EVALUATIONS OF LINK POLYNOMIALS AND RECENT
CONSTRUCTIONS IN HEEGAARD FLOER THEORY

LARRY GU AND ANDREW MANION

ABSTRACT. Using a definition of Euler characteristic for fractionally-graded complexes
based on roots of unity, we show that the Euler characteristics of Dowlin’s “sl(n)-like”
Heegaard Floer knot invariants HFK, recover both Alexander polynomial evaluations and
sl(n) polynomial evaluations at certain roots of unity for links in S3. We show that the
equality of these evaluations can be viewed as the decategorified content of the conjectured
spectral sequences relating s((n) homology and HFK,,.

1. INTRODUCTION

Ozsvéth—Szabd’s theory of Heegaard Floer homology [OSz04b] is a flexible set of con-
structions yielding many types of invariants for low-dimensional manifolds. Even for knots
and links in S3, the ideas of Heegaard Floer homology can be applied in several ways to
produce a family of related invariants known collectively as knot Floer homology or HFK

[OSz04a, Ras03]. The simplest variant, OFK as applied to (single-component) knots in S,

assigns to a knot K a bigraded vector space HFK (K) (say over Q) whose graded Euler
characteristic is the Alexander polynomial Ag(t). Here we focus on more recent variants

HFK, (which we will call HFK,) and HFK ,, due to Dowlin [Dow18a], with relationships
to Khovanov homology and sl(n) homology more generally.

Reduced and unreduced s[(n) homology [KR08a], like HFK , also assign bigraded vector
spaces to knots K. Their graded Euler characteristics are the reduced and unreduced sl(n)
polynomials of K. The sl(n) polynomials and the Alexander polynomial are all specializa-
tions of the two-variable HOMFLY-PT polynomial of K, leading to various relationships
between the sl(n) and Alexander polynomials at special values.

For the homology theories at the categorified level, one can often think of these relation-
ships between knot polynomial evaluations as being categorified by certain spectral sequences
that are known or conjectured to exist. For instance, the appearance of the s[(n) polynomial
as an evaluation of the HOMFLY-PT polynomial is categorified by Rasmussen’s spectral se-
quences [Ras15] from triply graded HOMFLY-PT homology [KRO08b] to sl(n) homology; the
appearance of the Alexander polynomial as a HOMFLY-PT evaluation should be categorified
by the conjectured spectral sequence from HOMFLY-PT homology to HFK [DGRO6].

In general, given some construction or conjecture in the realm of sl(n) homology or HFK,
it is natural to ask “what does it categorify, if anything?”; in other words, “what is its decate-
gorified content?”. Often this is something simpler than what one started with; for example,
the identities relating s[(n) polynomials and Alexander polynomials with the HOMFLY-PT
polynomial are simpler than the known and conjectured spectral sequences from HOMFLY-
PT homology to sl(n) homology and HFK. Investigating the decategorified level can be an
easy way to gain valuable information about the structure one expects at the categorified

level.
1
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For this reason, it is natural to ask about the decategorified content of Dowlin’s conjectured
spectral sequences [Dow18a, Conjecture 1.6] from reduced and unreduced sl(n) homology to
HFK (generalizing Rasmussen’s conjecture for sl(2), proved by Dowlin in [Dow18c]|). The
specific variants of HFK appearing in the conjectured spectral sequences are Dowlin’s singly-
graded variants HFK, and HFK, for links (the first of these agrees with a grading collapse

of HFK when applied to knots).

One complication is that as defined, HFK, and HFK, are the homology of complexes
whose differentials increase the single grading gr,, by n. The usual Euler characteristic for-
mula, applied to such a complex, will not always be homotopy invariant. Instead, we divide
the grading on HFK, and HFK, by n, producing %Z—graded complexes whose differentials
increase the grading by one. We introduce a natural generalization of the Euler character-
istic to this setting (based on roots of unity and admitting an interpretation in terms of
Grothendieck groups of triangulated categories); while it is plausible that our definition has
appeared previously in the literature, we have not seen it elsewhere.

Theorem 1.1. Let L be an (-component link in S® and let n > 2. The Euler characteristic
of £2-graded HFK (L), in our sense, equals ™=/ A ()2 _o—wim where Ar(t) is the
symmetric single-variable Alexander polynomial of L (a Laurent polynomial in t1/2), and
the Euler characteristic of HFK (L) is zero. For n = 1, the Euler characteristics of both
HFK (L) and HFK (L) are 1 for all links L.

Theorem 1.1 is new even for knots (¢ = 1), although the proof is relatively straightforward
in this case (see Remark 6.5); when ¢ > 1, a more involved spectral-sequence argument is
required.

We introduce grading-modified versions W;(L) and HFK! (L) of Dowlin’s invariants
such that the Euler characteristic of HFK (L) equals Ay (t)|;1/2—_i/a. These n-dependent

invariants are related to bigraded versions W/(L) and HFK'(L) categorifying A (t) and
zero respectively.!

We propose HFK (L) and HFK' (L) as the E. pages of Dowlin’s conjectured spectral
sequences, and support our proposal with Euler characteristic evidence. The Fy pages of
these conjectured spectral sequences should be reduced and unreduced sl(n) homology with
the bigrading collapsed to a single grading and divided by n as above. By analogy with
HFK ,, we will refer? to the single collapsed grading as gr, and its quotient by n as En,
Theorem 1.2. Let L be a link in S®. The Euler characteristic of the g%”-gmded reduced
sl(n) homology of L, in our sense, equals the reduced sl(n) polynomial of L evaluated at
q = €™™. The Euler characteristic of the En_graded unreduced sl(n) homology of L equals
the unreduced sl(n) polynomial of L evaluated at q = e™/™,

As with Theorem 1.1 in the case of knots, Theorem 1.2 is new, although the proof is
straightforward given our definition of fractionally-graded Euler characteristic and known
results about the bigraded Euler characteristic of s[(n) homology.

'From the representation-theoretic perspective, W/(L) categorifies the U,(gl(1]1)) invariant of a link
with one component cut open to form a (1,1)-tangle, while HFK'(L) categorifies the U,(gl(1|1)) invariant
of a closed link which is zero.

