Let A,B, C be associative algebras as in Section 2.1 and let

X and Y be DA bimodules over (A,B) and (B, C) respectively. Assuming X is left bounded

or Y is right bounded, Lipshitz–Ozsváth–Thurston define a DA bimodule X⊠Y in [LOT15,

Section 2.3.2].

Definition 2.5. As a bimodule over (IA, IC), X ⊠ Y is defined to be X ⊗IB Y . For i ≥ 1,

the DA bimodule operation δ⊠,1
i on X ⊠ Y is defined in terms of the operations δX,1

∗ on X

and δY,1∗ on Y by

δ⊠,1
i =

∑︂
j≥0

∑︂
i1+···+ij=i+j−1

(δX,1
j ⊗ idY ) ◦ (idX ⊗ idB⊗(j−1) ⊗δY,1ij

)

◦ (idX ⊗ idB⊗(j−2) ⊗δY,1ij−1
⊗ idA⊗(ij−1))

◦ · · · ◦ (idX ⊗δY,1i1
⊗ idA⊗(i2+···+ij−j+1)).

In terms of DA module operation graphs, the general pattern for the operation δ⊠,1
i on

X ⊠ Y is shown in Figure 3.

Remark 2.6. By [LOT15, Proposition 2.3.10], if X and Y are both left bounded then so is

X ⊠ Y .

Remark 2.7. Assuming suitable boundedness, the box tensor product X⊠Y is a convenient

way of working with the derived tensor product (A⊗IA X)⊗̃B(B⊗IB Y ); indeed, by [LOT15,

Proposition 2.3.18] we have

A⊗IA (X ⊠ Y ) ≃ (A⊗IA X) ⊗̃ B(B ⊗IB Y )

where ≃ denotes homotopy equivalence of DA bimodules (see [LOT15, Section 2.2.4]).
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2.3. Matrix notation. We will describe DA bimodules using the matrix-based notation of

[Man20, Section 2.2]; we recall this notation here. When using this notation to describe a

DA bimodule over (A,B), it is assumed that B comes equipped with a choice of k-basis such

that:

• distinguished idempotents of B are basis elements;

• each basis element b satisfies I · b · I ′ = b for unique distinguished idempotents I of A
and I ′ of B (called the left and right idempotents of b respectively) with Ĩ · b · Ĩ ′ = 0

whenever Ĩ , Ĩ
′
are distinguished idempotents of A and B with Ĩ ̸= I or Ĩ

′ ̸= I ′;

• each basis element of B is homogeneous with respect to the bigrading.

Definition 2.8. To specify a DA bimodule (X, (δ1i )
∞
i=1) over (A,B) (finite-dimensional over

k), we specify two matrices, a primary matrix and a secondary matrix.

• The primary matrix is a set-valued matrix (each entry is a finite set with a Z ⊕
Z-bidegree specified for each element) with columns indexed by the distinguished

idempotents of B and rows indexed by the distinguished idempotents of A. Given

such a matrix, the bimodule X over (IA, IB) is taken to have a k-basis given by the

union of the sets in each entry (with each basis element given its specified bidegree).

More specifically, the left action of IA and right action of IB are fixed by saying that,

for distinguished idempotents I of A and I ′ of B, the vector space I · X · I ′ has a

basis given by the set in row I and column I ′. For an element x of this set, we say

that I is the left idempotent of x and I ′ is the right idempotent of x.

• The secondary matrix is a matrix whose entries are formal sums of expressions a

(for a ∈ A) and a ⊗ (b1, . . . , bi−1) (for a ∈ A and each bj a basis element for B).
The sums are allowed to be infinite, but there should be finitely many terms of the

form a (without the ⊗ symbol) and finitely many terms for each given sequence

(b1, . . . , bi−1). The rows and columns of the secondary matrix are each indexed by

the union of all entries of the primary matrix, in some fixed order. Given such a

matrix, the operations δ1i on X are defined as follows for a basis element x of X (a

column label of the secondary matrix):

– δ11(x) is the sum of all elements a⊗ y where a is a term (without the ⊗ symbol)

of a secondary matrix entry in column x and y is the row label of the entry

containing this term;

– for i > 1 and a sequence (b1, . . . , bi−1) of basis elements of B, δ1i (x⊗b1⊗· · ·⊗bi−1)

is the sum of all elements a⊗ y where a⊗ (b1, . . . , bi−1) is a term of a secondary

matrix entry in column x and y is the row label of the entry containing this

term.

An example of a DA bimodule specified by primary and secondary matrices can be found

in Definition 3.3 below. We use the following conventions:

Convention 2.9. If indices such as k or l appear in entries of the secondary matrix, we take

an infinite sum over all k ≥ 0 or l ≥ 0 unless otherwise specified.
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Convention 2.10. When using matrix notation to specify a strictly unital DA bimodule,

the above rules would say that in each diagonal entry of the secondary matrix (corresponding

to an entry x of the primary matrix), there is a term I⊗I ′ where I and I ′ are the left and right

idempotents of x respectively (it should also be the case that no basis element bj appearing

in an entry a⊗(b1, . . . , bi−1) is a distinguished idempotent). However, we will omit the terms

I ⊗ I ′ when we write the secondary matrix.

If the primary or secondary matrix has block form, we will often give each block separately.

Remark 2.11. One advantage of this matrix-based notation is that the DA bimodule rela-

tions can be checked using linear-algebraic manipulations. Indeed, to check theDA bimodule

relations, one forms two new matrices from the secondary matrix. The first matrix, which we

will call the “squared secondary matrix,” is obtained by multiplying the secondary matrix

by itself. When doing so, one will need to take products of secondary matrix entries; these

products are defined by

• a · a′ = a′a

• a · (a′ ⊗ (b′1, . . . , b
′
i−1)) = a′a⊗ (b′1, . . . , b

′
i−1)

• (a⊗ (b1, . . . , bi−1)) · a′ = a′a⊗ (b1, . . . , bi−1)

• (a⊗ (b1, . . . , bi−1)) · (a′ ⊗ (b′1, . . . , b
′
j−1)) = a′a⊗ (b′1, . . . , b

′
j−1, b1, . . . , bi−1)

The second matrix, which we will call the “multiplication matrix,” is obtained by, for each bj
in an entry a⊗(b1, . . . , bi−1) and each pair of B-basis elements (b′, b′′) (neither a distinguished

idempotent in the strictly unital case) such that Cbj is a term of the basis expansion of b′b′′

for some nonzero element C ∈ k, adding the term Ca⊗ (b1, . . . , bj−1, b
′, b′′, bj+1, . . . , bi−1) to

the corresponding entry of the multiplication matrix.

