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We construct a new set of asymptotically flat, static vacuum solutions to the Einstein equations in
dimensions 4 and 5, which may be interpreted as a superposition of positive and negative mass black holes.
The resulting spacetimes are axisymmetric in 4-dimensions and biaxisymmetric in 5-dimensions, and are
regular away from the negative mass singularities, for instance conical singularities are absent along the
axes. In 5-dimensions, the topologies of signed mass black holes used in the construction may be either
spheres S3 or rings S1 × S2; in particular, the negative mass static black ring solution is introduced.
A primary observation that facilitates the superposition is the fact that, in Weyl-Papapetrou coordinates,
negative mass singularities arise as overlapping singular support for a particular type of Green’s function.
Furthermore, a careful analysis of conical singularities along axes is performed, and formulas are obtained
for their propagation across horizons, negative mass singularities, and corners. The methods are robust, and
may be used to construct a multitude of further examples. Lastly, we show that balancing does not occur
between any two signed mass black holes of the type studied here in 4 dimensions, while in 5 dimensions
two-body balancing is possible.
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I. INTRODUCTION

According to the classical black hole uniqueness (no
hair) theorem [1–4], a finite number of vacuum black holes
cannot be held in asymptotically flat static equilibrium if
there is more than one. In fact, the only asymptotically flat
static vacuum black hole solution is the Schwarzschild
spacetime. It should be noted that the typical assumption of
asymptotic flatness can be relaxed [5,6], and that the result
also holds in higher dimensions [7]. On the other hand, an
infinite number of black holes may be configured so that
the total force experienced by each constituent vanishes,
yielding a regular static vacuum solution. These solutions
are constructed in 4 and 5 dimensions [8–10], and are
asymptotically Kasner. A further nonasymptotically flat
example of multiple vacuum black holes held in static
equilibrium is given in [11], where the mechanism respon-
sible for regularity of the solution is an external gravita-
tional field. The balancing of multiple static black holes
may also be achieved with charge. Indeed, if the black
holes carry an appropriate amount of charge, then electro-
magnetic repulsion and gravitational attraction balance to
produce the static Majumdar-Papapetrou solutions [12,13].

These are the only regular multi-black hole solutions of
the static electrovacuum equations [14] which are asymp-
totically flat, and they admit generalizations to higher
dimensions [10].
In this paper we pursue an alternative method to balance

multiple static vacuum black holes, namely by employing
negative mass naked singularities. In particular, we con-
struct a new set of regular, asymptotically flat, static
vacuum spacetimes in 4 and 5 dimensions that arise as a
superposition of positive and negative mass Schwarzschild
and black ring solutions. It is also shown that in order for
such balancing to occur in 4D, the superposition must
consist of at least three signed mass black holes.
Surprisingly, however, balancing is possible in 5D with
only two signed mass black holes. The mechanism by
which these solutions are produced is robust, and we
indicate how it may be utilized to obtain a variety of
further examples. Those that are given here can exhibit
positive, negative, or zero ADM (total) mass.
Negative mass in general relativity was first discussed in

some detail by Bondi [15] (see also [16]), where the basic
mechanics were described and a two-body problem was
studied. Assuming that negative masses obey the equiv-
alence principle, the gravitational interaction between
signed masses results in motion that is consistent with
intuition from Newton’s laws: two positive masses attract,
two negative masses repel, and one positive and one
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negative mass accelerate in the same direction with the
negative mass following the positive mass. As described by
Bonnor [17], this last property can result in ‘runaway
motion’ with constant acceleration, if the two masses are of
the same magnitude. In contrast, similarly to electrostatics,
if a negative mass is situated on a line at the midpoint
between two positive masses of the same value, and the
magnitude of the negative mass is a fourth of each positive
mass, then the system is in gravitational equilibrium. It is
this simple observation that motivates the balancing of
static vacuum black holes exhibited in this work. Although
we do not attempt to find applications of these new
solutions here, it should be noted that negative masses
have been investigated within the context of wormholes
[18–20], dark energy/matter [21,22], spacecraft propulsion
[23,24], and the Penrose inequality [25].
All of the static vacuum solutions discussed in this paper

will be axisymmetric in 4-dimensions and biaxisymmetric
in 5-dimensions, so that the isometry group of the asso-
ciated spacetimes contains the subgroup R ×Uð1Þ and
R ×Uð1Þ2, respectively. The spacetime metric on the
domains of outer communication may be expressed in
Weyl-Papapetrou coordinates [26], in which the metric
coefficients are determined by a single harmonic function
in 4D and two harmonic functions in 5D. More generally, in
the 5-dimensional setting, a harmonic map from R3 →
SLð3;RÞ=SOð3Þ may be used to obtain solutions having
lens space Lðp; qÞ horizon topology, however here we will
restrict attention to the spheres S3 and rings S1 × S2. In
[27], Bach and Weyl analyzed 4D axisymmetric static
vacuum black holes and showed that when more than one
horizon is present a conical singularity must appear on the
axis between horizons. This conical singularity, or strut
along the axis, may then be interpreted as a force holding
the black holes in equilibrium. The Bach-Weyl solutions
are constructed by superpositioning Green’s functions on
R3 with singular support along intervals of the z-axis. The
singular support intervals are referred to as axis rods,
whereas the remaining intervals on the z-axis are associated
with individual horizons and are called horizon rods.
In Sec. II below, we make the observation that the

singularity present in the 4D negative mass Schwarzschild
solution, when described in Weyl-Papapetrou coordinates,
corresponds to the overlapping of singular support intervals
for two Green’s functions. It is this fact that allows us to
build solutions to the static vacuum equations which consist
of any finite combination of Schwarzschild black holes,
and Schwarzschild negative mass singularities (NMS).
These solutions, when expressed in Weyl-Papapetrou
coordinates, exhibit three different types of intervals along
the z-axis: horizon rods, NMS rods, and axis rods. In this
context there are only two possible types of singularities,
namely negative mass singularities at NMS rods and
conical singularities along axis rods. Conical singularities
may be characterized as having an angle deficit or

angle surplus when the logarithmic angle defect b ¼
log ð2π · radius=circumferenceÞ is positive or negative,
respectively. This may be interpreted as a force exerted
by the axis rod on its adjacent horizons and/or NMSs, and
in 4D the relation [28] is given by

F ¼ 1

4
ðe−b − 1Þ: ð1:1Þ

When the force is zero on all axis rods, the solution will be
referred to as balanced.
Theorem 1. Any finite collection of signed mass

Schwarzschild black holes may be superpositioned to form
a 4-dimensional asymptotically flat, axisymmetric, static
vacuum spacetime. These solutions are regular away from
the negative mass singularities, except perhaps for conical
singularities on the axes.

(i) (Two Bodies) Any of these configurations consisting
of two signed mass black holes must possess a
conical singularity. In particular, ifm1 andm2 are the
signed masses then the force associated with the axis
rod separating them satisfies: F > 0 if signðm1Þ ¼
signðm2Þ, and F < 0 if signðm1Þ ≠ signðm2Þ.

(ii) (Three Bodies) There exist balanced configurations
consisting of one negative mass and two positive
mass black holes, as well as one positive mass and
two negative mass black holes. The former solutions
have positive ADM mass, while the latter solutions
have negative ADM mass.

This result is established by computing the propagation
of angle defects across horizons and NMSs, resulting in
explicit formulas for the force in terms of the two masses
and separation distance between the horizon/NMS rods.
The conical singularity formulas are of independent inter-
est, and are presented in Sec. III. These formulas with
minor modifications will be applicable also in the rotating
case. Previous work addressing the issue of conical
singularities in this 4D situation includes [29,30]. In
addition, an example of a self-accelerating Bondi dipole,
without conical singularities and made of a positive and
negative mass Schwarzschild black hole, was given in [31].
Part (i) of the theorem may be considered as a generali-
zation of the analysis presented by Bach and Weyl [27],
who considered only the case of positive masses. To the
best of the authors’ knowledge, the balancing of positive
and negative mass black holes as described in part (ii) seems
to be a new, although perhaps not unexpected, phenomena.
It is anticipated that a plethora of further balanced examples
may be obtained with the same methods for more than three
black holes. We also point out that the sign of the force in
this theorem is consistent with the intuition obtained from
the mechanics of signed mass particles, as well as the
interpretation that F measures the force exerted by an axis
rod on its neighboring black holes. For instance, consider
the case of a solution having a single positive mass and
single negative mass black hole. Without the force arising
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from the central axis rod, the two masses would accelerate
in the direction of the positive mass due to gravity.
According to part (i) the axis rod force satisfies F < 0.
When acting on the positive mass, the negative force results
in an attraction of the mass toward the rod, and similarly a
repulsion of the negative mass away from the rod. Thus,
intuitively, the accelerations resulting from the gravitational
and axis rod force negate each other so that the two signed
mass black holes remain in equilibrium, albeit in a coni-
cally singular spacetime.
In 5-dimensions, biaxisymmetric static black hole hori-

zon cross sectionsmay be of three topological types [32,33],
namely a sphere S3, a ring S1 × S2, or a lens space Lðp; qÞ
wherep and q are coprime integers. Emparan and Reall [34]
have analyzed the vacuum solutions, including those
with multiple horizons, and have found that except for
the Schwarzschild-Tangherlini black hole, those that are
asymptotically flat all possess conical singularities. Indeed,
this is consistent with the higher dimensional version of
static black hole uniqueness [7]. The negative mass
Schwarzschild-Tangherlini solution behaves analogously
to its 4D counterpart, in that it has a point singularity
(within a constant time slice) which when expressed in
Weyl-Papapetrou coordinates becomes an interval on the
z-axis arising from the overlap of the singular support of two
Green’s functions; this will be referred to as a spherical
NMS. Furthermore, a new type of 5DNMSwill be discussed
here that arises from the black ring family of solutions,
namely a static ring of negative mass. As with the spherical
NMS, this is obtained by the overlapping of singular support
sets associated with certain Green’s functions. The singu-
larity is again topologically a point, which corresponds to an
interval on the z-axis in Weyl-Papapetrou coordinates; this
will be referred to as a ring NMS. Moreover, a neighborhood
of the ring NMS in a constant time slice is foliated by rings
S1 × S2 that collapse onto the singularity. Using the char-
acterization in terms of Green’s functions, we may super-
position any number of spherical horizons/NMSs and ring
horizons/NMSs to obtain asymptotically flat static vacuum
solutions consisting of signed mass black holes having S3

and S1 × S2 topologies. As in 4D, conical singularities on
the axis rods may be interpreted as a force similar to (1.1).
However, as wewill show, in 5D this force is not necessarily
constant along each axis rod, see Sec. V C for details.
A careful analysis of conical singularity propagation across
horizons, NMSs, and corners (the intersection point of two
axis rods) leads to formulas for these type of singularities in
terms of masses and rod lengths. Here too as in 4D, this
analysis should generalize to the rotating case. With these
formulas we produce examples of balanced solutions con-
sisting of three signedmass black holes having spherical and
ring elements. Unexpectedly, in contrast to 4-dimensions,
we also find balanced two-body solutions consisting of one
negative mass and one positive mass black hole involving
both spheres and rings.

Theorem 2. Any finite collection of 5-dimensional
signed mass Schwarzschild-Tangherlini and signed mass
static black ring solutions, may be superpositioned to form
an biaxisymmetric, static vacuum spacetime. These sol-
utions are regular away from the negative mass singular-
ities, except perhaps for conical singularities on the axes.

(i) (Two Bodies) There exist asymptotically flat bal-
anced configurations consisting of one spherical
horizon and one spherical negative mass singularity,
as well as one spherical horizon and one ring
negative mass singularity (negative mass black
Saturn). The former solutions have zero ADMmass,
while the latter solutions can have ADM mass of
any sign.

(ii) (Three Bodies) There exist asymptotically flat bal-
anced configurations consisting of one spherical
negative mass singularity and two spherical hori-
zons, as well as one spherical and one ring negative
mass singularity together with one ring horizon. The
former solutions have positive ADMmass, while the
latter solutions have negative ADM mass.