2This usage of gr,, conflicts with the notation in [Ras15], where gr,, is used for what we call the quantum
grading on sl(n) homology (itself related in an n-dependent way to the quantum and horizontal gradings on
HOMFLY-PT homology; see [Ras15]).
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For n > 2 the polynomial evaluations appearing in Theorem 1.2 equal Ap(t)|/2—_ri/n
and zero respectively; indeed, in the reduced case both evaluations are equal to Py (—1,e™/™)
where Py (a, q) is the reduced HOMFLY-PT polynomial of L, and similarly in the unreduced
case. When n = 1 both evaluations are equal to 1. As we discuss below, we can view Dowlin’s
conjectured spectral sequences as categorifications of these equalities.

We situate these results in the context of Rasmussen’s spectral sequences from HOMFLY-
PT homology to s[(n) homology and the conjectured spectral sequences from HOMFLY-PT
homology to HFK, which fit with Dowlin’s conjectured spectral sequences into a square as
shown in [Dow18a, Figure 1]. We review the decategorified content of the known and con-
jectured spectral sequences starting at HOMFLY-PT homology, which we generalize to links
in terms of our shifted gradings, and we add to Dowlin’s square by labeling the edges with
their decategorified content (see Figure 2). Examining the decategorified content along the
possible paths in the square, in terms of link polynomial evaluations, reveals a compatibility
that could be a sign of a more structured relationship between these spectral sequences at
the categorified level.

Example 1.3. Dowlin computes HFK,, of the unknot in [Dow18a, Example 2.10]; the result
is Q[U]/(U™), and the generator 1 € Q[U] has gr,, equal to 1—n (so it has £= equal to + —1).

q"—q "
q—q~1 >

Dowlin writes that the graded Euler characteristic of this homology is agreeing with
the sl(n) polynomial of the unknot.

q;__quln is the gr,-graded Poincaré polynomial of this homology group,

where the coefficient of ¢’ in the polynomial is the dimension of the homology in gr, =i. In
fact, HFK,, of the unknot is isomorphic to unreduced sl(n) homology of the unknot, which
is naturally bigraded; in this example, the homological component of the bigrading is zero
and the intrinsic component agrees with gr,,. With respect to this bigrading, which makes
sense on HFK ,, of the unknot but not on HFK,, in general, it is indeed true that the graded

—n

Euler characteristic of HFK,, of the unknot is qqn_q,l )

We propose that

However, here we are considering gr,, (divided by n), which makes sense on HFK,, of arbi-
trary links, as a homological grading. Since it is only a single grading, its Euler characteristic
in our sense will be a single complex number (not necessarily an integer because the grading
is fractional). A generator of the homology in gr, = k will contribute a term e*™/™ to the
Euler characteristic by our definitions; the Euler characteristic for the unknot homology is
thus

eﬂi(l/nfl) + eﬂ’i(S/nfl) I eﬂi(lf?)/n) + em’(lfl/n).
For n = 1 we get e™(® = 1; for n > 2 the sum is zero, since the roots of unity are distributed
symmetrically around the origin.

Remark 1.4. Here we see chain complexes with gradings by %Z (and d? = 0) categorifying
evaluations of s[(n) polynomials at 2n'" roots of unity. For categorification of these polyno-
mials at roots of unity e>™/? for p prime, complexes with d> = 0 are no longer suitable, and
one often works with p-complexes satisfying d? = 0 (see e.g. [Khol6, Qil4]). Combining
these ideas, one could look for p-complexes with gradings by %Z categorifying evaluations
of 5l(n) polynomials at pn'™ roots of unity, although we are not aware of such complexes in
the literature.

Remark 1.5. If one is only interested in categorifying e.g. P, 1 (e™/™) using the ideas of
this paper where P, ,(¢) is the sl(n) polynomial, one does not need to use HFK,; it suffices
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to take a grading-collapse of reduced sl(n) homology. However, HFK, is a more natural or
minimal categorification of this evaluation; analogously, to categorify the Alexander polyno-
mial one can take a grading collapse of HOMFLY-PT homology, but HFK is a more minimal
way to do it.

Remark 1.6. Let K be a knot. For n = 2 where a spectral sequence from Khovanov
homology to HFK has been constructed by Dowlin [Dow18c], the equality Py (i) = Ag(—1)
is familiar (both evaluations give the knot determinant) and is a sign of a deeper relationship
between the representation theory of U,(gl(1]|1)) and U,(gl(2)) at ¢ = i; see [KS91, Section
1]. We do not know whether there is any similar story one can tell about the analogous
equalities for n > 2, although the n = 2 case is special at least in that both gl(1]1) and gl(2)
are defined using 2 x 2 matrices.

Organization. In Section 2 we define Euler characteristics for fractionally graded complexes
and discuss spectral sequences. In Section 3 we review what we need about HOMFLY-PT
polynomials, s[(n) polynomials, and Alexander polynomials as well as HOMFLY-PT homol-
ogy and sl(n) homology (focusing on the gradings). In Section 4 we do the same for HFK
while introducing bigrading-shifted versions of HFK theories adapted to the three variants of
HOMFLY-PT homology. In Section 5 we recall the definitions of Dowlin’s HFK,, invariants;
in Section 6 we compute their fractionally-graded Euler characteristics, introduce grading-
shifted variants of HFK,, and prove Theorem 1.1. In Section 7 we prove Theorem 1.2.
We also state a version of Dowlin’s spectral sequence conjectures involving grading-shifted
HFK,, compute its decategorified content, and place it in the context of spectral sequences
from HOMFLY-PT homology to sl(n) homology and HFK.

Acknowledgments. We would like to thank Aaron Lauda for useful conversations and
suggestions. A.M. was partially supported by NSF grant DMS-1902092 and Army Research
Office W911NF2010075.