Once these two matrices are formed, the DA bimodule relations amount to saying that

the squared secondary matrix and the multiplication matrix sum to zero.

2.4. Box tensor products in matrix notation. Suppose we have DA bimodules X over

(A,B) and Y over (B, C) as in Section 2.2. To specify X ⊠Y in matrix notation, one can do

the following manipulations:

• The primary matrix for X ⊠ Y is the matrix product of the primary matrix for X

(on the left) and the primary matrix for Y (on the right). When multiplying two

entries of these primary matrices, one uses the Cartesian product of sets, and when

adding these products together, one uses the disjoint union.

• Let (x, y) and (x′, y′) be two elements of the primary matrix for X ⊠ Y . To obtain

the secondary matrix element in row (x′, y′) and column (x, y), there are two cases

to consider:

– For entries a (with no ⊗ symbol) in row x′ and column x of the secondary matrix

for X, if y = y′ then add an entry a to the secondary matrix for X ⊠ Y in row

(x′, y′) and column (x, y). If y ̸= y′, do not add such an entry.

– For entries a⊗ (b1, . . . , bi−1) in row x′ and column x of the secondary matrix for

X, look for all sequences (y = y1, y2, . . . , yi = y′) of primary matrix entries for
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Figure 4. The quiver for B(2, 1).

Figure 5. The quiver for B(2, 2).

Y such that, for 1 ≤ j ≤ i−1, there is a term b⊗ (cj1, . . . , c
j
mj−1) in row yj+1 and

column yj of the secondary matrix for Y such that Cjbj is a term of the basis

expansion of b for some nonzero Cj ∈ k. For all such sequences (y1, . . . , yi) and

all such choices of terms b⊗ (cj1, . . . , c
j
mj−1), add an entry

C1 · · ·Ci−1a⊗ (c11, . . . , c
1
m1−1, . . . , c

i−1
1 , . . . , ci−1

mi−1−1)

to the secondary matrix of X ⊠ Y in row (x′, y′) and column (x, y).

3. Bordered HFK

3.1. Algebras. We now review Ozsváth–Szabó’s algebra B(2) =
3⨁︂

k=0

B(2, k) from [OSz18,

Section 3.2], which is an algebra over F2.

Definition 3.1. The algebra B(2, 0) is F2. The algebra B(2, 1) is the path algebra of the

quiver shown in Figure 4 modulo the relations [Ri, Uj] = 0, [Li, Uj] = 0, RiLi = Ui, LiRi =

Ui, R1R2 = 0, L2L1 = 0, U2 = 0 at the leftmost node, and U1 = 0 at the rightmost node.

The algebra B(2, 2) is the path algebra of the quiver shown in Figure 5 modulo the relations

[RiUj] = 0, [Li, Uj] = 0, RiLi = Ui, and LiRi = Ui. The algebra B(2, 3) is F2[U1, U2]. We set

B(2) =
3⨁︂

k=0

B(2, k).

Our definition matches Ozsváth–Szabó’s by [MMW21, Theorem 1.1]; also see [OSz18,

Figure 10] for B(2, 1), although in this figure Ozsváth–Szabó leave out some of the relations.

We define an intrinsic grading on B(2) by setting deg(Ri) = deg(Li) = 1 and deg(Ui) = 2;

this grading is twice Ozsváth–Szabó’s single Alexander grading (the doubling is related to

the expression t = q2 when obtaining the Alexander polynomial from representations of

Uq(gl(1|1))). We define the homological grading to be identically zero on the generators of

B(2).
The algebras B(2, 1) and B(2, 2) each have three distinguished idempotents given by the

length-zero paths at each node. Ordering the nodes from left to right and following Ozsváth–

Szabó’s notation, for B(2, 1) we can call these idempotents I0, I1, and I2. For B(2, 2) we
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can call them I01, I02, and I12. The unique nonzero element of B(2, 0) is its distinguished

idempotent and we can call it I∅; for B(2, 3) the distinguished idempotent is 1 ∈ F2[U1, U2]

and we can call it I012.

To avoid subscripts as much as possible, we will relabel these idempotents as follows:

∅ := I∅,

A := I0, B := I1, C := I2,

AB := I01, AC := I02, BC := I12,

ABC := I012.

To clarify the conventions: in Figure 4 the left and right idempotents of R1 are A and

B respectively, while in Figure 5 the left and right idempotents of R1 are AC and BC

respectively.

The following proposition can be deduced from the definition of B(2).

Proposition 3.2. A F2-basis for B(2, 1) is given by

{Uk
1 (A), Uk

1 (B), Uk
2 (B), Uk

2 (C), R1U
k
1 , L1U

k
1 , R2U

k
2 , L2U

k
2 }

(k runs over all integers ≥ 0). A F2-basis for B(2, 2) is given by

{Uk
1U

l
2(AB), Uk

1U
l
2(AC), Uk

1U
l
2(BC), R1U

k
1U

l
2, L1U

k
1U

l
2, R2U

k
1U

l
2, L2U

k
1U

l
2)

(k and l run over all integers ≥ 0).

The algebra B(2, 0) = F2 has a unique F2-basis, and for B(2, 3) we use the basis of

monomials Uk
1U

l
2 for k, l ≥ 0.

3.2. Bimodules. Next we review, in matrix notation, Ozsváth–Szabó’s DA bimodules P
and N over B(2). One thinks of these bimodules as being associated to two-strand tan-

gles consisting of a single positive crossing and a single negative crossing respectively and

containing the minimal amount of data necessary to build the bimodules for n-strand single-

crossing tangles. They can be obtained by counting holomorphic disks in the Heegaard

diagrams shown in Section 3.2.3 below.

3.2.1. The bimodule P. This bimodule is defined in [OSz18, Section 5.1]; here we translate

Ozsváth–Szabó’s definition into matrix notation.

