
Spook.js: Attacking Chrome Strict Site Isolation via
Speculative Execution

Ayush Agarwal∗

University of Michigan
ayushagr@umich.edu

Sioli O’Connell∗

University of Adelaide
sioli.oconnell@adelaide.edu.au

Jason Kim†

Georgia Institute of Technology
nosajmik@gatech.edu

Shaked Yehezkel
Tel Aviv University

shakedy@mail.tau.ac.il

Daniel Genkin†

Georgia Institute of Technology
genkin@gatech.edu

Eyal Ronen
Tel Aviv University

eyal.ronen@cs.tau.ac.il

Yuval Yarom‡

University of Adelaide
yval@cs.adelaide.edu.au

Abstract—The discovery of the Spectre attack in 2018 has sent
shockwaves through the computer industry, affecting processor
vendors, OS providers, programming language developers, and
more. Because web browsers execute untrusted code while
potentially accessing sensitive information, they were considered
prime targets for attacks and underwent significant changes to
protect users from speculative execution attacks. In particular,
the Google Chrome browser adopted the strict site isolation policy
that prevents leakage by ensuring that content from different
domains is not shared in the same address space.

The perceived level of risk that Spectre poses to web browsers
stands in stark contrast with the paucity of published demon-
strations of the attack. Before mid-March 2021, there was no
public proof-of-concept demonstrating leakage of information
that is otherwise inaccessible to an attacker. Moreover, Google’s
leaky.page, the only current proof-of-concept that can read such
information, is severely restricted to only a subset of the address
space and does not perform cross-website accesses.

In this paper, we demonstrate that the absence of published
attacks does not indicate that the risk is mitigated. We present
Spook.js, a JavaScript-based Spectre attack that can read from
the entire address space of the attacking webpage. We further
investigate the implementation of strict site isolation in Chrome,
and demonstrate limitations that allow Spook.js to read sensitive
information from other webpages. We further show that Spectre
adversely affects the security model of extensions in Chrome,
demonstrating leaks of usernames and passwords from the
LastPass password manager. Finally, we show that the problem
also affects other Chromium-based browsers, such as Microsoft
Edge and Brave.

I. INTRODUCTION

Recent computer trends have significantly changed the way
we use and distribute software. Rather than downloading in-
stallation packages, users now prefer to “live in their browser”,
where software is seamlessly downloaded, compiled, opti-
mized, and executed merely by accessing a URL. Despite its
humble origins, the browser is no longer a simple GUI for
rendering text documents, but instead is more akin to a “mini
operating system”, complete with its own execution engines,

* Equal contribution joint first authors.
† Work partially done while affiliated with the University of Michigan.
‡ Work partially done while also affiliated with Data61.

compilers, memory allocators, and API calls to underlying
hardware features. Perhaps most importantly, the browser has
evolved into a highly trusted component in almost any user-
facing computer system, holding more secret data than any
other computer program except the operating system.

Concurrently with the rise in importance of the browser,
the rapid growth in complexity of computer systems over
the past decades has resulted in numerous hardware security
vulnerabilities [2, 6, 12, 21, 22, 24, 26, 27, 29, 48, 49, 50, 58,
69, 70, 71, 74, 75, 77]. Here, the attacker artificially induces
contention on various system resources, aiming to cause faults
or recover information across security boundaries. Perhaps
the most known incident of this kind was the discovery of
Spectre [31] and Meltdown [36], which Google dubbed as a
watershed moment in computer security [41].

Recognizing the danger posed by browser-based transient-
execution attacks, Google has attempted to harden Chrome
against Spectre. Introducing the concept of strict site isola-
tion [56], Google’s main idea is to isolate websites based on
their domains, rendering mutually distrusting pages in different
memory address spaces. Aiming to further hinder memory
exposure attacks, Google elected to keep its JavaScript code
in 32-bit mode, effectively partitioning the renderer’s address
space into multiple disjoint 4 GB heaps. It is hoped that even
if a memory disclosure vulnerability is exploited, the use of
32-bit pointers will confine the damage to a single heap [19].
Thus, given the heuristic nature of these countermeasures, in
this paper we ask the following questions:

Is Chrome’s strict site isolation implementation sufficient to
mitigate browser-based transient-execution attacks? In partic-
ular, how can an attacker mount a transient execution attack
that recovers sensitive information, despite Google’s strict site
isolation and 32-bit sandboxing countermeasures?

A. Our Contribution

In this paper, we present Spook.js, a new transient-execution
attack capable of extracting sensitive information despite
Chrome’s strict site isolation architecture. Moreover, Spook.js
can overcome Chrome’s 32-bit sandboxing countermeasures,

ayushagr@umich.edu
sioli.oconnell@adelaide.edu.au
nosajmik@gatech.edu
shakedy@mail.tau.ac.il
genkin@gatech.edu
eyal.ronen@cs.tau.ac.il
yval@cs.adelaide.edu.au


reading the entire address space of the rendering process. Ad-
ditionally, we demonstrate a gap between Chrome’s effective
top-level plus one (eTLD+1)-based consolidation policy and
the same-origin policy typically used for web security. The
discrepancy can result in mutually distrusting security domains
residing in the same address space, allowing one subdomain
to attack another. In addition, we show that Chromium-based
browsers such as Edge and Brave are also vulnerable to
Spook.js. We further show that Firefox’s strict site isolation
follows a similar eTLD+1 consolidation policy, but we leave
the task of porting Spook.js to Firefox to future work.
Escaping 32-Bit Boundaries via Speculative Type Confu-
sion. Although it executes in 64-bit mode, Chrome uses
32-bit addressing for its JavaScript architecture. This limits
the information available to most Spectre-based techniques, as
even a (speculative) out-of-bounds array index cannot escape
the 4 GB heap boundary. To overcome this issue, Spook.js
uses a type confusion attack that allows it to target the
entire address space. At a high level, our attack confuses the
execution engine to speculatively execute code intended for
array access on a tailored malicious object. The malicious
object is designed to place attacker-controlled fields where the
code expects a 64-bit pointer, allowing a speculative access to
arbitrary addresses. To the best of our knowledge, this is the
first use of a type confusion attack to achieve pointer widening.
Avoiding Deoptimization Events via Speculative Hiding.
Even if a type confusion attack is successful, the type of the
malicious object does not match the expected array type. In
response to such a mismatch, Chrome deoptimizes the array
access code which Spook.js exploits, preventing subsequent
applications of the attack. We overcome this issue by perform-
ing the entire type confusion attack under speculation, running
the attack inside a mispredicted if statement.

Consequently, Chrome is completely oblivious to the type-
confusion attack and its type mismatch, and does not deop-
timize the code used for array access. This allows us to run
our attack across multiple iterations, reading a large amount
of data from the address space of the rendering process.
Finally, while this speculative hiding technique suggested in
past works [9, 18, 36, 40], to the best of our knowledge this
is the first application of this technique for hiding browser
deoptimization events.
Applicability to Multiple Architectures. With the basic
blocks of our attack in place, we proceed to show the feasibil-
ity of Spook.js across multiple architectures, including CPUs
made by Intel, AMD, and Apple. For Intel and Apple, we
find that Spook.js can leak data at rates of around 500 bytes
per second, with around 96% accuracy. For AMD, we obtain
similar leak rates assuming a perfect L3 eviction primitive
for AMD’s non-inclusive cache hierarchy, the construction of
which we leave to future work.
Security Implications of eTLD+1 Based Consolidation.
Having established the feasibility of reading arbitrary ad-
dresses from Chrome’s rendering processes, we now turn our
attention to the eTLD+1 address space consolidation policy.
Rather than using the same-origin policy, which considers two

resources to be mutually trusting if their entire domain names
match, Chrome uses a more relaxed policy that consolidates
address spaces based on their eTLD+1 domains.

We show that this difference is significant, demonstrating
how a malicious webpage (e.g., a user’s homepage) located
on some domain can recover information from login-protected
domain pages displayed in adjacent tabs. Here, we show that
a personal page uploaded to a university domain can recover
login-protected information from the university HR portal
displayed in adjacent tabs, including contact information, bank
account numbers, and paycheck data. Going beyond displayed
information, we show how Spook.js can recover login creden-
tials both from Chrome’s built-in password manager and from
LastPass, a popular third-party extension.
Exploiting Unintended Uploads. Tackling the case where a
malicious presence on a domain is not possible, we show that
user-uploaded cloud content is often automatically transferred
between different domains of the same provider. Specifically,
we show how content uploaded to a google.com domain is
actually stored by Google on googleusercontent.com,
where it can be consolidated with personal webpages created
on Google Sites. Empirically demonstrating this attack, we
show the recovery of an image uploaded to a google.com
domain through a malicious Google Sites webpage.
Exploiting Malicious Extensions. Aside from website
consolidation, we port Spook.js into a malicious Chrome ex-
tension which requires no permissions. We show that Chrome
fails to properly isolate extensions, allowing one extension to
speculatively read the memory of other extensions. We empir-
ically demonstrate this on the LastPass extension, recovering
both website-specific credentials as well as the vault’s master
password (effectively breaching the entire account). Because
the problem stems from the browser policy, it is not specific to
LastPass and is likely to affect other password managers and
extensions. In response to our disclosure, Google introduced
the option to avoid consolidating extensions [14].
Summary of Contributions. In this paper we make the
following contributions:
• We weaponize speculative execution attacks on the Chrome

browser, demonstrating Spook.js, an attack that can read
from arbitrary addresses within the rendering process’s
address space (Section IV).

• We explore the limitations of Chrome’s strict site isolation
and demonstrate that consolidating websites into the same
address space is risky, even when performed only in very
restricted scenarios (Section V).

• We study the implications of Spook.js on the security model
of extensions in Chrome. We demonstrate that an unprivi-
leged attacker can recover the list of usernames and used
passwords from a leading password manager (Section VI).

• We show that Chromium-based browsers, such as Microsoft
Edge and Brave, are also vulnerable (Section VII).

B. Responsible Disclosure and Ethics

Disclosure. We shared a copy of the submission with the
security teams of Intel, AMD, Chrome, Tumblr, LastPass, and

2



Atlassian. Experiments performed on university systems were
coordinated with the university’s IT department and with its
Chief Security Officer.
Ethics. Some of our experiments require placing attack
code on publicly-accessible webpages. To limit access to such
pages and prevent capability leaks and potential 0-days in the
wild, we ensured that no links to attack pages were placed in
any webpage, and that attack pages were only activated if the
browser presents a specific cookie that we manually placed
in it. Data collection and inspection were done on a local
machine, and never on external servers.

