COMPATIBILITY IN OZSVATH-SZABO’S BORDERED HFK VIA
HIGHER REPRESENTATIONS

WILLIAM CHANG AND ANDREW MANION

ABSTRACT. We equip the basic local crossing bimodules in Ozsvath—Szabd’s theory of bor-
dered knot Floer homology with the structure of 1-morphisms of 2-representations, categori-
fying the U,(gl(1|1)")-intertwining property of the corresponding maps between ordinary
representations. Besides yielding a new connection between bordered knot Floer homology
and higher representation theory in line with work of Rouquier and the second author, this
structure gives an algebraic reformulation of a “compatibility between summands” property
for Ozsvath—Szabd’s bimodules that is important when building their theory up from local
crossings to more global tangles and knots.
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2 WILLIAM CHANG AND ANDREW MANION
1. INTRODUCTION

Ozsvéth—Szabd’s theory [OSz18, OSz19b, OSz19a, 0Sz20] of bordered knot Floer homol-
ogy, or bordered HFK, has proven to be highly efficient for computations (see [OSz] for a
fast computer program based on the theory). It works by assigning certain dg algebras to
sets of n tangle endpoints (oriented up or down) and certain A., bimodules to tangles; one
recovers HFK for closed knots by taking appropriate tensor products of these bimodules.

In [Man19], the second author showed that the dg algebras of bordered HFK categorify
representations of the quantum supergroup U,(gl(1]|1)) and that the tangle bimodules cat-
egorify intertwining maps between these representations. While [Man19] did not consider
a categorified action of the quantum group on the bordered HFK algebras, such an action
(for Khovanov’s categorification U [Khol4] of the positive half U, (gl(1]1)*) = %) was
defined in [LM21], compatibly (via [LP20, MMW20]) with a more general family of higher
actions defined in [MR20].

Since Ozsvath—Szabd’s tangle bimodules categorify intertwining maps between represen-
tations, it is natural to ask whether the bimodules themselves intertwine the higher actions
of U on the bordered HFK algebras. Since a higher action of &/ on a dg algebra A amounts
to a dg bimodule & over A together with some extra data, one (roughly) asks whether tangle
bimodules X satisfy X ®4 & =2 £ ®4 X. A structured way to require such commutativity is
to equip X with the data of a 1-morphism between 2-representations of U.

The main result of this paper is that one can naturally equip Ozsvath—Szabd’s local cross-
ing bimodules with this 1-morphism structure.

Theorem 1.1. Ozsvdth-Szabd’s local bimodules P and N, for a positive and negative cross-
ing between two strands, can be equipped with the structure of 1-morphisms of 2-representations
over U, encoding the commutativity of P and N with the 2-action bimodule E.

In fact, the algebra over which P and N are defined has two natural 2-actions of U, and
we prove Theorem 1.1 for both 2-actions. Below we comment a bit more on the motivation
and potential applications for Theorem 1.1, as well as future directions for study.

Remark 1.2. Theorem 1.1 is an algebraic expression of an important “compatibility be-
tween summands” property of the bordered HFK bimodules. Indeed, like the general strands
algebras A(Z) of bordered Heegaard Floer homology, Ozsvath—Szabd’s bordered HFK alge-
bras have a direct sum decomposition indexed by Z (in Heegaard diagram terms this index
describes occupancy number, while representation-theoretically it encodes a gl(1|1) weight
space decomposition). The A, bimodules for tangles respect this decomposition, and there
is a certain compatibility between the bimodule summands for different k. In [OSz18], this
compatibility is encoded in a graph from which one can define all summands of the bimod-
ules. Because of how the 2-action bimodules £ interact with the index of the direct sum
decomposition, Theorem 1.1 is a more algebraic way to formulate this compatibility.

In [OSz18], this compatibility is the key ingredient in the “global extension” of the two-
strand crossing bimodules to bimodules, over larger algebras, for n strands with one crossing
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between two adjacent strands (this extension is necessary when using the theory of [0Sz18] to
compute HFK for knots). The global extension is one of the most technical parts of [0Sz18];
the main hoped-for application of the results of this paper is a more algebraic treatment of
the global extension, based on higher representation theory.

Remark 1.3. The 1-morphism structure of Theorem 1.1 can be interpreted as an instance of
an extra layer of the connection between higher representation theory and cornered Heegaard
Floer homology, beyond what was explored in [MR20]. This extra layer involves 3-manifolds,
not just 1- and 2-manifolds, and begins to relate to the parts of cornered Heegaard Floer
homology that use holomorphic disk counts and domains in Heegaard diagrams with corners.
Generalizing from Theorem 1.1, there should be a general family of Heegaard diagrams (with
the diagrams underlying the bordered HFK bimodules as special cases) whose bimodules
can be upgraded to 1-morphisms of 2-representations, and the data needed for this upgrade
should come from counting holomorphic disks whose domains have positive multiplicities at
the corners of the Heegaard diagram.

Remark 1.4. This paper is focused on the local two-strand aspects of bordered HFK, since
these are the elementary building blocks to which one wants to apply a global extension
procedure to obtain n-strand tangle invariants. One could also ask whether the globally-
extended n-strand tangle bimodules of bordered HFK give 1-morphisms of 2-representations
of U; we expect this to be true. Furthermore, the local bimodules considered here are
adapted to two strands pointing in the same direction (downwards, in the conventions of
[OSz18]). For strands with other orientations, one has a choice of more elaborate theories
from [0Sz18, OSz19b, OSz19a], some involving curved dg algebras. We expect that the
bimodules of these more elaborate theories also give 1-morphisms of 2-representations of U,
once (e.g.) 2-representations are appropriately defined on the curved dg algebras.

Remark 1.5. Since it follows from [LP20, MMW20] that the local Ozsvath-Szabé algebras
appearing in this paper are quasi-isomorphic to certain (larger) dg strands algebras A(Z),
it is natural to ask whether there are bimodules corresponding to P and A over the larger
algebras, and if so, whether these bimodules give 1-morphisms between the 2-representation
structures on A(Z) defined directly in [MR20]. The answer in both cases appears to be
“yes;” the authors of [MMW20] hope to address this question in work in preparation.