Definition 3.3. The primary matrix for P has rows and columns indexed by the distin-

guished idempotents

∅, A,B,C,AB,AC,BC,ABC

of B(2). The matrix has block-diagonal form with blocks specified by the following matrices:

[︂ ∅

∅ ∅S∅

]︂
,
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⎡⎢⎣
A B C

A {ASA} ∅ ∅
B {BWA} {BNB} {BEC}
C ∅ ∅ {CSC}

⎤⎥⎦,
⎡⎢⎣

AB AC BC

AB {ABNAB} {ABEAC} ∅
AC ∅ {ACSAC} ∅
BC ∅ {BCWAC} {BCNBC}

⎤⎥⎦,
[︂ ABC

ABC {ABCNABC}
]︂
.

Below we will abuse notation slightly and omit the braces {}, writing e.g. ASA instead of

{ASA}. The secondary matrix for P has a corresponding block-diagonal form; the blocks are

[︂ ∅S∅

∅S∅ 0
]︂
,

⎡⎢⎢⎢⎢⎢⎣

ASA BWA BNB BEC CSC

ASA 0 L1 0 0 0

BWA 0 Uk+1
2 ⊗ Uk+1

1 Uk+1
2 ⊗ L1U

k
1 0 L2U

k
2 ⊗ (L2, L1U

k
1 )

BNB R1U
k
1 ⊗ (R1, U

k+1
2 ) Uk

2 ⊗R1U
k
1 Uk+1

2 ⊗ Uk+1
1 + Uk+1

1 ⊗ Uk+1
2 Uk

1 ⊗ L2U
k
2 L2U

k
2 ⊗ (L2, U

k+1
1 )

BEC R1U
k
1 ⊗ (R1, R2U

k
2 ) 0 Uk+1

1 ⊗R2U
k
2 Uk+1

1 ⊗ Uk+1
2 0

CSC 0 0 0 R2 0

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣

ABNAB ABEAC ACSAC BCWAC BCNBC

ABNAB U l
1U

k
2 ⊗ Uk

1U
l
2 Uk

1 ⊗ L2U
k
2 ∗1 L1L2U

k
2 ⊗ L2U

k+1
1 L1L2U

l
1U

k
2 ⊗ L1L2U

k
1U

l
2

ABEAC U l+1
1 Uk

2 ⊗R2U
k
1U

l
2 Uk+1

1 ⊗ Uk+1
2 ∗2 L1L2U

k
2 ⊗ Uk+1

1 L1L2U
l
1U

k
2 ⊗ L1U

k
1U

l
2

ACSAC 0 R2 0 L1 0

BCWAC R2R1U
l
1U

k
2 ⊗R2U

k
1U

l
2 R2R1U

k
1 ⊗ Uk+1

2 ∗3 Uk+1
2 ⊗ Uk+1

1 U l
1U

k+1
2 ⊗ L1U

k
1U

l
2

BCNBC R2R1U
l
1U

k
2 ⊗R2R1U

k
1U

l
2 R2R1U

k
1 ⊗R1U

k+1
2 ∗4 Uk

2 ⊗R1U
k
1 U l

1U
k
2 ⊗ Uk

1U
l
2

⎤⎥⎥⎥⎥⎥⎦ ,

[︂ ABCNABC

ABCNABC U l
1U

k
2 ⊗ Uk

1U
l
2

]︂
.

The entries ∗i for 1 ≤ i ≤ 4 are specified below; also, in any entry of the form U l
1U

k
2 ⊗Uk

1U
l
2,

we disallow (k, l) = (0, 0) to match Convention 2.10. The entry ∗1 in column ACSAC and
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row ABNAB is:

L2U
t
1U

n
2 ⊗ (Un+1

1 , L2U
t
2) (0 ≤ n < t)

+ L2U
t
1U

n
2 ⊗ (R1U

n
1 , L1L2U

t
2) (0 ≤ n < t)

+ L2U
t
1U

n
2 ⊗ (L2U

n+1
1 , U t

2) (0 ≤ n < t)

+ L2U
t
1U

n
2 ⊗ (L2U

t
2, U

n+1
1 ) (1 ≤ t ≤ n)

+ L2U
t
1U

n
2 ⊗ (U t

2, L2U
n+1
1 ) (1 ≤ t ≤ n)

+ L2U
t
1U

n
2 ⊗ (R1U

t
2, L1L2U

n
1 ) (1 ≤ t ≤ n)

+ L2U
n
2 ⊗ (L2, U

n+1
1 ) (0 ≤ n)

The entry ∗2 in column ACSAC and row ABEAC is:

L2U
t
1U

n
2 ⊗ (Un+1

1 , U t
2) (0 ≤ n < t)

+ L2U
t
1U

n
2 ⊗ (R1U

n
1 , L1U

t
2) (0 ≤ n < t)

+ L2U
t
1U

n
2 ⊗ (L2U

n+1
1 , R2U

t−1
2 ) (0 ≤ n < t)

+ L2U
t
1U

n
2 ⊗ (U t

2, U
n+1
1 ) (1 ≤ t ≤ n)

+ L2U
t
1U

n
2 ⊗ (R1U

t
2, L1U

n
1 ) (1 ≤ t ≤ n)

+ L2U
t
1U

n
2 ⊗ (L2U

t−1
2 , R2U

n+1
1 ) (1 ≤ t ≤ n)

The entry ∗3 in column ACSAC and row BCWAC is:

R1U
t
1U

n
2 ⊗ (U t+1

2 , Un
1 ) (0 ≤ t < n)

+R1U
t
1U

n
2 ⊗ (L2U

t
2, R2U

n
1 ) (0 ≤ t < n)

+R1U
t
1U

n
2 ⊗ (R1U

t+1
2 , L1U

n−1
1 ) (0 ≤ t < n)

+R1U
t
1U

n
2 ⊗ (Un

1 , U
t+1
2 ) (1 ≤ n ≤ t)

+R1U
t
1U

n
2 ⊗ (L2U

n
1 , R2U

t
2) (1 ≤ n ≤ t)

+R1U
t
1U

n
2 ⊗ (R1U

n−1
1 , L1U

t+1
2 ) (1 ≤ n ≤ t)

The entry ∗4 in column ACSAC and row BCNBC is:

R1U
t
1U

n
2 ⊗ (U t+1

2 , R1U
n
1 ) (0 ≤ t < n)

+R1U
t
1U

n
2 ⊗ (L2U

t
2, R2R1U

n
1 ) (0 ≤ t < n)

+R1U
t
1U

n
2 ⊗ (R1U

t+1
2 , Un

1 ) (0 ≤ t < n)

+R1U
t
1U

n
2 ⊗ (R1U

n
1 , U

t+1
2 ) (1 ≤ n ≤ t)

