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Abstract. Using a definition of Euler characteristic for fractionally-graded complexes
based on roots of unity, we show that the Euler characteristics of Dowlin’s “sl(n)-like”
Heegaard Floer knot invariants HFKn recover both Alexander polynomial evaluations and
sl(n) polynomial evaluations at certain roots of unity for links in S3. We show that the
equality of these evaluations can be viewed as the decategorified content of the conjectured
spectral sequences relating sl(n) homology and HFKn.

1. Introduction

Ozsváth–Szabó’s theory of Heegaard Floer homology [OSz04b] is a flexible set of con-
structions yielding many types of invariants for low-dimensional manifolds. Even for knots
and links in S3, the ideas of Heegaard Floer homology can be applied in several ways to
produce a family of related invariants known collectively as knot Floer homology or HFK

[OSz04a, Ras03]. The simplest variant, ĤFK as applied to (single-component) knots in S3,

assigns to a knot K a bigraded vector space ĤFK (K) (say over Q) whose graded Euler
characteristic is the Alexander polynomial ∆K(t). Here we focus on more recent variants

ĤFK n (which we will call HFK n) and HFK n, due to Dowlin [Dow18a], with relationships
to Khovanov homology and sl(n) homology more generally.

Reduced and unreduced sl(n) homology [KR08a], like ĤFK , also assign bigraded vector
spaces to knots K. Their graded Euler characteristics are the reduced and unreduced sl(n)
polynomials of K. The sl(n) polynomials and the Alexander polynomial are all specializa-
tions of the two-variable HOMFLY-PT polynomial of K, leading to various relationships
between the sl(n) and Alexander polynomials at special values.

For the homology theories at the categorified level, one can often think of these relation-
ships between knot polynomial evaluations as being categorified by certain spectral sequences
that are known or conjectured to exist. For instance, the appearance of the sl(n) polynomial
as an evaluation of the HOMFLY-PT polynomial is categorified by Rasmussen’s spectral se-
quences [Ras15] from triply graded HOMFLY-PT homology [KR08b] to sl(n) homology; the
appearance of the Alexander polynomial as a HOMFLY-PT evaluation should be categorified
by the conjectured spectral sequence from HOMFLY-PT homology to HFK [DGR06].

In general, given some construction or conjecture in the realm of sl(n) homology or HFK ,
it is natural to ask “what does it categorify, if anything?”; in other words, “what is its decate-
gorified content?”. Often this is something simpler than what one started with; for example,
the identities relating sl(n) polynomials and Alexander polynomials with the HOMFLY-PT
polynomial are simpler than the known and conjectured spectral sequences from HOMFLY-
PT homology to sl(n) homology and HFK . Investigating the decategorified level can be an
easy way to gain valuable information about the structure one expects at the categorified
level.
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For this reason, it is natural to ask about the decategorified content of Dowlin’s conjectured
spectral sequences [Dow18a, Conjecture 1.6] from reduced and unreduced sl(n) homology to
HFK (generalizing Rasmussen’s conjecture for sl(2), proved by Dowlin in [Dow18c]). The
specific variants of HFK appearing in the conjectured spectral sequences are Dowlin’s singly-
graded variants HFK n and HFK n for links (the first of these agrees with a grading collapse

of ĤFK when applied to knots).
One complication is that as defined, HFK n and HFK n are the homology of complexes

whose differentials increase the single grading grn by n. The usual Euler characteristic for-
mula, applied to such a complex, will not always be homotopy invariant. Instead, we divide
the grading on HFK n and HFK n by n, producing 1

n
Z-graded complexes whose differentials

increase the grading by one. We introduce a natural generalization of the Euler character-
istic to this setting (based on roots of unity and admitting an interpretation in terms of
Grothendieck groups of triangulated categories); while it is plausible that our definition has
appeared previously in the literature, we have not seen it elsewhere.

Theorem 1.1. Let L be an `-component link in S3 and let n ≥ 2. The Euler characteristic
of grn

n
-graded HFK n(L), in our sense, equals eπi(1−`)/n∆L(t)|t1/2=−e−πi/n where ∆L(t) is the

symmetric single-variable Alexander polynomial of L (a Laurent polynomial in t1/2), and
the Euler characteristic of HFK n(L) is zero. For n = 1, the Euler characteristics of both
HFK 1(L) and HFK 1(L) are 1 for all links L.

Theorem 1.1 is new even for knots (` = 1), although the proof is relatively straightforward
in this case (see Remark 6.5); when ` > 1, a more involved spectral-sequence argument is
required.

We introduce grading-modified versions HFK
′

n(L) and HFK ′
n(L) of Dowlin’s invariants

such that the Euler characteristic of HFK
′

n(L) equals ∆L(t)|t1/2=−eπi/n . These n-dependent

invariants are related to bigraded versions HFK
′
(L) and HFK ′(L) categorifying ∆L(t) and

zero respectively.1

We propose HFK
′

n(L) and HFK ′
n(L) as the E∞ pages of Dowlin’s conjectured spectral

sequences, and support our proposal with Euler characteristic evidence. The E2 pages of
these conjectured spectral sequences should be reduced and unreduced sl(n) homology with
the bigrading collapsed to a single grading and divided by n as above. By analogy with
HFK n, we will refer2 to the single collapsed grading as grn and its quotient by n as grn

n
.

Theorem 1.2. Let L be a link in S3. The Euler characteristic of the grn
n
-graded reduced

sl(n) homology of L, in our sense, equals the reduced sl(n) polynomial of L evaluated at
q = eπi/n. The Euler characteristic of the grn

n
-graded unreduced sl(n) homology of L equals

the unreduced sl(n) polynomial of L evaluated at q = eπi/n.

As with Theorem 1.1 in the case of knots, Theorem 1.2 is new, although the proof is
straightforward given our definition of fractionally-graded Euler characteristic and known
results about the bigraded Euler characteristic of sl(n) homology.

1From the representation-theoretic perspective, HFK
′

(L) categorifies the Uq(gl(1|1)) invariant of a link
with one component cut open to form a (1, 1)-tangle, while HFK ′(L) categorifies the Uq(gl(1|1)) invariant
of a closed link which is zero.