Remark 1.6. Along with £, there is another odd generator F' of U,(gl(1|1)); since we are
discussing actions of E here, it is natural to ask about F' as well. While the framework of
[MR20] is based on a categorification of U,(gl(1|1)") and fundamentally gives us E but not
F', one can categorify at least a relative F” of F' by taking homomorphisms of left A-modules
from the £ bimodule into A (as discussed e.g. in [LM21, Theorem 1.3] with slightly different
conventions, as well as in [MR20]). If we take £ to be projective on the left (“type DA”) as in
this paper, then the bimodule F’ := Hom 4 oy 1t (€, .A) will be projective on the right (“type
AD”), so since X is type DA and has higher A, actions on the right, it’s more natural to
look at the bimodules £ ® 4 X and X ® 4 £ than the bimodules 7/ ® 4 X and X ® 4 F.
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If we did define 7/ ® 4 — and — ® 4 F' appropriately, then we would expect adjunctions
in the homotopy category (€ ®4 —) 4 (F ®4 —) and (— @4 F') 4 (— ®4 ). Specifying
maps X @& - E®4 X and X @4 F — F' ®4 X would be equivalent, up to homotopy,
to specifying maps X @4 & -2 E®@ 4 X and E R4 X > X ®4E.

In our case, we will show that £ ®4 X and X ® 4 & are literally the same up to a renaming
of basis elements, so that neither direction is singled out and we have maps both ways giving
an isomorphism. Based on the above, after making the right definitions one would get a
map X ®4 F — F' ®4 X up to homotopy; since we only have an adjunction one way, it’s
not immediate that this map would be an isomorphism in the homotopy category, although
it seems likely that X ® 4 F' = F' ® 4 X is still true here. We will not investigate further,
though; work in preparation of the second author at the decategorified level suggests that in
some settings, but not the one under consideration, one should legitimately have actions of
both odd generators E and F' of gl(1|1), whereas here we only have E along with whatever
modifications we want to do to it algebraically.

Organization. In Section 2 we review algebraic definitions from bordered Heegaard Floer
homology, including a matrix-based notation from [Man20] that will be useful here. In Sec-
tion 3 we review what we need from Ozsvath-Szabd’s theory of bordered HFK. In Section 4
we review the relevant input from higher representation theory and define 2-actions of U on
the local bordered HFK algebras. In Section 5 we show that Theorem 1.1 holds for Ozsvath—
Szabd’s local positive-crossing bimodule P, and in Section 6 we do the same for the local
negative-crossing bimodule N

Acknowledgments. The second author would like to thank Zoltan Szabd for many useful
conversations over the years related to bordered HFK and the topics of this paper. A.M. is
partially supported by NSF grant DMS-2151786.

2. BORDERED ALGEBRA

2.1. DA bimodules. We will work with DA bimodules, as defined by Lipshitz—Ozsvath—
Thurston [LOT15, Section 2.2.4], over associative algebras with no differentials. We will
assume that these associative algebras A are defined over a field k of characteristic 2 and
come equipped with a finite collection of orthogonal idempotents {Ii,...,I,} such that
I +---+ 1, = 1. We will refer to the I; as distinguished idempotents.

Remark 2.1. An equivalent perspective is to view A as a k-linear category with objects
{L,...,I,}.

For such an algebra A, we will let Z4 denote the ring of idempotents of A, i.e. a finite
direct product of copies of k (one for each idempotent I;), viewed as a subalgebra of A.

We will also assume that A is equipped with two Z-gradings which we will call the intrinsic
and homological gradings; we let [1] denote an upward shift by 1 in the homological grading
(we use upward rather than downward shifts because, following the conventions of [LOT15,
0OSz18], we use differentials that decrease the homological grading by 1).
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T by -+ b1

a x’
FIGURE 1. A DA module operation graph showing a term a ® " of the action
of 8] on x ® by ® - -+ ® b;_1; this notation allows 7 = 1 in which case there are
no edges to the right of the vertical line from x to z’.

FIGURE 2. The DA bimodule relations in Definition 2.2.

Definition 2.2. Let A and B be graded associative algebras over a field k of characteristic
2. A DA bimodule over (A, B) is given by the data (X, (§})2,) where X is a Z & Z-graded
bimodule over (Z4,Z5) and, for i > 1,

ol X @ B]2) 5 Al @ X

(tensor products are over Z4 or Zg as appropriate) is a bidegree-preserving morphism of
bimodules over (Z4,Zg) such that the DA bimodule relations are satisfied, i.e. such that

D> (pa®idy) o (ida ®5)) 0 (6], @ idgei-1)
J1t+je=i+1

i—2
+ Z 51'1—1 © (idB®(j*1) ®,UB & idlg@(z@j,g))

j=1

=0

for all ¢« > 1, where pu4 and up are the multiplication operations on A and B.

We will often refer to (X, (6})32,) simply as X. We say that X is strictly unital if 63 (z, 1) =
l1®a for all 2 € X and 0} (x,by,...,b;—1) = 0 if ¢ > 2 and any b; is in the idempotent ring
I5.

If we have a k-basis for X and x, 2’ are basis elements with a ® 2’ appearing as a nonzero
term of 6} (@ b; @ -+ - ®b;—1) (where a € A and by, ...,b;_1 € B), we will sometimes depict
the situation using a “DA module operation graph” as in [LOT15, Definition 2.2.45]. See
Figure 1 for an example. In this notation, the DA bimodule relations are shown in Figure 2.
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F1GURE 3. The general pattern for the operation 5?’1 on X XY.

Remark 2.3. For all DA bimodules (X, (§})$;) considered in this paper, X will be finite-
dimensional over k, as well as left and right bounded in the sense of [LOT15, Definition
2.2.46].

Remark 2.4. If X is a DA bimodule over (A, B), then A ®z, X is an A,, bimodule over
(A, B) such that the left action of A4 has no higher A, terms and such that, as a left
A-module, X is a direct sum of projective modules A - I for distinguished idempotents I
of A (disregarding the differential). One can think of the definition of DA bimodule as a
convenient way of specifying and reasoning about such A,, bimodules.