II. BACKGROUND

A. Caches

To bridge the gap between the fast execution core and the
slower memory, processors store recently accessed memory in
fast caches. Most modern caches are set associative, meaning
that the cache is divided into a number of sets, each of which
is further divided into a fixed number of ways. Each way can
store a fixed-size block of data, also called a cache line, which
is typically 64 bytes on modern machines.
The Cache Hierarchy. The memory subsystem of modern
CPUs often consists of a hierarchy of caches, which in a
typical Intel CPU consists of three levels. Each core has
two L1 caches, one for data and one for instructions, and
one unified L2 cache. Additionally, the CPU has a last level
cache (LLC), which is shared between all of the cores. When
accessing memory, the processor first checks if the data is
in L1. If not, the search continues down the hierarchy. In
many Intel CPUs, the LLC is inclusive, i.e., its contents are a
superset of all of the L1 and L2 caches in the cores it serves.
Cache Attacks. Timing access to memory can reveal informa-
tion on the status of the cache, giving rise to side-channel at-
tacks, which extract information by monitoring the cache state.
Cache-based side-channel attacks have been demonstrated
against cryptographic schemes [2, 10, 17, 37, 43, 48, 59, 77]
and other secret or sensitive data [22, 62, 64, 65, 76].

B. Speculative Execution

To further improve performance, processors execute instruc-
tions out-of-order. That is, instructions are executed as soon as
their data dependencies are satisfied, even if preceding instruc-
tions have not yet completed execution. In case of branches
whose condition cannot be fully determined, the processor
tries to predict the branch outcome based on its prior behavior
and speculatively execute instructions in the predicted target.
Finally, in case of a misprediction, speculatively executed
instructions become transient [36]. In this case, the processor
drops all results computed by incorrect transient execution and
resumes execution from the correct target address.

The disclosure of the Spectre [31] and Meltdown [36]
attacks demonstrated that, contrary to contemporary beliefs,
transient execution can have severe security implications.
While the processor disposes of results computed by transient
instructions, the effects of transient execution on microar-
chitectural components, including caches, are not reversed.

Transient-execution attacks exploit this effect by triggering
incorrect transient execution, accessing information which
is leaked via microarchitectural channels. Since the initial
discovery of transient-execution attacks, many variants [8]
have emerged, including variants of Spectre [29, 31, 34, 39]
and of Meltdown [9, 36, 38, 54, 61, 69, 70, 71, 72].

C. Microarchitectural Attacks in Browsers

Side-channel techniques have also been demonstrated us-
ing code running in sandboxed browser environments. Here,
browser-based cache attacks have been used to classify
user activity [47, 64, 65], and even extract cryptographic
keys [16]. Attacks exploiting abnormal timings on denormal
floating-point values have been used for pixel stealing at-
tacks [3, 32, 33] while Rowhammer-induced bit flips were also
demonstrated using browser-based code [11, 15, 23]. Finally,
browser-based transient-execution memory read primitives us-
ing JavaScript code have also been demonstrated [31, 39, 41],
albeit without extracting sensitive information.
Eviction Set Construction. Cache attacks in JavaScript often
require the ability to evict a value out of the cache. However,
without native functionalities such as clflush, the attacker
has to exploit the cache architecture for evictions. For the L1
data cache, eviction sets can be constructed using page offsets,
as any two elements that have the same page offset belong to
the same eviction set. However, as there is no heuristic for
mapping elements to L3 eviction sets, a more sophisticated
approach is required. Vila et al. [73] describes a method for
generating L3 eviction sets in the Chrome browser.
Leaky.page. Google has recently released leaky.page,
a JavaScript-based Spectre Proof-of-Concept (PoC) which
demonstrates recovering out-of-bounds information using
Spectre v1 techniques [20]. More specifically, leaky.page first
locates an instance of a TypedArray JavaScript object,
whose length information and data pointer reside in different
cache lines. It then evicts the array’s length from the L1 cache,
forcing speculation past the array length check upon array
access. At the same time, the cache line containing the array’s
data pointer is not flushed and remains cached. Hence the
attacker can perform a transient out-of-bounds array access,
leaking the obtained data via a cache channel.

We note, however, that the use of 32-bit array indices in
JavaScript limits the effectiveness of leaky.page to the 4 GB
heap containing the TypedArray object. This limitation is
significant, as sensitive information (e.g., cookies, passwords,
HTML DOM, etc.) is often located in different heaps and thus
remains out of leaky.page’s reach.
Rage Against The Machine Clear. In a concurrent inde-
pendent work, Ragab et al. [53] demonstrated a new transient-
execution attack against Firefox. At a high level, Ragab et al.
[53] construct a read primitive for 64-bit addresses by injecting
arbitrary floating-point values in a transient-execution window
created by a floating-point machine clear. Using this technique,
they demonstrate a PoC of a transient type confusion attack on
Firefox, with all the mitigations enabled, allowing an attacker
to read arbitrary memory addresses.

3



However, we note that the attack of Ragab et al. [53]
significantly differs from Spook.js. In particular, their attack is
a variant of LVI [70], which exploits the floating-point unit and
is therefore classified as a Meltdown-type attack. In contrast,
Spook.js is a Spectre-type attack, exploiting incorrect branch
prediction in the JavaScript type check to trigger speculative
type confusion. Finally, Ragab et al. [53] constructs a 64-bit
read primitive but does not extract sensitive information.

D. Strict Site Isolation

The ever-increasing complexity of the Internet has forced
major design changes in modern browsers. Rather than using
a single monolithic process, browsers adopted a multi-process
architecture where multiple unprivileged rendering processes
render untrusted and potentially malicious webpages [1, 46,
55, 78]. In addition to the increased stability from crashes
offered by this design, using unprivileged rendering processes
compartmentalizes the browser, limiting the reach of attacks
that exploit vulnerabilities in the browser’s rendering engine.
Site Isolation. Instead of grouping webpages arbitrarily into
rendering processes, strict site isolation [56] aims to group
them based on the location they are served from, such that
mutually distrusting domains are separated. The deployment
of strict site isolation was accelerated following the demon-
stration of transient-execution attacks in browsers [31, 39].
eTLD+1 Consolidation. Chrome’s strict site isolation uses
the effective top-level domain plus one sub-domain (eTLD+1)
as the definition of a security boundary, and ensures that
multiple webpages are rendered by the same process only
if they are all served from locations that share the same
eTLD+1. For example, Chrome will separate example.com
and example.net as their top-level-domains, .net and
.com, are different. example.com and attacker.com
are also separated into different processes due to a difference in
their first sub-domains (example and attacker). Finally,
store.example.com and corporate.example.com
are allowed to share the same process since they both share
the same eTLD+1, example.com.
Origin Isolation. We note that Chrome could have opted
for a stricter isolation, using the website’s entire origin.
However, origin isolation might break a non-negligible amount
of websites, as 13.4% of page loads modify their origin via
document.domain [56]. Finally, Chrome’s process con-
solidation is not only limited to websites but also includes
mutually distrusting extensions. See Section VI.

E. Chrome’s Address Space Organization

Despite being a 64-bit application, Chrome still uses 32-
bit values to represent object pointers and array indices. More
specifically, array indices are viewed as a 32-bit offset from
the array’s starting address, while 32-bit pointers represent the
offset from a fixed base address in memory, which is often
termed as the object’s heap. Although this design increases
complexity, the smaller pointer size achieves a 20% reduction
in Chrome’s memory footprint [63].

Partitions. Consequently, Chrome is limited to allocating ob-
jects within a span of 4 GB, referred by Chrome as partitions.
Chrome allocates objects into partitions based on the object
type. Additionally, Google claims that this partition design also
improves browser security, as linear overflows cannot corrupt
data outside their corresponding partition [19].
Chrome Object Layout. When allocating buffer-like objects,
Chrome follows a two-stage process. First, it allocates the
memory required for the buffer storing the object’s content.
Then, it allocates a metadata structure, which holds a pointer
to the object’s content buffer (called the back-pointer), as
well as additional information such as the object’s type-id
and the buffer length. Finally, certain JavaScript data struc-
tures, such as Uint8Arrays, often have their metadata
structure and content’s buffer located in two different heaps.
In this case, the object must use a 64-bit back-pointer
to be able to point outside the partition holding the object’s
metadata. See Figure 1.

0 1 2 3 4 bytes 

type-id ... length back-ptr
(64-bits)

..

buffermetadata

1 2 3 4

Buffer partition

0 bytes 4 32 40 48 bytes

Heap

Figure 1: Representation of a Uint8Array array(1,2,3,4) object
with data pointer in a different heap.

F. Chrome’s Optimizer

Being a weakly typed language, JavaScript functions might
be executed on arguments of different types. For example,
function f(x,y) {return x+y;} can be used to add
two integers, two floats, or even concatenate strings. Given the
numerous different ways that the same high-level code might
be used at runtime, the bytecode generated by Chrome must
support multiple use cases, rendering it inefficient.

To improve performance, Chrome dynamically modifies the
generated code once its run-time use cases are known. More
specifically, Chrome executes the JavaScript bytecode while
recording statistics regarding the inputs to certain operations.
Based on the collected statistics, Chrome uses the Turbo-
Fan [68] compiler to generate highly optimized machine code,
using a technique called speculative optimization [42]. Here,
Chrome essentially assumes that future runs will use input
types similar to past runs, and specializes the code to handle
these cases. Finally, in case a code optimized for a specific
input type is executed with a different type, it is deoptimized
back to the generic yet less efficient version.

III. THREAT MODEL

Unless stated otherwise, in this paper we target Chrome
version 89 in its default configuration, with strict site isolation
enabled. For the website-based attacks described in this paper,
we follow a threat model similar to the related-domain attacker
model of [5, 66], and assume that the attacker is able to upload
JavaScript code to a page with the same eTLD+1 domain as
the targeted page. In Section V we present several examples of

4



such scenarios, including personal pages on popular platforms.
We further assume that the attacker’s page is rendered in the
victim’s browser. Finally, for the malicious extension attacks
in Section VI, we assume that the victim has downloaded and
installed an attacker-controlled Chrome extension.