+R1U
t
1U

n
2 ⊗ (Un

1 , R1U
t+1
2 ) (1 ≤ n ≤ t)

+R1U
t
1U

n
2 ⊗ (L2U

n
1 , R2R1U

t
2) (1 ≤ n ≤ t)

+R1U
t
1 ⊗ (R1, U

t+1
2 ) (0 ≤ t)



COMPATIBILITY IN OZSVÁTH–SZABÓ’S BORDERED HFK VIA HIGHER REPRESENTATIONS 13

3.2.2. The bimodule N . The bimoduleN is defined in [OSz18, Section 5.5] using a symmetry

relationship with P . Explicitly, N has the same primary matrix as P . The blocks of the

secondary matrix of N are [︂ ∅S∅

∅S∅ 0
]︂
,

⎡⎢⎢⎢⎢⎢⎣

ASA BWA BNB BEC CSC

ASA 0 0 L1U
k
1 ⊗ (Uk+1

2 , L1) L1U
k
1 ⊗ (L2U

k
2 , L1) 0

BWA R1 Uk+1
2 ⊗ Uk+1

1 Uk
2 ⊗ L1U

k
1 0 0

BNB 0 Uk+1
2 ⊗R1U

k
1 Uk+1

2 ⊗ Uk+1
1 + Uk+1

1 ⊗ Uk+1
2 Uk+1

1 ⊗ L2U
k
2 0

BEC 0 0 Uk
1 ⊗R2U

k
2 Uk+1

1 ⊗ Uk+1
2 L2

CSC 0 R2U
k
2 ⊗ (R1U

k
1 , R2) R2U

k
2 ⊗ (Uk+1

1 , R2) 0 0

⎤⎥⎥⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎢⎢⎣

ABNAB ABEAC ACSAC BCWAC BCNBC

ABNAB U l
1U

k
2 ⊗ Uk

1U
l
2 U l+1

1 Uk
2 ⊗ L2U

k
1U

l
2 0 L1L2U

l
1U

k
2 ⊗ L2U

k
1U

l
2 L1L2U

l
1U

k
2 ⊗ L1L2U

k
1U

l
2

ABEAC Uk
1 ⊗R2U

k
2 Uk+1

1 ⊗ Uk+1
2 L2 L1L2U

k
1 ⊗ Uk+1

2 L1L2U
k
1 ⊗ L1U

k+1
2

ACSAC ∗′1 ∗′2 0 ∗′3 ∗′4
BCWAC R2R1U

k
2 ⊗R2U

k+1
1 R2R1U

k
2 ⊗ Uk+1

1 R1 Uk+1
2 ⊗ Uk+1

1 Uk
2 ⊗ L1U

k
1

BCNBC R2R1U
l
1U

k
2 ⊗R2R1U

k
1U

l
2 R2R1U

l
1U

k
2 ⊗R1U

k
1U

l
2 0 U l

1U
k+1
2 ⊗R1U

k
1U

l
2 U l

1U
k
2 ⊗ Uk

1U
l
2

⎤⎥⎥⎥⎥⎥⎦ ,

[︂ ABCNABC

ABCNABC U l
1U

k
2 ⊗ Uk

1U
l
2

]︂
where in any entry of the specific form U l

1U
k
2 ⊗ Uk

1U
l
2 we disallow (k, l) = (0, 0) to match

Convention 2.10. The entry ∗′1 in column ABNAB and row ACSAC is:

R2U
t
1U

n
2 ⊗ (R2U

t
2, U

n+1
1 ) (0 ≤ n < t)

+R2U
t
1U

n
2 ⊗ (R2R1U

t
2, L1U

n
1 ) (0 ≤ n < t)

+R2U
t
1U

n
2 ⊗ (U t

2, R2U
n+1
1 ) (0 ≤ n < t)

+R2U
t
1U

n
2 ⊗ (Un+1

1 , R2U
t
2) (1 ≤ t ≤ n)

+R2U
t
1U

n
2 ⊗ (R2U

n+1
1 , U t

2) (1 ≤ t ≤ n)

+R2U
t
1U

n
2 ⊗ (R2R1U

n
1 , L1U

t
2) (1 ≤ t ≤ n)

+R2U
n
2 ⊗ (Un+1

1 , R2) (0 ≤ n)



14 WILLIAM CHANG AND ANDREW MANION

The entry ∗′2 in column ABEAC and row ACSAC is:

R2U
t
1U

n
2 ⊗ (U t

2, U
n+1
1 ) (0 ≤ n < t)

R2U
t
1U

n
2 ⊗ (R1U

t
2, L1U

n
1 ) (0 ≤ n < t)

R2U
t
1U

n
2 ⊗ (L2U

t−1
2 , R2U

n+1
1 ) (0 ≤ n < t)

R2U
t
1U

n
2 ⊗ (Un+1

1 , U t
2) (1 ≤ t ≤ n)

R2U
t
1U

n
2 ⊗ (R1U

n
1 , L1U

t
2) (1 ≤ t ≤ n)

R2U
t
1U

n
2 ⊗ (L2U

n+1
1 , R2U

t−1
2 ) (1 ≤ t ≤ n)

The entry ∗′3 in column BCWAC and row ACSAC is:

L1U
t
1U

n
2 ⊗ (Un

1 , U
t+1
2 ) (0 ≤ t < n)

L1U
t
1U

n
2 ⊗ (L2U

n
1 R2U

t
2) (0 ≤ t < n)

L1U
t
1U

n
2 ⊗ (R1U

n−1
1 , L1U

t+1
2 ) (0 ≤ t < n)

L1U
t
1U

n
2 ⊗ (U t+1

2 , Un
1 ) (1 ≤ n ≤ t)

L1U
t
1U

n
2 ⊗ (L2U

t
2, R2U

n
1 ) (1 ≤ n ≤ t)

L1U
t
1U

n
2 ⊗ (R1U

t+1
2 , L1U

n−1
1 ) (1 ≤ n ≤ t)

The entry ∗′4 in column BCNBC and row ACSAC is:

L1U
t
1U

n
2 ⊗ (L1U

n
1 , U

t+1
2 ) (0 ≤ t < n)

L1U
t
1U

n
2 ⊗ (L1L2U

n
1 , R2U

t
2) (0 ≤ t < n)

L1U
t
1U

n
2 ⊗ (Un

1 , L1U
t+1
2 ) (0 ≤ t < n)

L1U
t
1U

n
2 ⊗ (U t+1

2 , L1U
n
1 ) (1 ≤ n ≤ t)

L1U
t
1U

n
2 ⊗ (L1U

t+1
2 , Un

1 ) (1 ≤ n ≤ t)

L1U
t
1U

n
2 ⊗ (L1L2U

t
2, R2U

n
1 ) (1 ≤ n ≤ t)

L1U
t
1 ⊗ (U t+1

2 , L1) (0 ≤ t)

The starred terms in row ACSAC of middle block of the secondary matrix for N , as well

as in the column ACSAC of the middle block of the secondary matrix for P , encode the A∞

terms of the right algebra actions on (the middle summands of) the bimodules. See [LOT15,

Section 2.2.4] for more context on these A∞ structures in general.