2.2. The box tensor product. Let A, B, C be associative algebras as in Section 2.1 and let
X and Y be DA bimodules over (A, B) and (B, C) respectively. Assuming X is left bounded
or Y is right bounded, Lipshitz—Ozsvath-Thurston define a DA bimodule X XY in [LOT15,
Section 2.3.2].

Definition 2.5. As a bimodule over (Z4,Z¢), X K'Y is defined to be X ®z, Y. For ¢ > 1,
the DA bimodule operation d:"" on X K'Y is defined in terms of the operations 05! on X
and 6! on Y by

=" Y (5 @idy) o (idx ®idgeu o @6,
720 i1 4-+ij=1+75—1
o (idx ®idgsu-» @6, @id 4eu;-1)
o---0 (idy ®5Z’1 ® id @ (ipt-tij—s+1) )

In terms of DA module operation graphs, the general pattern for the operation (5? 1 on
X XY is shown in Figure 3.

Remark 2.6. By [LOT15, Proposition 2.3.10], if X and Y are both left bounded then so is
XKXY.

Remark 2.7. Assuming suitable boundedness, the box tensor product X XY is a convenient
way of working with the derived tensor product (A®z, X)®5(B®z,Y); indeed, by [LOT15,
Proposition 2.3.18] we have

A®z, (XKY)~(A®7r, X)®5(Bog,Y)

where ~ denotes homotopy equivalence of DA bimodules (see [LOT15, Section 2.2.4]).
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2.3. Matrix notation. We will describe DA bimodules using the matrix-based notation of
[Man20, Section 2.2]; we recall this notation here. When using this notation to describe a
DA bimodule over (A, B), it is assumed that B comes equipped with a choice of k-basis such
that:

e distinguished idempotents of B are basis elements;

e cach basis element b satisfies I-b- I’ = b for unique distinguished idempotents I of A
and I’ of B (called the left and right idempotents of b respectively) with I -b- I "= 0
whenever I, ] " are distinguished idempotents of A and B with I # I or I / #+ I,

e cach basis element of B is homogeneous with respect to the bigrading.

Definition 2.8. To specify a DA bimodule (X, (6})%2,) over (A, B) (finite-dimensional over
k), we specify two matrices, a primary matriz and a secondary matriz.

e The primary matrix is a set-valued matrix (each entry is a finite set with a Z @
Z-bidegree specified for each element) with columns indexed by the distinguished
idempotents of B and rows indexed by the distinguished idempotents of A. Given
such a matrix, the bimodule X over (Z4,Zg) is taken to have a k-basis given by the
union of the sets in each entry (with each basis element given its specified bidegree).
More specifically, the left action of Z4 and right action of Zz are fixed by saying that,
for distinguished idempotents I of A and I’ of B, the vector space I - X - I’ has a
basis given by the set in row I and column I’. For an element x of this set, we say
that I is the left idempotent of 2 and I’ is the right idempotent of x.

e The secondary matrix is a matrix whose entries are formal sums of expressions a
(for a € A) and a ® (b1,...,b;—1) (for a € A and each b; a basis element for B).
The sums are allowed to be infinite, but there should be finitely many terms of the
form a (without the ® symbol) and finitely many terms for each given sequence
(b1,...,b;_1). The rows and columns of the secondary matrix are each indexed by
the union of all entries of the primary matrix, in some fixed order. Given such a
matrix, the operations 6} on X are defined as follows for a basis element z of X (a
column label of the secondary matrix):

— 6{() is the sum of all elements a ® y where a is a term (without the ® symbol)
of a secondary matrix entry in column x and y is the row label of the entry
containing this term;

— for i > 1 and a sequence (by, ..., b;_1) of basis elements of B, §} (x @b ®- - -Qb;_1)
is the sum of all elements a ® y where a ® (b, ...,b;_1) is a term of a secondary
matrix entry in column z and y is the row label of the entry containing this
term.

An example of a DA bimodule specified by primary and secondary matrices can be found
in Definition 3.3 below. We use the following conventions:

Convention 2.9. If indices such as k or [ appear in entries of the secondary matrix, we take
an infinite sum over all kK > 0 or [ > 0 unless otherwise specified.
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Convention 2.10. When using matrix notation to specify a strictly unital DA bimodule,
the above rules would say that in each diagonal entry of the secondary matrix (corresponding
to an entry x of the primary matrix), there is a term I® 1" where I and I’ are the left and right
idempotents of x respectively (it should also be the case that no basis element b; appearing
in an entry a® (b, ..., b;_1) is a distinguished idempotent). However, we will omit the terms
I ® I' when we write the secondary matrix.

If the primary or secondary matrix has block form, we will often give each block separately.

Remark 2.11. One advantage of this matrix-based notation is that the DA bimodule rela-
tions can be checked using linear-algebraic manipulations. Indeed, to check the DA bimodule
relations, one forms two new matrices from the secondary matrix. The first matrix, which we
will call the “squared secondary matrix,” is obtained by multiplying the secondary matrix
by itself. When doing so, one will need to take products of secondary matrix entries; these
products are defined by

ea-da =da

ea-(d®@(b,....b_))=dax{,...,0_,)

o (a® (by,...,bi—1))-d =da® (by,...,bi_1)

o (a® (by,...,bi1)) - (@@ (V),.... 0 ) =da® ¥,....0_1,bi,... . bi1)
The second matrix, which we will call the “multiplication matrix,” is obtained by, for each b,
in an entry a® (by, ..., b;—1) and each pair of B-basis elements (b, b”) (neither a distinguished
idempotent in the strictly unital case) such that Cb; is a term of the basis expansion of 0"
for some nonzero element C' € k, adding the term Ca ® (by,...,bj_1,b',b",bj41,...,bi—1) to
the corresponding entry of the multiplication matrix.

Once these two matrices are formed, the DA bimodule relations amount to saying that

the squared secondary matrix and the multiplication matrix sum to zero.

