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Optical coherence tomography angiography (OCTA) is
an important imaging modality in many bioengineering
tasks. The image quality of OCTA, however, is often de-
graded by Bulk Motion Artifacts (BMA), which are due
to micromotion of subjects and typically appear as bright
stripes surrounded by blurred areas. State-of-the-art meth-
ods usually treat BMA removal as a learning-based image
inpainting problem, but require numerous training samples
with nontrivial annotation. In addition, these methods dis-
card the rich structural and appearance information car-
ried in the BMA stripe region. To address these issues, in
this paper we propose a self-supervised content-aware BMA
removal model. First, the gradient-based structural infor-
mation and appearance feature are extracted from the BMA
area and injected into the model to capture more connectiv-
ity. Second, with easily collected defective masks, the model
is trained in a self-supervised manner, in which only the
clear areas are used for training while the BMA areas for
inference. With the structural information and appearance
feature from noisy image as references, our model can re-
move larger BMA and produce better visualizing result. In
addition, only 2D images with defective masks are involved,
hence improving the efficiency of our method. Experiments
on OCTA of mouse cortex demonstrate that our model can
remove most BMA with extremely large sizes and inconsis-
tent intensities while previous methods fail.

1. Introduction

As a fast and non-invasive optical imaging technology
with high spatiotemporal resolution, optical coherence to-
mography (OCT) is an emerging medical imaging modal-
ity not only for laboratory research but also for clinical
applications [8]. Optical coherence tomography angiogra-
phy (OCTA) has been reported to effectively diagnose and
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Figure 1. Ilustration of OCTA affected by Bulk Motion Artifacts
(BMA). Our work focuses on the BMA removal task in vessel
mask (blue rectangle in dashed line). The enhanced OCTA after
BMA removal has better visualization quality.

assess many retinal conditions, such as diabetic retinopa-
thy [21], macular degeneration [23] and choroidal neovas-
cular membrane [19]. Not only in ophthalmology, OCT
has also been employed to visualize the prognosis of tu-
mor vasculature for a better understanding of microenviron-
ment [22]. Benefitting from high spatiotemporal resolution
and non-invasive features, OCT has been utilized to study
neurovascular changes and brain function in vivo.

A typical OCTA image of mouse cortex is shown in
Fig. 1. Previous approach [15] employed image enhance-
ment to remove background noises for better qualitative and
quantitative analysis. Specifically, a vessel mask was gen-
erated to highlight vasculature while suppressing the back-
ground noise. Unfortunately, this approach failed to remove
Bulk Motion Artifact (BMA), which was caused by micro-
motion of the object, as highlighted with double arrows in
Fig. 1.

BMA is one of the most frequent artifacts affecting many
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medical imaging modalities (CT, MRI and OCT), which se-
riously degrades image quality and affects quantitative anal-
ysis. Over decades of research, numerous models have been
developed to remove BMA, but effective solutions for all
circumstances remain missing. In OCTA, BMA causes a
severely blurred image and usually appears as horizontal
stripes of different widths with high-intensity in the cen-
ter and low contrast in the surrounding area. As illustrated
in Fig. 1, the horizontal stripes across OCTA are the areas
affected by BMA. In the following sections, we use BMA
and stripe (artifacts) interchangeably.

Previous approaches remove BMA with image registra-
tion or supervised denoising models, requiring duplicate
scans or numerous training data with annotations. The cur-
rent state-of-the-art model [14] inpaints the BMA-affected
areas to generate a clear vasculature mask for enhancement.
However, the inpainting model abandons the information in
noisy areas so has limited capability to fill large gaps. Be-
sides, lots of images with annotations are needed for train-
ing. We observed that, even if the intensity value of BMA
is far stronger than normal area, there were still textures
within BMA. Furthermore, BMA only affects vertical gra-
dient rather than horizontal ones due to the OCTA imaging
process. These features could serve as structural references
of vasculature in noisy BMA area. However, there are three
main challenges for BMA removal: (1) information within
the motion artifacts is too noisy; (2) how to inject structure
information from the BMA area into the recovery frame-
work; and (3) OCTA data are limited and the pixel-level
annotations are difficult to acquire.