This paper is organized as follows. In Sec. II we discuss
the necessary background material in the 4D setting, and
make the observation that negative mass Schwarzschild
solutions arise from the overlapping of singular support for
Green’s functions. Section III is dedicated to the analysis of
conical singularities and their propagation across horizons
and NMSs in 4D, and the proof of Theorem 1 is given in
Sec. IV. For the 5D setting, background material and a
discussion of negative mass static black holes appears in
Sec. V, while the analysis of conical singularities is carried
out in Sec. VI. Finally, Theorem 2 is proved in Sec. VII.

II. 4D BACKGROUND AND THE NEGATIVE
MASS SCHWARZSCHILD SPACETIME

Consider the domain of outer communication M4 of a
static axisymmetric 4-dimensional spacetime. Under rea-
sonable hypotheses [35], the orbit spaceM4=½R ×Uð1Þ� is
homeomorphic to the right half plane fðρ; zÞjρ > 0g.
The spacetime metric may then be expressed in Weyl-
Papapetrou coordinates

g ¼ −e−uρ2dt2 þ eudϕ2 þ e2αðdρ2 þ dz2Þ; ð2:1Þ

where ∂ϕ is the generator of the Uð1Þ symmetry with
ϕ ∈ ½0; 2πÞ. The vacuum Einstein equations in this setting
[28] reduce to the Laplace equation for u, and a set of
quadrature equations for α, on R3nfz-axisg parametrized
by the cylindrical coordinates ðρ; z;φÞ, namely

Δu ¼ 0; αρ ¼
ρ

4

�
u2ρ − u2z −

2

ρ
uρ

�
;

αz ¼
ρ

2

�
uρuz −

1

ρ
uz

�
: ð2:2Þ
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Notice that the integrability conditions for the α equations
correspond to the harmonicity of u. Furthermore, the z-axis
is decomposed into a sequence of intervals called rods,
that are denoted by fΓlgl∈I for some index set I. There are
two types of rods, those on which j∂ϕj vanishes are referred
to as axis rods, and those on which j∂tj vanishes are
referred to as horizon rods. Later we will introduce a third
type of rod based on negative mass singularities. The
intersection point of an axis rod with a horizon rod is called
a pole.
According to the above description, any solution of the

axisymmetric static vacuum Einstein equations may be
obtained by specifying a harmonic function on R3 that has
appropriate blow-up behavior on portions of the z-axis.
Unlike u, the behavior of the function α cannot be
prescribed along axes, and thus conical singularities may
form on axis rods when constructing the spacetime metric g
in (2.1). A conical singularity at point ð0; z0Þ on an axis rod
Γl, may be determined from the angle defect θ ∈ ð−∞; 2πÞ
associated with the 2-dimensional cone formed by the
orbits of ∂ϕ over the line z ¼ z0. More precisely

2π

2π − θ
¼ lim

ρ→0

2π · Radius
Circumference

¼ lim
ρ→0

R ρ
0

ffiffiffiffiffiffiffi
e2α

p

eu=2
¼ lim

ρ→0
ρeα−u=2:

ð2:3Þ

It follows from (2.2) that this quantity is constant along
each axis rod. Moreover, the absence of a conical singu-
larity corresponds to a zero logarithmic angle defect. In this
situation, the metric is smoothly extendable across the axis,
as may be checked with a change to Cartesian coordinates.
We will denote the logarithmic angle defect logð 2π

2π−θÞ, on
the axis rod Γl, by bl. The conical singularity on Γl is then
said to exhibit an angle deficit if bl > 0, and an angle
surplus if bl < 0. The sign of the logarithmic angle defect
determines the character of the force associated with the
axis rod. Namely, as computed in [28][pg. 921], this force
is constant at each point of the rod and is given by

F ¼ 1

4
ðe−bl − 1Þ: ð2:4Þ

A. Green’s functions on R3

The function u used to construct static vacuum space-
times with horizons and negative mass singularities will be
sums of Green’s functions having singular support on
intervals of the z-axis. For instance, on an axis rod Γl
we have j∂ϕj ¼ 0 so that uðxÞ → −∞ as x → Γl. Blow-up
behavior, although with a different rate, will also character-
ize negative mass singularity rods, while u remains
bounded on horizon rods. Here we detail the type of
Green’s functions that arise, and introduce notation.
Consider an interval Γ on the z-axis. The Green’s

function associated to Γ, with blow-up modeled by

2 log ρ, will be denoted by GΓ. This function satisfies
the distributional equation

ΔGΓ ¼ 2δΓ; ð2:5Þ

where δΓ is the Dirac delta distribution for Γ. Thus,GΓ may
be viewed as the potential for a constant positive charge
distribution along Γ. The simplest example has singular
support on the entire z-axis, namely Gfz-axisg ¼ 2 log ρ.
Moreover, the finite interval Green’s functions may be built
from the following two semi-infinite interval Green’s
functions:

Gfz<ag ¼ log
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − aÞ2
q

þ ðz − aÞ
i
;

Gfb<zg ¼ log
h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − bÞ2
q

− ðz − bÞ
i
: ð2:6Þ

In particular, we have two ways to express a finite interval
Green’s function

Gfa<z<bg ¼ Gfz<bg −Gfz<ag

¼ log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − bÞ2

p
þ ðz − bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − aÞ2
p

þ ðz − aÞ

�
; ð2:7Þ

or equivalently

Gfa<z<bg ¼ Gfz>ag − Gfz>bg

¼ log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − aÞ2

p
− ðz − aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − bÞ2
p

− ðz − bÞ

�
: ð2:8Þ

Notice that

Gfa<z<bg ¼ 2 logρþOð1Þ as ðρ; zÞ→ ð0; zÞ; a < z< b;

ð2:9Þ

and this function is bounded on the complement of the
interval.

B. The signed mass Schwarzschild solution

In order to motivate the Weyl-Papapetrou coordinate
presentation of the negative mass Schwarzschild solution,
we first recall the corresponding presentation for the
positive mass solution. In this case, the domain of outer
communication has topology R × ðR3nBallÞ, and in
Schwarzschild coordinates the spacetime metric takes the
form

gS ¼ −
�
1 −

2m
r̄

�
dt2 þ

�
1 −

2m
r̄

�
−1
dr̄2

þ r̄2ðdθ2 þ sin2 θdϕ2Þ; ð2:10Þ
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where the mass m>0 and r̄ ≥ 2m, 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π.
In general, for stationary axisymmetric spacetimes, the
cylindrical radius ρ of Weyl-Papapetrou coordinates is
obtained from the determinant of the Killing tϕ-portion
of the metric. The z coordinate is then chosen as a harmonic
conjugate, so that ðρ; zÞ form isothermal coordinates on the
orbit space M4=½R × Uð1Þ�. It follows that

ρ ¼ r̄ sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2m
r̄

r
; z ¼ ðr̄ −mÞ cos θ: ð2:11Þ

The spacetime metric gS then takes the form (2.1), where

u ¼ 2 log ρ − log

�
1 −

2m
r̄

�

¼ 2 log ρ −Gf−m<z<mg
¼ Gfz>mg þGfz<−mg ð2:12Þ

and

α ¼ 1

2
log

�ðrþ þ r−Þ2 − 4m2

4rþr−

�
þ 1

2
u − log ρ; ð2:13Þ

with r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz ∓ mÞ2

p
denoting the Euclidean dis-

tance to the poles. From this we find that the z-axis is
broken into two axis rods Γ− ¼ ð−∞;−mÞ and Γþ ¼
ðm;∞Þ where j∂ϕj vanishes, and one horizon rod Γh ¼
ð−m;mÞ where j∂tj vanishes which corresponds to the
surface r̄ ¼ 2m in Schwarzschild coordinates.
Consider now the negative mass Schwarzschild solution.

The topology of the domain of outer communication is the
same as the positive mass case, although geometrically it
may be preferable to think of a point being removed from
R3, instead of a ball, since the singularity has zero area. The
metric expression (2.10) still remains valid, although here
the mass parameter m < 0 and the areal radius extends to
the origin r̄ > 0. Notice that there is no longer a coordinate
singularity at r̄ ¼ 2m, and there is no event horizon so that
r̄ ¼ 0 is a naked singularity. The formulas for the change to
Weyl-Papapetrou coordinates have the same form

ρ ¼ r̄ sin θ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2jmj

r̄

r
; z ¼ ðr̄þ jmjÞ cos θ; ð2:14Þ

as does the harmonic function metric coefficient

u ¼ Gfz>−jmjg þGfz<jmjg; ð2:15Þ

and the function α. There is, however, a change in the rod
structure which will require the introduction of a new type
of rod.
The rod structure is determined by the asymptotic

behavior of u upon approach to the z-axis. Observe that
the singular support sets for the Green’s functions that
comprise u, overlap on the interval Γs ¼ ð−jmj; jmjÞ. As
above, let Γ− ¼ ð−∞;−jmjÞ and Γþ ¼ ðjmj;∞Þ, then it
follows from (2.9) and (2.2) that as ρ → 0 we have

u ¼
�
2 log ρþOð1Þ if z ∈ Γ�
4 log ρþOð1Þ if z ∈ Γs

;

α ¼
�
Oð1Þ if z ∈ Γ�
2 log ρþOð1Þ if z ∈ Γs

: ð2:16Þ

This shows that the rods Γ� behave as typical axis rods,
whereas Γs does not exhibit the characteristic of either an
axis or horizon rod. We will therefore refer to Γs, and more
generally any rod of an axisymmetric static spacetime near
which u ¼ 4 log ρþOð1Þ, as a negative mass singularity
(NMS) rod. These intervals of the z-axis correspond to single
points in time slices of the spacetime, and may be viewed as
the overlap of two neighboring axis rods, see Fig. 1.

III. CONICAL SINGULARITIES
IN DIMENSION 4

In this section we analyze the propagation of conical
singularities across horizons and NMSs, for axisymmetric
static vacuum solutions. Formulas for the difference of the
logarithmic angle defect between two neighboring axis
rods will be given in terms of renormalized values for u at
the poles. Let z2 < zs < zn < z1 denote values on the z-
axis, and consider a sequence of two axis rods Γ1 ¼ ðzn; z1Þ
to the north, and Γ2 ¼ ðz2; zsÞ to the south, that border a
horizon rod Γh ¼ ðzs; znÞ with poles N, S located at zn, zs.
According to (2.3), and the fact that angle defects are
constant along axis rods, the relation between the two
logarithmic angle defects may be computed at any two
points along these two axes. In particular, if ε > 0 is a
small parameter, we will use points Nε ¼ ð0; zn þ εÞ and
S−ε ¼ ð0; zs − εÞ to find

FIG. 1. Rod structures for Schwarzschild metrics of positive and negative mass. Here, as in future rod diagrams, the z-axis is drawn
horizontally and the dotted lines indicate horizon rods, while the overlapping portions indicate NMS rods.
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b1 − b2 ¼ lim
ρ→0

�
α −

1

2
uþ log ρ

�����
z¼znþε

− lim
ρ→0

�
α −

1

2
uþ log ρ

�����
z¼zs−ε

¼ 1

2
ðūðS−εÞ − ūðNεÞÞ þ αðNεÞ − αðS−εÞ; ð3:1Þ

where ū ¼ u − 2 log ρ.
In order to evaluate the right-hand side of (3.1),

expansions for u and α at the poles are needed to isolate
the singular parts. From the Green’s function analysis of the
previous section, we find that

u ¼ log ðrn − ðz − znÞÞ þ ûn near N;

u ¼ log ðrs þ ðz − zsÞÞ þ ûs near S; ð3:2Þ

for some smooth functions ûn and ûs, where rn=s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − zn=sÞ2

q
is the Euclidean distance to N and S.