IV. SPOOK.JS: MOUNTING SPECULATIVE EXECUTION
ATTACKS IN CHROME

We now present Spook.js, a JavaScript-based transient-
execution attack that can recover information across security
domains running concurrently in the Chrome browser. In ad-
dition to defeating all side-channel countermeasures deployed
in Chrome (e.g., low-resolution timer), Spook.js overcomes
several key challenges left open in previous works.
[C1] Strict Site Isolation. Strict site isolation prevents cross-
site attacks. Website consolidation suggests an avenue for
overcoming the challenge, but there is a need for a repeatable
procedure that lets the attacker consolidate sites.
[C2] Array Index Limitations. The use of 32-bit array
indices in JavaScript restricts bounds check bypasses to re-
cover values only from the same JavaScript heap. To retrieve
all sensitive information, the attacker needs to be able to
transiently access the full address space.
[C3] Deoptimization. In our attacks, inducing mis-
speculation also causes deoptimization that prevents multi-
round attacks. For a successful attack, the attacker needs to
cause mis-speculation without causing deoptimization.
[C4] Limited Speculation Window. Overcoming [C2]
and [C3] requires a long speculation window. The attacker
needs a consistent method that ensures that the processor does
not detect mis-speculation before the transient code has the
opportunity to retrieve the sensitive data and transmit it.

A. Overcoming [C1]: Obtaining Address Space Consolidation

To mount Spectre-type attacks, the attacker and target web-
sites should reside in the same address space. Chrome’s strict
site isolation feature aims to prevent cross-domain attacks by
segregating security domains into different address spaces.
However, Chrome does consolidate websites with the same
eTLD+1 domain into the same process. We now discuss
how an attacker can exploit this consolidation to achieve co-
residency between the attacker and target pages.
Exploiting iframes. We first observe it is possible to
achieve consolidation by embedding iframes containing
sensitive content originating from the same eTLD+1
domain as the attacker’s page. For example, the
attacker’s page, attacker.example.com can
contain an invisible iframe rendering content from
accounts.example.com. If the targeted user is already
logged in to accounts.example.com, the embedded
iframe may contain sensitive personal information.

While effective, this method cannot operate on pages that
refuse to be rendered inside embedded iframes, e.g., through
setting X-Frame-Options to deny. Because many attacks
exploit weaknesses in iframes, setting this option is a recom-
mended security measure and is employed by many websites.

Obtaining Cross Tab Consolidation. When experiencing
memory pressure, Chrome attempts to reduce its memory con-
sumption by consolidating websites running in different tabs,
provided that these have the same eTLD+1. Thus, a tab render-
ing attacker.example.com might be consolidated with
another tab rendering accounts.example.com. More-
over, we observe that once consolidation occurs, Chrome
tends to add newly-opened websites sharing the same eTLD+1
domain, rather than create a new process for them.
Abusing window.open. Finally, we observe that
Chrome tends to consolidate pages opened using the
JavaScript window.open() API, when these share the
eTLD+1 domain of the opener. Thus, code running on
attacker.example.com can use window.open to open
accounts.example.com in a new tab. While not stealthy,
this method seems particularly reliable and does not require
memory pressure to obtain consolidation.
Experimental Results. We measure the effectiveness of
each of the consolidation approaches described above using
Chrome 89.0.4389 (latest at the time of writing) on a ma-
chine featuring an Intel i7-7600U CPU and 8 GB of RAM,
running Ubuntu 20.04. We find that embedded iframes are
always consolidated if they have the same eTLD+1 domain as
the website embedding them. Likewise, we achieve perfectly
reliable consolidation with window.open.

To benchmark cross-tab consolidation under memory pres-
sure, we simultaneously opened websites from Alexa’s top
US list in different tabs. We find that simultaneously opening
17 out of Alexa’s top-20 websites forces Chrome to begin
consolidation where possible. Finally, we find that the number
of open websites depends on the machine’s memory size.
Specifically, on a similar machine with 16 GB, we need to
open 33 sites concurrently before consolidation occurs.

B. Overcoming [C2]: Breaking 32-bit Boundaries via Specu-
lative Type Confusion

As described in Section II-E, Chrome uses a pointer com-
pression technique that allows it to represent array indices and
object pointers using 32-bit integers, partitioning the address
space into 4 GB partitions. For an attacker trying to use Spectre
v1 techniques to read information outside of the allocated array
size, Chrome’s 32-bit representation seems to limit the scope
of the recovered information to a single 4 GB heap, leaving
the rest of the address space out of reach.

In this section, we overcome this limitation using specula-
tive type confusion, building a primitive that allows transient
reading from arbitrary 64-bit addresses. While type confusion
techniques have been previously outlined [25, 30, 41], to the
best of our knowledge, this is the first demonstration of type
confusion attacks against Spectre-hardened Chrome.

To mount our attacks, we first inspected the memory layout
of common JavaScript objects, looking for an object with a
64-bit back pointer. We found that TypedArrays satisfy this
requirement, as shown in Figure 1. While any TypedArray
object can be potentially used with our technique, in the sequel
we focus on Uint8Arrays, confusing Chrome’s code for

5



1 UInt8Array-access(array, index){
2 // type Check
3 if(array.type !== UInt8Array){
4 goto interpreter; // Wrong type
5 }
6 //compute array length
7 len = array.length
8 // length Check
9 if (index >= len) {

10 goto interpreter; // Out of Bounds
11 }
12 //compute array back_ptr
13 back_ptr = array.ext_ptr+

((array.base_ptr+heap_ptr)&0xFFFFFFFF);↪→

14 //do memory access
15 return back_ptr[index];
16 }

Listing 1: Pseudocode of operations performed by Chrome’s
JavaScript engine during array accesses.

Uint8Array AttackerClass

1 type type

2 properties properties

3 integer_properties integer_properties

4 buffer f0

5 byte_offset_1 f1

6 byte_offset_2 f2

7 byte_length_1 f3

8 byte_length_2 f4

9 length_1 f5

10 length_2 f6

11 ext_ptr_1 f7

12 ext_ptr_2 f8

13 base_ptr f9

Figure 2: Memory layout of objects of Uint8Array (left)
and AttackerClass (right). All words are 4 bytes (32 bits).
For clarity, 64-bit fields are split to two 32-bit words.

performing array accesses and causing it to transiently operate
on attacker-controlled AttackerClass objects.
Performing Array Operations. Consider the fol-
lowing JavaScript array declaration: var arr = new
Uint8Array(10). To implement arr[index], the
Chrome JavaScript engine performs the sequence of operations
outlined in Listing 1, which the Chrome optimizer specializes
to handle Uint8Arrays. Specifically, the code first checks
if the array type is Uint8Array (Line 3). If it is, the code
verifies that index is within the array bounds (Line 9).
Following the success of these checks, the code constructs
a pointer to the array backing store (Line 13), which it
dereferences at offset index (Line 15). If either of the checks
in Lines 3 or 9 fails, the execution engine raises an exception,
diverting control to the JavaScript interpreter.
Uint8Array Memory Layout. The left half of Figure 2
shows the memory layout of a Uint8Array object. It
starts with a three-field object header, specifying the object
type and other properties. The header is followed by several

fields, which describe the array. We focus on length, which
specifies the number of elements in the array, and the two
fields, ext_ptr and base_ptr, which are combined to get
the pointer to the backing store. (Two fields are needed for
legacy reasons.) We note that while length and ext_ptr
are each 64 bits wide, we show each of them as two 32-bit
words in Figure 2 (left) for clarity.
A Malicious Memory Layout. Unlike published Spectre
v1 attacks, which exploit misprediction of a bounds check,
our attack exploits type confusion by causing misprediction
after a type check. For the attack, we cause transient execution
of the Uint8Array array access code on an object other
than a Uint8Array. By carefully aligning the fields of the
malicious object, we can achieve transient accesses to arbitrary
64-bit memory locations.

The right side of Figure 2 contrasts the layout of
the malicious object with that of Uint8Array. The
AttackerClass object consists of ten 32-bit integer fields
named f0–f9. We note, in particular, that f5 and f6 align
with the length field of the array, f7 and f8 align with
ext_ptr, and f9 aligns with base_ptr.
Type Confusion. Type confusion operates by training
the processor to predict that the object processed by List-
ing 1 is a Uint8Array and then calling the code with an
AttackerClass object whose layout is shown in Figure 2
(right). The crux of the attack is that during transient execution
following a misprediction of the type check in Line 3 of
Listing 1, the code accesses the fields of AttackerClass
object but interprets them as fields of Uint8Array.

In particular, the code interprets the values of f7–f9 as
if they were ext_ptr and base_ptr. Thus, by controlling
f7–f9 an attacker can control the memory address accessed
under speculation. Specifically, Line 13 of Listing 1 shows
how the values of ext_ptr and base_ptr are combined
with the global heap_ptr to calculate the pointer to the
backing store. Because Chrome tends to align heaps to 4 GB
boundaries, the 32 least significant bits of heap_ptr are
typically all zero. Hence, by setting the values of f7 and f8
to the low and high words of the desired address, and setting
f9 to zero, the computed value of back_ptr is the desired
address. If the value of index is also set to zero, the transient
execution will result in accessing the desired address. Setting
index to zero also helps to avoid the need to speculate over
the test in Line 9 of Listing 1. All the attacker needs to do is
to set f5 and f6 so that when they are interpreted as a 64-bit
length, they yield a non-zero value, e.g., 1.
Delaying Type Resolution. Our type confusion attack
relies on mispredicting the branch at Line 3 of Listing 1. To
allow transient execution past the branch, we need to delay
the determination of the branch condition. Typically, such
delays can be achieved by evicting the data that the condition
evaluates from the cache. In our case, we evict the type field
of the AttackerClass object. At the same time to compute
the fake backing store pointer, the CPU should have transient
access to fields f7–f9 of the AttackerClass object before
the type-checking branch is resolved. Thus, for a successful

6



1 // Setup
2 let objArray = new Array(128);
3 for (let i=0; i<64; i++) {
4 objArray[i] = new Uint8Array(0x20);
5 objArray[64+i] = new AttackerClass(i);
6 garbageCollector();
7 }
8 let malIndex = findSplitAttackObj(objArray);
9 let malObject = objArray[malIndex];

10 let arguments;
11 let scratch = 0;
12 malObject.f0 = 1;
13

14 // Training
15 arguments = [0, 0];
16 for(let i=0; i<10000; i++) gadget();
17

18 // Attack
19 arguments = [malIndex, 0];
20 malObject.f5 = 1; // length_1
21 malObject.f6 = 0; // length_2
22 malObject.f7 = Lower32BitsOfAddress;
23 malObject.f8 = Upper32BitsOfAddress;
24 malObject.f9 = 0;
25 evict(malObject.f0);
26 gadget();
27 cacheChannel.receive()
28

29 // Attack Gadget
30 function gadget(){
31 let arrIndex, elemIndex = arguments;
32 if(arrIndex < malObject.f0) {
33 let arr = objArray[arrIndex];
34 let val = arr[elemIndex]; // byte
35 cacheChannel.leak(val);
36 return val;
37 }
38 return scratch;
39 }

Listing 2: An example of our speculative type confusion
primitive, including code inserted by the JavaScript engine.

attack, we need an AttackerClass object that straddles
two cache lines. In Section IV-D we describe how to achieve
this layout and how we evict the type field from the cache.