In this paper, we propose a self-supervised BMA re-
moval method to solve the issues above. First, the gradient-
based structural information and appearance feature are ex-
tracted from BMA and injected into the model to capture
more connectivity. Specifically, we keep the BMA-affected
area, even the noisy one, as an input channel instead of dis-
carding it directly. Furthermore, based on the observation
that BMA mainly affects vertical gradients rather than hor-
izontal ones, we introduce horizontal gradients to make our
model aware of potential structures under BMA. Adding the
gradient map makes the training stabler and convergence
faster. With structural and appearance information and eas-
ily collected defective masks, we train our model in a self-
supervised manner that the clear areas are used for training
while the BMA areas are only for inference.

With the rich structural and appearance information car-
ried in the BMA stripe region as reference, our model can
remove large BMA and handle the background noise at the
same time. Our BMA removal model is end-to-end and only
requires 2D image with defective mask, which is more prac-
tical. Compared with other context-guided denoising mod-
els, our content-aware model can learn guidance directly
from noisy images and is thus more robust. Experiments on

a mouse cortex OCTA dataset demonstrate that our model
can remove most BMA under different intensities and ex-
treme area sizes while existing methods fail. The specific
contributions of our paper are:

* We propose a new structural denoising model that can
leverage the rich structural and appearance information
carried in the BMA stripe region.

* Our model is trained in a self-supervised manner, and
training does not involve manual annotation.

» For image enhancement, our method can alleviate
BMA and background noises simultaneously, and thus
significantly improve image quality.

2. Related Work

In this section, we will first discuss OCTA and BMA.
Then, we will briefly introduce some general denoising
methods followed by related OCT denoising methods.

2.1. OCTA and BMA in Awake Animal Study

OCT is a high-speed 3D imaging technique with micron-
level resolution. Previous methods employ gradient-based
filters [7, 11, 12] to generate vessel masks to highlight vas-
culature for better analysis. However, the image reconstruc-
tion is sensitive to micromotion caused by heartbeat, respi-
ration, and mechanical vibration. Such motions lead to mis-
alignment and phase noise which cause BMA. Severe BMA
usually results in extremely high-intensity noise. Previous
gradient-based approaches [7, 12] can not handle such ar-
tifacts because BMA has similar gradient information with
vessel branches. Moreover, long-lasting BMA could result
in a broad and blurred area, making it hard to correct. Last
but not least, BMA is often accompanied by background
noise, which makes it even harder to find vessels within the
affected area. The interleaved background noise and BMA
could lead to poor visualization and erroneous quantifica-
tion.

2.2. General Denoising Method

BM3D [4] is a classic denoising model based on sparse
representation. Inspired by the observation that natural im-
ages consist of repeated textures, BM3D groups related im-
age patches and filters them together to shrink noise. It
handles Gaussian noise well but fails to remove structural
noise. After convolutional neural network (CNN) is firstly
applied for the denoising task in [9], lots of works have
been proposed to keep updating the state-of-the-art perfor-
mance [3, 25,29, 30]. Recently, Wu et al. [26] propose a
single image dehazing method based on contrastive learn-
ing and achieves state-of-the-art performance on both syn-
thetic and real-world datasets. Still, this method is trained
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Figure 2. Framework of the proposed Content-Aware BMA Removal model (CABR).

in a supervised manner. It is not the case for some medical
image modalities without ground truth.

More and more unsupervised learning based denois-
ing methods [6, 10, 13] have been proposed and achieved
promising performance. However, these approaches are not
intended to remove structural noise. Broaddus et al. [1] em-
ploy structural kernels to remove spatially correlated noise
in fluorescence microscope images. However, the perfor-
mance of this method depends on the selection of blind
mask, which is not fully automatic and needs prior knowl-
edge for noise distribution.