2This usage of grn conflicts with the notation in [Ras15], where grn is used for what we call the quantum
grading on sl(n) homology (itself related in an n-dependent way to the quantum and horizontal gradings on
HOMFLY-PT homology; see [Ras15]).
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For n ≥ 2 the polynomial evaluations appearing in Theorem 1.2 equal ∆L(t)|t1/2=−eπi/n

and zero respectively; indeed, in the reduced case both evaluations are equal to PL(−1, eπi/n)
where PL(a, q) is the reduced HOMFLY-PT polynomial of L, and similarly in the unreduced
case. When n = 1 both evaluations are equal to 1. As we discuss below, we can view Dowlin’s
conjectured spectral sequences as categorifications of these equalities.

We situate these results in the context of Rasmussen’s spectral sequences from HOMFLY-
PT homology to sl(n) homology and the conjectured spectral sequences from HOMFLY-PT
homology to HFK , which fit with Dowlin’s conjectured spectral sequences into a square as
shown in [Dow18a, Figure 1]. We review the decategorified content of the known and con-
jectured spectral sequences starting at HOMFLY-PT homology, which we generalize to links
in terms of our shifted gradings, and we add to Dowlin’s square by labeling the edges with
their decategorified content (see Figure 2). Examining the decategorified content along the
possible paths in the square, in terms of link polynomial evaluations, reveals a compatibility
that could be a sign of a more structured relationship between these spectral sequences at
the categorified level.

Example 1.3. Dowlin computes HFK n of the unknot in [Dow18a, Example 2.10]; the result
is Q[U ]/(Un), and the generator 1 ∈ Q[U ] has grn equal to 1−n (so it has grn

n
equal to 1

n
−1).

Dowlin writes that the graded Euler characteristic of this homology is qn−q−n

q−q−1 , agreeing with

the sl(n) polynomial of the unknot.

We propose that qn−q−n

q−q−1 is the grn-graded Poincaré polynomial of this homology group,

where the coefficient of qi in the polynomial is the dimension of the homology in grn = i. In
fact, HFK n of the unknot is isomorphic to unreduced sl(n) homology of the unknot, which
is naturally bigraded; in this example, the homological component of the bigrading is zero
and the intrinsic component agrees with grn. With respect to this bigrading, which makes
sense on HFK n of the unknot but not on HFK n in general, it is indeed true that the graded

Euler characteristic of HFK n of the unknot is qn−q−n

q−q−1 .

However, here we are considering grn (divided by n), which makes sense on HFK n of arbi-
trary links, as a homological grading. Since it is only a single grading, its Euler characteristic
in our sense will be a single complex number (not necessarily an integer because the grading
is fractional). A generator of the homology in grn = k will contribute a term ekπi/n to the
Euler characteristic by our definitions; the Euler characteristic for the unknot homology is
thus

eπi(1/n−1) + eπi(3/n−1) + · · ·+ eπi(1−3/n) + eπi(1−1/n).

For n = 1 we get eπi(0) = 1; for n ≥ 2 the sum is zero, since the roots of unity are distributed
symmetrically around the origin.

Remark 1.4. Here we see chain complexes with gradings by 1
n
Z (and d2 = 0) categorifying

evaluations of sl(n) polynomials at 2nth roots of unity. For categorification of these polyno-
mials at roots of unity e2πi/p for p prime, complexes with d2 = 0 are no longer suitable, and
one often works with p-complexes satisfying dp = 0 (see e.g. [Kho16, Qi14]). Combining
these ideas, one could look for p-complexes with gradings by 1

n
Z categorifying evaluations

of sl(n) polynomials at pnth roots of unity, although we are not aware of such complexes in
the literature.

Remark 1.5. If one is only interested in categorifying e.g. P n,L(e
πi/n) using the ideas of

this paper where P n,L(q) is the sl(n) polynomial, one does not need to use HFK n; it suffices
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to take a grading-collapse of reduced sl(n) homology. However, HFK n is a more natural or
minimal categorification of this evaluation; analogously, to categorify the Alexander polyno-
mial one can take a grading collapse of HOMFLY-PT homology, but HFK is a more minimal
way to do it.

Remark 1.6. Let K be a knot. For n = 2 where a spectral sequence from Khovanov
homology to HFK has been constructed by Dowlin [Dow18c], the equality P 2,K(i) = ∆K(−1)
is familiar (both evaluations give the knot determinant) and is a sign of a deeper relationship
between the representation theory of Uq(gl(1|1)) and Uq(gl(2)) at q = i; see [KS91, Section
1]. We do not know whether there is any similar story one can tell about the analogous
equalities for n > 2, although the n = 2 case is special at least in that both gl(1|1) and gl(2)
are defined using 2× 2 matrices.

Organization. In Section 2 we define Euler characteristics for fractionally graded complexes
and discuss spectral sequences. In Section 3 we review what we need about HOMFLY-PT
polynomials, sl(n) polynomials, and Alexander polynomials as well as HOMFLY-PT homol-
ogy and sl(n) homology (focusing on the gradings). In Section 4 we do the same for HFK
while introducing bigrading-shifted versions of HFK theories adapted to the three variants of
HOMFLY-PT homology. In Section 5 we recall the definitions of Dowlin’s HFK n invariants;
in Section 6 we compute their fractionally-graded Euler characteristics, introduce grading-
shifted variants of HFK n, and prove Theorem 1.1. In Section 7 we prove Theorem 1.2.
We also state a version of Dowlin’s spectral sequence conjectures involving grading-shifted
HFK n, compute its decategorified content, and place it in the context of spectral sequences
from HOMFLY-PT homology to sl(n) homology and HFK .

Acknowledgments. We would like to thank Aaron Lauda for useful conversations and
suggestions. A.M. was partially supported by NSF grant DMS-1902092 and Army Research
Office W911NF2010075.

2. Algebraic preliminaries

2.1. Euler characteristics of fractionally-graded complexes. Following [Dow18a], we
will work over Q.

Definition 2.1. For n ≥ 1, a 1
n
Z-graded complex C of Q-vector spaces (or just a 1

n
Z-graded

complex for short) is a 1
n
Z-graded Q-vector space

C =
⊕

α∈ 1
n
Z

Cα

equipped with a Q-linear endomorphism d of degree +1 satisfying d2 = 0.

The above definition is a special case of the definition of complexes with group-valued
gradings. By contrast, Definitions 2.3 and 2.4 below are new as far as we are aware.

Remark 2.2. A 1
n
Z-graded complex is the same data as n ordinary complexes, one for each

element of ( 1
n
Z)/Z. However, the examples of interest here more naturally give a 1

n
Z-graded

complex than n ordinary complexes.