2. ALGEBRAIC PRELIMINARIES

2.1. Euler characteristics of fractionally-graded complexes. Following [Dow18al, we
will work over Q.

Definition 2.1. Forn > 1, a %Z—graded complex C' of Q-vector spaces (or just a %Z—graded
complex for short) is a %Z—graded Q-vector space

c- e
aG%Z
equipped with a Q-linear endomorphism d of degree +1 satisfying d? = 0.

The above definition is a special case of the definition of complexes with group-valued
gradings. By contrast, Definitions 2.3 and 2.4 below are new as far as we are aware.

Remark 2.2. A %Z—graded complex is the same data as n ordinary complexes, one for each
element of (%Z) /7. However, the examples of interest here more naturally give a %Z—graded
complex than n ordinary complexes.

The category of %Z-graded complexes and homotopy classes of degree-zero chain maps is
triangulated; the translation functor is degree shift downward by one. Furthermore, degree
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shift downward by % equips this triangulated category with an n'* root of its translation
functor [1], that is, a functor [] such that [] composed n times equals [1]. We let Cla]
denote C' with its degrees shifted downward by a € £Z, so that (C[a])a = Cara-

Definition 2.3. Let C be an (essentially small) triangulated category equipped with an n'*
root [%] of its translation functor [1]. Let ¢, = ™. We define the Grothendieck group
K(C) to be the quotient of the free Z[(,]-module spanned by isomorphism classes of objects
of C by the relations X —Y + Z = 0 for every distinguished triangle X — Y — Z — X[1]

in C, as well as
()

We can apply Definition 2.3 to the homotopy category H of finite-dimensional %Z—graded
complexes (a full triangulated subcategory of the homotopy category of all %Z—graded com-

plexes, preserved by the n'” root of the translation functor). The result is a free Z[(,,]-module
Ko(H) of rank 1 spanned by [Q], where [Q] denotes the class of the complex that has Q in
degree zero and zero in all other degrees.

for all objects X of C.

Definition 2.4. Let C be a finite-dimensional %Z—graded complex. The Euler characteristic
X(C) of C is the unique element of Z[(,]| such that [C] = x(C)[Q] in Ko(H). Explicitly,

x(C) = Z e™* dimg C,.

aE%Z

Just as for ordinary Euler characteristics, we have x(C) = x(H.(C)). We also recall the
usual graded Euler characteristics for bigraded and triply-graded complexes.

Definition 2.5. Let C' = ({C;: I,J € Z},d) be a bigraded chain complex which is finite-
dimensional in each I-degree, such that d has degree (0,—1) or (0,1). The graded Euler
characteristic of C' is defined to be

Xu(C) = Y (=1)u’ dimg(Cry),

I,J€Z

a formal Laurent series in a variable u. If the I-grading is valued in %Z rather than Z, the
same definition gives a formal Laurent series in u'/2.

Similarly, let C' = ({Cryk :1,J,K € Z},d) be a triply graded chain complex which is
finite-dimensional in each (1, J)-bidegree, such that d has degree (0,0, —1) or (0,0,1). The

graded Euler characteristic of C' is defined to be

Xun(C) = D (=1 u'v” dimg(Cy s k),

I,JKEZ
a formal Laurent series in variables u and wv.

Remark 2.6. Rather than u and v, we will often use variable names corresponding to the
gradings in question.
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20

FIGURE 1. Links appearing in the HOMFLY-PT skein relation.

2.2. Spectral sequences.

Definition 2.7. A spectral sequence of %Z—graded complexes is a sequence of %Z—graded
complexes (E,,d,),>o together with isomorphisms H.(E,,d,) = E,.; for r > 0.

All spectral sequences in this paper have d, = 0 for large enough r, so that for some
1Z-graded vector space E we have (E,,d,) = (Ex,0) for large enough 7.

Remark 2.8. It is built into the above definition that the differential d, on each page of the
spectral sequence has degree +1 with respect to the %Z grading.

Since x(C) = x(H.(C)) for finite-dimensional +Z-graded chain complexes, if some page
E, of a spectral sequence as in Definition 2.7 is finite-dimensional then for any " > r we
have x(E,) = x(E); in particular, x(F,) = x(EFx).

Remark 2.9. Suppose one has a spectral sequence of bigraded complexes as in Defini-
tion 2.5, such that each d, has bidegree (0,—1) or (0,1). Suppose that some page E, is
finite-dimensional in each j-degree; the same is then true for each page E, for r > r, and it
follows for the same reason as above that x,(E,) = xu(E,). In particular, x,(E,) = Xu(EFx)-
A similar equality for x,, holds in the triply graded case, assuming each d, has bidegree
(0,0,—1) or (0,0,1).

3. LINK POLYNOMIALS AND KHOVANOV—ROZANSKY HOMOLOGY

All links below are assumed to be oriented.

3.1. Link polynomials. The HOMFLY-PT polynomial Pf(a, q) of a link L in S® [FYH"85,
PT87] is defined by the skein relation

QPL+ (CL, Q) - CLilPL_ (CL, Q) = (q - qil)PLo (CL, Q)
(where L, L_, and Lg are related near a crossing as in Figure 1) together with the HOMFLY-
PT polynomial of the unknot as a normalization. We consider three variants:
e The reduced HOMFLY-PT polynomial Py (a,q) has Puuknet(a,q) = 1.
e The middle HOMFLY-PT polynomial P; (a,q) has P_, . (a,q) = q__ql,l.

e The unreduced HOMFLY-PT polynomial Py (a,q) has Puyknot(a, q) = 2=2

q—q1°

—1

Remark 3.1. In these variables the middle and unreduced HOMFLY-PT “polynomials” are
rational functions in general, although they are Laurent polynomials in a and z = ¢ — ¢ 1.

We also consider two variants of the sl(n) polynomial:
e The reduced sl(n) polynomial is P, 1(q) := P(¢" q).
e The unreduced sl(n) polynomial is P, 1(¢) := Pr(q", q).

Finally, if we let A (t) denote the (symmetric single-variable) Alexander polynomial of L,
a Laurent polynomial in t'/2, then we have
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o P (1,t12) = AL(t),
. PE(l,t1/2): Ap(t)

1172 4172

o Pr(1,tY%) =0.