2.3. OCT Denoising Method

Most traditional OCTA denoising methods [2, 24] are
based on duplicate sampling, in which BMA-affected area
is replaced by BMA-free area at the same location but dif-
ferent sampling period. The downside of such approaches
is the considerably long sampling time, which reduces the
practicability for researches and clinical diagnoses. De-
valla et al. [5] propose a deep learning based OCT denoising
model for retinal images. It is relatively easier to denoise
OCT images of the retina than other tissues, such as mouse
bladder and cortex, because of shallower imaging depth,
less background noise, and BMA. Li et al. [16] remove
BMA in an enhancement approach. Firstly, this method ap-
plies optimally oriented flux (OOF) [11,12,15] to generate
vessel mask with defects in BMA areas and then employs
tensor voting [18] to restore the defective mask. Finally,
an OCTA image is enhanced with the corrected mask for
BMA removal. However, this method may fail to remove
moderate and severe BMA.

The current state-of-the-art model [14] removes BMA
with the combination of a BMA detection module, a vessel
segmentation module and a mask inpainting module [28].
The BMA detection module predicts BMA affected rows in
OCTA. The segmentation module takes OCTA with BMA
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Figure 3. Deconvolution layer with GatedConv.

areas removed as input and produces a corrupted mask. Af-
ter that, the mask inpainting module takes the probability
map of the segmentation module as input and fills the miss-
ing mask. Manually annotated masks are used to train the
segmentation module and inpainting module. The whole
pipeline [14] is relatively ad-hoc and the performance de-
pends on every step. Furthermore, numerous 2D and 3D
training data are involved in training. Last but not least,
this model learns only from surrounding BMA-free areas
while ignoring the structural information within noisy data.
So this context-based model often fails when dealing with
severe BMA.

3. Method

In this section, we will start with problem formulation
and challenges. Then, to deal with the context learning is-
sue, we will discussing two sets of information injection
and the proposed Content-Aware BMA Removal Model
(CABR). Finally, we will illustrate a self-supervised train-
ing strategy to solve data insufficiency.

3.1. Problem Formulation

We first define the BMA-affected OCTA image as I €
RH>XW ' the defective vasculature mask M € {0, 1}1>*W,
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the Gradient Statistics G € R¥*W (See Sec. 3.2), and the
corresponding row label I € {0, 1}*, where W and H are
image width and height, respectively. I; = 0 means the i-
th row of I is clear while I; = 1 for BMA. For each I,
the corresponding mask M is automatically generated with
OOF [11,12]. The BMA affected region can be discerned
easily and the row label [ indicates which rows in image are
affected by BMA. The proposed BMA removal framework
takes (I, M, G, 1) as input and outputs the vasculature pre-
diction M’ with BMA removed:

M' = f(M,I,G.1). (1

The main issue of previous context-guided inpainting
models is that little information from noisy area is auto-
matically learned. Therefore these surrounding-based gen-
erative models produce plausible but unconvincing results,
especially for large missing areas. But the certainty is just
what medical image researchers demand. So the informa-
tion within noisy area should be utilized to improve the pre-
diction confidence.

Data insufficiency is another issue to apply supervised
methods in medical images sometimes. It is difficult or even
impossible to get noise-free or ground truth for some imag-
ing modalities. Supervised methods may not work well un-
der this condition. So we should leverage any available in-
formation to solve the data insufficiency. These two issues
will be solved in the following parts.

3.2. Content-Aware BMA Removal

The uncertainty of context-guided inpainting models is
the main drawback for the tasks demanding accurate results
rather than plausible ones. We have observed that, even with
heavy noise, some structure and texture information exist in
BMA affected areas. To leverage such vessel clues, we in-
troduce two information injection approaches, e.g. Gradient
Statistics (GS) and Appearance Feature (AF). The proposed
CABR can automatically learn reliable references from the
injected information for BMA removal. The framework of
CABR is illustrated in Fig. 2.

Gradient Statistics (GS). BMA usually causes high-
intensity horizontal stripes in OCTA images. We observed
that the horizontal gradients are hardly affected by BMA
so we introduce the horizontal gradients as the structural
information for CABR. Specifically, we apply the vertical
Sobel operator in BMA areas to extract GS. The absolute
value of response is injected into the model to capture more
reference for BMA removal. Sobel operator is linear and
efficient so only marginal computational cost is involved.