Furthermore using these expressions and [8][(5.15)], the
expansions for α are found to be

α ¼ −
1

2
log rn þ

ðz − znÞ
2rn

ðûn − ûnðNÞÞ þ ĉn

þOðρ2Þ near N; ð3:3Þ

α ¼ −
1

2
log rs −

ðz − zsÞ
2rs

ðûs − ûsðSÞÞ þ ĉs

þOðρ2Þ near S; ð3:4Þ

where ĉn and ĉs are constants. Next note that the renorm-
alizations ū for axis rods, and ûn=s for poles are related.
More precisely

ūðNεÞ¼ lim
ρ→0

ðu−2logρÞjz¼znþε

¼ ûnðNεÞþ lim
ρ→0

log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2þðz−znÞ2

p
−ðz−znÞ

ρ2

�
z¼znþε

¼ ûnðNεÞþ log

�
1

2ðz−znÞ
�
z¼znþε

¼ ûnðNεÞ− logð2εÞ; ð3:5Þ

and similarly

ūðS−εÞ ¼ ûsðS−εÞ − logð2εÞ: ð3:6Þ

It follows that the first term on the right-hand side of (3.1)
becomes

1

2
ðūðS−εÞ − ūðNεÞÞ ¼

1

2
ðûsðSÞ − ûnðNÞÞ þOðεÞ: ð3:7Þ

In order to treat the remaining terms of (3.1), let N−ε ¼
ð0; zn − εÞ and Sε ¼ ð0; zs þ εÞ be reflections across the
poles of Nε and S−ε. These reflected points lie inside the
horizon rod, where we may better use the quadrature
equation (2.2) to obtain relations between α and u.
Notice that the expansions for α imply

αðNεÞ − αðN−εÞ ¼
1

2
ðûnðNεÞ − ûnðNÞÞ

þ 1

2
ðûnðN−εÞ − ûnðNÞÞ

¼ OðεÞ; ð3:8Þ

and similarly

αðSεÞ − αðS−εÞ ¼ OðεÞ: ð3:9Þ

Therefore

αðNεÞ − αðS−εÞ ¼ ½αðNεÞ − αðN−εÞ� þ ½αðN−εÞ − αðSεÞ�
þ ½αðSεÞ − αðS−εÞ�

¼ αðN−εÞ − αðSεÞ þOðεÞ: ð3:10Þ

Next observe that since u is regular on the horizon rod,
(2.2) along the horizon yields

αðN−εÞ − αðSεÞ ¼
Z

zn−ε

zsþε
αzð0; zÞdz

¼ −
1

2

Z
zn−ε

zsþε
uzð0; zÞdz

¼ 1

2
ðuðSεÞ − uðN−εÞÞ: ð3:11Þ

Moreover, the expansions for u near the poles give

uðSεÞ − uðN−εÞ ¼ ûsðSεÞ − ûnðN−εÞ: ð3:12Þ

Putting (3.7), (3.10), (3.11), and (3.12) altogether, and
letting ε → 0, produces the desired propagation formula for
conical singularities across horizons

b1 − b2 ¼ ûsðSÞ − ûnðNÞ: ð3:13Þ

We will now obtain a formula analogous to (3.13) for
NMSs. Consider, as above, a sequence of three rods
consisting of a single NMS rod Γs bordered to the north
by Γ1 and to the south by Γ2. The location of the rods along
the z-axis, and the notation for relevant quantities will be
the same as above, except that the horizon rod Γh is
replaced by the NMS rod Γs. As in the previous argument,
evaluation of the right-hand side of (3.1) requires

KHURI, WEINSTEIN, and YAMADA PHYS. REV. D 104, 044063 (2021)

044063-6



appropriate expansions for u and α at the poles. More
precisely

u ¼ 2 log ρþ log ðrn þ ðz − znÞÞ þ ũn near N;

u ¼ 2 log ρþ log ðrs − ðz − zsÞÞ þ ũs near S; ð3:14Þ

where ũn and ũs are smooth functions. Furthermore, if we
write u ¼ 2 log ρþ w then (2.2) shows that

αρ ¼ wρ þ
ρ

4

�
w2
ρ − w2

z −
2

ρ
wρ

�
;

αz ¼ wz þ
ρ

2

�
wρwz −

1

ρ
wz

�
: ð3:15Þ

The computation [8][(5.15)] can then be used to find

α¼ logðrnþðz− znÞÞþ ũn−
1

2
logrn

−
ðz− znÞ
2rn

ðũn− ũnðNÞÞþ c̃nþOðρ2Þ near N; ð3:16Þ

α¼ logðrs− ðz− zsÞÞþ ũs−
1

2
logrs

þðz− zsÞ
2rs

ðũs− ũsðSÞÞþ c̃sþOðρ2Þ near S; ð3:17Þ

for some constants c̃n and c̃s. Next observe that the relation
between renormalizations is given by

ūðNεÞ ¼ lim
ρ→0

ðu − 2 log ρÞjz¼znþε

¼ lim
ρ→0

½log ðrn þ ðz − znÞÞ þ ũn�z¼znþε

¼ logð2εÞ þ ũnðNεÞ; ð3:18Þ

and similarly

ūðS−εÞ ¼ logð2εÞ þ ũsðS−εÞ: ð3:19Þ

Thus, the first term on the right-hand side of (3.1) becomes

1

2
ðūðS−εÞ − ūðNεÞÞ ¼

1

2
ðũsðSÞ − ũnðNÞÞ þOðεÞ: ð3:20Þ

The function α is not finite along the NMS rod, as it
was along the horizon rod. Therefore, the method of
reflecting the points Nε and S−ε across the poles to aid
with the computation of α terms in (3.1), must be modified.
Towards this end, define Ñ−ε ¼ ðε0; zn − εÞ as well as
S̃ε ¼ ðε0; zs þ εÞ, where ε0 > 0 is an additional small
parameter. The expansions for α then imply

αðNεÞ − αðÑ−εÞ ¼ logð2εÞ þ ũnðNεÞ −
1

2
log ε

−
1

2
ðũnðNεÞ − ũnðNÞÞ

− log
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε20 þ ε2
q

− ε



− ũnðÑ−εÞ þ
1

2
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 þ ε2

q

−
1

2
ffiffiffi
2

p ðũnðÑ−εÞ − ũnðNÞÞ; ð3:21Þ

and similarly

αðS̃εÞ− αðS−εÞ ¼ log
	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε20 þ ε2
q

− ε


þ ũsðS̃εÞ

−
1

2
log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε20 þ ε2

q
þ 1

2
ffiffiffi
2

p ðũsðS̃εÞ− ũsðSÞÞ

− logð2εÞ− ũsðS̃−εÞ þ
1

2
logε

þ 1

2
ðũsðS−εÞ− ũsðSÞÞ; ð3:22Þ

hence

½αðNεÞ−αðÑ−εÞ�þ ½αðS̃εÞ−αðS−εÞ� ¼Oðεþ ε0Þ: ð3:23Þ

It follows that

αðNεÞ − αðS−εÞ ¼ ½αðNεÞ − αðÑ−εÞ� þ ½αðÑ−εÞ − αðS̃εÞ�
þ ½αðS̃εÞ − αðS−εÞ�

¼ αðÑ−εÞ − αðS̃εÞ þOðεþ ε0Þ: ð3:24Þ

This difference in αmay be transformed into a difference in
uwith the help of (2.2) and (2.16). Namely, if z ∈ Γs is held
fixed then as ρ → 0 we have

αz ¼
ρ

2

�
uρuz −

1

ρ
uz

�
¼ 3

2
uz þOðρÞ: ð3:25Þ

Therefore if ε > 0 is held fixed as ε0 → 0, then

αðÑ−εÞ−αðS̃εÞ¼
Z

zn−ε

zsþε
αzðε0;zÞdz

¼ 3

2

Z
zn−ε

zsþε
uzðε0;zÞdzþOðε0Þ

¼ 3

2
ðuðÑ−εÞ−uðS̃εÞÞþOðε0Þ

¼ 3

2
ðũnðNÞ− ũsðSÞÞþOðεþ ε0Þ: ð3:26Þ
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Combining (3.20), (3.24), (3.26), and letting ε0 → 0 before
ε → 0, yields the desired propagation formula for conical
singularities across an NMS

b1 − b2 ¼ ũnðNÞ − ũsðSÞ: ð3:27Þ
We now record what has been shown.
Proposition 3. Consider the domain of outer communi-

cation of a 4-dimensional, asymptotically flat, axisymmetric,
static vacuum spacetime, and let u be the corresponding
potential of Weyl-Papapetrou coordinates (2.1). Let Γ1 and
Γ2 be two axis rods, which surround either a horizon rod or a
NMS rod with north and south poles denoted by N and S. If
b1 and b2 are the associated logarithmic angle defects of
these axis rods, and û, ũ are the renormalizations of u given
by (3.2), (3.14) respectively, then

b1 − b2 ¼ ûsðSÞ − ûnðNÞ across a horizon;

b1 − b2 ¼ ũnðNÞ − ũsðSÞ across a NMS: ð3:28Þ

IV. BALANCING OF SIGNED MASSES
IN 4 DIMENSIONS AND THE PROOF

OF THEOREM 1

In this section we will establish Theorem 1. The first
statement of this result concerns existence for superpositions
of positive and negative mass black hole solutions. Indeed,
according to the description in terms of Green’s functions
presented in Sec. II, we may define the potential function u
as a linear combination of such Green’s functions for any
configuration of signed mass Schwarzschild black holes
strung along the z-axis. With u, one may solve the quad-
rature equations (2.2) for α. The resulting spacetime, with
metric described in Weyl-Papapetrou coordinates (2.1), is
then an asymptotically flat and axisymmetric solution of the
static vacuum Einstein equations. These solutions are
regular away from the negative mass singularities, except
perhaps for conical singularities on the axes.

A. Two signed masses are unbalanced

Here we address Theorem 1 (i), and show that no
configuration consisting of the superposition of two signed
mass Schwarzschild solutions is balanced. In particular, an
explicit formula for the force associatedwith the axis between
the masses is given and shown to be nonzero in all cases.

We begin by constructing the general rod structure for
two signed masses. Consider a sequence of three axis rods
Γi, i ¼ 1, 2, 3, with Γ1 lying to the north (positive z
direction) of Γ2, and Γ2 lying to the north of Γ3, where Γ1

and Γ3 are semi-infinite and Γ2 is finite. Between Γ1 and Γ2

is a signed mass rod Γ1
h=s (a horizon or NMS), and between

Γ2 and Γ3 is another signed mass rod Γ2
h=s. The north and

south poles of the signed mass rods will be labeled
Nj ¼ ð0; njÞ, Sj ¼ ð0; sjÞ, j ¼ 1, 2 in the ρz-plane, with
s2 < n2 < s1 < n1. Thus, the total rod structure consists of
5 rods and 4 pole points. The associated potential function
for this rod structure is given by

u ¼ 2 log ρ − signðm1ÞGΓ1
h=s

− signðm2ÞGΓ2
h=s
; ð4:1Þ

where m1 and m2 are the (Komar) masses of each horizon/
NMS, signðmjÞ ¼ �1 depending on whether mj is positive
or negative, and the Green’s functions are

GΓ1
h=s

¼ log

�
rS1 − ðz − s1Þ
rN1

− ðz − n1Þ
�
;

GΓ2
h=s

¼ log

�
rN2

þ ðz − n2Þ
rS2 þ ðz − s2Þ

�
; ð4:2Þ

with rNj
and rSj representing the Euclidean distance to Nj

and Sj, respectively.
We will treat first the case in which Γ1

h=s is a horizon rod,
that is signðm1Þ > 0. In order to calculate the propagation
of conical singularities across this horizon rod via
Proposition 3, it is necessary to compute the renormaliza-
tion for u near the poles. Observe that