C. Overcoming [C3]: Avoiding Deoptimization Events via
Speculation

In the previous section, we show how we can perform type
confusion with the compiler-generated code in Listing 1. We
now demonstrate how an attacker can exploit type confusion
to construct a generic read primitive. The main complication
is that the attacker must not only control speculative execution
at the processor, but also ensure that Chrome’s optimizing
compiler does not modify the code as it runs.

Listing 2 presents the JavaScript code for the attack, which
consists of four main stages that we now describe.
Setup. The attack relies on speculatively swapping a
malicious object of AttackerClass for a Uint8Array.
The setup stage prepares all the variables needed for the
attack. It initializes an array of objects objArray, setting
some of the entries to Uint8Array and others to objects
of AttackerClass (Lines 1–5). Line 6 triggers Chrome’s
garbage collector (similar to [20]) by allocating 50 1 MB

buffers and allowing each buffer to go out of scope imme-
diately. The garbage collector then compacts the heap and
reallocates the previously-initialized objects, placing them in
contiguous memory locations. Finally, we recall from Sec-
tion IV-B that the attack requires finding a malicious object
that is split over two cache lines. We find such an object
in Line 8 of Listing 2. Due to its complexity, we defer
the discussion of this procedure and its interaction with the
garbage collector to Section IV-D.

We keep two different references to the malicious object:
a direct reference in malObject (Line 9) and an indirect
reference malIndex, via its index in objArray. Finally,
the setup declares variables used by the gadget and sets
malObject.f0 to 1. We note that we assume the field f0
is in the same cache line as the malicious object’s type.
Training. In Lines 15–16, we perform the training stage of
the attack. We first set the arguments of the gadget to ensure
that the accessed object is a Uint8Array. Specifically, the
gadget expects two values in the variable arguments.1 The
first argument is an index to the array objArray, which can
be either an object of AttackerClass or a Uint8Array.
In the case that the pointed object is a Uint8Array, the
gadget’s second argument is the Uint8Array index. Setting
the first argument to 0 implies that the gadget uses the object
in objArray[0], which is a Uint8Array.

After setting the arguments, the training stage invokes
the gadget 10000 times (Line 16). During these invocations,
Chrome’s optimizer observes the gadget’s execution, and de-
tects that it always processes a Uint8Array object. Con-
sequently, the optimizer specializes the gadget’s array access
to that case, using Listing 1 to perform the array access in
Line 34. Moreover, the CPU’s branch predictor observes the
branches in the gadget and in the array access code, and sets
their prediction to match a valid Uint8Array object.
Attack. In the attack stage, we first set the arguments to
refer to our malicious object (Line 19). We then set the fields
f5–f9, which correspond to the length, ext_ptr, and
base_ptr of a Uint8Array (see Figure 2). Specifically we
set f5, f6 to have the value 1 when interpreted as array length,
f7, f8 to point to the desired 64-bit address when interpreted
as ext_ptr, and f9 which is interpreted as base_ptr to
zero.2We then evict the cache line that contains f0 (and the
malicious object’s type) from the cache and invoke the gadget.
When the gadget returns, we retrieve the leaked value from
the cache side-channel (Line 27), completing the attack.
Attack Gadget. The core of the attack occurs when
the gadget function is executed on a malObject of
type AttackerClass, after being specialized to han-
dle Uint8Arrays. As Line 19 of Listing 2 passes
malIndex, Line 33 results in arr being malObject of
type AttackerClass. Next, as the array access in Line 34

1We pass the arguments using a global variable because we find that using
function parameters increases the noise in the cache side-channel, which we
use to retrieve the leaked values.

2This is a simplified description for brevity. See Appendix B for a thorough
description.

7



ty
pe f0 f5 f6 f7 f8 f9

pr
op
er
tie
s

in
t_
pr
op
er
tie
s

Figure 3: A malicious object split across cache lines.

of Listing 2 is specialized to handle access to Uint8Arrays,
executing this line using malObject triggers the spec-
ulative type confusion attack described in Section IV-B.
In particular, the address encoded in malObject.f7 and
malObject.f8 is dereferenced, resulting in val being pop-
ulated with that address’s contents. Finally, Line 35 transmits
val via a cache side-channel, where it is recovered in Line 27.
Deoptimization Hazard. Recall that the compiler specializes
the array access in Line 34 of Listing 2 based on the observing
Uint8Array accesses during the training phase. When the
type confusion attack executes, the type check (Line 3 of
Listing 1) recognizes the mismatch between Uint8Array
and AttackerClass, aborts the specialized code, and alerts
Chrome that other types may be used. Consequently, Chrome
deoptimizes the array reference, revoking the specialization.
Unfortunately, unspecialized code is not vulnerable to our type
confusion attack, requiring us to re-train the optimizer for the
next attack iteration. This will significantly reduce the overall
byte rate of the attack.
Avoiding Deoptimization. To overcome this challenge, we
adapt the speculative hiding technique previously used in na-
tive code [9, 18, 36, 40], to the context of the browser, and use
branch misprediction to hide JavaScript type-mismatch events.
Specifically, we wrap the attack code in a conditional block
(Line 32 of Listing 2). The condition checks that the object
index is less than the value of the field f0 of the malicious
object, which we have previously set to 1 (Line 12). Hence, the
attack code is only executed architecturally when the index is
zero and the refered object is Uint8Array. However, during
the attack stage, the branch predictor mispredicts the condition
as true, inducing a speculative execution of the entire type
confusion attack code, including the type check. Moreover,
because evaluating the condition depends on the value of
f0, which has been evicted from the cache (Line 25), the
processor cannot detect the misprediction until after the attack
completes. When the procesor detects the misprediction, it
reverts any changes to the architectural state resulting from
executing Lines 32–37, and proceeds to Line 38. In this case,
the type mismatch only happens transiently under speculation
and is never committed to the CPU’s architectural state.
Thus, Chrome is never alerted to the mismatch and does not
deoptimize the code in Listing 1 and Listing 2.

D. Overcoming [C4]: Obtaining Deep Speculation via L3
Evictions

The attack described in Listing 2 requires a malicious
object of type AttackerClass, where the attacker can
evict malObject’s type and f0 field from the cache

while keeping fields f5–f9 inside the cache. The cache line
boundary lies anywhere between f0 and f5 (see Figure 3). We
now describe our technique for finding a malicious object at
the desired cache layout, as well as how to flush its type from
the cache. We first find eviction sets for all of the LLC sets
and then use them to locate an appropriate malicious object
and evict its type (Line 1).

1 LLCEvictionSets = GenerateLLCEvictionSets();
2

3 for(let i=64; i<128; i++){
4 candidate = objectList[i];
5 for(evictionSet in LLCEvictionSets){
6 access(candidate.f0); // cache f0
7 evictionSet.evict();
8 let m = isEvicted(candidate.f0);
9 access(candidate.f5); // cache f5

10 evictionSet.evict();
11 let h = isEvicted(candidate.f5);
12 if(m && !h){
13 malIndex = i;
14 break;
15 } } }

Listing 3: Finding an AttackerClass whose memory
layout straddles two cache lines.

Use of Memory Compaction. We recall Lines 3–6 in
Listing 2, which trigger Chrome’s garbage collection after each
allocation of an AttackerClass object. As a side effect of
garbage collection, Chrome reallocates AttackerClass ob-
jects, compacting them to have a 4 B aligned contiguous mem-
ory layout. Next, as the size of each AttackerClass object
is 52 B, the continuous memory layout of AttackerClass
objects ensures that there exists an object whose f0 and f5
straddle two 64 B cache lines.
Finding a Split Object and a Corresponding Eviction
Set. Listing 3 shows the code for identifying an appropriate
malicious object and a matching eviction set that evicts the
object type. The code first generates eviction sets for all of the
LLC’s sets, using the code of Vila et al. [73] (Line 1) with the
findall setting. Empirically, this results in obtaining 99%
of the eviction sets, which is sufficient to run our attack.

Listing 3 then tests each of the AttackerClass objects
generated in Line 5 of Listing 2 to see if any has the desired
layout. For each candidate, the test iterates over all of the
eviction sets (Line 5), testing whether the eviction set evicts
the candidate’s f0 but not its f5 field. When an appropriate
AttackerClass object is found, the code records its index
in malIndex (Line 13), to be used in the attack of Listing 2.
Eviction Test. Testing whether a field has been evicted is
done by measuring the time to access it. However, as part
of hardening the browser against microarchitectural attacks,
Chrome has reduced the resolution of its timer API [52].
Thus, instead of using performance.now(), we take the
approach of Schwarz et al. [60], and implement a counting
web worker thread using a SharedArrayBuffer. We note
that following the discovery of Spectre [4], Chrome disabled
the SharedArrayBuffer API [4], but ironically re-enabled
it after strict site isolation was deployed.

8



The Need For LLC Eviction. Rather than using LLC eviction
sets, leaky.page [20] (the Google PoC) uses L1 evictions.
While constructing L1 eviction sets is far simpler and is more
reliable than constructing LLC eviction sets, we have to resort
to using the LLC. Specifically, we observe that if we only evict
malObject.f0 from the L1 cache but not from the LLC,
our attack consistently fails. We believe that the reason is the
length of the speculation window (the number of instructions
executed before the processor detects mis-speculation). When
the field malObject.f0 is only evicted from the L1 cache,
the processor retrieves it from the L2 cache within about 10
cycles. When the field is evicted from the LLC, it is retrieved
from the main memory, taking over 100 cycles. We conjecture
that our attack needs to speculatively execute more instructions
than fit within the speculation window provided by L1 misses,
requiring the longer, more complex, LLC misses.

E. End-to-End Attack Performance

So far, we have described a combination of techniques
that enable an attacker’s webpage to recover the contents of
any address in its rendering process. We now evaluate the
effectiveness of our techniques across several generations of
processors, including CPUs made by Intel, AMD, and Apple.
Attack Setup. On Intel and Apple processors, we run
Spook.js on unmodified Chrome 89.0.4389.114. For our
benchmark, we initialize a 10 KB memory region with a
known (random) content and then use Spook.js to leak it.
Eviction Set Based Results. Table I shows a summary
of our findings, averaging over 20 attack attempts. As can
be seen, Spook.js leaks 500 B/sec on Intel processors ranging
from the 6th to the 9th generation, while maintaining above
96% accuracy. On the Apple M1, Spook.js achieves a leakage
rate of 450 B/sec with 99% accuracy.