More relevant for us will be the following identities, which are consequences of the sym-
metries Pr(a,q) = P(—a,—q), P; (a,q) = —P; (—a,—q), and Pr(—a,—q) = Pr(a,q) of the
HOMFLY-PT polynomials:

o Pr(—1, —t1/2) = AL(),
hd PL_(_17 _t1/2) = t1/2A,Lt(f)1/2a

o Pr(—1,—t"Y%) =0.
3.2. Khovanov—Rozansky homology.

3.2.1. Gradings and Euler characteristics. We briefly establish notation for the sl(n) homol-
ogy and HOMFLY-PT homology of Khovanov—Rozansky [KR08a, KR0O8b]; see also [Ras15].
Let H(L), H= (L), and H(L) be the reduced, middle, and unreduced HOMFLY-PT homol-
ogy of a link L in S3. In the notation of [Ras15], these variants of HOMFLY-PT homology
(denoted there by H (L), H(L), and H(L) respectively) have a Z-grading gr, (or just q),
a %Z—grading gr,, and a %Z—grading gr,. Rasmussen also writes ¢+ = gr,, j = 2gr),, and
k = 2gr,; the value of j — k is always even. We let

® gry =2gr, =7,
® gro =gr, =1, .
® gry = gr, —gr, = %]7

each of which is a grading by Z on the above three variants of HOMFLY-PT homology.
Remark 3.2. While h in gr,, stands for horizontal, H in gr; stands for homological.

Each variant of HOMFLY-PT homology is finite-dimensional in each (gr4, grg)-bidegree,
so the following proposition makes sense.

Proposition 3.3 (cf. Theorem 2.11, Section 2.8 of [Ras15]). For a link L in S, we have:

® Xaq(H(L)) = Pr(a,q),
® Xaq(H (L)) = Py (a,q),
® Xaq(H(L)) = Pr(a,q).

Now let H,(L) and H,(L) be the reduced and unreduced sl(n) homology of a link L in
S3; the reduced homology H,, (L) also depends on a choice of component of L. Both variants
of sl(n) homology have Z-gradings gr,,, and gry; in [Ras15, Section 2.9] these gradings are

called gr, and gr, respectively, while in [Ras15, Section 5] they are called gr/, and gr_ (see
[Ras15, Proposition 5.14]).

Proposition 3.4 (cf. Theorem 2.16 of [Ras15]). Write x, for the grg ,-graded Euler char-
acteristic, with gry treated as the homological grading. For a link L in S3, we have:

® Xq(Hn(L)) = Pnr(q),
* Xo(Hn(L)) = Po1(q)-



8 LARRY GU AND ANDREW MANION

3.2.2. Rasmussen’s spectral sequences. In [Rasl5|, Rasmussen constructs spectral sequences
with B, page H(L) (respectively H(L)) and E., page H,(L) (respectively H, (L)) for n > 1.
As discussed in [Ras15, beginning of Section 5], the differentials on each page have grg,, =0
and gry = 1 where grg, , on HOMFLY-PT homology is defined by grq, ,, = grg +ngr,. Thus,
each page gets a bigrading as the homology of the previous page, and the induced bigrading
on the F, page agrees with (grg ,,gry) on sl(n) homology.

These spectral sequences give equalities of Euler characteristics x,(H (L)) = xq4(H,(L))
and x,(H (L)) = xq(Hn(L)), where we are viewing H (L) and H(L) as bigraded by (gre ., 8r)
and x, denotes the gr, ,-graded Euler characteristic. As in the proof of [Ras15, Lemma 5.4],
we have y,(H(L)) = Pr(q", q); similarly, we have y,(H(L)) = Pr(q",q). Thus, applying
Euler characteristics to these spectral sequences recovers the usual identity of the sl(n) poly-
nomial with an evaluation of the HOMFLY-PT polynomial. We view these identities as
the “decategorified content” of Rasmussen’s spectral sequences; in other words, we view the
spectral sequences as categorifications of these identities.

4. KNOT FLOER HOMOLOGY

4.1. The master complex. Let L be a link in S3; let H be a multi-pointed Heegaard
diagram for L (versions of the below theories can be defined for links in more general 3-
manifolds but we restrict attention to links in S® here). Write

{z1, w1, ..., Zm, Wi }

for the set of basepoints in H. We assume that H is equipped with the appropriate analytic
data such that the knot Floer homology “master complex®” CFK (L), a finitely generated
bigraded free module over Q[Uy, V4, ..., Upy, Vi,] with an endomorphism 0y satisfying
Oy =Y Uty — Uni) Vi,
i=1

is defined (here a(i) denotes the index of the unique w basepoint in the same component
as z; of the Heegaard surface with alpha curves removed, and similarly for b(i) and beta
curves). See [Zem19, Dow18a] for more details on the master complex; the differential counts
holomorphic disks whose domains are allowed to have nonzero multiplicity at any type of
basepoint (w and/or z), and the contribution of a domain to the differential is weighted
by powers of U; determined by the multiplicities at w; basepoints as well as powers of V;
determined by the multiplicities at z; basepoints.

The two gradings on CFK (L) are called the Alexander grading gr; (a grading by 37
in general) and the Maslov grading gr,, (a grading by Z); our conventions for these gradings
follow [OSz04a, OSz08]. The variables U; have gr = —1 and gr,, = —2, the variables V;
have gr =1 and gr,, = 0, and Oy y has grp = 0 and gr;, = —1.