2.4. Box tensor products in matrix notation. Suppose we have DA bimodules X over
(A, B) and Y over (B,C) as in Section 2.2. To specify X K'Y in matrix notation, one can do
the following manipulations:

e The primary matrix for X XY is the matrix product of the primary matrix for X
(on the left) and the primary matrix for Y (on the right). When multiplying two
entries of these primary matrices, one uses the Cartesian product of sets, and when
adding these products together, one uses the disjoint union.

e Let (z,y) and (2/,y') be two elements of the primary matrix for X X'Y. To obtain
the secondary matrix element in row (z’,4y’) and column (z,y), there are two cases
to consider:

— For entries a (with no ® symbol) in row 2’ and column z of the secondary matrix
for X, if y = ¢/ then add an entry a to the secondary matrix for X XY in row
(',y") and column (z,y). If y # ¢/, do not add such an entry.

— For entries a ® (by,...,b;_1) in row 2’ and column x of the secondary matrix for
X, look for all sequences (y = y1,9s,...,y; = y') of primary matrix entries for
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F1GURE 4. The quiver for B(2,1).
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Uy

Us
FIGURE 5. The quiver for B(2,2).

Y such that, for 1 < j <i—1, there is a term b® (¢}, . .. »cgﬁj—1) in row y;+1 and
column y; of the secondary matrix for Y such that C;b; is a term of the basis
expansion of b for some nonzero C; € k. For all such sequences (yi,...,y;) and
all such choices of terms b ® (¢, . .. aC’]ﬁjq)y add an entry

1 1 i—1 i—1
Cl--‘Ci,1a® (Clv"'vcmlflv"'vcl 7"'7cmz‘71*1)

to the secondary matrix of X XY in row (z’,¢') and column (z,y).

3. BORDERED HFK
3
3.1. Algebras. We now review Ozsvath—Szabd’s algebra B(2) = EBB(Z/{:) from [OSz18,
k=0

Section 3.2], which is an algebra over Fy.
Definition 3.1. The algebra B(2,0) is Fo. The algebra B(2,1) is the path algebra of the
quiver shown in Figure 4 modulo the relations [R;,U;| =0, [L;,U;] =0, R,L; = U, L;R; =
U;, RiRy =0, LyLy = 0, Uy = 0 at the leftmost node, and U; = 0 at the rightmost node.

The algebra B(2, 2) is the path algebra of the quiver shown in Figure 5 modulo the relations
[R;U;] =0, [L;,U;] =0, R,L; = U;, and L;R; = U;. The algebra B(2,3) is Fy[U;, Us]. We set

B(2) = és@, k).

Our definition matches Ozsvath-Szabd’s by [MMW21, Theorem 1.1]; also see [OSzl18,
Figure 10] for B(2,1), although in this figure Ozsvath-Szabé leave out some of the relations.
We define an intrinsic grading on B(2) by setting deg(R;) = deg(L;) = 1 and deg(U;) = 2;
this grading is twice Ozsvath—Szabd’s single Alexander grading (the doubling is related to
the expression t = ¢* when obtaining the Alexander polynomial from representations of
U,(gl(1]1))). We define the homological grading to be identically zero on the generators of
B(2).

The algebras B(2,1) and B(2,2) each have three distinguished idempotents given by the
length-zero paths at each node. Ordering the nodes from left to right and following Ozsvath—
Szabd’s notation, for B(2,1) we can call these idempotents Iy, I, and I. For B(2,2) we
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can call them Iy, lgo, and I15. The unique nonzero element of B(2,0) is its distinguished
idempotent and we can call it I; for B(2,3) the distinguished idempotent is 1 € Fy[U7, Uy]
and we can call it Iyio.

To avoid subscripts as much as possible, we will relabel these idempotents as follows:

D=1y,
A=1 B:=15L, C:=1I,
AB =1y, AC :=1Iypn, BC:= I,
ABC = Iys.
To clarify the conventions: in Figure 4 the left and right idempotents of R; are A and
B respectively, while in Figure 5 the left and right idempotents of R; are AC and BC
respectively.
The following proposition can be deduced from the definition of B(2).

Proposition 3.2. A Fy-basis for B(2,1) is given by
{UL(A), UL(B), U3(B), U3(C), RiUY, LiUY, ReUy, LUy}
(k runs over all integers > 0). A Fo-basis for B(2,2) is given by
{UFUL(AB), UFUL(AC), UFULBC), RUFUL, L UFUL, R, UFUL, L,UFUY)
(k and I run over all integers > 0).

The algebra B(2,0) = Fy has a unique Fy-basis, and for B(2,3) we use the basis of
monomials U{“Ué for k,1 > 0.

3.2. Bimodules. Next we review, in matrix notation, Ozsvath—Szabd’s DA bimodules P
and N over B(2). One thinks of these bimodules as being associated to two-strand tan-
gles consisting of a single positive crossing and a single negative crossing respectively and
containing the minimal amount of data necessary to build the bimodules for n-strand single-
crossing tangles. They can be obtained by counting holomorphic disks in the Heegaard
diagrams shown in Section 3.2.3 below.

3.2.1. The bimodule P. This bimodule is defined in [OSz18, Section 5.1]; here we translate
Ozsvath—Szabd’s definition into matrix notation.