The category of 1
n
Z-graded complexes and homotopy classes of degree-zero chain maps is

triangulated; the translation functor is degree shift downward by one. Furthermore, degree
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shift downward by 1
n
equips this triangulated category with an nth root of its translation

functor [1], that is, a functor [ 1
n
] such that [ 1

n
] composed n times equals [1]. We let C[α]

denote C with its degrees shifted downward by α ∈ 1
n
Z, so that (C[α])α′ = Cα′+α.

Definition 2.3. Let C be an (essentially small) triangulated category equipped with an nth

root
[
1
n

]
of its translation functor [1]. Let ζn = eπi/n. We define the Grothendieck group

K0(C) to be the quotient of the free Z[ζn]-module spanned by isomorphism classes of objects
of C by the relations X − Y + Z = 0 for every distinguished triangle X → Y → Z → X[1]
in C, as well as [

X

[
1

n

]]
= ζ−1

n [X]

for all objects X of C.

We can apply Definition 2.3 to the homotopy category H of finite-dimensional 1
n
Z-graded

complexes (a full triangulated subcategory of the homotopy category of all 1
n
Z-graded com-

plexes, preserved by the nth root of the translation functor). The result is a free Z[ζn]-module
K0(H) of rank 1 spanned by [Q], where [Q] denotes the class of the complex that has Q in
degree zero and zero in all other degrees.

Definition 2.4. Let C be a finite-dimensional 1
n
Z-graded complex. The Euler characteristic

χ(C) of C is the unique element of Z[ζn] such that [C] = χ(C)[Q] in K0(H). Explicitly,

χ(C) =
∑

α∈ 1
n
Z

eπiα dimQ Cα.

Just as for ordinary Euler characteristics, we have χ(C) = χ(H∗(C)). We also recall the
usual graded Euler characteristics for bigraded and triply-graded complexes.

Definition 2.5. Let C = ({CI,J : I, J ∈ Z}, d) be a bigraded chain complex which is finite-
dimensional in each I-degree, such that d has degree (0,−1) or (0, 1). The graded Euler
characteristic of C is defined to be

χu(C) =
∑

I,J∈Z

(−1)JuI dimQ(CI,J),

a formal Laurent series in a variable u. If the I-grading is valued in 1
2
Z rather than Z, the

same definition gives a formal Laurent series in u1/2.
Similarly, let C = ({CI,J,K : I, J,K ∈ Z}, d) be a triply graded chain complex which is

finite-dimensional in each (I, J)-bidegree, such that d has degree (0, 0,−1) or (0, 0, 1). The
graded Euler characteristic of C is defined to be

χu,v(C) =
∑

I,J,K∈Z

(−1)KuIvJ dimQ(CI,J,K),

a formal Laurent series in variables u and v.

Remark 2.6. Rather than u and v, we will often use variable names corresponding to the
gradings in question.
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Figure 1. Links appearing in the HOMFLY-PT skein relation.

2.2. Spectral sequences.

Definition 2.7. A spectral sequence of 1
n
Z-graded complexes is a sequence of 1

n
Z-graded

complexes (Er, dr)r≥0 together with isomorphisms H∗(Er, dr) ∼= Er+1 for r ≥ 0.

All spectral sequences in this paper have dr = 0 for large enough r, so that for some
1
n
Z-graded vector space E∞ we have (Er, dr) = (E∞, 0) for large enough r.

Remark 2.8. It is built into the above definition that the differential dr on each page of the
spectral sequence has degree +1 with respect to the 1

n
Z grading.

Since χ(C) = χ(H∗(C)) for finite-dimensional 1
n
Z-graded chain complexes, if some page

Er of a spectral sequence as in Definition 2.7 is finite-dimensional then for any r′ ≥ r we
have χ(Er) = χ(Er′); in particular, χ(Er) = χ(E∞).

Remark 2.9. Suppose one has a spectral sequence of bigraded complexes as in Defini-
tion 2.5, such that each dr has bidegree (0,−1) or (0, 1). Suppose that some page Er is
finite-dimensional in each j-degree; the same is then true for each page Er′ for r ≥ r, and it
follows for the same reason as above that χu(Er) = χu(Er′). In particular, χu(Er) = χu(E∞).
A similar equality for χu,v holds in the triply graded case, assuming each dr has bidegree
(0, 0,−1) or (0, 0, 1).

3. Link polynomials and Khovanov–Rozansky homology

All links below are assumed to be oriented.

3.1. Link polynomials. The HOMFLY-PT polynomial PL(a, q) of a link L in S3 [FYH+85,
PT87] is defined by the skein relation

aPL+(a, q)− a−1PL−
(a, q) = (q − q−1)PL0(a, q)

(where L+, L−, and L0 are related near a crossing as in Figure 1) together with the HOMFLY-
PT polynomial of the unknot as a normalization. We consider three variants:

• The reduced HOMFLY-PT polynomial PL(a, q) has P unknot(a, q) = 1.
• The middle HOMFLY-PT polynomial P−

L (a, q) has P−
unknot(a, q) =

−1
q−q−1 .

• The unreduced HOMFLY-PT polynomial PL(a, q) has Punknot(a, q) =
a−a−1

q−q−1 .

Remark 3.1. In these variables the middle and unreduced HOMFLY-PT “polynomials” are
rational functions in general, although they are Laurent polynomials in a and z = q − q−1.

We also consider two variants of the sl(n) polynomial:

• The reduced sl(n) polynomial is P n,L(q) := PL(q
n, q).

• The unreduced sl(n) polynomial is Pn,L(q) := PL(q
n, q).

Finally, if we let ∆L(t) denote the (symmetric single-variable) Alexander polynomial of L,
a Laurent polynomial in t1/2, then we have
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• PL(1, t
1/2) = ∆L(t),

• P−
L (1, t1/2) = ∆L(t)

t−1/2−t1/2
,

• PL(1, t
1/2) = 0.

More relevant for us will be the following identities, which are consequences of the sym-
metries PL(a, q) = P (−a,−q), P−

L (a, q) = −P−
L (−a,−q), and PL(−a,−q) = PL(a, q) of the

HOMFLY-PT polynomials:

• PL(−1,−t1/2) = ∆L(t),

• P−
L (−1,−t1/2) = ∆L(t)

t1/2−t−1/2 ,

• PL(−1,−t−1/2) = 0.