ûn1 ¼ u − log ðrN1
− ðz − n1ÞÞ

¼ 2 log ρ − log

�
rS1 − ðz − s1Þ
rN1

− ðz − n1Þ
�
− signðm2ÞGΓ2

h=s

− log ðrN1
− ðz − n1ÞÞ

¼ 2 log ρ − log ðrS1 − ðz − s1ÞÞ − signðm2ÞGΓ2
h=s

¼ log ð2ðz − s1ÞÞ − signðm2ÞGΓ2
h=s

þOðρ2Þ ð4:3Þ

if z > s1, so that

ûn1ðN1Þ ¼ log ð2ðn1 − s1ÞÞ − signðm2ÞGΓ2
h=s
ðN1Þ: ð4:4Þ

Similarly

ûs1 ¼ u − log ðrS1 þ ðz − s1ÞÞ

¼ 2 log ρ − log

�
rS1 − ðz − s1Þ
rN1

− ðz − n1Þ
�
− signðm2ÞGΓ2

h=s
− log ðrS1 þ ðz − s1ÞÞ

¼ 2 log ρþ log ðrN1
− ðz − n1ÞÞ − log ðr2S1 − ðz − s1Þ2Þ − signðm2ÞGΓ2

h=s

¼ log ðrN1
− ðz − n1ÞÞ − signðm2ÞGΓ2

h=s
; ð4:5Þ
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so that

ûs1ðS1Þ ¼ log ð2ðn1 − s1ÞÞ − signðm2ÞGΓ2
h=s
ðS1Þ: ð4:6Þ

Hence, Proposition 3 implies that the difference of conical
singularities on the axes Γ1 and Γ2 is given by

b1 − b2 ¼ −signðm2ÞðGΓ2
h=s
ðS1Þ − GΓ2

h=s
ðN1ÞÞ

¼ −signðm2Þ log
�ðs1 − n2Þðn1 − s2Þ
ðs1 − s2Þðn1 − n2Þ

�
: ð4:7Þ

Consider now the case in which Γ2
h=s is a NMS rod, that

is signðm1Þ < 0. Imitating the above computation for the
appropriate renormalization, we find that

ũn1 ¼ u − log ðrN1
þ ðz − n1ÞÞ − 2 log ρ

¼ −2 log ρþ log ðrS1 − ðz − s1ÞÞ − signðm2ÞGΓ2
h=s

¼ − log ð2ðz − s1ÞÞ − signðm2ÞGΓ2
h=s

þOðρ2Þ ð4:8Þ

if z > s1, so that

ũn1ðN1Þ ¼ − log ð2ðn1 − s1ÞÞ − signðm2ÞGΓ2
h=s
ðN1Þ: ð4:9Þ

Similarly

ũs1 ¼ u − log ðrS1 − ðz − s1ÞÞ − 2 log ρ

¼ − log ðrN1
− ðz − n1ÞÞ − signðm2ÞGΓ2

h=s
; ð4:10Þ

so that

ũs1ðS1Þ ¼ − log ð2ðn1 − s1ÞÞ − signðm2ÞGΓ2
h=s
ðS1Þ: ð4:11Þ

Proposition 3 then implies implies that

b1 − b2 ¼ −signðm2ÞðGΓ2
h=s
ðN1Þ −GΓ2

h=s
ðS1ÞÞ

¼ −signðm2Þ log
�ðn1 − n2Þðs1 − s2Þ
ðn1 − s2Þðs1 − n2Þ

�
: ð4:12Þ

The two semi-infinite axes Γ1 and Γ3 may be assumed to
be free of conical singularities, that is b1 ¼ b3 ¼ 0. This is
due to the fact that α is defined only up to addition of a
constant, and this constant may be chosen to relieve any
conical singularity present on Γ1. Furthermore, by inte-
grating the appropriate flux along an arbitrarily large curve
in the asymptotic end of the ρz-plane, it can be shown that
the angle defects of the semi-infinite rods agree, see [[36]
Sec. 6] for details. The expressions (4.7) and (4.12) then
give the angle defect for Γ2, the axis rod separating the two
masses. It is instructive to evaluate this angle defect in
terms of masses, and the length of separation between
them. To do this note, as is shown in Sec. IV C, that if mj is

the Komar mass of the signed mass rod Γj
h=s then this rod

has length 2jmjj. Moreover, we will denote the length of the
separating axis rod Γ2 by l. The pole points may then be
taken to be

s2 ¼ −jm2j; n2 ¼ jm2j; s1 ¼ lþ jm2j;
n1 ¼ lþ jm2j þ 2jm1j: ð4:13Þ

Therefore, in the case that Γ1
h=s is a horizon (4.7) yields

b2 ¼ signðm2Þ log
�
lðlþ 2m1 þ 2jm2jÞ
ðlþ 2m1Þðlþ 2jm2jÞ

�
; ð4:14Þ

and when Γ1
h=s is a NMS (4.12) produces

b2 ¼ signðm2Þ log
�ðlþ 2jm1jÞðlþ 2jm2jÞ
lðlþ 2jm1j þ 2jm2jÞ

�
: ð4:15Þ

The force may now be found according to (1.1).
Proposition 4. The superposition of two 4-dimensional

signed mass Schwarzschild black holes cannot be held in
static equilibrium without a conical singularity. In particu-
lar, any static vacuum configuration obtained by super-
positioning two Schwarzschild solutions of masses
m1; m2 ∈ Rnf0g, must exhibit a nonzero force along the
axis separating the two masses. If l denotes the (Euclidean)
length of the separating axis rod, then this force is given by

F ¼
8<
:

jm1m2j
lðlþ2jm1jþ2jm2jÞ if m1m2 > 0

− jm1m2j
ðlþ2jm1jÞðlþ2jm2jÞ if m1m2 < 0

: ð4:16Þ

This shows that two masses of the same sign, yields an
axis rod with a positive force that repels them. Note that
although the force is repellant, the direction of the resulting
acceleration depends on the sign of the masses. Moreover,
masses of opposite sign produce an axis rod with a
negative, or attractive, force. These forces are, however,
balanced by the gravitational force so that the system
remains in equilibrium. The computation of the force in the
case of two positive masses was known to Bach and Weyl
[27], and the inability to balance two signed mass black
holes was discussed by Bondi [15].
The formula (4.16) shows that when the two masses are

separated by arbitrarily large distances (l → ∞), the force
asymptotes to the inverse square law of Newtonian gravity,
as should be expected. On the other hand, when l → 0, the
force between two masses of opposite sign does not blow-
up. In fact, it limits to the value F ¼ −1=4, regardless of the
magnitude of the two masses. This new observation, of
which there is no Newtonian analogue, seems to have gone
unnoticed in the study of negative mass, and deserves
further investigation.
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B. Balancing three signed masses

Here we will establish Theorem 1 (ii). Consider a
sequence of four axis rods Γi, i ¼ 1, 2, 3, 4, with the
semi-infinite rods Γ1, Γ4 lying to the north (positive z
direction) and south of the others, respectively, and with Γ2

lying to the north of Γ3. Between Γ1 and Γ2 is a horizon
rod Γ1

h, between Γ2 and Γ3 is a NMS rod Γ2
s , and between

Γ3 and Γ4 is a horizon rod Γ3
h. The north and south poles of

the horizon/NMS rods will be labeled Nj ¼ ð0; njÞ, Sj ¼
ð0; sjÞ, j ¼ 1, 2, 3 in the ρz-plane, with s3 < n3 < s2 <
n2 < s1 < n1. Thus, the total rod structure consists of 7
rods and 6 pole points, see Figure 2. The associated
potential function for this rod structure is given by

u ¼ 2 log ρ −GΓ1
h
þGΓ2

s
− GΓ3

h
; ð4:17Þ

where the Green’s functions are

GΓ1
h
¼ log

�
rS1 − ðz − s1Þ
rN1

− ðz − n1Þ
�
;

GΓ2
s
¼ log

�
rN2

þ ðz − n2Þ
rS2 þ ðz − s2Þ

�
;

GΓ3
h
¼ log

�
rN3

þ ðz − n3Þ
rS3 þ ðz − s3Þ

�
: ð4:18Þ

We will calculate the propagation of conical singularities
across this horizon rod Γ1

h via Proposition 3. This requires
computing the renormalization for u near the poles.
Namely

ûn1 ¼ u − log ðrN1
− ðz − n1ÞÞ

¼ 2 log ρ − log
�
rS1 − ðz − s1Þ
rN1

− ðz − n1Þ
�
þ GΓ2

s
−GΓ3

h

− log ðrN1
− ðz − n1ÞÞ

¼ 2 log ρ − log ðrS1 − ðz − s1ÞÞ þ GΓ2
s
−GΓ3

h

¼ log ð2jz − s1jÞ þGΓ2
s
− GΓ3

h
þOðρ2Þ ð4:19Þ

if z > s1, so that

ûn1ðN1Þ¼ logð2ðn1− s1ÞÞþGΓ2
s
ðN1Þ−GΓ3

h
ðN1Þ: ð4:20Þ

Similarly

ûs1 ¼ u − log ðrS1 þ ðz − s1ÞÞ

¼ 2 log ρ − log

�
rS1 − ðz − s1Þ
rN1

− ðz − n1Þ
�
þGΓ2

s
− GΓ3

h

− log ðrS1 þ ðz − s1ÞÞ
¼ 2 log ρþ log ðrN1

− ðz − n1ÞÞ − log ðr2S1 − ðz − s1Þ2Þ
þGΓ2

s
− GΓ3

h

¼ log ðrN1
− ðz − n1ÞÞ þGΓ2

s
− GΓ3

h
; ð4:21Þ

so that

ûs1ðS1Þ ¼ log ð2ðn1 − s1ÞÞ þ GΓ2
s
ðS1Þ −GΓ3

h
ðS1Þ: ð4:22Þ

Hence, Proposition 3 implies that the difference of conical
singularities on the axes Γ1 and Γ2 is given by

b1−b2¼½GΓ2
s
ðS1Þ−GΓ2

s
ðN1Þ�− ½GΓ3

h
ðS1Þ−GΓ3

h
ðN1Þ�

¼ log

�ðs1−n2Þðn1−s2Þðs1−s3Þðn1−n3Þ
ðs1−s2Þðn1−n2Þðs1−n3Þðn1−s3Þ

�
: ð4:23Þ

As in the previous subsection, the two semi-infinite axes
Γ1 and Γ4 may be assumed to be free of conical singular-
ities, that is b1 ¼ b4 ¼ 0. In order to evaluate the angle
defect b2 in terms of masses, and the length of separation
between them let m1, m3 > 0, m2 < 0 denote the Komar
masses of the signed mass rods Γ1

h, Γ3
h, Γ2

s so that these rods
have lengths 2m1, 2m3, 2jm2j. Moreover let l2, l3 be the
lengths of the axis rods Γ2, Γ3 separating the masses. The
pole points may then be labeled

s3 ¼ −m3; n3 ¼ m3; s2 ¼ l3 þm3;

n2 ¼ l3 þm3 þ 2jm2j; ð4:24Þ

s1 ¼l2þl3þm3þ2jm2j;
n1 ¼l2þl3þm3þ2m1þ2jm2j: ð4:25Þ

Therefore, the expression for the angle defect along Γ2

becomes

b2¼ log

�ðl2þ2jm2jÞðl2þ2m1Þðl2þl3þ2jm2jÞðl2þl3þ2m1þ2m3þ2jm2jÞ
l2ðl2þ2m1þ2jm2jÞðl2þl3þ2m3þ2jm2jÞðl2þl3þ2m1þ2jm2jÞ

�
: ð4:26Þ

FIG. 2. Rod structure for the superposition of three signed masses.
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Consider the special case inwhichm1¼m3 andl2¼l3≕l.
Then setting μ1 ¼ m1=l and μ2 ¼ jm2j=l produces

b2¼ log

�ð1þ2μ2Þð1þ2μ1Þð1þμ2Þð1þ2μ1þμ2Þ
ð1þ2μ1þ2μ2Þð1þμ1þμ2Þ2

�
: ð4:27Þ

Observe that if μ1 > 0 is fixed and μ2 → 0 then

b2 → log

�
1þ 2μ1
ð1þ μ1Þ2

�
< 0: ð4:28Þ

On the other hand, if μ1 > 0 is fixed and μ2 → ∞ then

b2 → logð1þ 2μ1Þ > 0: ð4:29Þ

Thus, by the intermediate value theorem, there exist choices
ofm1 ¼ m3 > 0, m2 < 0, and l2 ¼ l3 ¼ l > 0 so that the
conical singularity along Γ2 is resolved, b2 ¼ 0. By sym-
metry, we also have that b3 ¼ 0, and therefore the resulting
static vacuum spacetime is regular outside of the negative
mass singularities.
In the next subsection, the ADM mass of static vacuum

solutions obtained by superposition of signed masses will be
computed. From this we find that the ADM mass of the
balanced solution above is positive preciselywhen 2μ1 > μ2.
To confirm that this is indeed the case, it is sufficient to
observe that b2 > 0 when 2μ1 ¼ μ2 and μ1 > 0.
In a similar manner, it may be verified that there is a

configuration with a reflection symmetry, consisting of two
negative mass singularities having Komar masses m1,
m3 < 0 and a single horizon of mass m2 > 0, that is
devoid of conical singularities along the axes. Moreover,
this solution has negative ADM mass.