Appearance Feature (AF). GS provides a good reference
for branch vessels but may not discern capillaries at rela-
tively low intensities. Inspired by the deep denoising mod-
els, we define the BMA-affected areas as AF and keep AF,
even noisy ones, as the additional input. With sufficient

training samples, the BMA removal model can automati-
cally learn the texture information to capture better vessel
connectivities. The generation of training samples is dis-
cussed in Sec. 3.3.

Model Design. To overcome the limitations of context-
guided inpainting model, we propose the content-based
CABR for BMA removal in OCTA. The framework is illus-
trated in Fig. 2. With the two sets of information injection,
our model can learn from both the content within BMA and
the context outside BMA. It is thus more comprehensive
and robust.

The imbalance of BMA sizes is another challenge for
BMA removal. Most BMAs are thin stripes and are easy
to remove while severe BMAs, on the contrary, are only
small part of dataset but harder to remove. For previous
context-guided inpainting models, the imbalanced distribu-
tion leads to performance gap between gentle and severe
BMAs. These models often fail to fill in extra wide stripes
due to lacking both references and hard training samples.

Different from previously free-form inpainting frame-
works [17,20,28], our CABR focuses on correcting the vas-
culature in the centerline areas of input image. Reflection
padding is used for the stripe located near boundary. This
schema reduces the learning cost and model complexity.
Furthermore, we can select more hard cases to train CABR
so that it works better when dealing with these broadly
missing areas.

Model Architecture. CABR has an encoder-decoder
CNN backbone, which stacks gated convolution layers
(GatedConv) [28] to handle the stripe with various width
in a noisy OCTA. As illustrated in Fig. 2, the backbone
consists of 10 GatedConv layers [28], 1 GatedConv layer
with dilation [27], 2 DeConv layers and 1 regular Conv
layer with sigmoid activation function for prediction. Gat-
edConv is a kind of attention convolution that learns a dy-
namic feature gate for each channel and each spatial loca-
tion. We choose GatedConv due to its SOTA performance
in inpainting. In addition, it saves around 50% trainable
parameters than regular convolution with the same chan-
nel number. Considering the relatively small dataset, such
light-weight module is preferred to reduce overfitting. De-
convolution used in CABR is an upsampling layer followed
by a GatedConv, as illustrated in Fig. 3.

3.3. Self-supervised Training

As we mentioned before, data insufficiency is one of the
main challenges in OCTA. Here, we train our model in a
self-supervised way to resolve problem. We make use of
the majority BMA-free areas to acquire acceptable training
masks at low cost and generate as many as noisy images for
training. With these easily collected masks and synthetic
noisy images, we can train the BMA removal model in a
self-supervised manner.
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Figure 4. In (b) (c), from left to right: clear images, synthetic
images and images affected by BMA.

Ground Truth Mask. The ground truth of vasculature
mask for in vivo OCTA is either impossible or very difficult
to acquire. Since OOF [12] can produce relatively accu-
rate vessel mask for the most area (96.4%) without BMA,
we resort to this defective mask with minimally additional
manual annotation as the ground truth. To be specific, we
only manually annotate the remaining 3.6% BMA areas and
combine defective mask in BMA-free areas to get the vascu-
lature mask. This approach can produce high-recall masks
at low-cost. The manually annotated part is only involved
in testing and is not used in training. All these masks are
verified by experts.

BMA Synthesis. We propose the Adaptive BMA Syn-
thesis (AdBMA) approach to generate noisy images from
BMA-free areas. After inspecting the data distributions, we
find that BMA has different effects on high and low inten-
sity pixels. In other words, BMA mainly uplifts the low-
intensity pixels while keeping the maximums unchanged.
So we employ a remapping schema to mimic the BMA in-
fluence on clear images. Given a clear image I and two sets
of hyperparameters (P10W7 Phigh) and (Pbasey Plow'» Phigh’ ),
we synthesize BMA in four steps: (1) randomly map the
intensities below Plow into [Phase, Piow’) (half-open inter-
val); (2) map the intensities between Pioyw and Phigp into
[Piow’s Phigh'); (3) map the intensities above Phign into
[Phigh, max(I)); and (4) clip intensities within image max-
imum (usually 255) to avoid overflow. Gaussian noise is
added in steps (2) and (3) to ensure uncertainty. The remap-
ping schema is illustrated in Fig. 4a.