3.2. Khovanov–Rozansky homology.

3.2.1. Gradings and Euler characteristics. We briefly establish notation for the sl(n) homol-
ogy and HOMFLY-PT homology of Khovanov–Rozansky [KR08a, KR08b]; see also [Ras15].
Let H(L), H−(L), and H(L) be the reduced, middle, and unreduced HOMFLY-PT homol-
ogy of a link L in S3. In the notation of [Ras15], these variants of HOMFLY-PT homology

(denoted there by H(L), H(L), and H̃(L) respectively) have a Z-grading grq (or just q),

a 1
2
Z-grading grh, and a 1

2
Z-grading grv. Rasmussen also writes i = grq, j = 2 grh, and

k = 2grv; the value of j − k is always even. We let

• grA = 2grh = j,
• grQ = grq = i,

• grH = grv − grh = k−j
2
,

each of which is a grading by Z on the above three variants of HOMFLY-PT homology.

Remark 3.2. While h in grh stands for horizontal, H in grH stands for homological.

Each variant of HOMFLY-PT homology is finite-dimensional in each (grA, grQ)-bidegree,
so the following proposition makes sense.

Proposition 3.3 (cf. Theorem 2.11, Section 2.8 of [Ras15]). For a link L in S3, we have:

• χa,q(H(L)) = PL(a, q),
• χa,q(H

−(L)) = P−
L (a, q),

• χa,q(H(L)) = PL(a, q).

Now let Hn(L) and Hn(L) be the reduced and unreduced sl(n) homology of a link L in
S3; the reduced homology Hn(L) also depends on a choice of component of L. Both variants
of sl(n) homology have Z-gradings grQ,n and grH ; in [Ras15, Section 2.9] these gradings are
called grn and grv respectively, while in [Ras15, Section 5] they are called gr′n and gr− (see
[Ras15, Proposition 5.14]).

Proposition 3.4 (cf. Theorem 2.16 of [Ras15]). Write χq for the grQ,n-graded Euler char-
acteristic, with grH treated as the homological grading. For a link L in S3, we have:

• χq(Hn(L)) = P n,L(q),
• χq(Hn(L)) = Pn,L(q).
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3.2.2. Rasmussen’s spectral sequences. In [Ras15], Rasmussen constructs spectral sequences
with E2 page H(L) (respectively H(L)) and E∞ page Hn(L) (respectively Hn(L)) for n ≥ 1.
As discussed in [Ras15, beginning of Section 5], the differentials on each page have grQ,n = 0
and grH = 1 where grQ,n on HOMFLY-PT homology is defined by grQ,n = grQ +n grA. Thus,
each page gets a bigrading as the homology of the previous page, and the induced bigrading
on the E∞ page agrees with (grQ,n, grH) on sl(n) homology.

These spectral sequences give equalities of Euler characteristics χq(H(L)) = χq(Hn(L))
and χq(H(L)) = χq(Hn(L)), where we are viewingH(L) andH(L) as bigraded by (grQ,n, grH)
and χq denotes the grQ,n-graded Euler characteristic. As in the proof of [Ras15, Lemma 5.4],

we have χq(H(L)) = PL(q
n, q); similarly, we have χq(H(L)) = PL(q

n, q). Thus, applying
Euler characteristics to these spectral sequences recovers the usual identity of the sl(n) poly-
nomial with an evaluation of the HOMFLY-PT polynomial. We view these identities as
the “decategorified content” of Rasmussen’s spectral sequences; in other words, we view the
spectral sequences as categorifications of these identities.

4. Knot Floer homology

4.1. The master complex. Let L be a link in S3; let H be a multi-pointed Heegaard
diagram for L (versions of the below theories can be defined for links in more general 3-
manifolds but we restrict attention to links in S3 here). Write

{z1, w1, . . . , zm, wm}

for the set of basepoints in H. We assume that H is equipped with the appropriate analytic
data such that the knot Floer homology “master complex3” CFK U,V (L), a finitely generated
bigraded free module over Q[U1, V1, . . . , Um, Vm] with an endomorphism ∂U,V satisfying

∂2
U,V =

m∑

i=1

(Ua(i) − Ub(i))Vi,

is defined (here a(i) denotes the index of the unique w basepoint in the same component
as zi of the Heegaard surface with alpha curves removed, and similarly for b(i) and beta
curves). See [Zem19, Dow18a] for more details on the master complex; the differential counts
holomorphic disks whose domains are allowed to have nonzero multiplicity at any type of
basepoint (w and/or z), and the contribution of a domain to the differential is weighted
by powers of Ui determined by the multiplicities at wi basepoints as well as powers of Vi

determined by the multiplicities at zi basepoints.
The two gradings on CFK U,V (L) are called the Alexander grading grT (a grading by 1

2
Z

in general) and the Maslov grading grM (a grading by Z); our conventions for these gradings
follow [OSz04a, OSz08]. The variables Ui have grT = −1 and grM = −2, the variables Vi

have grT = 1 and grM = 0, and ∂U,V has grT = 0 and grM = −1.
In particular, to fix the absolute Maslov grading, one can work with a Heegaard diagram

H whose number m of z and w basepoints is equal to the number ` of components of L.
Then the homology of

CFK U,V (L)⊗Q[U1,V1,...,U`,V`]
Q[U1, V1, . . . , U`, V`]

(U1, V1 − 1, . . . , V` − 1)
,

3While it would be more accurate to write CFKU,V (H), it will help avoid confusion with reduced and
unreduced versions of knot Floer homology below to write CFKU,V (L), with the H dependence left implicit.
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which is a complex (∂2 = 0) with a single grading by grM , computes ĤF (S3) ∼= Q (see the
discussion after Theorem 4.4 of [OSz08]), while the homology of

CFK U,V (L)⊗Q[U1,V1,...,U`,V`]
Q[U1, V1, . . . , U`, V`]

(U1, . . . , U`, V1 − 1, . . . , V` − 1)

computes ĤF (#`−1(S2 × S1)) ∼= ∧∗V where V is a vector space of dimension ` − 1. As
mentioned in [OSz08, proof of Theorem 1.1], in the grading conventions of that paper the

top-dimensional generator of ∧∗V corresponds to the generator of ĤF (S3) ∼= Q. By the
discussion after [OSz08, Theorem 1.2], the absolute Maslov grading on CFK is fixed so that
the top-dimensional generator of ∧∗V has Maslov degree zero, so we can equivalently say

that the generator of ĤF (S3) ∼= Q has degree zero. The absolute Alexander grading is fixed
by symmetry. That is, fix the absolute Alexander grading grT such that for all n ∈ Z and

ĈFK (L) := CFK U,V (L)⊗Q[U1,V1,...,Um,Vm]
Q[U1, V1, . . . , Um, Vm]

(V1, . . . , Vm, Ui1 , . . . , Ui`)
,

ĈFK (L) satisfies dimQ(ĈFK (L)grT=n) = dimQ(ĈFK (L)grT=−n).