Definition 3.3. The primary matrix for P has rows and columns indexed by the distin-

guished idempotents
g,A,B,C,AB, AC, BC, ABC

of B(2). The matrix has block-diagonal form with blocks specified by the following matrices:

%)

o | o |,
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A B c
A {ASA} %] %]
B {BWA} {BNB} {BEC} )
c %) %) {cSc}
AB AC BC
AB | {aBNap} {aBEac} g
AC %) {acSac} %) ;
BC %) {BcWac} {BcNpc}
ABC

ABC [ {aBcNapc} ]

Below we will abuse notation slightly and omit the braces {}, writing e.g. 45,4 instead of
{4Sa}. The secondary matrix for P has a corresponding block-diagonal form; the blocks are

oSy
o [0]
ASA BWa BNB BEc cSc
ASaA 0 Ly 0 0 0 ]
sWa 0 Us™ @ Uit Ustt @ LUF 0 LoUl @ (Ly, LiUF)
sNs | RiUF® (R, UMY U@ RUF UMl oUM 4+ UM @ U UFe LUF  L,UF® (L, UF™)
sEc | RiUF ® (Ry, RyUF) 0 Uit @ RyU¥ Uft @ Uyt 0
oSc 0 0 0 Ry 0 |
aBNap aBEac acSac BcWac BoNBe

a5Nas UlUF @ UFUL Uk @ LoUp %1 LLoUF @ LoUFY Ly LUWUF @ Ly LyURUL T
apEac UHU¥ @ RUFUL Uttt @ Uft! %9 LiLUF@ UMY LiLUWUS @ L UFUL
acSac 0 R 0 Ly 0
BoWac RyRULUS @ RyUFUL RoR\UF @ UM . UF @ Uk UM @ LUMUL
seNpe | RoR\ULUY @ RyR\UFUL RyR\UF @ RUST Uy @ RUF UlUY @ UFUL

aBcNagc

aBcNaBc U{Uf@UfUé ]

The entries x; for 1 < i < 4 are specified below; also, in any entry of the form UlUY ® UfUL,
we disallow (k,l) = (0,0) to match Convention 2.10. The entry #; in column s4cSac and
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row 2spNap is:

LUUR @ (UMY LyUL)  (0<n < t)

+ LyUIUY @ (RUT, LiLyUY) (0 <n < t)
+ LyULUY @ (LU UL (0<n < t)
+ LyULUY @ (LoUS, UMY (1<t < n)
+ LyULUY @ (US, LU (1<t <n)
+ LyUIUY @ (RUL, LiLU) (1<t < n)

+ LoU3' @ (Lo, UP™) (0 < n)
The entry %o in column 4cSac and row g F ¢ is:
LUIUy @ (UM U8 (0<n<t)
+ LoUIUY @ (RUT, L UL (0 < n < t)
+ LyULUY @ (LU, RyUS™) (0<n < 1)
+ LUIUy @ (UL, UMY (1<t <n)
+ LoUIUY @ (RyUS, LU (1<t < n)
+ LyUUy @ (LU RUTTY) (1<t <)
The entry *3 in column 4cSac and row gcWye is:
RUIUY @ (U U (0<t<n)
+ RUIUy @ (LU, RyUT) (0 <t < n)
+ RUIUY @ (RUST, LU (0<t <n)
+ RUIUY @ (UM, USY (1 <n<t)
+ RUIUY @ (LU, RyUS) (1 <n<t)
+ RUIUY @ (RUP Y LUSY) (1<n<t)
The entry *4 in column 4cSac and row gcNpc is:
RULUY @ (U RUT) (0<t <n)
+ RUUY ® (LoUL, RyR U (o <t<n)
+ RUUS @ (RU,™,U7) (0<t<mn)
+ RUIUy @ (RyUT, UL (1 <)
(1
)

IN I/\

+ R UUy @ (U7, RiUS™)
+ RUIUS @ (LU, Ry Ry U
+ RiUF @ (R, USY) (0 < 1)

n <t)
(1<n<t)
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3.2.2. The bimodule N'. The bimodule N is defined in [0Sz18, Section 5.5] using a symmetry
relationship with P. Explicitly, A/ has the same primary matrix as P. The blocks of the
secondary matrix of N are

oSy
0]
ASA BWa BNB BEc cSc
a4 | 0 0 LUF @ (US L) LUF @ (LU%, L) 0
sWa | Ry Ukt @ Ui+t Uk @ LUF 0 0
sNg | 0 Usle@ RiUF UsP' UM + UMM @ U™ UFM @ LyUS 0
BEc 0 0 Uf@RQUQk U{C—H ®U2k+1 Loy
0 RUY® (RUF, Ry) RoUF @ (UFY, Ry) 0 0
cSc 2Ug 1U1, 1 2Ug 1 H 4w
AaBNaB aBEac acSac BcWac BcNBe
ABNaB VLU @ UFUS UMU @ LyUFUL, 0 LiLULUS @ LUFUS L LULUS @ Ly LyURUS
anBac Ut ® RUS Uit @ Us+t L, LiLUF @ USH Ly LU @ LUS™
acSac *,1 *,2 0 *gi *il
BcWac RgRlUZk X RQUlk_H RleUQA ® U{H—l R1 U2k+1 ® U{H—l Uzk ® Ll[]{C
seNpe | RoR\UNUF @ RyRUFUL RyRULUS @ R UFUL 0 UlUM @ RUFU UlUS @ UFUL
aBcNaBc

aBcNage [ U{USC@U{CUé ]

where in any entry of the specific form UlUY @ UFUL we disallow (k,1) = (0,0) to match
Convention 2.10. The entry %] in column spNap and row a4cSac is:

RoULUSY @ (RyUL, UMY (0 < m < t)

+ RUIUY @ (RyRUL, LiUT) (0<n<t)
+ RyULUy @ (UL, RUMY) (0 < n < 1)
+ RyUUy @ (UM RyUL) (1<t < n)
+ RyULUy @ (RyUMH UL (1<t < n)
+ RUIUD @ (RyRUT, L1 UL (1<t <)
+ RyUy @ (UM Ry) (0 < n)
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The entry *} in column gpF ¢ and row 4oSac is:
RyUIUY @ (UL, U (0<n<t)
RUIU? @ (RUL, LU (0 <n <t)
RoULUS @ (LU RyUMY) (0 << 1)
RUIUY @ (UM UL (1<t <n)
RUNUZ @ (RUT, LUY) (1 <t<n)
RyUIUY @ (LU RyUE™) (1<t < n)

The entry *; in column pcWac and row a4cSac is:

LUUY @ (UM, USY (0<t <n)
LUUY @ (LyUMRLULY) (0 <t <n)
LUUY @ (RIUMY, LUK (0<t <n)
LUIUy @ (UK U (1<n<t)
L UIUY @ (LU, RyUT) (1 < <t)
LUIUy @ (RUST L) (1<n<t)

The entry *) in column pcNpe and row 4oSac is:

LUUy @ (LU, USY)  (0<t < n)
LUUY ® (L LyUM, RyUY) (0 <t < n)
LUUy @ (U, LUS)  (0<t <n)
LUUy @ (US LUY) (1<n<t)
LUUy @ (LUS UY) (1<n<t)
L UUY @ (LiLyUs, RyUT) (1 <n<t)

LUl® (UK L) (0<t

~—

The starred terms in row 40S4c of middle block of the secondary matrix for N, as well
as in the column 4cS4c of the middle block of the secondary matrix for P, encode the A,
terms of the right algebra actions on (the middle summands of) the bimodules. See [LOT15,
Section 2.2.4] for more context on these A, structures in general.