In particular, to fix the absolute Maslov grading, one can work with a Heegaard diagram
‘H whose number m of z and w basepoints is equal to the number ¢ of components of L.
Then the homology of

@[Ula‘/la"wU@;‘/Z]
U Vi1, Vi—1)

CFKyy (L) @iy vi..U0,Vi]

3While it would be more accurate to write CFK v (H), it will help avoid confusion with reduced and
unreduced versions of knot Floer homology below to write CFK v (L), with the 7 dependence left implicit.
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which is a complex (9% = 0) with a single grading by gr,,, computes ﬁ(S?’) >~ Q (see the
discussion after Theorem 4.4 of [0Sz08]), while the homology of

Q[Ula ‘/17 sy Uﬂy ‘/Z]
""" R N (AN /7 VAN R VA

computes HF(#1(S% x S1)) = A*V where V is a vector space of dimension £ — 1. As
mentioned in [OSz08, proof of Theorem 1.1], in the grading conventions of that paper the

CFKyyv(L) ®qu,v

[

top-dimensional generator of A*V' corresponds to the generator of ﬁ(S?’) = Q. By the
discussion after [0Sz08, Theorem 1.2], the absolute Maslov grading on CFK is fixed so that
the top-dimensional generator of A*V has Maslov degree zero, so we can equivalently say
that the generator of ﬁ(Sz)’) >~ @ has degree zero. The absolute Alexander grading is fixed
by symmetry. That is, fix the absolute Alexander grading gr, such that for all n € Z and
Q[Uh Vvl? ) Uma Vm]

""" Voo Vi, Usyy o UG,

CFEK (L) satisfies dimg(CFK (L) g,—n) = dimg(CFK (L) g, ——n)-

4.2. Other bigraded variants of HFK. The following complexes are all derived from the
master complex and satisfy 9 = 0. We focus on bigraded versions of HFK; there are also
multi-graded versions as in [0Sz08]. Let L be an f~component link in S?; when we mention
knot Floer complexes for links, the dependence on a choice of Heegaard diagram for L (say
with basepoints {z1, w1, ..., 2m, Wy, }) is implicit.

Definition 4.1. The bigraded complex CFK (L) is
CFKyy (L) ®qun ..U, Vin] Q-

Definition 4.2. Assume that, in our Heegaard diagram H representing L, we are given some
choice of basepoints (z;,,w;;) on each component L; of L. The bigraded complex CFK (L) is

Q[Uly ‘/17 ceey Uma Vm]
7777 UTVMVM :
} (%7"'7Vm7Ui1)"'7Ui)
Definition 4.3. Assume that L is equipped with a distinguished component and that the

basepoints z,,, w,, of the Heegaard diagram H representing L lie on the distinguished com-
ponent of L. The bigraded complex CFK (L) is

CFKyy (L) @y

Q[Uv, Vi, ..., Un, Vi
""" OVl OV Vi Un)
In general, the homotopy type of CFK (L) depends on the choice of distinguished compo-
nent. However, the choice of basepoints for the same component give homotopy-equivalent
complexes (see Dowlin [Dow18a, Corollary 2.15]). Following [Dow18a, Definition 2.19] and
in analogy to sl(n) homology, we will refer to CFK (L) as the reduced knot Floer complex of

L (with its distinguished component) and its homology as the reduced knot Floer homology
of L.

Definition 4.4. The bigraded complex CFK ™ (L) is
@[Uh ‘/17 i Uma Vm]
’’’’ N A 7 R

CFKUy (L) ®Q[U1 W

CFKyy (L) ®qu,w
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Definition 4.5. [cf. Section 2.6 of [Dowl8al|] Let L’ be the disjoint union of L with a
split unknot; we choose the unknot component as a distinguished component for L', and we
assume that the only basepoints of the diagram H’ we choose to represent L’ that lie on the
distinguished component of L’ are the final pair (z,,, w,, ) of basepoints. We define

CFK (L) :=tV*CFK (L))

where t~1/2 denotes a downward shift by % in the Alexander grading gr,.. Following [Dow18al,
we will refer to CFK (L) as the unreduced knot Floer complex of L and its homology as the
unreduced knot Floer homology of L.

Remark 4.6. The use of a split unknot to define unreduced HFK appears in Baldwin—
Levine-Sarkar [BLS17], although these authors use the term “unreduced HFK” for a slightly
different theory.

The homology of each of these complexes is an invariant of L (equipped with a distin-

guished component in Definition 4.3) and will be denoted by HFK (L), HFK (L), etc. Each
of the above bigraded versions of HFK is finite-dimensional in each Alexander degree.

Remark 4.7. The complex CFK (L) and its homology appear to be less common in the
literature; we use U to match the notation of HOMFLY-PT homology and sl(n) homology,
although it is possible that our use of the notation HFK (L) conflicts with uses of this notation
elsewhere.

4.3. Graded Euler characteristics.

Proposition 4.8. For a link L in S3, we have:

o (HFK(L)) = (172 — "2y AL () = (—1) % (1 — 7)1 AL (1),
o W(HFK (L)) = (—1) 45 AL(1),

o X(HFE (L)) = (-1)" 12" 228,

o W(HFK(L)) =

Proof. The first claim follows from [0Sz04a, equation (1)] and [0Sz08, Theorem 1.1].* The

second claim follows from the first because the chain groups in CFK (L) are free modules over

polynomial rings in ¢ — 1 more variables than the corresponding chain groups in CFK (L);
the graded Euler characteristic of a polynomial ring in one of these variables (with degrees
A=—1land M = -2) is 17—1,1 The third claim follows similarly; the fourth claim follows

from the second claim along with the fact that Ay (¢) vanishes on split links. 0

Remark 4.9. For an /-component link L in S®, the single-variable and multi-variable
APU() (=1
Amltie (1 —t) €>1]
where = means equality up to multiplication by a unit in Z[t, t™'] (see [Kaw96, Proposition
7.3.10(1)]). This relation explains why, unlike in [OSz08, equations (1) and (2)], we do not
need to treat £ =1 and ¢ > 1 separately in Proposition 4.8.