The symmetry relationship between P and N described in [OSz18, Section 5.5] can be

summarized by saying the secondary matrix of N is obtained from that of P by performing

the following operations:

• Take the transpose of the secondary matrix of P .
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Figure 6. The bordered sutured Heegaard diagram for P .

Figure 7. The bordered sutured Heegaard diagram for N .

• In each entry, replace Li with Ri and vice-versa, while reversing the order of multi-

plication when relevant (so e.g. L1L2 becomes R2R1).

• For any entry a⊗ (b1, b2), reverse the order of b1 and b2.

3.2.3. Heegaard diagram origins. We comment briefly here on the Heegaard diagram origins

of the DA bimodules P and N . Roughly, they can be thought of as DA bimodules associated

to the bordered sutured Heegaard diagrams shown in Figure 6 and Figure 7 respectively. A

detailed study of the relationship of the algebraically defined bimodules P and N to the

holomorphic geometry associated with these diagrams can be found in [OSz19a], although

in that paper Ozsváth–Szabó do not use the language of bordered sutured Heegaard Floer

homology.

Remark 3.4. The diagrams in Figure 6 and Figure 7 do not satisfy all the hypotheses nec-

essary to be covered by Lipshitz–Ozsváth–Thurston’s results in [LOT15] or Zarev’s results

in [Zar11]; Ozsváth–Szabó show in [OSz19a] that they can still be analyzed using a gener-

alization of the analytic setup of bordered or bordered sutured Heegaard Floer homology.

However, a more literal generalization of these theories would yield bimodules over the larger

dg algebras of [LP20, MMW20] rather than over the associative algebra B(2). The second

author, with Marengon and Willis, hope to address this difference in future work, defining

DA bimodules over the larger dg algebras and relating them to P and N .
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4. Higher representations

4.1. General setup. We now briefly review how higher representation theory interacts with

bordered Heegaard Floer homology, as discussed in more generality in [MR20].

4.1.1. Monoidal category. The following differential monoidal category U was defined in

[Kho14], and 2-actions of U are a main subject of [MR20] (see also [DM14, DLM19]).

Definition 4.1. Let U denote the strict differential monoidal category with objects generated

under ⊗ by a single object e and with morphisms generated under ⊗ and composition by

an endomorphism τ of e⊗ e, subject to the relations τ 2 = 0 and

(ide⊗τ) ◦ (τ ⊗ ide) ◦ (ide⊗τ) = (τ ⊗ ide)⊗ (ide⊗τ)⊗ (τ ⊗ ide),

and with differential determined by d(τ) = ide⊗e.

Remark 4.2. A grading on U is defined in [Kho14], making it into a dg category. Here we

will not need to work with this grading; indeed, in the 2-actions of U we consider below, τ

will act as zero.

The endomorphism algebra in U of e⊗m is the nilCoxeter dg algebra denoted by Nm in

[DM14].

4.1.2. 2-representations. We will be especially concerned with 2-representations of U on

associative algebras in the setting of DA bimodules; we give a concrete definition of this

notion below.

Definition 4.3. Let A be an associative algebra (we make the same assumptions on A as in

Section 2.1). A (DA bimodule) 2-representation of U on A is the data of a DA bimodule E
over A and a (typically non-closed) DA bimodule morphism τ from E ⊠E to itself satisfying

τ 2 = 0,

(idE ⊠τ) ◦ (τ ⊠ idE) ◦ (idE ⊠τ) = (τ ⊠ idE) ◦ (idE ⊠τ) ◦ (τ ⊠ idE),

and d(τ) = 1. We also assume that E is left bounded in the sense of [LOT15, Definition

2.2.46].

We will write the above data as (A, E , τ).

Remark 4.4. The definitions of DA bimodule morphisms, their tensor products, and their

differentials can be found in [LOT15, Section 2.2.4 and Section 2.3.2], but we will refrain

from spelling out these definitions here because in the examples we will consider, E ⊠ E will

be the zero DA bimodule and τ will be the zero morphism.

4.1.3. 1-morphisms of 2-representations. We will also work with a DA bimodule version of

1-morphisms between 2-representations of U .

Definition 4.5. Let (A, E , τ) and (A′, E ′, τ ′) be (DA bimodule) 2-representations of U on

associative algebras A and A′. A (DA bimodule) 1-morphism of 2-representations from
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Figure 8. The arc diagram Z such that A(Z) is quasi-isomorphic to B(2);
the 2-to-1 matching is indicated by the red arcs, and by symmetry one may
take any orientation on the circles and intervals.

(A, E , τ) to (A′, E ′, τ ′) consists of a left bounded DA bimodule X over (A′,A) together with

a homotopy equivalence

α : X ⊠ E → E ′ ⊠X,

satisfying

(τ ′ ⊠ idX) ◦ (idE ′ ⊠α) ◦ (α⊠ idE) = (idE ′ ⊠α) ◦ (α⊠ idE) ◦ (idX ⊠τ)

as morphisms from X ⊠ E ⊠ E to E ′ ⊠ E ′ ⊠X.

Remark 4.6. We will not elaborate on the definition of homotopy equivalence of DA bi-

modules here (it can be found in [LOT15, Section 2.2.4]); in this paper the homotopy equiv-

alences α will be isomorphisms given by bijections between primary matrix entries such that

the corresponding secondary matrices agree.

4.2. Actions on bordered HFK algebras. In [MR20], 2-representations of U are defined

on the algebras A(Z) appearing in bordered sutured Heegaard Floer homology. Here Z
denotes an arc diagram, i.e. a finite collection of oriented intervals and circles equipped with

a 2-to-1 matching of finitely many points in the interiors of the intervals and circles, and

there is a 2-representation of U on A(Z) for each interval in Z.