Processor Architecture Eviction Method Leakage Error

Apple M1 M1 Eviction Sets 451 B/s 0.99%
Intel i7 6700K Skylake Eviction Sets 533 B/s 0.32%
Intel i7 7600U Kaby Lake Eviction Sets 504 B/s 0.97%
Intel i5 8250U Kaby Lake R Eviction Sets 386 B/s 3.93%
Intel i7 8559U Coffee Lake Eviction Sets 579 B/s 1.84%
Intel i9 9900K Coffee Lake R Eviction Sets 488 B/s 3.76%

AMD TR 1800X Zen 1 clflush 591 B/s 0.02%
AMD R5 4500U Zen 2 clflush 590 B/s 0.06%
AMD R7 5800X Zen 3 clflush 604 B/s 0.08%

Table I: Spook.js performance across different architectures.

Failing to Evict. Unfortunately, on AMD’s Zen architecture,
we could not construct LLC eviction sets. As Spook.js requires
the larger speculation window offered by LLC eviction, we
were unable to run end-to-end Spook.js experiments on AMD
systems. To evaluate the core speculative type confusion attack
without constructing eviction sets, we instrumented V8 to
expose the clflush instruction. As Table I shows, Spook.js
achieves a rate of around 500 B/sec, demonstrating that if an
efficient LLC eviction mechanism is found, Spook.js will be
applicable to AMD. We leave the development of such eviction
techniques to future work.

Figure 4: (top) Example of a victim webpage. (bottom) Leak-
age of parts of the victim webpage’s text.

V. ATTACK SCENARIOS

In this section, we turn our attention to the implications
of Spook.js. We investigate multiple real-world scenarios in
which the attack retrieves secret or sensitive information.
Experimental Setup. We perform all of the experiments in
this section using a ThinkPad X1 laptop equipped with an Intel
i7-7600U CPU and running Ubuntu 18.04. Next, unless stated
otherwise, we use an unmodified Chrome version 89.0.4389.
Finally, we leave all of Chrome’s settings in their default
configuration with all default countermeasures against side-
channel attacks enabled.
Obtaining Consolidation. We recall the results from
Section IV-A, where Chrome consolidates websites into the
same renderer process based on their eTLD+1 domains. More
specifically, as noted in Section IV-A, Chrome will consolidate
websites into the same renderer process either naturally due to
tab pressure (33 tabs for 16GB machine) or due to the attacker
opening the target page using the window.open API call.

A. Website Identification

In our first scenario, we assume the attacker created a
malicious page containing Spook.js code on a public hosting
service. The attacker further managed to convince the victim
to open an unknown page from the same hosting service, e.g.,
the victim opens their personal page. While the contents of
most of the pages on the public hosting service are publicly
accessible, the information about which pages the victim has
open is private and should not be accessible to the attacker.

9



Attack Setup. To demonstrate how Spook.js violates the
victim’s privacy, we perform the attack on bitbucket.io, a
Git-based hosting service. To mount our attack, we hosted
an attacker webpage with the Spook.js code on bitbucket.io.
We also created three sample personal pages on bitbucket.io,
see Figure 4 (top). Following Bitbucket’s naming conven-
tion, the URLs of the four pages follow the pattern https:
//username.bitbucket.io/, making these eligible for consolida-
tion. The ground truth usernames for our three sample personal
pages were {spectrevictim, lessknownattacker,
knownattacker}.

Figure 5: Leakage of currently open bitbucket.io subdomains.
The parts corresponding to the URLs are highlighted.

Experimental Results. After opening the four websites
in four tabs, we consolidated all of the Bitbucket pages in
one renderer process using the tab-pressure technique from
Section IV-A. We then used Spook.js to leak the memory space
of the renderer process. Inspecting the result, we recovered a
list of the URLs for the tabs being rendered; see Figure 5.
While the contents of our sample victim pages are public, the
list of bitbucket.io websites simultaneously viewed by the user
is private and should not be accessible to a malicious page
hosted on bitbucket.io. Finally, we achieved similar results
using window.open instead of tab pressure.

B. Recovering Sensitive DOM Information

In the second scenario, we consider a protected subdomain,
which presents private data to an authenticated user. As an
example, we exploited the structure of the website of our
university, which at the time of writing hosts its main page,
single sign-on (SSO) page, and internal portal page on the
same eTLD+1 domain as personal webpages.
Attack Setup. Coordinating with the University’s IT
department, we hosted code performing Spook.js on a personal
webpage (e.g., https://web.dpt.example.edu/∼user/).With the
author’s account logged in, we visited three pages in the
internal human resources portal, https://portal.example.edu/,
on separate tabs. Each page contained the author’s contact
information and direct deposit account. See Figure 6 (top) and
Figure 7 (top). (To protect the author’s privacy, we edited the
local copy of the DOM before mounting the attack.)
Experimental Results. After opening the three tabs, we also
opened the page hosting Spook.js in the same window. Fol-
lowing its eTLD+1 consolidation policy, Chrome consolidated
all four tabs into the same address space, allowing us to read

Figure 6: (top) Contact information page displayed of the
university website, edited to show anonymized information.
(bottom) Leakage of contact information using Spook.js.

Figure 7: (top) The direct deposit settings page of the univer-
sity website, edited to show anonymized information. (bottom)
Leakage of bank account and routing number.

sensitive values directly from the process’s address space. See
Figure 6 (bottom) and Figure 7 (bottom).

C. Attacking Credential Managers

We now demonstrate the security implications of Spook.js
on popular credential managers, which automatically populate
the login credentials associated with a website, often without
any user interaction. Moreover, we show that credentials
can be recovered even without the user submitting them by
pressing the login (or any other) button, as merely populating
the credentials into their corresponding fields brings them into
the address space of the rendering process.
Attacking Chrome. We use the previous two-tab setup
where the login page (https://weblogin.example.edu/), and the
internal attacker page (https://web.dpt.example.edu/∼user/) are
hosted by the university and rendered by the same process. We
assume that the credentials for https://weblogin.example.edu/
are already saved with Chrome’s password manager, and it
populates them as shown in Figure 8 (top). The bottom part
of the figure shows Spook.js recovering the auto-populated
credentials without requiring any user action.
Attacking LastPass. Next, we used a similar setup, but this
time with LastPass version 4.69.0 to autofill the passwords
(instead of Chrome’s password manager). In addition to ob-

10

bitbucket.io
bitbucket.io
bitbucket.io
https://username.bitbucket.io/
https://username.bitbucket.io/
bitbucket.io
bitbucket.io
bitbucket.io
https://web.dpt.example.edu/~user/
https://portal.example.edu/
https://weblogin.example.edu/
https://web.dpt.example.edu/~user/
https://weblogin.example.edu/


Figure 8: (top) Credential autofill by Chrome’s password
manager into the university’s login page. (bottom) Leaked
credentials using Spook.js.

Figure 9: (top) Multiple accounts managed by LastPass. (bot-
tom) Using Spook.js to leak the list of associated accounts.

taining similar password leaking results as in Figure 8, we
were also able to get multiple account usernames associated
with the website. More specifically, Figure 9 (top) shows
multiple credentials that we associated with university’s login
site. As the list of accounts resides in the address space of
the rendering process, it can be recovered using Spook.js. See
Figure 9 (bottom).
One-Click Credential Recovery. We take the previous attack
a step further, showing that credentials can sometimes be re-
covered as soon as the victim opened our malicious webpage,
without the need to assume any simultaneously opened tabs.
This was made possible by two observations; firstly, while the
pages of most of the university’s authenticated portals refused
to load inside an iframe (presumably due to security reasons),
this was not the case for the login page. Secondly, while
Chrome’s built-in password manager required the user to click
inside the iframe to fill their credentials, LastPass autofilled

Figure 10: Leaked credentials from an invisible iframe.

Figure 11: (top) Credit card information populated by Last-
Pass. (bottom) Using Spook.js to leak credit card information.

them without any user interaction, even when the iframe was
not visible. Taking advantage of this, we added an iframe
with the CSS display:none; to the personal webpage
hosting the attack code (https://web.dpt.example.edu/∼user/).
As explained in Section IV-A, the main frame of the webpage
and the iframe shared an eTLD+1, and thus were rendered
by the same process. By doing so, we recovered the same
credentials from Figure 8 as shown in Figure 10, yet without
the victim visiting the login page voluntarily or knowingly.
Extracting Credit Cards. In addition to passwords, cre-
dential managers such as LastPass can be used to manage
credit card information, autofilling it when authorized by the
user. Using a setup similar to attacking login credentials, we
were able to read the victim’s card information shown in
Figure 11 (top) after it was populated on a payment page with
the same eTLD+1 domain as the attacker’s page. See Figure 11
(bottom). Finally, similar credit-card recovery results were also
obtained when attacking Chrome’s credit card autofill feature.

D. Attacking Tumblr

We now combine the previous techniques used to recover
sensitive information from a webpage’s DOM and to recover
autofilled credentials to deploy an attack on Tumblr. Tumblr is
a microblogging platform and social network with 327 million
unique visitors as of January 2021 [67].
Attack Setup. The Tumblr platform hosts a user
blog in domain name username.tumblr.com and
the login page is located at tumblr.com/login.
Furthermore, the account settings page is located at
tumblr.com/settings/account. As observed previ-
ously, this design choice is dangerous, because login pages

11

https://web.dpt.example.edu/~user/


and user-operated blogs that share the eTLD+1 can be con-
solidated. While users cannot freely add JavaScript to blog
posts, they can inject JavaScript code into the tumblr.com
domain by customizing the blog’s theme template at the raw
HTML level.

More specifically, Tumblr’s cross-origin resource sharing
(CORS) header disallowed importing scripts from a different
origin, while Tumblr’s content security policy (CSP) header
prevented us from creating Blob objects. Despite this, Tum-
blr’s CSP header allowed data URLs and the eval function,
allowing us to embed the attack code as inline JavaScript
inside a URL. We used Chrome 90.0.4430 for this attack, after
we observed Chrome 89 refusing to call eval although the
CSP header allowed it explicitly.
Attack Results. In a similar setup as before, we created
a malicious blog on Tumblr’s platform containing Spook.js
attack code. We achieved consolidation in two ways. The
first was via memory pressure as before, while the second
technique was a two-click attack similar to our one-click
credential recovery with LastPass. A one-click attack was
not possible because both the login and account settings
pages refused to render in an iframe, and Chrome treated
a window.open from the DOM of our blog as a pop-up,
blocking it unless allowed explicitly by the victim. However,
with a window.open from an onclick attribute added to
the blog’s HTML body, consolidation became possible if the
victim clicked anywhere on the blog. We note that Chrome did
not block the ‘pop-up’ this time because it was user-initiated.