4.2. Other bigraded variants of HFK . The following complexes are all derived from the
master complex and satisfy ∂2 = 0. We focus on bigraded versions of HFK ; there are also
multi-graded versions as in [OSz08]. Let L be an `-component link in S3; when we mention
knot Floer complexes for links, the dependence on a choice of Heegaard diagram for L (say
with basepoints {z1, w1, . . . , zm, wm}) is implicit.

Definition 4.1. The bigraded complex C̃FK (L) is

CFK U,V (L)⊗Q[U1,V1,...,Um,Vm] Q.

Definition 4.2. Assume that, in our Heegaard diagram H representing L, we are given some

choice of basepoints (zij , wij) on each component Lj of L. The bigraded complex ĈFK (L) is

CFK U,V (L)⊗Q[U1,V1,...,Um,Vm]
Q[U1, V1, . . . , Um, Vm]

(V1, . . . , Vm, Ui1 , . . . , Ui`)
.

Definition 4.3. Assume that L is equipped with a distinguished component and that the
basepoints zm, wm of the Heegaard diagram H representing L lie on the distinguished com-
ponent of L. The bigraded complex CFK (L) is

CFK U,V (L)⊗Q[U1,V1,...,Um,Vm]
Q[U1, V1, . . . , Um, Vm]

(V1, . . . , Vm, Um)
.

In general, the homotopy type of CFK (L) depends on the choice of distinguished compo-
nent. However, the choice of basepoints for the same component give homotopy-equivalent
complexes (see Dowlin [Dow18a, Corollary 2.15]). Following [Dow18a, Definition 2.19] and
in analogy to sl(n) homology, we will refer to CFK (L) as the reduced knot Floer complex of
L (with its distinguished component) and its homology as the reduced knot Floer homology
of L.

Definition 4.4. The bigraded complex CFK−(L) is

CFK U,V (L)⊗Q[U1,V1,...,Um,Vm]
Q[U1, V1, . . . , Um, Vm]

(V1, . . . , Vm)
.
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Definition 4.5. [cf. Section 2.6 of [Dow18a]] Let L′ be the disjoint union of L with a
split unknot; we choose the unknot component as a distinguished component for L′, and we
assume that the only basepoints of the diagram H′ we choose to represent L′ that lie on the
distinguished component of L′ are the final pair (zm′ , wm′) of basepoints. We define

CFK (L) := t−1/2CFK (L′)

where t−1/2 denotes a downward shift by 1
2
in the Alexander grading grT . Following [Dow18a],

we will refer to CFK (L) as the unreduced knot Floer complex of L and its homology as the
unreduced knot Floer homology of L.

Remark 4.6. The use of a split unknot to define unreduced HFK appears in Baldwin–
Levine–Sarkar [BLS17], although these authors use the term “unreduced HFK ” for a slightly
different theory.

The homology of each of these complexes is an invariant of L (equipped with a distin-

guished component in Definition 4.3) and will be denoted by H̃FK (L), ĤFK (L), etc. Each
of the above bigraded versions of HFK is finite-dimensional in each Alexander degree.

Remark 4.7. The complex CFK (L) and its homology appear to be less common in the

literature; we use (·) to match the notation of HOMFLY-PT homology and sl(n) homology,
although it is possible that our use of the notation HFK (L) conflicts with uses of this notation
elsewhere.

4.3. Graded Euler characteristics.

Proposition 4.8. For a link L in S3, we have:

• χt(ĤFK (L)) = (t−1/2 − t1/2)`−1∆L(t) = (−1)`−1t
`−1
2 (1− t−1)`−1∆L(t),

• χt(HFK (L)) = (−1)`−1t
`−1
2 ∆L(t),

• χt(HFK
−(L)) = (−1)`−1t

`−1
2

∆L(t)
1−t−1 ,

• χt(HFK (L)) = 0.

Proof. The first claim follows from [OSz04a, equation (1)] and [OSz08, Theorem 1.1].4 The
second claim follows from the first because the chain groups in CFK (L) are free modules over

polynomial rings in ` − 1 more variables than the corresponding chain groups in ĈFK (L);
the graded Euler characteristic of a polynomial ring in one of these variables (with degrees
A = −1 and M = −2) is 1

1−t−1 . The third claim follows similarly; the fourth claim follows
from the second claim along with the fact that ∆L(t) vanishes on split links. �

Remark 4.9. For an `-component link L in S3, the single-variable and multi-variable

Alexander polynomials of L satisfy the relation ∆L(t)
.
=

{
∆multi

L (t) ` = 1

∆multi
L (t, . . . , t)(1− t) ` > 1

,

where
.
= means equality up to multiplication by a unit in Z[t, t−1] (see [Kaw96, Proposition

7.3.10(1)]). This relation explains why, unlike in [OSz08, equations (1) and (2)], we do not
need to treat ` = 1 and ` > 1 separately in Proposition 4.8.

Definition 4.10. To more closely match the three variants of HOMFLY-PT homology,

we introduce grading-shifted variants HFK
′
(L), (HFK−)′(L), and HFK ′(L) of knot Floer

4Note that [OSz08, equation (1)], when proved in [OSz08, Proposition 9.1], is stated with a ± sign.
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homology. We first replace the Alexander and Maslov degrees of HFK (L), HFK−(L), and
HFK (L) by their negatives, so that the variable Ui now has grA = 1 and grM = 2 and the
differentials on CFK complexes now have Maslov degree +1. In the Euler characteristic
computations of Proposition 4.8, t gets replaced by t−1; note that ∆L(t

−1) = (−1)`−1∆L(t).
We then make the following shifts:

• For HFK
′
(L), we shift the Alexander grading on grading-reversed HFK (L) upward

by `−1
2
. We have

χt(HFK
′
(t)) = ∆L(t).

• For (HFK−)′(L), we shift the Alexander grading on grading-reversed HFK−(L) up-
ward by `

2
; we also shift the Maslov grading upward by 1. We have

χt((HFK
−)′(L)) =

∆L(t)

t1/2 − t−1/2
.