The algebra B(2) was shown in [MMW20, LP20] to be quasi-isomorphic to A(Z) where

Z is the arc diagram shown in Figure 8. Since Z has two intervals, we should expect

two 2-actions of U on B(2); we define these 2-actions below. See [LM21] for a related 2-

representation of U on an n-strand Ozsváth–Szabó algebra from [OSz18]. In more detail, we

will define DA bimodules E1 and E2 over B(2); these bimodules will satisfy Ei ⊠ Ei = 0, so

that (A, Ei, 0) is a 2-representation of U .

Remark 4.7. The arc diagram shown in Figure 8 can also be seen on the front and back

edges of the Heegaard diagrams in Figure 6 and Figure 7, with the red arcs in Figure 8

determined by the matching pattern of the red arcs in the Heegaard diagrams.

Definition 4.8. The primary matrix for E1 has block form with the following blocks (we

write e.g. X1 for the singleton set {X1}):

[︂ A B C

∅ X1 ∅ ∅
]︂
,

⎡⎢⎣
AB AC BC

A ∅ ∅ ∅
B X2 ∅ ∅
C ∅ X3 ∅

⎤⎥⎦,
⎡⎢⎣

ABC

AB ∅
AC ∅
BC X4

⎤⎥⎦.
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The secondary matrix for E1 has a corresponding block form with blocks

[︂ X1

X1 0
]︂
,

[︄ X2 X3

X2 Uk+1
1 ⊗ Uk+1

1 + Uk+1
2 ⊗ Uk+1

2 L2U
k
2 ⊗ L2U

k
2

X3 R2U
k
2 ⊗R2U

k
2 Uk+1

2 ⊗ Uk+1
2

]︄
,

[︂ X4

X4 Uk
1U

l
2 ⊗ Uk

1U
l
2

]︂
;

in the final block we disallow (k, l) = (0, 0) to match Convention 2.10.

Definition 4.9. The primary matrix for E2 has block form with the following blocks (again

we write e.g. Y1 for the singleton set {Y1}):

[︂ A B C

∅ ∅ ∅ Y1

]︂
,

⎡⎢⎣
AB AC BC

A ∅ Y2 ∅
B ∅ ∅ Y3

C ∅ ∅ ∅

⎤⎥⎦,
⎡⎢⎣

ABC

AB Y4

AC ∅
BC ∅

⎤⎥⎦.
The secondary matrix for E2 has a corresponding block form with blocks

[︂ Y1

Y1 0
]︂
,

[︄ Y2 Y3

Y2 Uk+1
1 ⊗ Uk+1

1 L1U
k
1 ⊗ L1U

k
1

Y3 R1U
k
1 ⊗R1U

k
1 Uk+1

1 ⊗ Uk+1
1 + Uk+1

2 ⊗ Uk+1
2

]︄
,

[︂ Y4

Y4 Uk
1U

l
2 ⊗ U1U

l
2

]︂
;

in the final block we disallow (k, l) = (0, 0) to match Convention 2.10.

By multiplying the primary matrix for Ei by itself (i = 1, 2), one can see that Ei ⊠ Ei has
a primary matrix with each entry the empty set; in other words, Ei ⊠ Ei is zero as claimed

above.

5. 1-morphism structure for P

5.1. Commutativity with E1.

5.1.1. The bimodule E1 ⊠ P. We give a matrix description for E1 ⊠ P following Section 2.4.

To get the primary matrix for E1 ⊠ P , we multiply the primary matrices for E1 and P . We

can do this block-by-block, so the primary matrix for E1 ⊠ P has block form with blocks
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given by

[︂ A B C

∅ X1 ∅ ∅
]︂
·

⎡⎢⎣
A B C

A SA ∅ ∅
B W N E

C ∅ ∅ SC

⎤⎥⎦ =
[︂ A B C

∅ X1SC ∅ ∅
]︂
,

⎡⎢⎣
AB AC BC

A ∅ ∅ ∅
B X2 ∅ ∅
C ∅ X3 ∅

⎤⎥⎦ ·

⎡⎢⎣
AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

⎤⎥⎦ =

⎡⎢⎣
AB AC BC

A ∅ ∅ ∅
B X2NAB X2E ∅
C ∅ X3X ∅

⎤⎥⎦,
⎡⎢⎣

ABC

AB ∅
AC ∅
BC X4

⎤⎥⎦ ·
[︂ ABC

ABC N
]︂
=

⎡⎢⎣
ABC

AB ∅
AC ∅
BC X4N

⎤⎥⎦.
In these matrices, we indicate idempotents only when necessary to distinguish primary matrix

entries in the same block (so, for example, in the block with rows and columns A,B,C, we

distinguish between two types of S generators, but the only N generator in this block is

BNB so we omit the idempotents and just write N).

The secondary matrix for E1 ⊠ P also has block form with blocks given by

[︂ X1SC

X1SC 0
]︂
,

⎡⎢⎣
X2NAB X2E X3S

X2NAB Uk+1
2 ⊗ Uk+1

1 + Uk+1
1 ⊗ Uk+1

2 Uk
1 ⊗ L2U

k
2 L2U

k
2 ⊗ (L2, U

k+1
1 )

X2E Uk+1
1 ⊗R2U

k
2 Uk+1

1 ⊗ Uk+1
2 0

X3S 0 R2 0

⎤⎥⎦,
[︂ X4N

X4N U l
1U

k
2 ⊗ Uk

1U
l
2

]︂
;

in the final block we disallow (k, l) = (0, 0). An explanation for the terms in the secondary

matrix is given in Figure 9, which uses the operation graph depictions of Figure 3.

5.1.2. The bimodule P⊠E1. Similarly, we give a matrix description for P⊠E1. The primary

matrix has block form with blocks

[︂ ∅

∅ S
]︂
·

[︂ A B C

∅ X1 ∅ ∅
]︂
=

[︂ A B C

∅ SX1 ∅ ∅
]︂
,



20 WILLIAM CHANG AND ANDREW MANION

Figure 9. Operation graphs for the terms in the secondary matrix of E1 ⊠ P .