After both ways of consolidation, we were able to exfiltrate
the credentials shown in Figure 12 (top) once they were
injected into the login page’s DOM by LastPass, see Figure 12
(bottom). In addition, Figure 13 (top) shows the list of all blogs
owned by the user, which is not publicly available. We could
leak this information from the DOM of account settings page
as shown in Figure 13 (bottom).

E. Exploiting Unintended Content Uploads

Our attacks so far assumed that the attacker’s webpage
is directly present on the domain to which the content was
originally uploaded. We now depart from this assumption,
showing that content uploaded to one domain is sometimes
silently transferred to another, allowing Spook.js to recover it.
Google Sites. As an example of such a case, we use
Google Sites, which allows users to create their own personal
webpage and embed HTML containing JavaScript under
https://sites.google.com/site/username/.
Google Sites then runs the user-supplied code in
a sandboxed iframe, which hosts the code under
https://prefix.googleusercontent.com. As
we are unable to obtain a presence on the google.com
domain, Spook.js cannot affect other google.com pages
directly, as these are located on different eTLD+1 domains
and thus will never be consolidated with the attacker’s page.

However, exploring Google services, we have observed
that Google hosts more than personal webpages on
googleusercontent.com. More specifically, Google

Figure 12: (top) Tumblr’s login page with credentials autofilled
by LastPass. (bottom) Recovered username and password.

Figure 13: (top) The list of all blogs owned by an account,
which is visible only to the owner of the account. (bottom)
Recovered list with blog names in highlights.

seems to be using the googleusercontent domain as a
storage location, automatically uploading emailed attachments,
images, and thumbnails for Google Drive documents.
Google Photos. Focusing on Google Photos, we
have discovered that all images uploaded (or automatically
synchronized) to this service are actually hosted on the
googleusercontent.com domain. When viewing images
through https://photos.google.com/, the page loads
the images from googleusercontent.com via img tags,

12



which are not consolidated into the process responsible for
rendering pages hosted on googleusercontent.com.

Nevertheless, consolidation does occur in case the target
elects for additional ways of viewing the image via options
available through the right-click menu. For example, if the
target loads the image in a new tab, the image will come
directly from googleusercontent.com, making the tab
eligible for consolidation in case of tab pressure. Likewise, in
case the target opens the image through a link or QR code
received from another person, the image will also be rendered
by a consolidable googleusercontent.com tab.
Attack Setup and Results. We created a webpage on
sites.google.com that contains Spook.js attack code.
Next, we opened the attacker’s Google site in one tab, and
opened an image from the target’s private Google Workspace
(G Suite) in another tab, where the image was automatically
uploaded by Google on googleusercontent.com. After
obtaining consolidation due to tab pressure, we used Spook.js
to recover the image. See Figure 14.

VI. EXPLOITING MALICIOUS EXTENSIONS

Moving away from the security implications of website con-
solidation, in this section, we look at the security implications
of consolidating Chrome extensions. At a high level, Chrome
allows users to install JavaScript-based extensions that modify
the browser’s default behavior, such as blocking ads, applying
themes to websites, managing passwords, etc.
Extension Permissions. To assist in this task, Chrome uses
a permissions model, providing extensions with capabilities
beyond that of regular JavaScript code executed by a website.
To secure these privileged capabilities from websites and other
less privileged extensions, it is important that extensions are
correctly isolated from each other and from websites.
The LastPass Extension. To demonstrate the security
implications of consolidating Chrome extensions, we use the
LastPass Chrome extension, which is a popular credential
manager for syncing credentials across multiple devices be-
longing to the same user. When the user logs into Chrome’s
LastPass extension, the extension fetches a vault of encrypted
passwords stored on LastPass’ cloud and decrypts it using a
key derived from the user’s password [35]. Furthermore, we
empirically observed that LastPass decrypts passwords only
when it has to populate the credentials into a website while
retaining all the usernames in plaintext in memory.

Figure 14: (left) An image of an antelope uploaded to Google
Photos. (right) A reconstructed image from the leaked data.

Figure 15: (top) Recovered login credential of wikipedia.org
populated by LastPass. (bottom) Recovered master password
of LastPass’ vault (originally LastPassPassword1#).

Attack Setup and Results. We use Chrome with the LastPass
v4.69.0 extension, signing into our LastPass account. We also
port Spook.js into a malicious Chrome extension that requires
no permissions and install it on our system. As the system
was already under tab pressure (as described in Section IV-A),
we observed that Chrome had immediately consolidated our
malicious extension with LastPass. We can now use LastPass
to log in to any website, which triggers LastPass to decrypt and
populate the website’s credentials. Since Spook.js is running in
the same process as the LastPass extension, we can leak the
decrypted credentials, thereby violating Chrome’s extension
security model. See Figure 15 (top). Going beyond credentials
for specific websites, we were also able to leak the vault’s
master password, which allows the attacker to compromise all
of the vault’s accounts; see Figure 15 (bottom).

VII. ATTACKING ADDITIONAL BROWSERS

We now move to investigate Spook.js on other Chromium-
based browsers, namely Microsft Edge and Brave. Edge is
the default browser shipped with Windows 10 (5% desktop
market share [28]), whereas Brave is a popular privacy-
oriented browser that aims to block ads and trackers [7]. As
both of these browsers are based on Chromium, they inherit
the strict site isolation policy and its security limitations.

We experimentally observe that the consolidation techniques
of Section IV-A are effective in both browsers. Measuring the
effectiveness of Spook.js on both browsers, in Table II we see
that, in both browsers, Spook.js achieves leakage rates similar
to those obtained on Chrome.

Processor Browser Leakage Rate Error Rate

Intel i7 6700k Brave v89.1.22.71 504 B/s 1.25%
(Skylake) Edge v89.0.774.76 381 B/s 4.88%

Table II: Spook.js performance on Brave and Edge

Finally, we test the experimental implementation of strict
site isolation on Firefox [44] using Firefox Nightly 89.0a1[45],
build date April 12, 2021. Similar to Chrome, we observe con-
solidation with tab pressure and window.open. However,
due to significant JavaScript engine differences, we stop short
of implementing Spook.js on Firefox.

13



VIII. CONCLUSIONS

In this paper, we presented Spook.js, a new transient
execution attack capable of recovering sensitive information
despite Chrome’s strict site isolation countermeasure. The
fundamental weakness that Spook.js exploits is the differences
in the security models of strict site isolation and the rest of the
web ecosystem at large. On the one hand, strict site isolation
considers any two resources served from the same eTLD+1
to always be in the same security domain. On the other hand,
the rest of the web enjoys a much finer-grained definition of
the security domain, often known as the same-origin policy.
The same-origin policy only considers two resources are to
be in the same security domain if the entire domain name is
identical. As we show in Section V, the different definitions
for a security domain have manifested as vulnerabilities in real
world websites, that can be practically exploited by Spook.js.

A. Countermeasures

We now discuss several mitigation strategies for Spook.js.
Separating User JavaScript. Spook.js relies on consolidating
two endpoints of the same website into the same process,
one which executes attacker-controlled JavaScript and another
which contains sensitive data. Website operators can protect
their users from Spook.js by using different domains to serve
each endpoint. While this technique is already used for sepa-
rating user content from operator content, it is insufficient in
cases where user-provided JavaScript is served from the same
domain as other sensitive user-provided content. We propose to
extend this idea, such that user-provided JavaScript content is
served from one domain while all other user-provided content
is served from another domain. This countermeasure can be
immediately adopted by website operators to protect their
users from JavaScript-based attacks such as Spook.js.
Origin Isolation. Browser vendors might choose to align the
definition of security domains in strict site isolation with those
used by the rest of the web. A straightforward approach is to
consider the entire domain name for strict site isolation rather
than relying on eTLD+1. However, origin isolation might
break a non-negligible amount of websites, as 13.4% of page
loads modify their origin via document.domain [56].
The Public Suffix List (PSL). Maintained by Mozilla, the
PSL [13] is a list of domain names under which users can
directly register names, even if these are not true top-level
domains. Examples of list entries include .com, .co.uk,
and also github.io. Recognizing that attackers can directly
register sub-domains under the domains in the PSL, Chrome
will not consolidate pages in case their eTLD+1 domain is
present in the PSL. In particular, x.publicsuffix.com
and y.publicsuffix.com will be treated as different sites
and never be consolidated.

Thus, we recommend that web services hosting personal
websites ensure proper isolation by adding their domain to
the PSL. In particular, our attacks on bitbucket.io and
tumblr.com in Section V were made possible due to the
absence of both vendors from the PSL. Finally, we note

that Tumblr’s absence from the PSL was reported previously
by [66] while bitbucket.io was added to the PSL follow-
ing our disclosure.
Strict Extension Isolation. Despite the strict site isolation
policy, Chrome still consolidates two extensions if the number
of extensions reaches one-third of the total process limit [57].
This policy essentially allows extensions to mount transient
execution attacks against each other, as we demonstrated in
Section VI. Next, as a consequence of our work, Google
deployed strict extension isolation [14], which prevents the
consolidation of two extensions. While experimental, this can
be manually enabled on Chrome 92, preventing malicious
extensions from reading other extensions using Spook.js.
Speculation Hardening. At a high level, Spook.js is a
type confusion attack which is possible as the CPU speculates
past the object’s type check. Thus, an incomplete but easy to
implement countermeasure is to prevent such speculation by
placing an lfence instruction after type checks. Next, pointer
poisoning [51] is a technique that masks every data pointer
with a random constant, specific to the object’s type. This
prevents speculative type confusion attacks, as an incorrect
value will be unmasked in case of a type mismatch.

B. Limitations

Limitation of Targets. To deploy Spook.js, the attacker
must upload Spook.js JavaScript code to the target website’s
domain. While Section V presents many such attack scenarios,
Spook.js currently does not work across unrelated domains.
Given the plethora of transient-execution attacks discovered
and the complexity of modern browsers, it is not clear that
unrelated domains are protected from each other.
Limitation of Architecture As described in Section IV-E,
we cannot mount end-to-end Spook.js on AMD systems due
to our inability to reliably evict the machine’s LLC cache.
We leave the task of adapting the attack to the AMD Zen
architecture to future work.
Attacking Firefox. Similarly to Chrome, Firefox’s strict
site isolation implementation also consolidates websites based
on their eTLD+1 domain. While we successfully induced
consolidation on Firefox, the JavaScript execution engine is
significantly different from Chrome’s. Thus, we leave the task
of demonstrating Spook.js on Firefox to future work.