Alexander polynomials of L satisfy the relation Ap(t) = {

Definition 4.10. To more closely match the three variants of HOMFLY-PT homology,
we introduce grading-shifted variants HFK/(L), (HFK™)'(L), and HFK'(L) of knot Floer

4Note that [0Sz08, equation (1)], when proved in [0Sz08, Proposition 9.1], is stated with a =+ sign.
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homology. We first replace the Alexander and Maslov degrees of HFK (L), HFK (L), and
HFK (L) by their negatives, so that the variable U; now has gr, = 1 and gr,, = 2 and the
differentials on CFK complexes now have Maslov degree +1. In the Euler characteristic
computations of Proposition 4.8, t gets replaced by ¢~%; note that Ap(¢t71) = (=1)* " TAL(t).
We then make the following shifts:

e For HFK /(L), we shift the Alexander grading on grading-reversed HFK (L) upward
by 4—71' We have

Xo(HFK (t)) = Ap().

e For (HFK™)'(L), we shift the Alexander grading on grading-reversed HFK ™ (L) up-
ward by g; we also shift the Maslov grading upward by 1. We have

_ Ap(t)
X(HFKT)'(L) = S s
e For HFK'(L), we shift the Alexander grading on grading-reversed HFK (L) upward
by 52 (recall that HFK (L) already had an Alexander grading shift in Definition 4.5).
We have y,(HFK'(L)) = 0.

4.4. Conjectured spectral sequences from HOMFLY-PT homology to HFK. In
[DGRO6], Dunfield-Gukov—Rasmussen conjectured the existence of spectral sequences from

H(K)to I?F?((K) for knots K in S3. Manolescu [Man14] gives a similar conjecture for HFK ~
and the middle HOMFLY-PT homology. Dowlin [Dow18a] conjectures spectral sequences

from H(L) to @((L) and from H(L) to HFK (L) for all links in S®. We believe a spectral
sequence from H(L) to HFK (L) is more plausible for links, so we will state the following
version of these spectral sequence conjectures.

Conjecture 4.11. Let L be a link in S3. Ignoring gradings at first, there are spectral
sequences with:

e I, page H(L) and E., page HFK(L);
e Fy page H- (L) and E,, page HFK ™ (L);
e Iy page H(L) and E,, page HFK(L).

Moreover, such sequences are given by the construction of Manolescu [Man14, Theorem 1.1],
which s known to give E pages recovering HFK .

Remark 4.12. In [Dowl8b], Dowlin identifies the E; page of the spectral sequence from
[Man14, Theorem 1.1] with the appropriate sum of HOMFLY-PT complexes for singular
resolutions of L; it remains to identify the Fy page with HOMFLY-PT homology for links
with nonsingular crossings.

Manolescu [Man14, Section 4] discusses the grading properties of his conjectured spectral
sequences from HOMFLY-PT homology to HFK in detail; we will rephrase some of his
discussion in terms of the grading-shifted variants of HF'K from Definition 4.10. We define
a %Z—grading grp and a Z-grading gr;, on each of the variants of HOMFLY-PT homology

by
i ng = ngQa
® gry = gryt+8rg+8ry
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(Manolescu includes constant grading-shift terms in the above formulas but here we incor-
porate the grading shifts into HFK; he also has negative signs since, unlike us, he has not
multiplied the Alexander and Maslov gradings on HFK by —1). The differential d, on the
E, page of Manolescu’s conjectured sequences has gr, =2 — 2r, grg = 0, and gry =2r — 1.
Thus, d, has grp = 0 and gry, = 1. Writing H(L) = @i7j7k€ZF’]’k(L) as in [Ras15] (and
similarly for the other versions), we equivalently have grp =4/2 and gr,, =i+ j/2 + k/2.

Conjecture 4.13. Let L be a link in S3. There are spectral sequences with each page bigraded
by (grp, grys), such that the differential on each page has (grp,ery,) = (0,1) and each page
1s the bigraded homology of the previous page, and with

e I, page H(L) and E page HFK/(L);
o Fy page H- (L) and E page (HFK ™) (L);
e Fy page H(L) and E., page HFK'(L)

as bigraded vector spaces.
These spectral sequences would give equalities of Fuler characteristics
— —/ _ _
xe(H (L)) = xe(HFK (L)), xo(H (L)) = xo((HFK")' (L)), x:(H(L)) = x:(HFK'(L))

where yr denotes the gr-graded Euler characteristic. We have

e (L) = > (1)t dimg (H(L)gr,1gr,,=1)

1€iz,J€L
— Z (_1)i+j/2+k/2ti/2 dimg (F]k(L))
i,j,k€Z
= ( Z ajqi(—l)(/’ﬂ—j)/2 dimQ (ﬁm}k(L)))
i,4,k€Z 4= 1, g=t1/2
= Pp(—1,—t"%).

Similarly,
Xt(H_(L>) = PE<_17 _t1/2)7 Xt(H(L)) - PL(_L _t1/2> =0.

Thus, these conjectured spectral sequences can be viewed as categorifications of the three
equalities involving Alexander polynomials and HOMFLY-PT polynomial evaluations (with
a = —1) at the end of Section 3.1.

5. DOWLIN’S HFK, INVARIANTS

We now consider two versions of HFK defined by Dowlin [Dow18a], applied to links in
S3 rather than more general 3-manifolds. Rather than bigradings, these versions will have
single gradings by +Z in our conventions.

Let L be a link in S3, represented by a Heegaard diagram #H as in Section 4.1 with
basepoints {z1,ws, ..., Zm, Wy . Following Dowlin, for n > 1 we consider a collapse gr,, of
the bigrading on CFK (L) defined by

gr, = —ngry +2(n—1)grp.
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We divide gr,, by n to get
gy

1
n grar + ( n)ng
gr, _ 2

which is valued in %Z even for half-integral values of gry.. The variables U; have =» = =

the variables V; have &2 =2 — 2 and Jyy has &2 =
n n’ ) n

Definition 5.1 (cf. Definition 2.19 of [Dow18al). Assume that L is equipped with a distin-
guished component and that the basepoints z,,, w,, of the Heegaard diagram H representing
L lie on the distinguished component. The 1Z-graded complex CFK ,(L) is

Q... UnVi,... V.,
CFKU,V(L) ®Q[U1 ..... Umn,Vi,..., Vm] ( U™ [ ! ! ]

L =Un.
a(i) b(i) . ;
"~ Uay=Us(i) lsism-— 1) + (Um, Vi)

where a(i) and b(i) are defined as in Section 4.1. The grading is given by £2; note that

T
n

U _un.
ﬁ equals the telescoping sum U:(Z)l + U;l(Z)QUb(i) + -+ U;l(l._)l, which (like V;) has
8y —9_ 2

Definition 5.2 (cf. Definition 2.5 of [Dow18al). Let L' be the disjoint union of L with a
split unknot, and choose the unknot component to be distinguished. As in Definition 4.5,
we assume that the only basepoints of the diagram H’ we choose to represent L’ that lie on
the distinguished component of L’ are the final pair (2, w,,) of basepoints. We define

CFK (L) := CFK,(L)[1 — 1/n];

note that a downward shift by % in gry as in [Dow18a, Section 2.2] produces a downward
shift by 1 — £ in £2 = —gr, +2(1 —1/n) gry.