The synthesized noisy images have similar distribution
with the real BMA, but more importantly they have corre-
sponding ground truth masks. The benefits of synthesizing
BMA are twofold: (1) we can generate as many plausible
noisy images as needed; and (2) it fits our framework and

enables learning from noisy data.

Fig. 4b shows a BMA-free OCTA image, an image with
synthetic BMA and an image with real BMA. Moreover,
Fig. 4c is the bar plot of intensity values for the row marked
by double arrows in Fig. 4b. We can see that the synthetic
OCTA image has not only plausible appearance but also
similar intensity distribution. Thus the distribution gap be-
tween training and testing data is minimized.

Training Scheme. The train/val splitting is area-based,
which is different from the typical supervised approach.
Specifically, every image is split into the BMA-free (clear)
area for training and the BMA-affected (noisy) area for
evaluation. During training, only the loss from the clear
area with synthetic BMA is used. During testing, only the
Dice score in the BMA-affected area is measured. Thus
the model works in a self-supervised way and can utilize as
many training samples as possible.

4. Experiments

We evaluate the proposed BMA removal framework on
a mouse cortex OCTA dataset. The results are compared
with the state-of-the-art motion correction model [14] and a
GatedConv-based inpainting model [28]. We re-implement
the GatedConv-based model for inpainting the stripe region.

4.1. Dataset

We collect 39 OCTA images of mouse cortex
with vessel masks. The noise level, defined as
(BMA-affected area/Total area), varies throughout the
dataset. Note that, not all images have BMA noise. We val-
idate on the BMA-affected areas from 14 OCTAs. Accord-
ing to the noise level, OCTAs in the validation set are further
classified as the easy set (noise<2%, 4 OCTAs), medium set
(2<noise<4%, 7 OCTAs) and hard set (noise>4%, 3 OC-
TAs). We further collect 6 samples to extend the validation
set. The BMA removal performance is measured by the
Serensen—Dice coefficient (Dice) in the rest of the paper,
unless otherwise specified.

Training Details. The hyperparameters for BMA syn-
thesis are (Piow = P10%: Phigh = Pss%) and (Poae =
P30%; Plow = Ps0%, Phighw = Pooy) Where Pry is the
k-th percentile of input image I. As for the re-implemented
GatedConv-based inpainting model, we randomly select
2~20% rows within each patch for training. As for CABR,
we select center rows in each patch with width randomly
from 1 to 11 for training. Furthermore, we use data aug-
mentation, such as random cropping, horizontal and vertical
flipping, on the training set.

Implementation. The CNN backbone used for all exper-
iments is illustrated in Fig. 2. All convolutional layers use
3 x 3 kernels. The downsampling rate, stride rate and dila-
tion rate are set to 2. The backbone has 16 feature maps in
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Table 1. Performance on the mouse cortex OCTA dataset. Gated-
Conv* is re-implemented and trained on the OCTA dataset. “All*”
is the extended validation set with “All” and 6 extra samples.

Method Easy Medium Hard All  All*¥

OOF [12] 4576 42770 43.72 43.79 42.93
Lietal.[14] 6883 68.51 60.70 66.93 70.21
GatedConv* [28] 77.41 73.48 7437 74.80 77.03

CABReswsvn)  84.99  81.98 79.22 82.24 83.92
CABReswsmacey  85.71  82.67 79.69 82.90 84.54
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Figure 5. Denoising result for synthesized BMA of width {1,4,8}.

the first level, which increases up to 64 when the level gets
deeper. All models are trained with Dice loss and Adam op-
timizer for 1,200 epochs. The learning rate starts from 10~*
and halves if no improvement is observed for 20 epochs. We
used 256 x 496 input size and batch size 12 for GatedConv
training. We used 64 x 496 input size and batch size 48 for
CABR training. All models are trained on a single NVIDIA
GeForce GTX Titan Xp GPU.