C. The ADM mass of superpositioned signed masses
in 4 dimensions

Let ξ denote the dual 1-form to the Killing field ∂t. Then
the ADM mass may be computed via a Komar integral as

m ¼ −
1

8π

Z
S2∞

⋆dξ; ð4:30Þ

where S2∞ denotes a limit of coordinate spheres S2r in the
asymptotically flat end as r → ∞. Write u ¼ 2 log ρþ ū
and observe that

g ¼ −e−ūdt2 þ eūρ2dϕ2 þ e2αðdρ2 þ dz2Þ: ð4:31Þ

We then find that

⋆dξ ¼ ρe2α−ūð−ūρdz ∧ dϕþ ūzdρ ∧ dϕÞ
¼ ūre2α−ūr2 sin θdθ ∧ dϕ; ð4:32Þ

where polar coordinates defined by ρ ¼ r sin θ, z ¼ r cos θ,
have been used. From (2.2), the quadrature equations for α
may be expressed in terms of ū by

�
α−

1

2
ū

�
ρ

¼ ρ

4
ðū2ρ− ū2zÞ;

�
α−

1

2
ū

�
z
¼ ρ

2
ūρūz: ð4:33Þ

Furthermore, since ū is harmonic an expansion in spherical
harmonics in the asymptotically flat end yields

ū ¼ c
r
þOðr−2Þ; ð4:34Þ

for some constant c. It then follows from (4.33) that
j∇ð2α − ūÞj ¼ Oðr−1Þ, and therefore (4.32) implies that

⋆dξ¼
�
−
c
r2
þOðr−3Þ

�
ð1þOðr−1ÞÞr2sinθdθ∧dϕ: ð4:35Þ

We may now evaluate the Komar mass integral to find
m ¼ c=2, or rather

ū¼ 2m
r
þOðr−2Þ; ð4:36Þ

as expected.
Consider now a general asymptotically flat rod structure

with horizon rods Γi
h, i ¼ 1;…; i0 having masses mi > 0,

and NMS rods Γj
s, j ¼ 1;…; j0 having masses mj < 0,

then

ū¼−
Xi0
i¼1

GΓi
h
þ
Xj0
j¼1

GΓj
s
: ð4:37Þ

Suppose that the z-components of the north and south
poles of the horizon rods are labeled ni, si, and that the
z-components of the NMS rods are labeled nj, sj. Then a
calculation shows that the expansion of the Green’s
functions at infinity takes the form

GΓi
h
¼ si−ni

r
þOðr−2Þ; GΓj

s
¼ sj−nj

r
þOðr−2Þ: ð4:38Þ

We have thus obtained the following formula for the
ADM mass.
Lemma 5. Consider a 4-dimensional, asymptotically flat,

axisymmetric, static vacuum configuration consisting of the
superposition of Schwarzschild solutions having masses
mi > 0, i ¼ 1;…; i0, and Schwarzschild negative mass
singularities having masses mj < 0, j ¼ 1;…; j0. If the
corresponding horizon and NMS rods have z-components
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in Weyl-Papapetrou coordinates given by ni, si, nj, sj
respectively, then the ADM mass of this configuration is

m ¼ 1

2

�Xi0
i¼1

ðni − siÞ −
Xj0
j¼1

ðnj − sjÞ
�

¼
Xi0
i¼1

mi þ
Xj0
j¼1

mj:

ð4:39Þ

V. 5D BACKGROUND AND NEGATIVE
MASS BLACK HOLES

Consider the domain of outer communication M5 of a
static biaxisymmetric 5-dimensional spacetime. Under mild
hypotheses [32], the orbit space M5=½R ×Uð1Þ2� is
homeomorphic to the right half plane fðρ; zÞjρ > 0g.
Assuming the ansatz that the generators of the Uð1Þ2
symmetry are orthogonal, the spacetime metric may then
be expressed in Weyl-Papapetrou coordinates by

g¼−e−u−vρ2dt2þeudϕ2þevdψ2

þe2αðdρ2þdz2Þ; ð5:1Þ

where ∂ϕ, ∂ψ are the generators of the rotational sym-
metries with ϕ;ψ ∈ ½0; 2πÞ. The vacuum Einstein equa-
tions in this setting [26,37] reduce to the Laplace equation
for u and v, and a set of quadrature equations for α, on
R3nfz-axisg parameterized by the cylindrical coordinates
ðρ; z;φÞ, namely

Δu¼0;

αρ¼
ρ

4

�
u2ρ−u2zþv2ρ−v2zþuρvρ−uzvz−

2

ρ
ðuρþvρÞ

�
;

Δv¼0;

αz¼
ρ

4

�
2uρuzþ2vρvzþuρvzþuzvρ−

2

ρ
ðuzþvzÞ

�
: ð5:2Þ

Notice that the integrability conditions for the α equations
correspond to the harmonicity of u and v. Furthermore, as
in the 4-dimensional case, the z-axis is decomposed into an
exhaustive sequence of intervals called rods, that are
denoted by fΓlgl∈I for some index set I. Traditionally,
rods come in two types, those on which j∂tj vanishes are
referred to as horizon rods, and those on which an integral
linear combination p∂ϕ þ q∂ψ vanishes are referred to as
axis rods with the vector ðp; qÞ denoting the associated rod
structure. In the current setting, the possible rod structures
are simply (1,0) or (0,1), which describe rods where ∂ϕ or
∂ψ vanish. Due to this simplified rod structure profile, the
only possible horizon cross-section topologies are the
sphere S3 and ring S1 × S2, arising respectively when a
horizon rod is bordered by (1,0) and (0,1) axis rods, and
when a horizon rod is bordered by two (1,0) axis rods or

two (0,1) axis rods. A topological classification of the
domains of outer communication may be found in [38]. The
intersection point of two axis rods is called a corner, while
the intersection point of an axis rod with a horizon rod is
called a pole. Below we will introduce two new types of
rods, in the 5-dimensional regime, based on negative mass
singularities.
According to the above description, any solution of the

biaxisymmetric static vacuum Einstein equations, with
orthogonalUð1Þ generators, may be obtained by specifying
two harmonic functions on R3 that have appropriate blow-
up behavior on portions of the z-axis. As in 4-dimensions,
the resulting spacetime metric may have conical singular-
ities that form on the axis rods, and these singularities may
be measured by their logarithmic angle defects. For an axis
rod Γ1 having the rod structure (1,0), and an axis rod Γ2

having the rod structure (0,1), the corresponding logarith-
mic angle defects may be computed with the help of (2.3)
and are given by

b1 ¼ lim
ρ→0

�
log ρþ α −

1

2
u

�
on Γ1;

b2 ¼ lim
ρ→0

�
log ρþ α −

1

2
v
�

on Γ2: ð5:3Þ

It follows from (5.2) that these quantities are constant along
their associated axis rods. In the absence of a conical
singularity, or rather a zero logarithmic angle defect, the
metric is smoothly extendable across the axis. Conical
singularities along an axis rod Γl are classified as an angle
deficit if bl > 0, and an angle surplus if bl < 0. Although
the sign of the logarithmic angle defect determines the
character of the force associated with the axis rod as in the
4-dimensional setting, unlike the lower dimensional case
the force is in general not constant along axis rods. This fact
will be established in Sec. V C.

A. The signed mass Schwarzschild-Tangherlini solution

Here we will derive the Weyl-Papapetrou coordinate
presentation of the negative mass Schwarzschild-
Tangherlini solution. First, however, we recall the corre-
sponding presentation for the positive mass solution. In this
case, the domain of outer communication has topology
R × ðR4nBallÞ, and in Schwarzschild coordinates the
spacetime metric takes the form

gST ¼ −
�
1 −

μ

r̄2

�
dt2 þ

�
1 −

μ

r̄2

�
−1
dr̄2

þ r̄2ðdθ̄2 þ sin2 θ̄dϕ2 þ cos2 θ̄dψ2Þ; ð5:4Þ

where μ ¼ 4m
3π with the mass m > 0, and r̄ ≥ ffiffiffi

μ
p

. The
portion of the metric involving the angular variables,
0 ≤ θ̄ ≤ π=2 and 0 ≤ ϕ;ψ < 2π, represents the round
metric on S3 in Hopf coordinates. As in 4-dimensions,
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the cylindrical radius ρ of Weyl-Papapetrou coordinates is
obtained from the determinant of the Killing tϕψ-portion of
the metric. The z-coordinate is then chosen as a harmonic
conjugate, so that ðρ; zÞ form isothermal coordinates on the
orbit space M5=½R ×Uð1Þ2�. It follows that (see [[26]
(5.13)])

ρ¼ r̄2 sinð2θ̄Þ
ffiffiffiffiffiffiffiffiffiffiffi
1−

μ

r̄2

r
; z¼

�
r̄2−

μ

2

�
cosð2θ̄Þ: ð5:5Þ

The spacetime metric gST then takes the form (5.1), where

u ¼ log

�
ρ2

4ðr̄2 − μÞ cos2 θ̄
�

¼ log

� 1
2
ρ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðz − μ=2Þ2
p

þ ðz − μ=2Þ

�

¼ Gfz>μ=2g − log 2; ð5:6Þ

v ¼ log

�
ρ2

4ðr̄2 − μÞ sin2 θ̄
�

¼ log

� 1
2
ρ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2 þ ðzþ μ=4Þ2
p

− ðzþ μ=4Þ

�

¼ Gfz<−μ=2g − log 2: ð5:7Þ

From this we find that the z-axis is broken into two axis
rods Γ− ¼ ð−∞;−μ=2Þ and Γþ ¼ ðμ=2;∞Þ having rod
structures (0,1) and (1,0) respectively, and one horizon
rod Γh ¼ ð−μ=2; μ=2Þ which corresponds to the surface
r̄ ¼ ffiffiffi

μ
p

in Schwarzschild coordinates.
Consider now the negative mass Schwarzschild-

Tangherlini solution. The topology of the domain of outer
communication is the same as in the positive mass case,
although geometrically it may be preferable to think of a
point being removed from R4, instead of a ball, since the
singularity has zero area. The metric expression (5.4) still
remains valid, although here the mass parameterm < 0 and
the areal radius extends to the origin r̄ > 0. Notice that
there is no longer a coordinate singularity at r̄ ¼ ffiffiffiffiffiffijμjp

, and
there is no event horizon so that r̄ ¼ 0 is a naked
singularity. The formulas for the change to Weyl-
Papapetrou coordinates have the same form

ρ¼ r̄2 sinð2θ̄Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjμj

r̄2

r
; z¼

�
r̄2þjμj

2

�
cosð2θ̄Þ: ð5:8Þ

as do the metric coefficient harmonic functions

u ¼ Gfz>−jμj=2g; v ¼ Gfz<jμj=2g: ð5:9Þ

There is, however, a change in the rod structure which will
require the introduction of a new type of rod.