We write 9, for the differential on either variant of CFK,; it satisfies 9> = 0. When
n = 1, the complex CFK (L) computes ﬁ(S?’) (see Section 4.1), so its homology is Q in
gry; = 0 (and thus £2 = 0) and zero in other degrees; see [Dow18a, Lemma 5.2]. It follows
that HFK (L) is also Q in degree 0 and zero in other degrees.

Since the tensor product (after annihilating the final pair of variables) sets each V; vari-
able equal to a polynomial in the U; variables while imposing no further relations on the
U; variables, the complexes CFK,(L) and CFK,(L) are free over Q[Uy,...,U,,_1] and
Q[Uy, ..., Upy—1] respectively. Their homology groups HFK ,,(L) (respectively HFK (L)) de-
pend only on L with its distinguished component (respectively, L) and are finite-dimensional
over Q as shown in [Dow18a].

Remark 5.3. In [Dowl8a], Dowlin uses the notation AFK n(L) to refer to what we call
HFK,(L); however, in [Dowl8c|, HFK,, (at least for n = 2) is given a different definition
which is closer to Definition 4.2 for HFK (L).

6. THE EULER CHARACTERISTIC OF HFK,

Let L be an f-component link in S* equipped with a distinguished component; in this
section we compute the Euler characteristics of HFK (L) and HFK,,(L).

For simplicity, assume we are working with a Heegaard diagram H for L that has exactly 2/¢
basepoints. Let R = Q[U7, ...,U;_1], a %Z—graded ring where U; has degree % as in Section 5,
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and let K be the %Z—graded Koszul complex

/—1 2
K = (R [1 _ E] LN R)
=1

)

where the tensor products are over R.

Lemma 6.1. Let n > 2. There exists a spectral sequence with each page graded by %Z, with
differentials of degree +1 such that each page is the %Z—gmded homology of the previous page,

and with FEy page HFK (L) ® g K and E., page }Tﬁ((L) as %Z—gmded vector spaces.

Proof. The complex CFK,(L) ®p K can be viewed as a cube of dimension ¢ — 1 in which
each vertex is a copy of CFK,(L). We equip CFK,(L) ®x K with a filtration such that
every oriented edge of this cube increases the filtration level by 1. Then the differential d on
CFK (L) ®g K can be decomposed as d = dy + dy, where dj is the differential on each copy
of CFK,(L) and d; comes from the differential on K.

From this filtration, we get a spectral sequence whose F; page is (HFK (L) ®g K, (d1).).
The spectral sequence converges because there are only finitely many nontrivial filtration

levels, and the F,, page is I—ﬁ'”?(([/); indeed, we claim that the total complex CFK (L) ®r K

has a contractible subcomplex such that the quotient by this subcomplex is CFK (L).

To see this, note that R has a basis of monomials and we get a corresponding basis for
K (which is a direct sum of copies of R). Let K’ denote the span of all basis elements of
K except for the monomial 1 in the unique R-summand of K having no outward-pointing
arrows in the differential on K (this is the R-summand with no degree shift). As a complex,
we have K = K’ & Q, and since the homology of K is the homology of the Q summand in
this decomposition (namely Q), the complex K’ is contractible.

The subcomplex of CFK, (L) ®r K we consider is CFK,(L) ® K'; by construction we
have

CFRWD) ©r K mpp 1y,
CFK,(L) ®r K’

To see that CFK,(L) ®r K' is contractible, define a filtration on CFK,(L) ®r K’ as the
Maslov grading plus the above-defined filtration on CFK,(L) ®z K. Then components of
the differential internal to CFK (L) decrease filtration level by 1 while components of the
differential coming from K’ preserve the filtration level. The associated graded complex to
the filtered complex CFK (L) ®g K’ is isomorphic to a direct sum of copies of K’, so it is
contractible; it follows that CFK, (L) ®z K' is contractible. O

Proof of Theorem 1.1. Since HFK, (L) is finitely generated over Q, the same is true for
HFK,(L) ®gr K. Thus, the spectral sequence of Lemma 6.1 gives an equality between the

&n_graded Euler characteristics of HFK,(L) ®p K and HFK (L). The Euler characteristics
of HFK (L) ®g K and HFK (L) are related by
V(HFE (L) ©r K) = (1= /") x(HFE (L)),
so if n > 2 we get
X(HFK (L)) = (1 — 2/ \(HFK (L)).
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Using Proposition 4.8, we can compute the grT"-graded Euler characteristic of HFK (L) as
follows:

NHFE (L) = Y e dimg (@((L)@:a)

n

aE%Z
_ Z pri(=T+2(1=1/n)1) dimg (@((L)ng=Lng=J)
Ieiz,Jen

= Z (—1)Jt1 dimg (ﬁﬁ((L)ng:Lng:J>

Ie1Z,J€L

o (GO SR B NI}
tl/2—_e—mi/n

; -1
- ewz(l—Z)/n (]. - 627m/n) AL(t)|t1/2:—e_7Ti/n‘
It follows that for n > 2, the £2-graded Euler characteristic of HFK, (L) is

e’]’r’L(l—Z)/nAL(t) ’tl/z__e—ﬂ'i/n .