4.2. BMA Removal Results

To evaluate the performance of the proposed CABR
framework, we compare it with the state-of-the-art OCTA
motion correction model by Li et al. [14]. The result of
OOF [12] is the baseline. To the best of our knowledge,
there are no other publications that pertain directly to BMA
removal in OCTA. So we also re-implement a GatedConv-
based inpainting model [28], for inpainting the BMA-
affected region. The re-implemented inpainting model has
a similar amount of parameters as CABR and is trained with
the same setting.

Quantitative Result. The Dice scores on the mouse cor-
tex OCTA dataset of different methods are in Tab. 1. The re-
sult shows a clear improvement of our method over the OOF
baseline. Besides, our approach significantly outperforms
the state-of-the-art model [ 14] by 15.97% and 14.33% in the
validation set and the extended validation set, respectively.
The proposed CABR also achieves the best performance in
all subsets, which evidences the effectiveness and advan-
tage of content-based learning. Even in the hard subset with
larger and more dense BMA across OCTA, our CABR sur-
passes the re-implemented GatedConv by 5.32%, suggest-

ing that CABR can learn more connectivities from noise
input for BMA removal. The experiment results also show
that adding GS further improves the performance of CABR.
Qualitative Result. The BMA removal results for the
synthesized BMA of width 1, 4 and 8 are illustrated in
Fig. 5. It shows that our method can handle severe BMA
and recover vasculature while the baseline [12] fails.

The experiment results for two validation samples are il-
lustrated in the first and third rows of Fig. 6. We compare
our method with OOF [12] (only for reference, no BMA re-
moval effect), Li et al.’s method [14], our re-implemented
GatedConv-based inpainting model [28]. We can see from
the first and third rows of Fig. 6 that our method removes
most of the false positive masks caused by BMA while
achieving the best vasculature connectivity at the same time.
Li et al.’s method [14] can also remove some BMA but the
low recall is the main drawback. Specifically, thin BMA
stripes can be restored while thicker ones can not. On the
contrary, the re-implemented GatedConv shows better con-
nectivity than Li er al.’s method [14] but some BMAs are
remaining. The cyan and pink arrows highlight more de-
tails in the zoom-in panels of Fig. 6.

The second OCTA is harder to handle because the stripes
are relatively broader and more densely distributed. From
the third and fourth rows of Fig. 6, we can see that Li et
al.’s method [14] can not fill the gap in the second zoom-in
area and the GatedConv-based inpainting model has more
artifacts. Our method produces a complete mask with better
connectivity and fewer artifacts.

We also compare with the self-supervised StructN2V [1]

and the results in Fig. 7 suggest that StructN2V is not suit-
able for our task: incorrect structure removal (cyan/red ar-
row), suffering from wide BMA (pink arrow), efc.
OCTA Enhancement. OCTA enhancement based on
vesselness mask is a regular procedure for biomedical anal-
ysis. Usually, this procedure highlights vasculature while
suppressing background noise, and thus improves contrast.
The enhanced OCTA is generated by multiplying the raw
OCTA with corresponding vessel mask. The second and
fourth rows of Fig. 6 illustrate the enhancement results of
different approaches on two sets of BMA-affected OCTAs.
Our method removes most of the BMA artifacts and pro-
duces an OCTA with stronger contrast, as illustrated in the
zoom-in panels as the dashed rectangle areas. From the sec-
ond OCTA, where BMA in the bottom area degrades image
quality severely, we can see that our method still removes
most of the BMAs while preserving vessel structures, thus
showcasing the effectiveness of our proposed method.

4.3. Ablation Study

To study the effects of each module, we conduct the
ablation experiments on the mouse cortex OCTA dataset.
All experiments are based on the same training setting in
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GatedConv (re-implemented)

I,

] and the proposed CABR, respectively. The corresponding

Figure 6. Two sets of OCTA masks and enhanced images of different methods. The first and third rows are the masks of OOF [

Li’s method [

], our re-implemented GatedConv-based inpainting model [

enhanced images are in the second and fourth rows. The zoom-in results within the rectangles in dashed line are also illustrated for better

comparison. The cyan and pink arrows highlight more details in the zoom-in panels.
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Figure 7. The denoising result of StructN2V [1] and our method.