The rod structure is determined by the asymptotic
behavior of u and v upon approach to the z-axis.
Observe that the singular support sets for the Green’s
functions that comprise u and v, overlap on the interval
Γs ¼ ð−jμj=2; jμj=2Þ. As above, let Γ− ¼ ð−∞;−jμj=2Þ
and Γþ ¼ ðjμj=2;∞Þ, then it follows from (5.2) that as
ρ → 0 we have

u ¼
�
2 log ρþOð1Þ if z ∈ Γs ∪ Γþ
Oð1Þ if z ∈ Γ−

;

v ¼
�
2 log ρþOð1Þ if z ∈ Γs ∪ Γ−

Oð1Þ if z ∈ Γþ
; ð5:10Þ

α ¼
�
Oð1Þ if z ∈ Γ�
log ρþOð1Þ if z ∈ Γs

: ð5:11Þ

This shows that the rods Γ−, Γþ behave as typical axis rods
having rod structures (0,1), (1,0) respectively, whereas Γs
does not exhibit the characteristic of either an axis or horizon
rod.Wewill therefore refer toΓs, andmore generally any rod
of an biaxisymmetric static spacetime near which u ¼
2 log ρþOð1Þ and v ¼ 2 log ρþOð1Þ, as a spherical
negative mass singularity rod. These intervals of the z-axis
correspond to single points in time slices of the spacetime,
and may be viewed as the overlap of two neighboring axis
rods having different rod structures, see Fig. 3. In this way
negative mass singularities in 5-dimensions can be thought
of as spread out corners. More precisely, the overlap of the
singular support is a point for a corner,whereas the overlap is
an interval for a NMS.

B. The signed mass static black ring solution

Consider the rod configuration for an asymptotically flat
positive mass static black hole with ring S1 × S2 horizon
cross-section topology. Namely, there are two semi-infinite
axis rods Γ1 ¼ ðmþ l;∞Þ and Γ4 ¼ ð−∞;−mÞ having rod
structures (1,0) and (0,1) respectively, where the parameters
m and l are positive. In addition, there is a finite axis rod
Γ2 ¼ ðm;mþ lÞ having rod structure (0,1), and a horizon
rod Γ3 ¼ ð−m;mÞ, as well as a corner point at z ¼ mþ l.
Note that the parameter l represents the length of the finite
axis rod, and 3π

2
m is the ADMmass. The relevant spacetime

metric (5.1) may be constructed by setting

u ¼ Gfz>mþlg; v ¼ Gfz<−mg þGfm<z<mþlg; ð5:12Þ

and solving for α from (5.2). This solution possesses a
conical singularity along the finite axis rod Γ2 for any
choice of parameters. Positive mass static black ring
solutions were studied in detail in [34].
Here we introduce the negative mass static ring solution.

This is obtained from the above configuration by letting
m < 0, replacingmwith jmj in the rod intervals Γi, i ¼ 1, 2,
3, 4, and changingΓ3 to a ring negativemass singularity rod.
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This last step is achieved, withmotivation from the spherical
NMS example of the previous subsection, by requiring both
harmonic functions u and v to have asymptotics 2 log ρþ
Oð1Þ upon approach to this rod. Thus, the desired solution
may be constructed from

u¼Gfz>jmjþlg þGf−jmj<z<jmjg; v¼Gfz<jmjþlg: ð5:13Þ

As shown in Sec. IV C, the ADM mass of this solution is
3π
2
m < 0. Furthermore, from the analysis of angle defects in

the next section, we find that this solution also possesses a
conical singularity on the finite axis rod for any choice of
parameters. Geometrically, a neighborhood of the NMS
singularity (within a time slice) may be interpreted as a cone
with S1 × S2 cross sections where the ring NMS rod
represents the cone vertex.
Trivial examples having negative mass that are free of

conical singularities may be obtained, although they will
not be asymptotically flat. In particular, 5-dimensional
static black ring solutions of signed mass may be con-
structed from the 4-dimensional Schwarzschild solutions of
signed mass by taking the product with a circle of fixed
length. If ψ is the coordinate parametrizing the circle of
fixed length, then v ¼ 1, and in the negative mass case
u ¼ 4 log ρþOð1Þ as ρ → 0 at the horizon. The negative
mass singularity here is topologically a circle, as opposed to
a point, and the solution is asymptotically Kaluza-Klein.
We also mention that these circle type negative mass
singularities may superpositioned together with horizons,
as well as the point type negative mass singularities, to form
more complicated rod structures.

C. The force of axis struts in 5D

Following the exposition of [[28] Sec. 5], we will
compute the force along an axis rod induced by a conical
singularity. This calculation is valid for 5-dimensional

static (and more generally stationary) biaxisymmetric
spacetimes, and differs from the 4-dimensional case treated
in [28] in that force is not necessarily constant along
the axis.
Let p be an interior point of an axis rod Γ, which we may

assume without loss of generality has rod structure (1,0),
and denote the logarithmic angle defect by b as in (5.3).
The cone angle is encoded in the disc Dρ of (coordinate)
radius ρ, which passing through p, and is obtained by
fixing values for ðt; z;ψÞ. The induced metric is

ds2 ¼ e2αdρ2 þ eudϕ2; ð5:14Þ

and the geodesic curvature of the boundary ∂Dρ takes the
form κ ¼ 1

2
e−αuρ. It follows that

Z
∂Dρ

κ ¼ πeu=2−αuρ ¼ πeū=2−αð2þ ρūρÞ; ð5:15Þ

where ū ¼ u − 2 log ρ is a smooth function up to the axis. If
a conical singularity is present, the Gauss curvature of the
disc Dρ is singular at the origin. Nevertheless, the Gauss
curvature defines a signed measure μK , and in light of the
Gauss-Bonnet theorem along with (5.15) we have

lim
ρ→0

μKðDρÞ ¼ lim
ρ→0

�
2π −

Z
∂Dρ

κ

�
¼ 2πð1 − e−bÞ: ð5:16Þ

Let feig4i¼0 be an orthonormal frame such that e0 is
timelike, e1 and e2 are multiples of ∂z and ∂ρ, and e3, e4 are
tangent to the toroidal fibers, with e2 and e3 spanning that
tangent space to Dρ. Observe that the only singular sec-
tional curvature is that associated with the e2e3-tangent
plane. In particular, according to the Gauss equations

FIG. 3. Rod structures for Schwarzschild-Tangherlini and static ring metrics of positive and negative mass. The dotted lines indicate a
horizon rod, a single solid line indicates an axis rod, while overlapping solid lines indicate an NMS rod.
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R2323 ¼ K þ bounded terms; ð5:17Þ

where the bounded terms are quadratic expressions in the
second fundamental form of the discDρ. This boundedness
follows from the fact that the disc intersects the z-axis
perpendicularly at p, and hence the second fundamental
form, which measures the “turning of the unit normal,”
remains finite. It follows that the only singular Ricci
curvatures are R22 and R33, both of which agree with K
up to bounded expressions. Therefore the Einstein equa-
tions (expressed in geometrized units) yield

8πT11 ¼ R11 −
1

2
Rg11 ¼ −K þ bounded terms: ð5:18Þ

This indicates the presence of “matter” along an axis rod
having a nonzero angle defect. Since the stress-energy-
momentum tensor component T11 measures normal stress
(in the z-direction) or rather force per unit volume, the force
at p arising from this “matter distribution” is given by

FðpÞ ¼ lim
ρ→0

Z
2π

0

μT11
ðDρÞev=2dψ

¼ πevðpÞ=2

2
ðe−b − 1Þ; ð5:19Þ

where in the second equality we have used (5.16) and
(5.18). Comparing with the 4-dimensional case [28][(36)],
we find that although it still holds that an angle surplus
(deficit) produces a positive (negative) force, the force is no
longer necessarily constant along the axis rod due to the
presence of the new term ev=2.

VI. CONICAL SINGULARITIES
IN DIMENSION 5

The goal of this section is to analyze the propagation of
conical singularities across spherical and ring horizons
and NMSs, as well as corners, for biaxisymmetric static
vacuum solutions. Formulas for the difference of the
logarithmic angle defect between two neighboring axis
rods will be given in terms of renormalized values for u and
v at the poles, or at a corner. Let z2 < zs < zn < z1 denote
values on the z-axis, and consider a sequence of two axis
rods Γ1 ¼ ðzn; z1Þ to the north having rod structure (1,0),
and Γ2 ¼ ðz2; zsÞ to the south, that border a horizon/NMS
rod Γh=s ¼ ðzs; znÞ with poles N, S located at zn, zs.
Since the angle defects are constant along the axes, the
relation between the two logarithmic angle defects may
be computed at any two points along these two axes.
Namely, let ε > 0 be a small parameter and use points
Nε ¼ ð0; zn þ εÞ ∈ Γ1 and S−ε ¼ ð0; zs − εÞ ∈ Γ2 to find
that for a spherical horizon/NMS in which Γ2 has rod
structure (0,1), formula (5.3) implies

b1 − b2 ¼ lim
ρ→0

�
α −

1

2
uþ log ρ

�����
z¼znþε

− lim
ρ→0

�
α −

1

2
vþ log ρ

�����
z¼zs−ε

¼ 1

2
ðv̄ðS−εÞ − ūðNεÞÞ þ αðNεÞ − αðS−εÞ; ð6:1Þ

where ū ¼ u − 2 log ρ and v̄ ¼ v − 2 log ρ. Similarly, for a
ring horizon/NMS in which Γ2 has rod structure (1,0) we
have

b1 − b2 ¼ lim
ρ→0

�
α −

1

2
uþ log ρ

�����
z¼znþε

− lim
ρ→0

�
α −

1

2
uþ log ρ

�����
z¼zs−ε

¼ 1

2
ðūðS−εÞ − ūðNεÞÞ þ αðNεÞ − αðS−εÞ: ð6:2Þ

In the case of a corner point at C ¼ ð0; zcÞ, let z2 < zc < z1
and consider two axis rods Γ1 ¼ ðzc; z1Þ of rod structure
(1,0), and Γ2 ¼ ðz2; zcÞ of rod structure (0,1). If Cε ¼
ð0; zc þ εÞ ∈ Γ1 and C−ε ¼ ð0; zc − εÞ ∈ Γ2, then

b1 − b2 ¼ lim
ρ→0

�
α −

1

2
uþ log ρ

�����
z¼zcþε

− lim
ρ→0

�
α −

1

2
vþ log ρ

�����
z¼zc−ε

¼ 1

2
ðv̄ðC−εÞ − ūðCεÞÞ þ αðCεÞ − αðC−εÞ: ð6:3Þ

In the remainder of this section we will evaluate these
expressions by taking ε → 0.