The symmetry relationship between P and N described in [0Sz18, Section 5.5] can be
summarized by saying the secondary matrix of A/ is obtained from that of P by performing
the following operations:

e Take the transpose of the secondary matrix of P.
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/)

i"

F1GURE 6. The bordered sutured Heegaard diagram for P.

W

Ui
A\ﬁ

N
Bk

FIGURE 7. The bordered sutured Heegaard diagram for N.

e In each entry, replace L; with R; and vice-versa, while reversing the order of multi-
plication when relevant (so e.g. L;Ls becomes RoRy).
e For any entry a ® (by, bs), reverse the order of b; and b,.

3.2.3. Heegaard diagram origins. We comment briefly here on the Heegaard diagram origins
of the DA bimodules P and N. Roughly, they can be thought of as DA bimodules associated
to the bordered sutured Heegaard diagrams shown in Figure 6 and Figure 7 respectively. A
detailed study of the relationship of the algebraically defined bimodules P and N to the
holomorphic geometry associated with these diagrams can be found in [OSz19a], although
in that paper Ozsvath—-Szab6 do not use the language of bordered sutured Heegaard Floer
homology.

Remark 3.4. The diagrams in Figure 6 and Figure 7 do not satisfy all the hypotheses nec-
essary to be covered by Lipshitz—Ozsvath-Thurston’s results in [LOT15] or Zarev’s results
in [Zarll]; Ozsvath—Szabé show in [OSz19a] that they can still be analyzed using a gener-
alization of the analytic setup of bordered or bordered sutured Heegaard Floer homology.
However, a more literal generalization of these theories would yield bimodules over the larger
dg algebras of [LP20, MMW20] rather than over the associative algebra B(2). The second
author, with Marengon and Willis, hope to address this difference in future work, defining
DA bimodules over the larger dg algebras and relating them to P and N.
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4. HIGHER REPRESENTATIONS

4.1. General setup. We now briefly review how higher representation theory interacts with
bordered Heegaard Floer homology, as discussed in more generality in [MR20].

4.1.1. Monoidal category. The following differential monoidal category U was defined in
[Khol4], and 2-actions of U are a main subject of [MR20] (see also [DM14, DLM19)]).

Definition 4.1. Let U denote the strict differential monoidal category with objects generated
under ® by a single object e and with morphisms generated under ® and composition by
an endomorphism 7 of e ® e, subject to the relations 72 = 0 and

(ide ®7) o (1 ®id,) 0 (ide ®7) = (T ® id,) ® (ide ®T) ® (T ® id,),
and with differential determined by d(7) = id,ge.

Remark 4.2. A grading on U is defined in [Khol4], making it into a dg category. Here we
will not need to work with this grading; indeed, in the 2-actions of U we consider below, 7
will act as zero.

The endomorphism algebra in U of e®™ is the nilCoxeter dg algebra denoted by 91, in
[DM14].

4.1.2. 2-representations. We will be especially concerned with 2-representations of U on
associative algebras in the setting of DA bimodules; we give a concrete definition of this
notion below.

Definition 4.3. Let A be an associative algebra (we make the same assumptions on A as in
Section 2.1). A (DA bimodule) 2-representation of U on A is the data of a DA bimodule £
over A and a (typically non-closed) DA bimodule morphism 7 from EXE to itself satisfying
72 =0,

(idg X7) o (1 Kidg) o (ide M7) = (7 Widg) o (ide X7) o (7 K idg),
and d(7) = 1. We also assume that £ is left bounded in the sense of [LOT15, Definition
2.2.46].

We will write the above data as (A, &, ).

Remark 4.4. The definitions of DA bimodule morphisms, their tensor products, and their
differentials can be found in [LOT15, Section 2.2.4 and Section 2.3.2], but we will refrain
from spelling out these definitions here because in the examples we will consider, £ X & will
be the zero DA bimodule and 7 will be the zero morphism.

4.1.3. 1-morphisms of 2-representations. We will also work with a DA bimodule version of
1-morphisms between 2-representations of U.

Definition 4.5. Let (A, €&, 7) and (A, &', 7') be (DA bimodule) 2-representations of U on
associative algebras A and A’. A (DA bimodule) 1-morphism of 2-representations from
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LS

FIGURE 8. The arc diagram Z such that A(Z) is quasi-isomorphic to B(2);
the 2-to-1 matching is indicated by the red arcs, and by symmetry one may
take any orientation on the circles and intervals.

(A, E,7) to (A, &, 7') consists of a left bounded DA bimodule X over (A’, A) together with
a homotopy equivalence
a: XKE - ERX,

satisfying
(7" Kidyx) o (idgr ) o (a Kidg) = (ider Kev) o (e K idg) o (idx X7)
as morphisms from X IEK E to E'KE X X.

Remark 4.6. We will not elaborate on the definition of homotopy equivalence of DA bi-
modules here (it can be found in [LOT15, Section 2.2.4]); in this paper the homotopy equiv-
alences a will be isomorphisms given by bijections between primary matrix entries such that
the corresponding secondary matrices agree.

4.2. Actions on bordered HFK algebras. In [MR20], 2-representations of U are defined
on the algebras A(Z) appearing in bordered sutured Heegaard Floer homology. Here Z
denotes an arc diagram, i.e. a finite collection of oriented intervals and circles equipped with
a 2-to-1 matching of finitely many points in the interiors of the intervals and circles, and
there is a 2-representation of & on A(Z) for each interval in Z.