ACKNOWLEDGEMENTS

This work was supported the Air Force Office of Scien-
tific Research (AFOSR) under award number FA9550-20-1-
0425; an ARC Discovery Early Career Researcher Award
(project number DE200101577); an ARC Discovery Project
(project number DP210102670); the Defense Advanced Re-
search Projects Agency (DARPA) and Air Force Research
Laboratory (AFRL) under contracts FA8750-19-C-0531 and
HR001120C0087; Israel Science Foundation grants 702/16
and 703/16; the National Science Foundation under grant
CNS-1954712; Len Blavatnik and the Blavatnik Family foun-
dation and Blavatnik ICRC at Tel-Aviv University; Robert
Bosch Foundation; and gifts from Intel and AMD.

14



REFERENCES

[1] Webkit2. https://trac.webkit.org/wiki/WebKit2, 2011.

[2] Onur Acıiçmez. Yet another microarchitectural attack: Exploiting I-
cache. In CSAW, pages 11–18, 2007.

[3] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin
Lerner, and Hovav Shacham. On subnormal floating point and abnormal
timing. In IEEE SP, pages 623–639, 2015.

[4] Jake Archibald. Sharedarraybuffer updates in android chrome 88 and
desktop chrome 91. https://developer.chrome.com/blog/enabling-shared-
array-buffer/, 2021.

[5] Andrew Bortz, Adam Barth, and Alexei Czeskis. Origin cookies: Session
integrity for web applications. Web 2.0 Security and Privacy (W2SP),
2011.

[6] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko, Kari Kostiainen,
Srdjan Capkun, and Ahmad-Reza Sadeghi. Software grand exposure:
SGX cache attacks are practical. In WOOT, 2017.

[7] Brave. Browse 3x faster than Chrome. https://brave.com/, 2021.

[8] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, and
Daniel Gruss. A systematic evaluation of transient execution attacks and
defenses. In USENIX Security, pages 249–266, 2019.

[9] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on Meltdown-resistant CPUs. In CCS, pages 769–784, 2019.

[10] Shaanan Cohney, Andrew Kwong, Shahar Paz, Daniel Genkin, Nadia
Heninger, Eyal Ronen, and Yuval Yarom. Pseudorandom black swans:
Cache attacks on CTR DRBG. In IEEE SP, pages 1241–1258, 2020.

[11] Finn de Ridder, Pietro Frigo, Emanuele Vannacci, Herbert Bos, Cristiano
Giuffrida, and Kaveh Razavi. SMASH: Synchronized many-sided
Rowhammer attacks from JavaScript. In USENIX Security, 2021.

[12] Dmitry Evtyushkin and Dmitry Ponomarev. Covert channels through
random number generator: Mechanisms, capacity estimation and miti-
gations. In CCS, 2016.

[13] Mozilla Foundation. Public suffix list. https://publicsuffix.org/, 2020.

[14] Dinsan Francis. Strict extension isolation coming to google chrome.
https://www.chromestory.com/2021/05/strict-extension-isolation/, 2021.

[15] Pietro Frigo, Cristiano Giuffrida, Herbert Bos, and Kaveh Razavi. Grand
pwning unit: Accelerating microarchitectural attacks with the GPU. In
IEEE SP, pages 195–210, 2018.

[16] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. Drive-
by key-extraction cache attacks from portable code. In ACNS, pages
83–102, 2018.

[17] Daniel Genkin, Romain Poussier, Rui Qi Sim, Yuval Yarom, and
Yuanjing Zhao. Cache vs. key-dependency: Side channeling an im-
plementation of Pilsung. IACR Trans. Cryptogr. Hardw. Embed. Syst.,
2020(1):231–255, 2020.

[18] Enes Göktas, Kaveh Razavi, Georgios Portokalidis, Herbert Bos, and
Cristiano Giuffrida. Speculative probing: Hacking blind in the Spectre
era. In CCS, pages 1871–1885, 2020.

[19] Google. Partition allocator. https://github.com/chromium/chromium/
blob/master/base/allocator/partition allocator/PartitionAlloc.md, 2021.

[20] Google. Spectre. https://leaky.page, 2021.

[21] Ben Gras, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida. Trans-
lation leak-aside buffer: Defeating cache side-channel protections with
TLB attacks. In USENIX Security, pages 955–972, 2018.

[22] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template
attacks: Automating attacks on inclusive last-level caches. In USENIX
Security, pages 897–912, 2015.

[23] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowham-
mer.js: A remote software-induced fault attack in JavaScript. In DIMVA,
pages 300–321, 2016.

[24] Berk Gülmezoglu, Andreas Zankl, M. Caner Tol, Saad Islam, Thomas
Eisenbarth, and Berk Sunar. Undermining user privacy on mobile
devices using AI. In AsiaCCS, pages 214–227, 2019.

[25] Noam Hadad and Jonathan Afek. Overcoming (some) Spec-
tre browser mitigations. https://alephsecurity.com/2018/06/26/spectre-
browser-query-cache/, 2018.

[26] Jann Horn. Speculative execution, variant 4: speculative store bypass.
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528, 2018.

[27] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side
channel attacks against kernel space ASLR. In IEEE SP, pages 191–205,
2013.

[28] Kinsta. Global desktop browser market share for 2021. https://kinsta.
com/browser-market-share/, 2021.

[29] Vladimir Kiriansky and Carl A. Waldspurger. Speculative buffer over-
flows: Attacks and defenses. CoRR, abs/1807.03757, 2018.

[30] Ofek Kirzner and Adam Morrison. An analysis of speculative type
confusion vulnerabilities in the wild. In USENIX Security, Au-
gust 2021. URL https://www.usenix.org/conference/usenixsecurity21/
presentation/kirzner.

[31] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In IEEE SP, pages 1–19, 2019.

[32] David Kohlbrenner and Hovav Shacham. Trusted browsers for uncertain
times. In USENIX Security, pages 463–480, 2016.

[33] David Kohlbrenner and Hovav Shacham. On the effectiveness of
mitigations against floating-point timing channels. In USENIX Security,
pages 69–81, 2017.

[34] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu
Song, and Nael B. Abu-Ghazaleh. Spectre returns! speculation attacks
using the return stack buffer. In WOOT, 2018.

[35] LastPass. How it works. https://www.lastpass.com/how-lastpass-works,
2021.

[36] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In USENIX Security, pages 973–990, 2018.

[37] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In IEEE SP, pages
605–622, 2015.

[38] Andrei Lut,as, and Dan Lut,as, . Bypassing KPTI using the speculative
behavior of the SWAPGS instruction. In BlackHat Europe, 2019.
URL https://i.blackhat.com/eu-19/Thursday/eu-19-Lutas-Bypassing-
KPTI-Using-The-Speculative-Behavior-Of-The-SWAPGS-Instruction-
wp.pdf.

[39] Giorgi Maisuradze and Christian Rossow. ret2spec: Speculative execu-
tion using return stack buffers. In CCS, pages 2109–2122, 2018.

[40] Andrea Mambretti, Alexandra Sandulescu, Alessandro Sorniotti,
William Robertson, Engin Kirda, and Anil Kurmus. Bypassing memory
safety mechanisms through speculative control flow hijacks. arXiv
preprint arXiv:2003.05503, 2020.

[41] Ross McIlroy, Jaroslav Sevcı́k, Tobias Tebbi, Ben L. Titzer, and Toon
Verwaest. Spectre is here to stay: An analysis of side-channels and
speculative execution. CoRR, abs/1902.05178, 2019.

[42] Benedikt Meurer. An introduction to speculative optimization
in v8. https://ponyfoo.com/articles/an-introduction-to-speculative-
optimization-in-v8, 2017.

[43] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom:
How SGX amplifies the power of cache attacks. In CHES, pages 69–90,
2017.

[44] Mozilla. Project Fission. https://wiki.mozilla.org/Project Fission, 2021.

[45] Mozilla. Firefox browser nightly. https://wiki.mozilla.org/Nightly, 2021.

[46] Nick Nguyen. The best Firefox ever. https://blog.mozilla.org/blog/2017/
06/13/faster-better-firefox/, 2017.

[47] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Ange-
los D. Keromytis. The spy in the sandbox: Practical cache attacks in
JavaScript and their implications. In CCS, pages 1406–1418, 2015.

[48] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and
countermeasures: The case of AES. In CT-RSA, pages 1–20, 2006.

15

https://trac.webkit.org/wiki/WebKit2
https://developer.chrome.com/blog/enabling-shared-array-buffer/
https://developer.chrome.com/blog/enabling-shared-array-buffer/
https://brave.com/
https://publicsuffix.org/
https://www.chromestory.com/2021/05/strict-extension-isolation/
https://github.com/chromium/chromium/blob/master/base/allocator/partition_allocator/PartitionAlloc.md
https://github.com/chromium/chromium/blob/master/base/allocator/partition_allocator/PartitionAlloc.md
https://leaky.page
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://alephsecurity.com/2018/06/26/spectre-browser-query-cache/
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://kinsta.com/browser-market-share/
https://kinsta.com/browser-market-share/
https://www.usenix.org/conference/usenixsecurity21/presentation/kirzner
https://www.usenix.org/conference/usenixsecurity21/presentation/kirzner
https://www.lastpass.com/how-lastpass-works
https://i.blackhat.com/eu-19/Thursday/eu-19-Lutas-Bypassing-KPTI-Using-The-Speculative-Behavior-Of-The-SWAPGS-Instruction-wp.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Lutas-Bypassing-KPTI-Using-The-Speculative-Behavior-Of-The-SWAPGS-Instruction-wp.pdf
https://i.blackhat.com/eu-19/Thursday/eu-19-Lutas-Bypassing-KPTI-Using-The-Speculative-Behavior-Of-The-SWAPGS-Instruction-wp.pdf
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8
https://wiki.mozilla.org/Project_Fission
https://wiki.mozilla.org/Nightly
https://blog.mozilla.org/blog/2017/06/13/faster-better-firefox/
https://blog.mozilla.org/blog/2017/06/13/faster-better-firefox/


[49] Colin Percival. Cache missing for fun and profit. In Proceedings of
BSDCan, 2005. URL https://www.daemonology.net/papers/htt.pdf.

[50] Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and
Stefan Mangard. DRAMA: Exploiting DRAM addressing for cross-CPU
attacks. In USENIX Security, pages 565–581, 2016.