Since HFK , (L) is defined as a grading shift of HFK, of the disjoint union of L with a
split unknot, and the Alexander polynomial vanishes on split links, we see that if n > 2, the
ga_graded Euler characteristic of HFK, (L) is zero for all links L. When n = 1, we have

X(HFK, (L)) = x(HFK (L)) =1
for all links L. O

Definition 6.2. As in Definition 4.10, we define grading-shifted variants HFK ;(L) and
HFK! (L) of HFK (L) and HFK ,(L). Starting with bigradings on CFK (L) and CFK (L)
corresponding to the bigradings on CFK /(L) and CFK'(L), the differentials 9,, have degree

+1 with respect to
1
Eln =gry —2 (1 — —) gry
n n

(note that since we still want +1 differentials on %Z—graded complexes, this is the negative
of the earlier definition of £= in terms of gry and gr;,). We define CFK. (L) to be CFK (L)
with grading given by &= and differential given by 0,; we define CFK7, (L) similarly.

Remark 6.3. Starting from HFK (L), we negated both gradings and shifted the Alexander
grading upward by £ to get HFK/(L), then applied the collapse gr,, —2(1 — 1/n) gry to

t1/2=emi(l1=1/n) —_c—7i/n

get the grading on W;(L) Equivalently, we could first apply the collapse —gr,, +2(1 —
1/n)gry on HFK (L) to get the grading on HFK, (L), then shift this %Z grading upward by
(1—0)(1—1/n). In other words, HFK (L) is HFK (L) with its 17Z-grading shifted upward
by (1 —¢)(1—1/n); similarly, HFK},(L) is HFK ,(L) with its 1Z-grading shifted upward by
(1—0)(1—1/n).

Corollary 6.4. Forn > 2, the £2-graded Euler characteristic of W;(L) is

AL(t)|t1/2:_e7ri/n7
and the Ex-graded Euler characteristic of HFK (L) is zero.
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Proof. For the reduced case, we have
eﬂ—l(l_g)(l_l/n)eﬂ-l(l_e)/nAL<t)|t1/2:_677rz/n = (_1)1_6AL(t)|t1/2:_677ri/n = AL(t)|t1/2:_67ri/n

(using that AL(t™1) = (=1)*"'AL(t)); for the unreduced case, we have e™(1=00=1/m) . =
0. 0

The proof of [Dow18a, Lemma 2.23] gives us +Z-graded spectral sequences from HFK'(L)
to HFK,,(L) and from HFK'(L) to HFK' (L), where &= on HFK (L) and HFK'(L) is defined
to be gry; —2(1 — 1/n) gry.

When n = 1, the shifted homology groups WQ(L) and HFK' (L) agree with HFK (L)
and HFK (L) respectively, so their Euler characteristics are both 1.

Remark 6.5. The arguments in this section can be made simpler in the case of knots (¢ = 1),
where by [Dow18a, Lemma 2.20], HFK (L) is isomorphic to &=-graded HFK (L) = HFK (L).
In particular, Lemma 6.1 is unnecessary in this case.

7. EULER CHARACTERISTICS AND SPECTRAL SEQUENCES

Dowlin [Dow18a, Conjecture 1.6] conjectures the existence of spectral sequences from
H,(L) to HFK,(L) and from H,(L) to HFK,(L). These sequences are conjectured to
respect the %Z—gradings, where the %Z—grading ng” on reduced and unreduced sl(n) homology
is defined by

gr, 1 n
== =—gr Try.
n ngQ,n gy

Dowlin works with n times this grading, which we would write as gr ,, +ngr > We state

the following version of Dowlin’s conjectures in terms of the grading-shifted theories HFK ;
and HFK,.

Conjecture 7.1. Let L be a link in S3. There exist spectral sequences with each page graded
by %Z, with differentials of degree +1 such that each page is the %Z-gmded homology of the
previous page, and with

o I, page H,(L) and E, page HFK;L(L);
e F5 page H,(L) and E page HFK (L)

as %Z—gmded vector spaces.

These spectral sequences would give equalities of %Z—graded Euler characteristics

X(H (L)) = X(AFK (L)), X(Ha(L)) = x(HFK',(L)).

5In Dowlin’s notation this grading is called gr, +5gr, (where gr,, corresponds to our gry, ,). As specified
in [Dow18a, Section 4.2], the grading gr,, here is k = 2gr, in the notation of [Ras15], where gr, corresponds
to our gry. This accounts for the factor of % in Dowlin’s formula.
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Proof of Theorem 1.2. We have

X(Fn(L)) = Z e dlmQ <FTL<L)%grQ1n+ng:a>
aE%Z

— Z eﬂ'i(l/n+J) dlm@ (HTL(L)grQ,n:I’ng:J)
1,JeZ

— (Z (—1)7¢" dimg (Fn(L)gerzz,ng:Q)
q=emi/n

1,J€7
_ Fn L(em'/n),

Y
)

similarly, x(H,(L)) = P, (e™™), which is 0 for n > 2 and 1 for n = 1. Thus, for n > 2
these conjectured spectral sequences can be viewed as categorifications of the equalities

Fn,L(em'/") = AL(t)|tl/2:_€7ri/n, Pn,L(em/") =0.

For n = 1, the equalities are Py ;(—1) = 1 and P, ;,(—1) = 1 (note that Py 1(q) = P, 1(¢) = 1
in general). O

Remark 7.2. Let n > 2 for simplicity. The spectral sequences of Conjecture 7.1, together
with the ones from Sections 3.2.2 and 4.4 and the spectral sequences from HFK to HFK,,
can be organized as shown in Figure 2, following [Dow18a, Figure 1]. The arrows in this
figure represent spectral sequences (solid for known, dotted for conjectural); we augment
Dowlin’s figure by labeled the arrows with their decategorified content.

It is interesting to look at the square formed by the reduced theories; traveling along
the left edge and then the bottom edge amounts to starting with P (a,q), evaluating at
a = ¢", and then evaluating the result at ¢ = e™/™ to get P.(—1,e™™). On the other hand,
traveling along the top edge and then the right edge amounts to starting with Pp(a,q),
evaluating at @ = —1 and ¢ = —t'/2, and then evaluating the result at t'/2 = —e™/™ to get
Pr(—1,e™™). This compatibility at the level of Euler characteristics could be a sign of a
more elaborate compatibility relationship between the conjectured spectral sequences at the
categorified level.
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