A. Across a corner

In order to evaluate the right-hand side of (6.3),
expansions for u, v, and α at the corner are needed to
isolate the singular parts. From the Green’s function
analysis of previous sections, we find that

u ¼ log ðrc − ðz − zcÞÞ þ û;

v ¼ log ðrc þ ðz − zcÞÞ þ v̂ near C; ð6:4Þ

for some smooth functions û and v̂, where rc ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − zcÞ2

p
is the Euclidean distance to C. It follows

that

ū¼u−2logρ¼ û− logð2jz−zcjÞþOðρ2Þ for z>zc; ð6:5Þ

v̄¼v−2logρ¼ v̂− logð2jz−zcjÞþOðρ2Þ for z<zc: ð6:6Þ

In particular
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1

2
ðv̄ðC−εÞ − ūðCεÞÞ ¼

1

2
ðv̂ðC−εÞ − ûðCεÞÞ

→
1

2
ðv̂ðCÞ − ûðCÞÞ; ð6:7Þ

as ε → 0. Furthermore according to [8][(5.8)], the expan-
sion for α is found to be

α¼−
1

2
logrcþ

rcþðz− zcÞ
4rc

ðû− ûðCÞÞ

þ rc− ðz− zcÞ
4rc

ðv̂− v̂ðCÞÞþ ĉþOðρ2Þ near C; ð6:8Þ

for some constant ĉ. Therefore

αðCεÞ − αðC−εÞ ¼
1

2
ðûðCεÞ − ûðCÞÞ − 1

2
ðv̂ðCεÞ − v̂ðCÞÞ

→ 0 ð6:9Þ

as ε → 0. These observations combine to yield the desired
formula for the propagation of cone angle defect across a
corner.
Proposition 6. Consider a static biaxisymmetric solu-

tion (5.4) of the 5D vacuum Einstein equations. Let C be a
corner point at the intersection of two axis rods Γ1 and Γ2

having rod structures (1,0) and (0,1), respectively. Then the
difference of logarithmic angle defects is given by

b1 − b2 ¼
1

2
ðv̂ðCÞ − ûðCÞÞ: ð6:10Þ

B. Across a spherical horizon

Here we will compute (6.1) for a horizon. Note that u and
v have the following expansions in the vicinity of the north
and south poles of the horizon

u ¼ log ðrn − ðz − znÞÞ þ ûn near N;

v ¼ log ðrs þ ðz − zsÞÞ þ v̂s near S; ð6:11Þ

for some smooth functions ûn, v̂s and where rn=s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − zn=sÞ2

q
is the Euclidean distance to the poles.

Furthermore, observe that as in (3.5) we have

ūðNεÞ ¼ ûnðNεÞ − logð2εÞ;
v̄ðS−εÞ ¼ v̂sðS−εÞ − logð2εÞ: ð6:12Þ

It follows that

1

2
ðv̄ðS−εÞ − ūðNεÞÞ ¼

1

2
ðv̂sðSÞ − ûnðNÞÞ þOðεÞ: ð6:13Þ

The expansion for α at the poles is provided by [8][(5.15)],
namely

α¼−
1

2
logrnþ

ðz−znÞ
2rn

ðûn− ûnðNÞÞ

þ½ðz−znÞ−rn�
4rn

ðv−vðNÞÞþ ĉnþOðρ2Þ nearN; ð6:14Þ

and

α¼−
1

2
logrs−

ðz−zsÞ
2rs

ðv̂s− v̂sðSÞÞ

−
½ðz−zsÞþrs�

4rs
ðu−uðSÞÞþ ĉsþOðρ2Þ near S; ð6:15Þ

for some constants ĉn, ĉs. We then have

αðNεÞ − αðN−εÞ ¼
1

2
ðûnðNεÞ − ûnðNÞÞ

þ 1

2
ðûnðN−εÞ − ûnðNÞÞ

þ 1

2
ðvðN−εÞ − vðNÞÞ ¼ OðεÞ; ð6:16Þ

and similarly

αðSεÞ − αðS−εÞ ¼ OðεÞ: ð6:17Þ

Therefore

αðNεÞ − αðS−εÞ ¼ ½αðNεÞ − αðN−εÞ� þ ½αðN−εÞ − αðSεÞ�
þ ½αðSεÞ − αðS−εÞ�

¼ αðN−εÞ − αðSεÞ þOðεÞ: ð6:18Þ

Furthermore, since u and v are regular on the horizon, (5.2)
implies that

αðN−εÞ − αðSεÞ ¼
Z

zn−ε

zsþε
αzð0; zÞdz ¼ −

1

2

Z
zn−ε

zsþε
ðuþ vÞzð0; zÞdz ¼ −

1

2
ðuþ vÞðN−εÞ þ

1

2
ðuþ vÞðSεÞ

¼ −
1

2
ðûn þ vÞðN−εÞ þ

1

2
ðuþ v̂sÞðSεÞ ¼ −

1

2
ðûn þ vÞðNÞ þ 1

2
ðuþ v̂sÞðSÞ þOðεÞ: ð6:19Þ
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Putting all this together, and taking ε → 0, yields the
following result.
Proposition 7. Consider a static biaxisymmetric solu-

tion (5.4) of the 5D vacuum Einstein equations. LetN and S
be the poles of a spherical horizon rod that lies between two
axis rods, Γ1 and Γ2, having rod structures (1,0) and (0,1)
respectively. Then the difference of logarithmic angle
defects is given by

b1 − b2 ¼ v̂sðSÞ − ûnðNÞ þ 1

2
ðuðSÞ − vðNÞÞ: ð6:20Þ

C. Across a ring horizon

Consider now (6.2) for a horizon. The expansion of u in
the vicinity of the north and south poles is given by

u ¼ log ðrn − ðz − znÞÞ þ ûn near N;

u ¼ log ðrs þ ðz − zsÞÞ þ ûs near S; ð6:21Þ

for some smooth functions ûn, ûs. Note that due to the ring
rod structure, the function v remains smooth in a neighbor-
hood of both poles. Furthermore, observe that as in (6.12)
we have

ūðNεÞ ¼ ûnðNεÞ − logð2εÞ;
ūðS−εÞ ¼ ûsðS−εÞ − logð2εÞ: ð6:22Þ

It follows that

1

2
ðūðS−εÞ − ūðNεÞÞ ¼

1

2
ðûsðSÞ − ûnðNÞÞ þOðεÞ: ð6:23Þ

The expansion for α at the poles is again provided by [8]
[(5.15)]. In fact, near the north pole it coincides with (6.14),
while on the other side

α¼−
1

2
logrs−

ðz−zsÞ
2rs

ðûs− ûsðSÞÞ

−
½ðz−zsÞþrs�

4rs
ðv−vðSÞÞþ ĉsþOðρ2Þ near S; ð6:24Þ

for some constant ĉs. We then find that (6.16)–(6.18) are
valid, and moreover (6.19) may be slightly modified to
produce

αðN−εÞ − αðSεÞ ¼ −
1

2
ðûn þ vÞðNÞ þ 1

2
ðûs þ vÞðSÞ

þOðεÞ: ð6:25Þ

Taking the limit ε → 0 then produces the desired
formula.
Proposition 8. Consider a static biaxisymmetric solu-

tion (5.4) of the 5D vacuum Einstein equations. LetN and S

be the poles of a ring horizon rod that lies between two axis
rods, Γ1 and Γ2, both having rod structure (1,0). Then the
difference of logarithmic angle defects is given by

b1 − b2 ¼ ûsðSÞ − ûnðNÞ þ 1

2
ðvðSÞ − vðNÞÞ: ð6:26Þ

D. Across a spherical negative mass singularity

Let us now compute (6.1) for a NMS. In this situation
both u and v asymptote to 2 log ρ upon approach to the
NMS rod Γs. Near the poles these functions have the
expansions

u¼ 2 logρþ ū;

v¼ logðrnþðz− znÞÞþ ṽn near N; ð6:27Þ

and

u ¼ log ðrs − ðz − zsÞÞ þ ũs;

v ¼ 2 log ρþ v̄ near S; ð6:28Þ

for some smooth functions ū, v̄, ũs, and ṽn where rn=s ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ2 þ ðz − zn=sÞ2

q
is the Euclidean distance to the poles.

From the point of view of u the north pole exhibits the
character of an axis rod point, while the same is true of v
with regards to the south pole. Therefore the first expres-
sion on the right-hand side of (6.1) may simply be
evaluated as

1

2
ðv̄ðS−εÞ − ūðNεÞÞ ¼

1

2
ðv̄ðSÞ − ūðNÞÞ þOðεÞ: ð6:29Þ

Evaluation of the remaining terms in (6.1) is more difficult,
as the behavior of α near the poles of NMSs is more
complex.
To proceed with the expansion of α, we will make use of

∂ρ log ðrn þ ðz − znÞÞ ¼
ρ

rn½rn þ ðz − znÞ�
;

∂ρ log ðrs − ðz − zsÞÞ ¼
ρ

rs½rs − ðz − zsÞ�
; ð6:30Þ

∂z log ðrn þ ðz − znÞÞ ¼
1

rn
;

∂z log ðrs − ðz − zsÞÞ ¼ −
1

rs
: ð6:31Þ

Using this, together with the formulas for α in (5.2),
produces the following expression near N after a lengthy
calculation
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αρ ¼
ρ

4r2n

�
ρ2

½rn þ ðz − znÞ�2
− 1

�

þ 1

4

�
2þ ρ2

rn½rn þ ðz − znÞ�
�
ūρ

þ ρ2

2rn½rn þ ðz − znÞ�
ðṽnÞρ

−
ρ

4rn
ūz −

ρ

2rn
ðṽnÞz þOðρÞ; ð6:32Þ

and similarly

αz ¼
ρ2

2r2n½rn þ ðz − znÞ�
þ 1

4

�
2þ ρ2

rn½rn þ ðz − znÞ�
�
ūz

þ ρ2

2rn½rn þ ðz − znÞ�
ðṽnÞz

þ ρ

4rn
ūρ þ

ρ

2rn
ðṽnÞρ þOðρ2Þ: ð6:33Þ

Consider now polar coordinates centered at the north pole
so that ρ ¼ rn sin θn and z − zn ¼ rn cos θn, and integrate
the radial derivative to find the expansion

α ¼
Z

rn

0

αsðs; θnÞds

¼
Z

rn

0

ðsin θnαρ þ cos θnαzÞds

¼ 1

4

�
2þ ρ2

rn½rn þ ðz − znÞ�
�
ðū − ūðNÞÞ

þ ρ2

2rn½rn þ ðz − znÞ�
ðṽn − ṽnðNÞÞ þ cnðθnÞ

þOðρ2Þ ð6:34Þ

about N, for some function cnðθnÞ. In order to find this
function we may compute the angular derivative of α in two
different ways. First, using (6.32) and (6.33) we obtain

αθn ¼ rn cos θnαρ − rn sin θnαz

¼ −
sin θn

2ð1þ cos θnÞ
þ 1

4

�
2þ sin2θn

1þ cos θn

�
ūθn

þ sin2θn
2ð1þ cos θnÞ

ðṽnÞθn

¼ −
rn sin θn

4
ðūrn þ 2ðṽÞrnÞ þOðrnρ2Þ: ð6:35Þ

On the other hand we may differentiate (6.34) directly, with
respect to θn, and compare the two results to find that there
is a constant c̃n such that

cnðθÞ ¼
1

2
logð1þ cos θnÞ þ c̃n: ð6:36Þ

It follows that

α ¼ 1

2
logð1þ cos θnÞ

þ 1

4

�
2þ ρ2

rn½rn þ ðz − znÞ�
�
ðū − ūðNÞÞ

þ ρ2

2rn½rn þ ðz − znÞ�
ðṽn − ṽnðNÞÞ þ c̃n

þOðρ2Þ near N: ð6:37Þ

Similar manipulations may be used to show that

α ¼ 1

2
logð1 − cos θsÞ þ

ρ2

2rs½rs − ðz − zsÞ�
ðũs − ũsðSÞÞ

þ 1

4

�
2þ ρ2

rs½rs − ðz − zsÞ�
�
ðv̄ − v̄ðSÞÞ þ c̃s

þOðρ2Þ near S; ð6:38Þ

for some constant c̃s where ρ ¼ rs sin θs and z − zs ¼
rs cos θs.
The computations (6.37), (6.38) demonstrate that near

the interior of the NMS rod, α ∼ log ρ as ρ → 0. In
particular, in contrast to horizon rods, α blows-up upon
approach to an NMS rod. For this reason, we cannot
directly use the argument of Sec. VI B in which the α terms
of (6.1) are computed by integrating along the horizon rod.
Thus, we will instead integrate along vertical segments
slightly off of the NMS rod. To do this, let δ > 0 be a small
parameter, and define points Nδ

