


medical imaging modalities (CT, MRI and OCT), which se-

riously degrades image quality and affects quantitative anal-

ysis. Over decades of research, numerous models have been

developed to remove BMA, but effective solutions for all

circumstances remain missing. In OCTA, BMA causes a

severely blurred image and usually appears as horizontal

stripes of different widths with high-intensity in the cen-

ter and low contrast in the surrounding area. As illustrated

in Fig. 1, the horizontal stripes across OCTA are the areas

affected by BMA. In the following sections, we use BMA

and stripe (artifacts) interchangeably.

Previous approaches remove BMA with image registra-

tion or supervised denoising models, requiring duplicate

scans or numerous training data with annotations. The cur-

rent state-of-the-art model [14] inpaints the BMA-affected

areas to generate a clear vasculature mask for enhancement.

However, the inpainting model abandons the information in

noisy areas so has limited capability to fill large gaps. Be-

sides, lots of images with annotations are needed for train-

ing. We observed that, even if the intensity value of BMA

is far stronger than normal area, there were still textures

within BMA. Furthermore, BMA only affects vertical gra-

dient rather than horizontal ones due to the OCTA imaging

process. These features could serve as structural references

of vasculature in noisy BMA area. However, there are three

main challenges for BMA removal: (1) information within

the motion artifacts is too noisy; (2) how to inject structure

information from the BMA area into the recovery frame-

work; and (3) OCTA data are limited and the pixel-level

annotations are difficult to acquire.

In this paper, we propose a self-supervised BMA re-

moval method to solve the issues above. First, the gradient-

based structural information and appearance feature are ex-

tracted from BMA and injected into the model to capture

more connectivity. Specifically, we keep the BMA-affected

area, even the noisy one, as an input channel instead of dis-

carding it directly. Furthermore, based on the observation

that BMA mainly affects vertical gradients rather than hor-

izontal ones, we introduce horizontal gradients to make our

model aware of potential structures under BMA. Adding the

gradient map makes the training stabler and convergence

faster. With structural and appearance information and eas-

ily collected defective masks, we train our model in a self-

supervised manner that the clear areas are used for training

while the BMA areas are only for inference.

With the rich structural and appearance information car-

ried in the BMA stripe region as reference, our model can

remove large BMA and handle the background noise at the

same time. Our BMA removal model is end-to-end and only

requires 2D image with defective mask, which is more prac-

tical. Compared with other context-guided denoising mod-

els, our content-aware model can learn guidance directly

from noisy images and is thus more robust. Experiments on

a mouse cortex OCTA dataset demonstrate that our model

can remove most BMA under different intensities and ex-

treme area sizes while existing methods fail. The specific

contributions of our paper are:

• We propose a new structural denoising model that can

leverage the rich structural and appearance information

carried in the BMA stripe region.

• Our model is trained in a self-supervised manner, and

training does not involve manual annotation.

• For image enhancement, our method can alleviate

BMA and background noises simultaneously, and thus

significantly improve image quality.

2. Related Work

In this section, we will first discuss OCTA and BMA.

Then, we will briefly introduce some general denoising

methods followed by related OCT denoising methods.

2.1. OCTA and BMA in Awake Animal Study

OCT is a high-speed 3D imaging technique with micron-

level resolution. Previous methods employ gradient-based

filters [7, 11, 12] to generate vessel masks to highlight vas-

culature for better analysis. However, the image reconstruc-

tion is sensitive to micromotion caused by heartbeat, respi-

ration, and mechanical vibration. Such motions lead to mis-

alignment and phase noise which cause BMA. Severe BMA

usually results in extremely high-intensity noise. Previous

gradient-based approaches [7, 12] can not handle such ar-

tifacts because BMA has similar gradient information with

vessel branches. Moreover, long-lasting BMA could result

in a broad and blurred area, making it hard to correct. Last

but not least, BMA is often accompanied by background

noise, which makes it even harder to find vessels within the

affected area. The interleaved background noise and BMA

could lead to poor visualization and erroneous quantifica-

tion.

2.2. General Denoising Method

BM3D [4] is a classic denoising model based on sparse

representation. Inspired by the observation that natural im-

ages consist of repeated textures, BM3D groups related im-

age patches and filters them together to shrink noise. It

handles Gaussian noise well but fails to remove structural

noise. After convolutional neural network (CNN) is firstly

applied for the denoising task in [9], lots of works have

been proposed to keep updating the state-of-the-art perfor-

mance [3, 25, 29, 30]. Recently, Wu et al. [26] propose a

single image dehazing method based on contrastive learn-

ing and achieves state-of-the-art performance on both syn-

thetic and real-world datasets. Still, this method is trained
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the Gradient Statistics G ∈ R
H×W (See Sec. 3.2), and the

corresponding row label l ∈ {0, 1}H , where W and H are

image width and height, respectively. li = 0 means the i-

th row of I is clear while li = 1 for BMA. For each I ,

the corresponding mask M is automatically generated with

OOF [11, 12]. The BMA affected region can be discerned

easily and the row label l indicates which rows in image are

affected by BMA. The proposed BMA removal framework

takes (I,M ,G, l) as input and outputs the vasculature pre-

diction M
′ with BMA removed:

M
′ = f(M , I,G, l). (1)

The main issue of previous context-guided inpainting

models is that little information from noisy area is auto-

matically learned. Therefore these surrounding-based gen-

erative models produce plausible but unconvincing results,

especially for large missing areas. But the certainty is just

what medical image researchers demand. So the informa-

tion within noisy area should be utilized to improve the pre-

diction confidence.

Data insufficiency is another issue to apply supervised

methods in medical images sometimes. It is difficult or even

impossible to get noise-free or ground truth for some imag-

ing modalities. Supervised methods may not work well un-

der this condition. So we should leverage any available in-

formation to solve the data insufficiency. These two issues

will be solved in the following parts.

3.2. Content-Aware BMA Removal

The uncertainty of context-guided inpainting models is

the main drawback for the tasks demanding accurate results

rather than plausible ones. We have observed that, even with

heavy noise, some structure and texture information exist in

BMA affected areas. To leverage such vessel clues, we in-

troduce two information injection approaches, e.g. Gradient

Statistics (GS) and Appearance Feature (AF). The proposed

CABR can automatically learn reliable references from the

injected information for BMA removal. The framework of

CABR is illustrated in Fig. 2.

Gradient Statistics (GS). BMA usually causes high-

intensity horizontal stripes in OCTA images. We observed

that the horizontal gradients are hardly affected by BMA

so we introduce the horizontal gradients as the structural

information for CABR. Specifically, we apply the vertical

Sobel operator in BMA areas to extract GS. The absolute

value of response is injected into the model to capture more

reference for BMA removal. Sobel operator is linear and

efficient so only marginal computational cost is involved.

Appearance Feature (AF). GS provides a good reference

for branch vessels but may not discern capillaries at rela-

tively low intensities. Inspired by the deep denoising mod-

els, we define the BMA-affected areas as AF and keep AF,

even noisy ones, as the additional input. With sufficient

training samples, the BMA removal model can automati-

cally learn the texture information to capture better vessel

connectivities. The generation of training samples is dis-

cussed in Sec. 3.3.

Model Design. To overcome the limitations of context-

guided inpainting model, we propose the content-based

CABR for BMA removal in OCTA. The framework is illus-

trated in Fig. 2. With the two sets of information injection,

our model can learn from both the content within BMA and

the context outside BMA. It is thus more comprehensive

and robust.

The imbalance of BMA sizes is another challenge for

BMA removal. Most BMAs are thin stripes and are easy

to remove while severe BMAs, on the contrary, are only

small part of dataset but harder to remove. For previous

context-guided inpainting models, the imbalanced distribu-

tion leads to performance gap between gentle and severe

BMAs. These models often fail to fill in extra wide stripes

due to lacking both references and hard training samples.

Different from previously free-form inpainting frame-

works [17,20,28], our CABR focuses on correcting the vas-

culature in the centerline areas of input image. Reflection

padding is used for the stripe located near boundary. This

schema reduces the learning cost and model complexity.

Furthermore, we can select more hard cases to train CABR

so that it works better when dealing with these broadly

missing areas.

Model Architecture. CABR has an encoder-decoder

CNN backbone, which stacks gated convolution layers

(GatedConv) [28] to handle the stripe with various width

in a noisy OCTA. As illustrated in Fig. 2, the backbone

consists of 10 GatedConv layers [28], 1 GatedConv layer

with dilation [27], 2 DeConv layers and 1 regular Conv

layer with sigmoid activation function for prediction. Gat-

edConv is a kind of attention convolution that learns a dy-

namic feature gate for each channel and each spatial loca-

tion. We choose GatedConv due to its SOTA performance

in inpainting. In addition, it saves around 50% trainable

parameters than regular convolution with the same chan-

nel number. Considering the relatively small dataset, such

light-weight module is preferred to reduce overfitting. De-

convolution used in CABR is an upsampling layer followed

by a GatedConv, as illustrated in Fig. 3.

3.3. Self-supervised Training

As we mentioned before, data insufficiency is one of the

main challenges in OCTA. Here, we train our model in a

self-supervised way to resolve problem. We make use of

the majority BMA-free areas to acquire acceptable training

masks at low cost and generate as many as noisy images for

training. With these easily collected masks and synthetic

noisy images, we can train the BMA removal model in a

self-supervised manner.
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