⎡⎢⎣
A B C

A SA ∅ ∅
B W N E

C ∅ ∅ SC

⎤⎥⎦ ·

⎡⎢⎣
AB AC BC

A ∅ ∅ ∅
B X2 ∅ ∅
C ∅ X3 ∅

⎤⎥⎦ =

⎡⎢⎣
AB AC BC

A ∅ ∅ ∅
B NX2 EX3 ∅
C ∅ SCX3 ∅

⎤⎥⎦,
⎡⎢⎣

AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

⎤⎥⎦ ·

⎡⎢⎣
ABC

AB ∅
AC ∅
BC X4

⎤⎥⎦ =

⎡⎢⎣
ABC

AB ∅
AC ∅
BC NBCX4

⎤⎥⎦.
The secondary matrix for P ⊠ E1 also has block form with blocks

[︂ SX1

SX1 0
]︂
,

⎡⎢⎣
NX2 EX3 SCX3

NX2 Uk+1
2 ⊗ Uk+1

1 + Uk+1
1 ⊗ Uk+1

2 Uk
1 ⊗ L2U

k
2 L2U

k
2 ⊗ (L2, U

k+1
1 )

EX3 Uk+1
1 ⊗R2U

k
2 Uk+1

1 ⊗ Uk+1
2 0

SCX3 0 R2 0

⎤⎥⎦,
[︂ NBCX4

NBCX4 U l
1U

k
2 ⊗ Uk

1U
l
2

]︂
;

in the final block we disallow (k, l) = (0, 0). An explanation for the terms in the secondary

matrix is given in Figure 10.
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Figure 10. Operation graphs for the terms in the secondary matrix of P ⊠ E1.

Corollary 5.1. The DA bimodules E1 ⊠ P and P ⊠ E1 are isomorphic to each other.

Proof. The primary and secondary matrices for E1 ⊠ P and P ⊠ E1 agree up to a relabeling

of primary matrix entries. □

5.2. Commutativity with E2.

5.2.1. The bimodule E2 ⊠ P. Next we give a matrix description of E2 ⊠ P . The primary

matrix has block form with blocks

[︂ A B C

∅ ∅ ∅ Y1

]︂
·

⎡⎢⎣
A B C

A SA ∅ ∅
B W N E

C ∅ ∅ SC

⎤⎥⎦ =
[︂ A B C

∅ ∅ ∅ Y1SC

]︂
,

⎡⎢⎣
AB AC BC

A ∅ Y2 ∅
B ∅ ∅ Y3

C ∅ ∅ ∅

⎤⎥⎦ ·

⎡⎢⎣
AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

⎤⎥⎦ =

⎡⎢⎣
AB AC BC

A ∅ Y2S ∅
B ∅ Y3W Y3NBC

C ∅ ∅ ∅

⎤⎥⎦,
⎡⎢⎣

ABC

AB Y4

AC ∅
BC ∅

⎤⎥⎦ ·
[︂ ABC

ABC N
]︂
=

⎡⎢⎣
ABC

AB Y4N

AC ∅
BC ∅

⎤⎥⎦.
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The secondary matrix for E2 ⊠ P also has block form with blocks

[︂ Y1SC

Y1SC 0
]︂
,

⎡⎢⎣
Y2S Y3W Y3NBC

Y2S 0 L1 0

Y3W 0 Uk+1
2 ⊗ Uk+1

1 Uk+1
2 ⊗ L1U

k
1

Y3NBC R1U
k
1 ⊗ (R1, U

k+1
2 ) Uk

2 ⊗R1U
k
1 Uk+1

1 ⊗ Uk+1
2 + Uk+1

2 ⊗ Uk+1
1

⎤⎥⎦,
[︂ Y4N

Y4N Uk
1U

l
2 ⊗ U l

1U
k
2

]︂
;

in the final block we disallow (k, l) = (0, 0). One can draw operation graphs for the secondary

matrix entries as we did above in Figures 9 and 10, but we will omit the graphs here.

5.2.2. The bimodule P ⊠ E2. The primary matrix for P ⊠ E2 has block form with blocks

[︂ ∅

∅ S
]︂
·

[︂ A B C

∅ ∅ ∅ Y1

]︂
=

[︂ A B C

∅ ∅ ∅ SY1

]︂
,

⎡⎢⎣
A B C

A SA ∅ ∅
B W N E

C ∅ ∅ SC

⎤⎥⎦ ·

⎡⎢⎣
AB AC BC

A ∅ Y2 ∅
B ∅ ∅ Y3

C ∅ ∅ ∅

⎤⎥⎦ =

⎡⎢⎣
AB AC BC

A ∅ SAY2 ∅
B ∅ WY2 NY3

C ∅ ∅ ∅

⎤⎥⎦,
⎡⎢⎣

AB AC BC

AB NAB E ∅
AC ∅ S ∅
BC ∅ W NBC

⎤⎥⎦ ·

⎡⎢⎣
ABC

AB Y4

AC ∅
BC ∅

⎤⎥⎦ =

⎡⎢⎣
ABC

AB NABY4

AC ∅
BC ∅

⎤⎥⎦.
The secondary matrix for P ⊠ E2 also has block form with blocks

[︂ SY1

SY1 0
]︂
,

⎡⎢⎣
SAY2 WY2 NY3

SAY2 0 L1 0

WY2 0 Uk+1
2 ⊗ Uk+1

1 Uk+1
2 ⊗ L1U

k
1

NY3 R1U
k
1 ⊗ (R1, U

k+1
2 ) Uk

2 ⊗R1U
k
1 Uk+1

1 ⊗ Uk+1
2 + Uk+1

2 ⊗ Uk+1
1

⎤⎥⎦,
[︂ NABY4

NABY4 Uk
1U

l
2 ⊗ U l

1U
k
2

]︂
;

in the final block we disallow (k, l) = (0, 0). As with E2 ⊠ P , we will omit drawing the

operation graphs.
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Corollary 5.2. The DA bimodules E2 ⊠ P and P ⊠ E2 are isomorphic to each other.

Proof. The primary and secondary matrices for E2 ⊠ P and P ⊠ E2 agree up to a relabeling

of primary matrix entries. □

6. 1-morphism structure for N

Here we summarize, with fewer details, the computations for N that are analogous to

those for P in Section 5.