The algebra B(2) was shown in [MMW20, LP20] to be quasi-isomorphic to A(Z) where
Z is the arc diagram shown in Figure 8. Since Z has two intervals, we should expect
two 2-actions of U on B(2); we define these 2-actions below. See [LM21] for a related 2-
representation of U on an n-strand Ozsvath—-Szabé algebra from [0Sz18]. In more detail, we
will define DA bimodules £ and & over B(2); these bimodules will satisfy & X & = 0, so
that (A, &;,0) is a 2-representation of U.

Remark 4.7. The arc diagram shown in Figure 8 can also be seen on the front and back
edges of the Heegaard diagrams in Figure 6 and Figure 7, with the red arcs in Figure 8
determined by the matching pattern of the red arcs in the Heegaard diagrams.

Definition 4.8. The primary matrix for & has block form with the following blocks (we
write e.g. X7 for the singleton set {X;}):

AB AC BC ABC

A B C A g g o AB 6]
®|:X1®@],B Xs @ O |, 4AC (%}
c g X3 < BC | Xy
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The secondary matrix for £ has a corresponding block form with blocks

X1
X [ 0 },
X2 XS
X, | UMt @ UM 4 UM @ UM LUF @ LyUY
Xs RyU¥ @ RyU¥ Ust @ ustt |
Xy

v [ vttie utyy |
in the final block we disallow (k,l) = (0,0) to match Convention 2.10.

Definition 4.9. The primary matrix for & has block form with the following blocks (again
we write e.g. Y for the singleton set {Y1}):

AB AC BC ABC

A B C Al @ Y, o AB Y

@ [@ 1] Yi:|,B g g Y; |, AC 1%
C g g o BC (%)

The secondary matrix for & has a corresponding block form with blocks

Y1

Y [ 0 ],
Yo Y3
v, | UMle Ukt LU ® LiU¥
vs | RiUF @ RUF U @ U+ U5 @ US|

Yy
v | UFUL 0 ULUL |
in the final block we disallow (k,[) = (0,0) to match Convention 2.10.
By multiplying the primary matrix for & by itself (i = 1,2), one can see that & X &; has

a primary matrix with each entry the empty set; in other words, & K &; is zero as claimed
above.

5. 1-MORPHISM STRUCTURE FOR P

5.1. Commutativity with &;.

5.1.1. The bimodule & X P. We give a matrix description for & X P following Section 2.4.
To get the primary matrix for & X P, we multiply the primary matrices for & and P. We
can do this block-by-block, so the primary matrix for & X P has block form with blocks
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given by
A B C
A B C Al Sy @ © A B C
@[Xlzz}-B W N E |=0]| X8 o o],
C g o SC
AB AC BC AB AC BC AB AC  BC
A o O o AB | Nag E @ A o) o) %)
B| Xo @ @ |- ac o} S o} =B | XoNasg XoFE @ |,
c g X3 O BC @ W Npge c 1%} X3 X o
ABC ABC
AB 6] ABC AB %]
AC 1%} - ABC [ N } = AC (%}
BC | Xy BCc | XyN

In these matrices, we indicate idempotents only when necessary to distinguish primary matrix
entries in the same block (so, for example, in the block with rows and columns A, B, C, we
distinguish between two types of S generators, but the only N generator in this block is
pNp so we omit the idempotents and just write V).

The secondary matrix for & X P also has block form with blocks given by

X1S¢
X1S¢ |: 0 :| ,
XaNap XoF X3S
XoNap | UM QUM f UM @ U Uk @ LyUF LU @ (Ly, UM
XoF UM @ RyUF Uttt @ U+t 0 :
X8 0 Ry 0
X4 N

Y

x| UUE @ UFUL ]
in the final block we disallow (k,l) = (0,0). An explanation for the terms in the secondary
matrix is given in Figure 9, which uses the operation graph depictions of Figure 3.

5.1.2. The bimodule PX &,. Similarly, we give a matrix description for PX ;. The primary
matrix has block form with blocks

o] A B C A B C

5] [x o o)=e[s% o o],
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Xy Nap U! Xy Nap UST

X, E LU} X S Ly Ut
U§+l U{c+1 U{g L2U2k
k+1
U™ Xy Nap U1k+1X Nagp Ulk X5 Nup L2U§ Xs Nap
Xs  Nap RyUk X, B Uyt
U{@+1 U{H—l
Uttt x, E urttx, E
X9 E

Ry

¥

Ry X3 S

F1GURE 9. Operation graphs for the terms in the secondary matrix of & X P.

A B C AB AC BC AB AC  BC
A Sa2 @ O A g g 9 A %) (%) %]
| W N FEF |-B| Xy @ @ |=5BB| NXy EX3 9 |,
c| @ @ Sc c| 9 X3 O c g ScX3 ©
AB AC  BC ABC ABC
AB | Nayp E © AB o) AB o)
AC g S o - AC %] = AC ]
BC g W Npge BC | Xy BC | NpcXy

The secondary matrix for P X & also has block form with blocks

SX1

SX1 [ 0 } ,
NX, EX3 ScX3
Nx, | UM @ U 1 UM @ UMY UF @ LyUF LUk @ (Lo, UFY)
EX; UM @ RyUF Uittt @ US™! 0 :
ScXs 0 RQ 0
NpcXa

Nooxs | UNUE @ URUL |

I

in the final block we disallow (k,l) = (0,0). An explanation for the terms in the secondary
matrix is given in Figure 10.
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N Xo U ON Xy Ut E X3 LUk So Xz Ly UM
o+ ot LUk 2
Uk
Uyt N X, Ukt N X, Uk N X, LyUF N X,
N Xy RyU¥ E X; Uyt
RyU¥ Uyt
Ut E X UMY E X
E X
Ry Sc¢ X3

F1GURE 10. Operation graphs for the terms in the secondary matrix of P X &;.

Corollary 5.1. The DA bimodules £, X P and P X &, are isomorphic to each other.