• For HFK ′(L), we shift the Alexander grading on grading-reversed HFK (L) upward
by `−1

2
(recall that HFK (L) already had an Alexander grading shift in Definition 4.5).

We have χt(HFK
′(L)) = 0.

4.4. Conjectured spectral sequences from HOMFLY-PT homology to HFK . In
[DGR06], Dunfield–Gukov–Rasmussen conjectured the existence of spectral sequences from

H(K) to ĤFK (K) for knotsK in S3. Manolescu [Man14] gives a similar conjecture for HFK−

and the middle HOMFLY-PT homology. Dowlin [Dow18a] conjectures spectral sequences

from H(L) to ĤFK (L) and from H(L) to HFK (L) for all links in S3. We believe a spectral
sequence from H(L) to HFK (L) is more plausible for links, so we will state the following
version of these spectral sequence conjectures.

Conjecture 4.11. Let L be a link in S3. Ignoring gradings at first, there are spectral
sequences with:

• E2 page H(L) and E∞ page HFK (L);
• E2 page H−(L) and E∞ page HFK−(L);
• E2 page H(L) and E∞ page HFK (L).

Moreover, such sequences are given by the construction of Manolescu [Man14, Theorem 1.1],
which is known to give E∞ pages recovering HFK.

Remark 4.12. In [Dow18b], Dowlin identifies the E1 page of the spectral sequence from
[Man14, Theorem 1.1] with the appropriate sum of HOMFLY-PT complexes for singular
resolutions of L; it remains to identify the E2 page with HOMFLY-PT homology for links
with nonsingular crossings.

Manolescu [Man14, Section 4] discusses the grading properties of his conjectured spectral
sequences from HOMFLY-PT homology to HFK in detail; we will rephrase some of his
discussion in terms of the grading-shifted variants of HFK from Definition 4.10. We define
a 1

2
Z-grading grT and a Z-grading grM on each of the variants of HOMFLY-PT homology

by

• grT =
grQ
2
,

• grM = grA +grQ +grH
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(Manolescu includes constant grading-shift terms in the above formulas but here we incor-
porate the grading shifts into HFK ; he also has negative signs since, unlike us, he has not
multiplied the Alexander and Maslov gradings on HFK by −1). The differential dr on the
Er page of Manolescu’s conjectured sequences has grA = 2− 2r, grQ = 0, and grH = 2r− 1.

Thus, dr has grT = 0 and grM = 1. Writing H(L) = ⊕i,j,k∈ZH
i,j,k

(L) as in [Ras15] (and
similarly for the other versions), we equivalently have grT = i/2 and grM = i+ j/2 + k/2.

Conjecture 4.13. Let L be a link in S3. There are spectral sequences with each page bigraded
by (grT , grM), such that the differential on each page has (grT , grM) = (0, 1) and each page
is the bigraded homology of the previous page, and with

• E2 page H(L) and E∞ page HFK
′
(L);

• E2 page H−(L) and E∞ page (HFK−)′(L);
• E2 page H(L) and E∞ page HFK ′(L)

as bigraded vector spaces.

These spectral sequences would give equalities of Euler characteristics

χt(H(L)) = χt(HFK
′
(L)), χt(H

−(L)) = χt((HFK
−)′(L)), χt(H(L)) = χt(HFK

′(L))

where χT denotes the grT -graded Euler characteristic. We have

χt(H(L)) =
∑

I∈ 1
2
Z,J∈Z

(−1)JtI dimQ

(
H(L)grT=I,grM=J

)

=
∑

i,j,k∈Z

(−1)i+j/2+k/2ti/2 dimQ

(
H

i,j,k
(L)
)

=

( ∑

i,j,k∈Z

ajqi(−1)(k−j)/2 dimQ

(
H

i,j,k
(L)
)) ∣∣∣∣

a=−1, q=−t1/2

= PL(−1,−t1/2).

Similarly,

χt(H
−(L)) = P−

L (−1,−t1/2), χt(H(L)) = PL(−1,−t1/2) = 0.

Thus, these conjectured spectral sequences can be viewed as categorifications of the three
equalities involving Alexander polynomials and HOMFLY-PT polynomial evaluations (with
a = −1) at the end of Section 3.1.

5. Dowlin’s HFK n invariants

We now consider two versions of HFK defined by Dowlin [Dow18a], applied to links in
S3 rather than more general 3-manifolds. Rather than bigradings, these versions will have
single gradings by 1

n
Z in our conventions.

Let L be a link in S3, represented by a Heegaard diagram H as in Section 4.1 with
basepoints {z1, w1, . . . , zm, wm}. Following Dowlin, for n ≥ 1 we consider a collapse grn of
the bigrading on CFK U,V (L) defined by

grn = −n grM +2(n− 1) grT .
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We divide grn by n to get
grn
n

= − grM +2

(
1−

1

n

)
grT

which is valued in 1
n
Z even for half-integral values of grT . The variables Ui have

grn
n

= 2
n
,

the variables Vi have
grn
n

= 2− 2
n
, and ∂U,V has grn

n
= 1.

Definition 5.1 (cf. Definition 2.19 of [Dow18a]). Assume that L is equipped with a distin-
guished component and that the basepoints zm, wm of the Heegaard diagram H representing
L lie on the distinguished component. The 1

n
Z-graded complex CFK n(L) is

CFK U,V (L)⊗Q[U1,...,Um,V1,...,Vm]
Q[U1, . . . , Um, V1, . . . , Vm](

Vi −
Un
a(i)

−Un
b(i)

Ua(i)−Ub(i)
: 1 ≤ i ≤ m− 1

)
+ (Um, Vm)

where a(i) and b(i) are defined as in Section 4.1. The grading is given by grn
n
; note that

Un
a(i)

−Un
b(i)

Ua(i)−Ub(i)
equals the telescoping sum Un−1

a(i) + Un−2
a(i) Ub(i) + · · · + Un−1

b(i) , which (like Vi) has
grn
n

= 2− 2
n
.

Definition 5.2 (cf. Definition 2.5 of [Dow18a]). Let L′ be the disjoint union of L with a
split unknot, and choose the unknot component to be distinguished. As in Definition 4.5,
we assume that the only basepoints of the diagram H′ we choose to represent L′ that lie on
the distinguished component of L′ are the final pair (zm′ , wm′) of basepoints. We define

CFK n(L) := CFK n(L
′)[1− 1/n];

note that a downward shift by 1
2
in grT as in [Dow18a, Section 2.2] produces a downward

shift by 1− 1
n
in grn

n
= − grM +2(1− 1/n) grT .