[51] Filip Pizlo. What Spectre and Meltdown mean for We-
bKit. https://webkit.org/blog/8048/what-spectreand-meltdown-mean-
for-webkit/, 2018.

[52] Chromium Project. window.performance.now does not support sub-
millisecond precision on Windows. https://bugs.chromium.org/p/
chromium/issues/detail?id=158234#c110, 2016.

[53] Hany Ragab, Enrico Barberis, Herbert Bos, and Cristiano Giuffrida.
Rage against the machine clear: A systematic analysis of machine
clears and their implications for transient execution attacks. In USENIX
Security, 2021.

[54] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. CrossTalk: Speculative data leaks across cores are real. In
IEEE SP, 2021.

[55] Charles Reis, Adam Barth, and Carlos Pizano. Browser security: Lessons
from google chrome: Google chrome developers focused on three key
problems to shield the browser from attacks. Queue, 7(5):3–8, 2009.

[56] Charles Reis, Alexander Moshchuk, and Nasko Oskov. Site isolation:
process separation for web sites within the browser. In USENIX Security,
pages 1661–1678, 2019.

[57] Charlie Reis. Issue 1209417: Add feature for all extensions to require
locked processes. https://bugs.chromium.org/p/chromium/issues/detail?
id=1209417, 2021.

[58] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage.
Hey, you, get off of my cloud: exploring information leakage in third-
party compute clouds. In CCS, pages 199–212, 2009.

[59] Eyal Ronen, Robert Gillham, Daniel Genkin, Adi Shamir, David Wong,
and Yuval Yarom. The 9 lives of Bleichenbacher’s CAT: new cache
attacks on TLS implementations. In IEEE SP, pages 435–452, 2019.

[60] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Man-
gard. Fantastic timers and where to find them: High-resolution microar-
chitectural attacks in JavaScript. In Financial Cryptography and Data
Security, pages 247–267, 2017.

[61] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In CCS, pages 753–768, 2019.

[62] Aria Shahverdi, Mahammad Shirinov, and Dana Dachman-Soled.
Database reconstruction from noisy volumes: A cache side-channel
attack on SQLite. In USENIX Security, 2021.

[63] Igor Sheludko and Santiago Aboy Solanes. Pointer compression in V8.
https://v8.dev/blog/pointer-compression, 2020.

[64] Anatoly Shusterman, Lachlan Kang, Yarden Haskal, Yosef Meltser, Pra-
teek Mittal, Yossi Oren, and Yuval Yarom. Robust website fingerprinting
through the cache occupancy channel. In USENIX Security, pages 639–
656, 2019.

[65] Anatoly Shusterman, Ayush Agarwal, Sioli O’Connell, Daniel Genkin,
Yossi Oren, and Yuval Yarom. Prime+Probe 1, JavaScript 0: Overcoming
browser-based side-channel defenses. In USENIX Security, 2021.

[66] Marco Squarcina, Mauro Tempesta, Lorenzo Veronese, Stefano
Calzavara, and Matteo Maffei. Can i take your subdomain? exploring
same-site attacks in the modern web. In USENIX Security, 2021.

[67] H. Tankovska. Combined desktop and mobile visits to Tumblr.com from
May 2019 to January 2021. https://www.statista.com/statistics/261925/
unique-visitors-to-tumblrcom/, 2021.

[68] V8 team. Launching ignition and turbofan. https://v8.dev/blog/
launching-ignition-and-turbofan, 2017.

[69] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris
Kasikci, Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval
Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the
intel SGX kingdom with transient out-of-order execution. In USENIX
Security, pages 991–1008, 2018.

[70] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lipp, Marina
Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and

Frank Piessens. LVI: hijacking transient execution through microarchi-
tectural load value injection. In IEEE SP, pages 54–72, 2020.

[71] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuffrida.
RIDL: rogue in-flight data load. In IEEE SP, pages 88–105, 2019.

[72] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. CacheOut: Leaking data on Intel CPUs via cache
evictions. In USENIX Security, 2021.

[73] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. CacheQuery:
Learning replacement policies from hardware caches. In PLDI, pages
519–532, 2020.

[74] Wenhao Wang, Guoxing Chen, Xiaorui Pan, Yinqian Zhang, XiaoFeng
Wang, Vincent Bindschaedler, Haixu Tang, and Carl A. Gunter. Leaky
cauldron on the dark land: Understanding memory side-channel hazards
in SGX. In CCS, 2017.

[75] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel
attacks: Deterministic side channels for untrusted operating systems. In
IEEE SP, 2016.

[76] Mengjia Yan, Christopher W. Fletcher, and Josep Torrellas. Cache
telepathy: Leveraging shared resource attacks to learn DNN architec-
tures. In USENIX Security, pages 2003–2020, 2020.

[77] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution,
low noise, L3 cache side-channel attack. In USENIX Security, pages
719–732, 2014.

[78] Andy Zeigler. SharedArrayBuffer updates in Android Chrome 88 and
desktop Chrome 91. https://docs.microsoft.com/en-us/archive/blogs/ie/
ie8-and-loosely-coupled-ie-lcie, 2008.

APPENDIX

A. Reading Login Information

Going beyond information present on the document’s DOM,
we repeated our attack on our university’s website, but this
time targeting session cookies.
Attack Setup. We replicated the previous scenario’s two-tab
setup, where the Spook.js page (https://web.dpt.example.edu/
∼user/), and internal portal page (https://portal.example.edu/,
after logging in) were rendered using two different tabs but
shared the same Chrome rendering process.
Experimental Results. Our initial approach was to use
Chrome’s debugging tools in order to locate the metadata
of the document.cookie object and dump the memory
pointed to by its back-pointer, as shown in Figure 1.
While we were able to read cookies associated with the portal
page, the session cookie containing login information was
marked as HttpOnly, and thus normally inaccessible from
JavaScript. However, we discovered a different region in the
address space of Chrome’s rendering process that contains the
session cookie, and successfully dumped it with Spook.js. See
Figure 16.
Leakage Root Cause. We note that our observations regard-
ing HttpOnly cookies seem to contradict an explicit security
goal of Chrome’s strict site isolation, as Google’s strict site
isolation paper explicitly states that HttpOnly cookies are
not delivered to renderer processes [56, Section 5.1]. Reporting
our findings to Google, this was discovered to be a bug in
Chrome, where the debugging tools accidentally copy the
cookie’s contents into the address space of the rendering
process. While this does make our cookie extraction attack
weaker, we note that this attack is still dangerous, as the user
can be enticed to manually open Chrome’s developer tools.

16

https://www.daemonology.net/papers/htt.pdf
https://webkit.org/blog/8048/what-spectreand-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectreand-meltdown-mean-for-webkit/
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=158234#c110
https://bugs.chromium.org/p/chromium/issues/detail?id=1209417
https://bugs.chromium.org/p/chromium/issues/detail?id=1209417
https://v8.dev/blog/pointer-compression
https://www.statista.com/statistics/261925/unique-visitors-to-tumblrcom/
https://www.statista.com/statistics/261925/unique-visitors-to-tumblrcom/
https://v8.dev/blog/launching-ignition-and-turbofan
https://v8.dev/blog/launching-ignition-and-turbofan
https://docs.microsoft.com/en-us/archive/blogs/ie/ie8-and-loosely-coupled-ie-lcie
https://docs.microsoft.com/en-us/archive/blogs/ie/ie8-and-loosely-coupled-ie-lcie
https://web.dpt.example.edu/~user/
https://web.dpt.example.edu/~user/
https://portal.example.edu/


Figure 16: (top) Session cookie for the university’s portal page
displayed using Chrome’s developer tools. (bottom) Leakage
of the session cookie.

B. Value Tagging

Along with Pointer Compression, the V8 JavaScript engine
uses a technique called Value Tagging [63] that allows code
to operate on integers without requiring any indirection. It
achieves this by squeezing integers into the same 32-bit space
occupied by pointers to objects. The least significant bit is used
to distinguish whether the 32-bit space encodes an integer or a
pointer to an object. For integers, the least significant bit is set
to zero and the remaining 31 bits encode a 31-bits integer. For
pointers to objects, the JavaScript engine ensures that objects
are always aligned to a multiple of two bytes (i.e. the least
significant bit of an object pointer is always zero). To encode
a pointer the least significant bit is set to one, and the offset for
any access involving the pointer is decremented by one. This
encoding allows code that performs operations on integers to
avoid indirection and does not require an additional field to
identify the type of the value.

We abuse Value Tagging to directly set the memory of
an object by storing 31-bit integers in specific properties of
the object. However, Value Tagging represents two practical
challenges for our attack. The first is that we must undo any
encoding applied to values, this can be done by shifting any
desired value to the right by one bit. The second is that we
cannot set the least significant bit of any property. However,
because we use two properties to represent a 64-bit address
there are two bits of the address bit 1 and bit 33 that we cannot
set, these correspond to the least significant bit of each prop-
erty. We overcome this challenge with ext_pointer and
index. We access addresses that have bit 1 set by using an
index when performing an array access on our type-confused
object. To accesses addresses that have bit 33 set, we abuse
the addition of ext_pointer with base_pointer and
index when performing an array access to cause an overflow
that sets bit 33. We set ext_pointer to 0X7FFFFFFF,
after encoding it will have the value 0XFFFFFFFE, and we set
index to 2. When these values are added together it causes an
overflow and sets bit 33 of the address during the array access.
These ideas can be combined to access addresses where bit 33
and bit 1 are set, we follow the same procedure to set bit 33
but set index to 3.

17


	Introduction
	Our Contribution
	Responsible Disclosure and Ethics

	Background
	Caches
	Speculative Execution
	Microarchitectural Attacks in Browsers
	Strict Site Isolation
	Chrome's Address Space Organization
	Chrome's Optimizer

	Threat Model
	Spook.js: Mounting Speculative Execution Attacks in Chrome
	Overcoming [C1]: Obtaining Address Space Consolidation
	Overcoming [C2]: Breaking 32-bit Boundaries via Speculative Type Confusion
	Overcoming [C3]: Avoiding Deoptimization Events via Speculation
	Overcoming [C4]: Obtaining Deep Speculation via L3 Evictions
	End-to-End Attack Performance

	Attack Scenarios
	Website Identification
	Recovering Sensitive DOM Information
	Attacking Credential Managers
	Attacking Tumblr
	Exploiting Unintended Content Uploads

	Exploiting Malicious Extensions
	Attacking Additional Browsers
	Conclusions
	Countermeasures
	Limitations

	Appendix
	Reading Login Information
	Value Tagging