6.1. Commutativity with E1.

6.1.1. The bimodule E1 ⊠N . The primary matrix for E1 ⊠N has block form with the same

blocks as for E1 ⊠ P , namely

[︂ A B C

∅ ∅ ∅ X1SC

]︂
,

⎡⎢⎣
AB AC BC

A ∅ ∅ ∅
B X2NAB X2E ∅
C ∅ X3X ∅

⎤⎥⎦,
⎡⎢⎣

ABC

AB ∅
AC ∅
BC X4N

⎤⎥⎦.
The secondary matrix for E1 ⊠N has block form with blocks given by

[︂ X1SC

X1SC 0
]︂
,

⎡⎢⎣
X2NAB X2E X3S

X2NAB Uk+1
2 ⊗ Uk+1

1 + Uk+1
1 ⊗ Uk+1

2 Uk+1
1 ⊗ L2U

k
2 0

X2E Uk
1 ⊗R2U

k
2 Uk+1

1 ⊗ Uk+1
2 L2

X3S R2U
k
2 ⊗ (Uk+1

1 , R2) 0 0

⎤⎥⎦,
[︂ X4N

X4N U l
1U

k
2 ⊗ Uk

1U
l
2

]︂
;

in the final block we disallow (k, l) = (0, 0).

6.1.2. The bimodule N ⊠ E1. The primary matrix for N ⊠ E1 has block form with the same

blocks as for P ⊠ E1, namely

[︂ A B C

∅ SX1 ∅ ∅
]︂
,

⎡⎢⎣
AB AC BC

A ∅ ∅ ∅
B NX2 EX3 ∅
C ∅ SCX3 ∅

⎤⎥⎦,
⎡⎢⎣

ABC

AB ∅
AC ∅
BC NBCX4

⎤⎥⎦.
The secondary matrix for N ⊠ E1 has block form with blocks given by

[︂ SX1

SX1 0
]︂
,
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⎡⎢⎣
NX2 EX3 SCX3

NX2 Uk+1
2 ⊗ Uk+1

1 + Uk+1
1 ⊗ Uk+1

2 Uk+1
1 ⊗ L2U

k
2 0

EX3 Uk
1 ⊗R2U

k
2 Uk+1

1 ⊗ Uk+1
2 L2

SCX3 R2U
k
2 ⊗ (Uk+1

1 , R2) 0 0

⎤⎥⎦,
[︂ NBCX4

NBCX4 U l
1U

k
2 ⊗ Uk

1U
l
2

]︂
;

in the final block we disallow (k, l) = (0, 0).

Corollary 6.1. The DA bimodules E1 ⊠N and N ⊠ E1 are isomorphic to each other.

6.2. Commutativity with E2.

6.2.1. The bimodule E2 ⊠N . The primary matrix for E2 ⊠N has block form with the same

blocks as for E2 ⊠ P , namely

[︂ A B C

∅ ∅ ∅ Y1SC

]︂
,

⎡⎢⎣
AB AC BC

A ∅ Y2S ∅
B ∅ Y3W Y3NBC

C ∅ ∅ ∅

⎤⎥⎦,
⎡⎢⎣

ABC

AB Y4N

AC ∅
BC ∅

⎤⎥⎦.
The secondary matrix for E2 ⊠N has block form with blocks given by

[︂ Y1SC

Y1SC 0
]︂
,

⎡⎢⎣
Y2S Y3W Y3NBC

Y2S 0 0 L1U
k
1 ⊗ (Uk+1

2 , L1)

Y3W R1 Uk+1
2 ⊗ Uk+1

1 Uk
2 ⊗ L1U

k
1

Y3NBC 0 Uk+1
2 ⊗R1U

k
1 Uk+1

1 ⊗ Uk+1
2 + Uk+1

2 ⊗ Uk+1
1

⎤⎥⎦,
[︂ Y4N

Y4N Uk
1U

l
2 ⊗ U l

1U
k
2

]︂
;

in the final block we disallow (k, l) = (0, 0).

6.2.2. The bimodule N ⊠ E2. The primary matrix for N ⊠ E2 has block form with the same

blocks as for P ⊠ E2, namely

[︂ A B C

∅ ∅ ∅ SY1

]︂
,

⎡⎢⎣
AB AC BC

A ∅ SAY2 ∅
B ∅ WY2 NY3

C ∅ ∅ ∅

⎤⎥⎦,
⎡⎢⎣

ABC

AB NABY4

AC ∅
BC ∅

⎤⎥⎦.
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The secondary matrix for N ⊠ E2 has block form with blocks given by

[︂ SY1

SY1 0
]︂
,

⎡⎢⎣
SAY2 WY2 NY3

SAY2 0 0 L1U
k
1 ⊗ (Uk+1

2 , L1)

WY2 R1 Uk+1
2 ⊗ Uk+1

1 Uk
2 ⊗ L1U

k
1

NY3 0 Uk+1
2 ⊗R1U

k
1 Uk+1

1 ⊗ Uk+1
2 + Uk+1

2 ⊗ Uk+1
1

⎤⎥⎦,
[︂ NABY4

NABY4 Uk
1U

l
2 ⊗ U l

1U
k
2

]︂
;

in the final block we disallow (k, l) = (0, 0).

Corollary 6.2. The DA bimodules E2 ⊠N and N ⊠ E2 are isomorphic to each other.
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[OSz20] P. S. Ozsváth and Z. Szabó. Algebras with matchings and link Floer homology, 2020. https:

//arxiv.org/abs/2004.07309.

[Zar11] R. Zarev. Bordered Sutured Floer Homology. 2011. Thesis (Ph.D.)–Columbia University.

Department of Mathematics, University of Southern California, 3620 S. Vermont Ave.,

KAP 104, Los Angeles, CA 90089-2532

Email address: chan087@usc.edu

Department of Mathematics, North Carolina State University, 2108 SAS Hall, Raleigh,

NC 27695

Email address: ajmanion@ncsu.edu

https://arxiv.org/abs/1707.00597
https://arxiv.org/abs/2004.07309
https://arxiv.org/abs/2004.07309

	1. Introduction
	Organization
	Acknowledgments

	2. Bordered algebra
	2.1. DA bimodules
	2.2. The box tensor product
	2.3. Matrix notation
	2.4. Box tensor products in matrix notation

	3. Bordered HFK
	3.1. Algebras
	3.2. Bimodules

	4. Higher representations
	4.1. General setup
	4.2. Actions on bordered HFK algebras

	5. 1-morphism structure for P
	5.1. Commutativity with E1
	5.2. Commutativity with E2

	6. 1-morphism structure for N
	6.1. Commutativity with E1
	6.2. Commutativity with E2

	References