Table 2. Ablation study of CABR on the mouse cortex OCTA
dataset. “Abs” means the absolute value. “Abs-BMA” means ab-
solute GS only in BMA. “Conv” means the regular convolution.

Appearance Gradient Statistics Module Dicet(%)
Gauss AdBMA | Naive Abs Abs-BMA | Conv Gated

v v 81.29
v v 82.24
v v v 80.08
v v v 82.38
v v v 82.57
v v v 82.90

Sec. 4.1. For AF injection, we compare the proposed
AdBMA with a naive implementation that adds Gaussian
noise. Both methods generate high-intensity stripes like
BMA artifacts. However, the Gaussian method does not
have a blurring effect so the result is less plausible. For GS
injection, the naive stands for the gradient of Sobel opera-
tor. Abs and Abs-BMA stand for the absolute value of Sobel
results on the whole image and only the BMA area, respec-
tively. To report the contribution of GatedConv module, we
also conduct an ablative study and find that GatedConv does
outperform regular convolution by 0.33% with only about
50% trainable parameters.

Ablation of Information Injection. As shown in Tab. 2,
we first investigate the effectiveness of AF injection with
synthetic BMA. “Gauss” means adding Gaussian noise di-
rectly to generate training samples. Our proposed AABMA
outperforms the Gaussian-based synthetic approach by
1.66%, which verifies that (1) texture information within
BMA, even noisy, still benefits the recovery of vascula-
ture; and (2) the blurring effect from AdBMA improves the
performance. We also evaluate the effectiveness of GS as
shown in Tab. 2. The performance of CABR is improved
by 2.30% for Abs and 2.82% for Abs-BMA, respectively,
which states the validity of GS in BMA removal. During
experiments, we find that GS leads to faster convergence.
CABR benefits less from GS than the synthetic BMA fea-
ture. One possible reason is that convolution layers may
have learned similar or even more powerful kernels than the
Sobel operator.

Table 3. Ablation study of CABR for different model sizes on the
mouse cortex OCTA dataset. # Channels is the channel number
for the first layer of CNN backbone. # Parameters is the number
of trainable parameters for the whole model.

# Channels # Parameters DiceT(%)
8 33.7K 78.70
16 133.9K 82.90
32 534.0K 82.44

Ablation of Model Size. With the same modules in the
CNN backbone, we investigate how the model size influ-
ences the performance of BMA removal. Tab. 3 lists the
result of CABR with different sizes. A larger channel
number means more parameters and a larger model size.
The 8-channel model only achieves 78.70% Dice coeffi-
cient, which is less than 16-channel and 32-channel mod-
els. The results demonstrate that 8-channel is insufficient
to capture all vessel information. Also, a larger model size,
i.e., 32-channel in the first layer, does not boost the perfor-
mance. The 16-channel model outperforms the 32-channel
by 0.46% with about 75% less trainable parameters, sug-
gesting that the OCTA dataset may not support training the
model with over 140K parameters.

5. Conclusion

In this paper, we propose a self-supervised content-
aware model to remove BMA and improve image quality
in OCTA. First, the GS-based structural information and
AF are extracted from the BMA area and injected into the
model to capture more vasculature connectivity. Second,
we train the model in a self-supervised manner with eas-
ily collected defective masks. With the rich structural and
appearance information carried in the BMA stripe region as
references, our model can remove BMAs and produce a bet-
ter vasculature mask. Compared with other context-guided
inpainting models, our content-aware model can learn guid-
ance directly from noisy images and thus is more robust.
Experiments on a mouse cortex OCTA dataset demonstrate
that our model can remove most BMAs, even the huge and
inconsistent ones, while existing methods fail. The current
BMA synthesis approach is manually designed and still has
room for improvement. Incorporating domain knowledge
of BMA formulation or introducing a generative model for
synthesis are potential research directions.
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