We write ∂n for the differential on either variant of CFK n; it satisfies ∂2
n = 0. When

n = 1, the complex CFK 1(L) computes ĤF (S3) (see Section 4.1), so its homology is Q in
grM = 0 (and thus grn

n
= 0) and zero in other degrees; see [Dow18a, Lemma 5.2]. It follows

that HFK 1(L) is also Q in degree 0 and zero in other degrees.
Since the tensor product (after annihilating the final pair of variables) sets each Vi vari-

able equal to a polynomial in the Ui variables while imposing no further relations on the
Ui variables, the complexes CFK n(L) and CFK n(L) are free over Q[U1, . . . , Um−1] and
Q[U1, . . . , Um′−1] respectively. Their homology groups HFK n(L) (respectively HFK n(L)) de-
pend only on L with its distinguished component (respectively, L) and are finite-dimensional
over Q as shown in [Dow18a].

Remark 5.3. In [Dow18a], Dowlin uses the notation ĤFK n(L) to refer to what we call

HFK n(L); however, in [Dow18c], ĤFK n (at least for n = 2) is given a different definition

which is closer to Definition 4.2 for ĤFK (L).

6. The Euler characteristic of HFK n

Let L be an `-component link in S3 equipped with a distinguished component; in this
section we compute the Euler characteristics of HFK n(L) and HFK n(L).
For simplicity, assume we are working with a Heegaard diagramH for L that has exactly 2`

basepoints. Let R = Q[U1, ..., U`−1], a
1
n
Z-graded ring where Ui has degree

2
n
as in Section 5,
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and let K be the 1
n
Z-graded Koszul complex

K =
`−1⊗

i=1

(
R

[
1−

2

n

]
Ui−→ R

)

where the tensor products are over R.

Lemma 6.1. Let n ≥ 2. There exists a spectral sequence with each page graded by 1
n
Z, with

differentials of degree +1 such that each page is the 1
n
Z-graded homology of the previous page,

and with E1 page HFK n(L)⊗R K and E∞ page ĤFK (L) as 1
n
Z-graded vector spaces.

Proof. The complex CFK n(L) ⊗R K can be viewed as a cube of dimension ` − 1 in which
each vertex is a copy of CFK n(L). We equip CFK n(L) ⊗R K with a filtration such that
every oriented edge of this cube increases the filtration level by 1. Then the differential d on
CFK n(L)⊗R K can be decomposed as d = d0 + d1, where d0 is the differential on each copy
of CFK n(L) and d1 comes from the differential on K.
From this filtration, we get a spectral sequence whose E1 page is (HFK n(L)⊗R K, (d1)∗).

The spectral sequence converges because there are only finitely many nontrivial filtration

levels, and the E∞ page is ĤFK (L); indeed, we claim that the total complex CFK n(L)⊗RK

has a contractible subcomplex such that the quotient by this subcomplex is ĈFK (L).
To see this, note that R has a basis of monomials and we get a corresponding basis for

K (which is a direct sum of copies of R). Let K ′ denote the span of all basis elements of
K except for the monomial 1 in the unique R-summand of K having no outward-pointing
arrows in the differential on K (this is the R-summand with no degree shift). As a complex,
we have K ∼= K ′ ⊕ Q, and since the homology of K is the homology of the Q summand in
this decomposition (namely Q), the complex K ′ is contractible.

The subcomplex of CFK n(L) ⊗R K we consider is CFKn(L) ⊗R K ′; by construction we
have

CFK n(L)⊗R K

CFK n(L)⊗R K ′

∼= ĈFK (L).

To see that CFK n(L) ⊗R K ′ is contractible, define a filtration on CFK n(L) ⊗R K ′ as the
Maslov grading plus the above-defined filtration on CFK n(L) ⊗R K. Then components of
the differential internal to CFK n(L) decrease filtration level by 1 while components of the
differential coming from K ′ preserve the filtration level. The associated graded complex to
the filtered complex CFK n(L) ⊗R K ′ is isomorphic to a direct sum of copies of K ′, so it is
contractible; it follows that CFK n(L)⊗R K ′ is contractible. �

Proof of Theorem 1.1. Since HFK n(L) is finitely generated over Q, the same is true for
HFK n(L) ⊗R K. Thus, the spectral sequence of Lemma 6.1 gives an equality between the
grn
n
-graded Euler characteristics of HFK n(L)⊗R K and ĤFK (L). The Euler characteristics

of HFK n(L)⊗R K and HFK n(L) are related by

χ(HFK n(L)⊗R K) =
(
1− e2πi/n

)`−1
χ(HFK n(L)),

so if n ≥ 2 we get

χ(HFK n(L)) =
(
1− e2πi/n

)1−`
χ(ĤFK (L)).
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Using Proposition 4.8, we can compute the grn
n
-graded Euler characteristic of ĤFK (L) as

follows:

χ(ĤFK (L)) =
∑

α∈ 1
n
Z

eπiα dimQ

(
ĤFK (L) grn

n
=α

)

=
∑

I∈ 1
2
Z,J∈Z

eπi(−J+2(1−1/n)I) dimQ

(
ĤFK (L)grT=I,grM=J

)

=


 ∑

I∈ 1
2
Z,J∈Z

(−1)JtI dimQ

(
ĤFK (L)grT=I,grM=J

)


∣∣∣∣∣
t1/2=eπi(1−1/n)=−e−πi/n

=
(
(−1)`−1t

`−1
2 (1− t−1)`−1∆L(t)

) ∣∣∣∣
t1/2=−e−πi/n

= eπi(1−`)/n
(
1− e2πi/n

)`−1
∆L(t)|t1/2=−e−πi/n .

It follows that for n ≥ 2, the grn
n
-graded Euler characteristic of HFK n(L) is

eπi(1−`)/n∆L(t)|t1/2=−e−πi/n .