Proof. The primary and secondary matrices for & X P and P K &; agree up to a relabeling
of primary matrix entries. U

5.2. Commutativity with &,.

5.2.1. The bimodule £ X P. Next we give a matrix description of & X P. The primary
matrix has block form with blocks

A B C
A B C Al S4 9 < A B o}
g[@@m}-B W N E | =0 @@Ylsc],
c| @ 9 Sc
AB AC BC AB AC  BC AB  AC BC
Al © Y, © AB | Nap EF @ Al @ Y58 1]
B| @ @ Y3 |- ac g S o =B | @ YsW Y3Npc |,
c| @9 O O BC o W Npge c| @ 1%} [}
ABC ABC
AB Y, ABC AB | YN
AC 1% - ABC [ N }: AC (%}

BC (%) BC %]
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The secondary matrix for & X P also has block form with blocks

Y1Se
YiSe [ 0 ],
Va8 YaW YsNpc
Yo S O Ll O
k+1 k+1 k+1
YaW 0 U, @ Ut Uy @ LU ,

YaNge | RiUF @ (R, US™Y Uk RUF U@ UM + UM @ UM

YiN

nN[ww®ww;
in the final block we disallow (k, 1) = (0,0). One can draw operation graphs for the secondary
matrix entries as we did above in Figures 9 and 10, but we will omit the graphs here.

5.2.2. The bimodule P X &. The primary matrix for P X & has block form with blocks

1%} A B C A B C
@[S]-@[@ 1) Yl]zz[g g SY; |,

A B C AB AC BC AB  AC BC
Al Sa © © Al 9 Yy, o Al @ Sy, ©
| W N FEF |-B| @ @ Y3 |=8B| @ WYy NY; |,
C g o Sc C g g g C 0] 10} 0]
AB AC  BC ABC ABC

AB | Nup FEF @ AB Y, AB | NagpYa

AC g S o - AC %) = AC ]

BC g W Npge BC (%} BC 1%}

The secondary matrix for P X &, also has block form with blocks

SY1
SY; [ 0 ],
SaYa WY NYs3
SaYo 0 L1 0
WY 0 Ustt @ Ut Ustt @ L UF :

NYs | RiUF @ (R, US™Y Ube RUF UM @ UIT + UM @ U
NapYs
MM[W%®WW;
in the final block we disallow (k,l) = (0,0). As with & X P, we will omit drawing the
operation graphs.
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Corollary 5.2. The DA bimodules Es X P and P X & are isomorphic to each other.

Proof. The primary and secondary matrices for & X P and P K & agree up to a relabeling
of primary matrix entries. U

6. 1-MORPHISM STRUCTURE FOR N

Here we summarize, with fewer details, the computations for N that are analogous to
those for P in Section 5.

6.1. Commutativity with &;.

6.1.1. The bimodule & K N. The primary matrix for & XN has block form with the same
blocks as for & X P, namely

AB AC  BC ABC
A B c A 1] 6] (%] AB %]

(%] g g Xlsc 3 B XQNAB X2E %) 5 AC %)
c 1% X3X o BC | XyN

The secondary matrix for & XN has block form with blocks given by

X1S¢
X1S¢ |: O i| 5
XoNaB XoF X3S
XoNap | Uy @ U 4 UM @ USTY UM @ LyUF 0
XE UF @ RyU¥ Ul @ Uit L, |,
X3S RoUF @ (UFF Ry) 0 0
XyN

x,N | UlUY @ UFUJ ];
in the final block we disallow (k, ) = (0,0).

6.1.2. The bimodule N ® &;. The primary matrix for A’ X & has block form with the same
blocks as for P X &, namely

AB AC BC ABC

A B C A %) %] %) AB %)

. [SX1 o @], 5| NX, EXs @ |, ac| o
e, g ScX3 @ BC | NpcXy

The secondary matrix for N'X &; has block form with blocks given by

SXy

sa | 0],
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NXo EX3 Sc X3
NX, | UST U L UM @ UMY UM @ LU 0
EX Uk @ RyU¥ Ut @ Ust Ly |,
SoXs RyU¥ @ (UM Ry) 0 0
NpcXa

NpeX4 U{Ué“ ® U{“Ué ;
in the final block we disallow (k, 1) = (0,0).

Corollary 6.1. The DA bimodules £, XN and N K &, are isomorphic to each other.

6.2. Commutativity with &,.

6.2.1. The bimodule £, XN . The primary matrix for & KN has block form with the same
blocks as for & X P, namely

AB AC BC ABC

A B c Al @ Y58 %) AB | YuN

%} g g Y180 s B %) }/:),W )/SNBC s AC %)
c %] 6] 1G] BC 6]

The secondary matrix for £ XN has block form with blocks given by

Ylsc
Y1So [ 0 ],
Y2 S YsW Y3Npc
Ya§ 0 0 LUF @ (U L))
vsw | Ry UM'oUkt! US @ LiUf ,

YaNge | 0 UMl RUF UMl @ UM 4 UM @ UM

YaN
ViN [ UrUL @ ULUE |
in the final block we disallow (k,l) = (0,0).

6.2.2. The bimodule N ™ &E,. The primary matrix for A’ X &, has block form with the same
blocks as for P X &, namely

AB AC BC ABC
A B C Al @ SuY, © AB | NugYsy
s |l o o SYl], 5| @ WY, NYs |, ac &

C %) (%) %) BC %)
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The secondary matrix for N'X & has block form with blocks given by

SYq
SYa [ 0 ],
SaYa WYs NY3
s.va |0 0 LUF @ (UF Ly)
wy, | Ry UMl Uk! Uy & LUF ;

Nys | 0 US'eo RUF U@ U + UM @ UM

NaBYs

NapYi [U{“Uﬁ@U{UQ’“ :

in the final block we disallow (k,1) = (0,0).

Corollary 6.2. The DA bimodules Es XN and N X &y are isomorphic to each other.
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[LM21]
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[Man19)]
[Man20]
[MMW20]
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[MR20]
[0S7]
[0S218]

[0Sz19a]
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