Since HFK n(L) is defined as a grading shift of HFK n of the disjoint union of L with a
split unknot, and the Alexander polynomial vanishes on split links, we see that if n ≥ 2, the
grn
n
-graded Euler characteristic of HFK n(L) is zero for all links L. When n = 1, we have

χ(HFK 1(L)) = χ(HFK 1(L)) = 1

for all links L. �

Definition 6.2. As in Definition 4.10, we define grading-shifted variants HFK
′

n(L) and
HFK ′

n(L) of HFK n(L) and HFK n(L). Starting with bigradings on CFK n(L) and CFK n(L)

corresponding to the bigradings on CFK
′
(L) and CFK ′(L), the differentials ∂n have degree

+1 with respect to
grn
n

:= grM −2

(
1−

1

n

)
grT

(note that since we still want +1 differentials on 1
n
Z-graded complexes, this is the negative

of the earlier definition of grn
n

in terms of grT and grM). We define CFK
′

n(L) to be CFK
′
(L)

with grading given by grn
n

and differential given by ∂n; we define CFK ′
n(L) similarly.

Remark 6.3. Starting from HFK (L), we negated both gradings and shifted the Alexander

grading upward by `−1
2

to get HFK
′
(L), then applied the collapse grM −2(1 − 1/n) grT to

get the grading on HFK
′

n(L). Equivalently, we could first apply the collapse − grM +2(1−
1/n) grT on HFK (L) to get the grading on HFK n(L), then shift this 1

n
Z grading upward by

(1− `)(1− 1/n). In other words, HFK
′

n(L) is HFK n(L) with its 1
n
Z-grading shifted upward

by (1− `)(1− 1/n); similarly, HFK ′
n(L) is HFK n(L) with its 1

n
Z-grading shifted upward by

(1− `)(1− 1/n).

Corollary 6.4. For n ≥ 2, the grn
n
-graded Euler characteristic of HFK

′

n(L) is

∆L(t)|t1/2=−eπi/n ,

and the grn
n
-graded Euler characteristic of HFK ′

n(L) is zero.



16 LARRY GU AND ANDREW MANION

Proof. For the reduced case, we have

eπi(1−`)(1−1/n)eπi(1−`)/n∆L(t)|t1/2=−e−πi/n = (−1)1−`∆L(t)|t1/2=−e−πi/n = ∆L(t)|t1/2=−eπi/n

(using that ∆L(t
−1) = (−1)`−1∆L(t)); for the unreduced case, we have eπi(1−`)(1−1/n) · 0 =

0. �

The proof of [Dow18a, Lemma 2.23] gives us 1
n
Z-graded spectral sequences from HFK

′
(L)

to HFK
′

n(L) and from HFK ′(L) to HFK ′
n(L), where

grn
n

on HFK
′
(L) and HFK ′(L) is defined

to be grM −2(1− 1/n) grT .

When n = 1, the shifted homology groups HFK
′

1(L) and HFK ′
1(L) agree with HFK 1(L)

and HFK 1(L) respectively, so their Euler characteristics are both 1.

Remark 6.5. The arguments in this section can be made simpler in the case of knots (` = 1),

where by [Dow18a, Lemma 2.20], HFK n(L) is isomorphic to grn
n
-graded HFK (L) = ĤFK (L).

In particular, Lemma 6.1 is unnecessary in this case.

7. Euler characteristics and spectral sequences

Dowlin [Dow18a, Conjecture 1.6] conjectures the existence of spectral sequences from
Hn(L) to HFK n(L) and from Hn(L) to HFK n(L). These sequences are conjectured to
respect the 1

n
Z-gradings, where the 1

n
Z-grading grn

n
on reduced and unreduced sl(n) homology

is defined by

grn
n

=
1

n
grQ,n +grH .

Dowlin works with n times this grading, which we would write as grQ,n +n grH .
5 We state

the following version of Dowlin’s conjectures in terms of the grading-shifted theories HFK
′

n

and HFK ′
n.

Conjecture 7.1. Let L be a link in S3. There exist spectral sequences with each page graded
by 1

n
Z, with differentials of degree +1 such that each page is the 1

n
Z-graded homology of the

previous page, and with

• E2 page Hn(L) and E∞ page HFK
′

n(L);
• E2 page Hn(L) and E∞ page HFK ′

n(L)

as 1
n
Z-graded vector spaces.

These spectral sequences would give equalities of 1
n
Z-graded Euler characteristics

χ(Hn(L)) = χ(HFK
′

n(L)), χ(Hn(L)) = χ(HFK ′
n(L)).

5In Dowlin’s notation this grading is called grn+
n
2
grv (where grn corresponds to our grQ,n). As specified

in [Dow18a, Section 4.2], the grading grv here is k = 2grv in the notation of [Ras15], where grv corresponds
to our grH . This accounts for the factor of 1

2
in Dowlin’s formula.
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Proof of Theorem 1.2. We have

χ(Hn(L)) =
∑

α∈ 1
n
Z

eπiα dimQ

(
Hn(L) 1

n
grQ,n +grH=α

)

=
∑

I,J∈Z

eπi(I/n+J) dimQ

(
Hn(L)grQ,n=I,grH=J

)

=

(∑

I,J∈Z

(−1)JqI dimQ

(
Hn(L)grQ,n=I,grH=J

)) ∣∣∣∣∣
q=eπi/n

= P n,L(e
πi/n);

similarly, χ(Hn(L)) = Pn,L(e
πi/n), which is 0 for n ≥ 2 and 1 for n = 1. Thus, for n ≥ 2

these conjectured spectral sequences can be viewed as categorifications of the equalities

P n,L(e
πi/n) = ∆L(t)|t1/2=−eπi/n , Pn,L(e

πi/n) = 0.

For n = 1, the equalities are P 1,L(−1) = 1 and P1,L(−1) = 1 (note that P 1,L(q) = P1,L(q) = 1
in general). �

Remark 7.2. Let n ≥ 2 for simplicity. The spectral sequences of Conjecture 7.1, together
with the ones from Sections 3.2.2 and 4.4 and the spectral sequences from HFK to HFK n,
can be organized as shown in Figure 2, following [Dow18a, Figure 1]. The arrows in this
figure represent spectral sequences (solid for known, dotted for conjectural); we augment
Dowlin’s figure by labeled the arrows with their decategorified content.6

It is interesting to look at the square formed by the reduced theories; traveling along
the left edge and then the bottom edge amounts to starting with PL(a, q), evaluating at
a = qn, and then evaluating the result at q = eπi/n to get PL(−1, eπi/n). On the other hand,
traveling along the top edge and then the right edge amounts to starting with PL(a, q),
evaluating at a = −1 and q = −t1/2, and then evaluating the result at t1/2 = −eπi/n to get
PL(−1, eπi/n). This compatibility at the level of Euler characteristics could be a sign of a
more elaborate compatibility relationship between the conjectured spectral sequences at the
categorified level.
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