−ε ¼ ðδ; zn − εÞ and
Sδε ¼ ðδ; zs þ εÞ. We then have

αðNεÞ − αðNδ
−εÞ ¼

1

2
log 2 −

1

2
logð1þ cos θnðε; δÞÞ

þOðεþ δÞ; ð6:39Þ

and

αðSδεÞ − αðS−εÞ ¼ −
1

2
log 2þ 1

2
logð1 − cos θsðε; δÞÞ

þOðεþ δÞ; ð6:40Þ

where θn=sðε; δÞ is the angular coordinate for Nδ
−ε, Sδε

respectively. Since θnðε; δÞ ¼ π − θsðε; δÞ it follows that

αðNεÞ − αðS−εÞ ¼ ½αðNεÞ − αðNδ
−εÞ� þ ½αðNδ

−εÞ − αðSδεÞ�
þ ½αðSδεÞ − αðS−εÞ�

¼ αðNδ
−εÞ − αðSδεÞ þOðεþ δÞ: ð6:41Þ

Next observe that for zs þ ε ≤ z ≤ zn − ε, with ε fixed,
formula (5.2) implies that αz ¼ ðūþ v̄Þz þOðρÞ so that
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αðNδ
−εÞ − αðSδεÞ ¼

Z
zn−ε

zsþε
αzðδ; zÞdz

¼
Z

zn−ε

zsþε
ðūþ v̄Þzðδ; zÞdzþOðδÞ

¼ ðūþ v̄ÞðNδ
−εÞ − ðūþ v̄ÞðSδεÞ þOðδÞ

¼ ðūþ ṽnÞðNÞ − ðũs þ v̄ÞðSÞ þOðεþ δÞ:
ð6:42Þ

Combining (6.1), (6.29), (6.41), (6.42), and then taking
δ → 0 followed by ε → 0, produces the desired result.
Proposition 9. Consider a static biaxisymmetric solu-

tion (5.4) of the 5D vacuum Einstein equations. LetN and S
be the poles of a spherical negative mass singularity rod
that lies between two axis rods, Γ1 and Γ2, having rod
structures (1,0) and (0,1) respectively. Then the difference
of logarithmic angle defects is given by

b1 − b2 ¼
1

2
ðūðNÞ − v̄ðSÞÞ þ ṽnðNÞ − ũsðSÞ: ð6:43Þ

E. Across a ring negative mass singularity

Finally, we calculate (6.2) for a NMS. The arguments are
closely related to those of the previous subsection, and so
some details will be spared below. Near the poles the
following expansions hold

u ¼ 2 log ρþ ū;

v ¼ log ðrn þ ðz − znÞÞ þ ṽn near N; ð6:44Þ

and

u ¼ 2 log ρþ ū;

v ¼ log ðrs − ðz − zsÞÞ þ ṽs near S; ð6:45Þ

for some smooth functions ū, ṽn, and ṽs. The expansion of
α at the north pole agrees with (6.37), while on the other
end

α¼ 1

2
logð1− cosθsÞ þ

1

4

�
2þ ρ2

rs½rs − ðz− zsÞ�
�
ðū− ūðSÞÞ

þ ρ2

2rs½rs − ðz− zsÞ�
ðṽs − ṽsðSÞÞ þ c̃s þOðρ2Þ near S;

ð6:46Þ

for some constant c̃s. Moreover, Eq. (6.41) still remains
valid while the analogue of (6.42) becomes

αðNδ
−εÞ − αðSδεÞ ¼ ðūþ ṽnÞðNÞ − ðūþ ṽsÞðSÞ

þOðεþ δÞ: ð6:47Þ

Putting these observations together yields the conical
singularity propagation formula.
Proposition 10. Consider a static biaxisymmetric sol-

ution (5.4) of the 5D vacuum Einstein equations. Let N and
S be the poles of a ring negative mass singularity rod that
lies between two axis rods, Γ1 and Γ2, both having rod
structure (1,0). Then the difference of logarithmic angle
defects is given by

b1 − b2 ¼
1

2
ðūðNÞ − ūðSÞÞ þ ṽnðNÞ − ṽsðSÞ: ð6:48Þ

VII. BALANCING OF SIGNED MASSES IN 5
DIMENSIONS AND THE PROOF OF THEOREM 2

In this section we will establish Theorem 2. The first
statement of this result concerns existence for superposi-
tions of positive and negative mass black hole solutions.
Indeed, according to the description in terms of Green’s
functions presented in Sec. V, we may define the poten-
tial functions u and v as linear combinations of Green’s
functions for any configuration of signed mass
Schwarzschild-Tangherlini and signed mass static black
ring solutions strung along the z-axis. With u and v, one
may solve the quadrature equations (5.2) for α. The resulting
spacetime, with metric described in Weyl-Papapetrou coor-
dinates (5.1), is then a biaxisymmetric solution of the static
vacuum Einstein equations. These solutions are regular
away from the negative mass singularities, except perhaps
for conical singularities on the axes.

A. Balancing two signed spherical masses

Here we address Theorem 2 (i), and show that there
exists a balanced asymptotically flat configuration of a
spherical horizon and a spherical NMS. In particular, an
explicit formula for the logarithmic angle defect at each
axis will be given in terms of rod data parameters. It will
then be shown that for a specific choice of parameters all
conical singularities are resolved.
We begin by constructing the general rod structure for

the two signed masses. Consider a sequence of four axis
rods Γi, i ¼ 1, 2, 3, 4, with Γi lying to the north (positive z
direction) of Γiþ1, where Γ1, Γ4 are semi-infinite rods
having rod structures (1,0), (0,1), and Γ2, Γ3 are finite rods
having rod structures (0,1), (1,0). Between Γ1 and Γ2 is a
spherical horizon rod Γ1

h, and between Γ3 and Γ4 is a
spherical NMS rod Γ2

s , while the intersection of Γ2 and Γ3 is
a corner point C ¼ ð0; cÞ. See Fig. 4. The north and south
poles of the signed mass rods will be labeled Nj ¼ ð0; njÞ,
Sj ¼ ð0; sjÞ, j ¼ 1, 2 in the ρz-plane, with s2 < n2 <
c < s1 < n1. Thus, the total rod structure consists of 6
rods, 4 pole points, and one corner point. The associated
potential functions for this rod structure are given by
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u ¼ GΓ1
þGΓ3∪Γ2

s

¼ log ðrN1
− ðz − n1ÞÞ þ log

�
rC þ ðz − cÞ
rS2 þ ðz − s2Þ

�
; ð7:1Þ

v ¼ GΓ2
þ GΓ4∪Γ2

s

¼ log

�
rS1 þ ðz − s1Þ
rC þ ðz − cÞ

�
þ log ðrN2

− ðz − n2ÞÞ; ð7:2Þ

where r· denotes Euclidean distance to the relevant
point.
We will now compute the propagation of logarithmic

angle defects across the horizon rod Γ1
h and NMS rod Γ2

s .
Lengths of the two finite axis rods Γ2, Γ3 will be denoted by
l2, l3, and the masses of the horizon/NMS rods will be

labeled asm1 > 0,m2 < 0. The pole and corner points may
now be given the following coordinates on the z-axis

s2¼−jm2j; n2 ¼ jm2j; c¼l3þjm2j;
s1¼l2þl3þjm2j; n1¼l2þl3þjm2jþ2m1: ð7:3Þ

Next set

ûn ¼ u− logðrN1
− ðz−n1ÞÞ¼ log

�
rCþðz−cÞ
rS2 þðz− s2Þ

�
; ð7:4Þ

v̂s¼ v− logðrS1 þðz− s1ÞÞ¼ log

�
rN2

þðz−n2Þ
rCþðz−cÞ

�
; ð7:5Þ

then according to Proposition 7

b1 − b2 ¼ v̂sðS1Þ − ûnðN1Þ þ
1

2
ðuðS1Þ − vðN1ÞÞ ¼

1

2
log

� ðs1 − n2Þ2ðn1 − s2Þ2
ðs1 − cÞðn1 − cÞðs1 − s2Þðn1 − n2Þ

�

¼ 1

2
log

� ðl2 þ l3Þ2ðl2 þ l3 þ 2m1 þ 2jm2jÞ2
l2ðl2 þ 2m1Þðl2 þ l3 þ 2jm2jÞðl2 þ l3 þ 2m1Þ

�
: ð7:6Þ

Furthermore let

ũs ¼ u − log ðrS2 − ðz − s2ÞÞ ¼ log

�
rN1

− ðz − n1Þ
rC − ðz − cÞ

�
; ð7:7Þ

ṽs¼ v− logðrN2
þðz−n2ÞÞ¼ log

�
rC− ðz−cÞ
rS1 − ðz− s1Þ

�
; ð7:8Þ

ū ¼ u − 2 log ρ ¼ −GΓ2∪Γ1
h
−GΓ4

¼ − log

�
rC − ðz − cÞ
rN1

− ðz − n1Þ
�
− log ðrS2 þ ðz − s2ÞÞ; ð7:9Þ

v̄ ¼ v − 2 log ρ ¼ −GΓ1∪Γ1
h
−GΓ3

¼ − log ðrS1 − ðz − s1ÞÞ − log

�
rN2

− ðz − n2Þ
rC − ðz − cÞ

�
: ð7:10Þ

Then according to Proposition 9 we have

b3 − b4 ¼
1

2
ðūðN2Þ − v̄ðS2ÞÞ þ ṽnðN2Þ − ũsðS2Þ ¼

1

2
log

�ðn1 − n2Þðs1 − s2Þðc − n2Þðc − s2Þ
ðs1 − n2Þ2ðn1 − s2Þ2

�

¼ 1

2
log

�
l3ðl2 þ l3 þ 2m1Þðl2 þ l3 þ 2jm2jÞðl3 þ 2jm2jÞ

ðl2 þ l3Þ2ðl2 þ l3 þ 2m1 þ 2jm2jÞ2
�
: ð7:11Þ

In order to show that there is a choice of parameters for
which balancing occurs, we first note that it may be
assumed that b1 ¼ b4 ¼ 0. This is due to the fact that α
is defined only up to a constant from (5.2), and by

appropriately choosing this constant the conical singularity
(5.3) of any given axis rod can be resolved, so without loss
of generality we take b1 ¼ 0. Theorem 2 of [36] then shows
that due to the asymptotics at spatial infinity we also have

FIG. 4. Rod structure for the superposition of two spherical NMSs.
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b4 ¼ 0. Thus we only need to show that there are
parameters such that the expressions in (7.6) and (7.11)
vanish. This may be accomplished by fixing l2 ¼ l3 ¼ l,
m1 ¼ jm2j ¼ m, and μ ¼ m=l so that

−b2 ¼ b1 − b2 ¼
1

2
log

�
4ð1þ 2μÞ
ð1þ μÞ2

�
;

b3 ¼ b3 − b4 ¼
1

2
log

� ð1þ μÞ2
4ð1þ 2μÞ

�
: ð7:12Þ

In particular, if μ ¼ 3þ 2
ffiffiffi
3

p
is the positive root of

ð1þ μÞ2 ¼ 4ð1þ 2μÞ then b2 ¼ b3 ¼ 0. The ADM mass
of this balanced solution vanishes by Lemma 11 below.
It should also be mentioned that if the NMS rod Γ2

s is
changed to a horizon rod Γ2

h with massm2 > 0 so that there
are two spherical horizons, or the horizon rod Γ1

h is changed
to a NMS rod Γ1

s with mass m1 < 0 so that there are two
spherical NMSs then the propagation of angle defect
formula is

b1 − b2 ¼
1

2
log

� ðl2 þ l3 þ 2jm1jÞ2ðl2 þ l3 þ 2jm2jÞ2
l2ðl2 þ l3Þðl2 þ 2jm1jÞðl2 þ l3 þ 2jm1j þ 2jm2jÞ

�
: ð7:13Þ

Since this may be readily shown to always be positive, there
can be no balancing with these two configurations. This is
to be expected, at least for the case of two horizons, due to
the static black hole uniqueness theorem [7].

B. Balancing a signed mass black Saturn

In the context of Theorem 2 (i), we balance an asymp-
totical flat configuration consisting of a ring NMS and a
spherical horizon. Consider a rod structure consisting of
three axis rods Γi, i ¼ 1, 2, 3, with Γi lying to the north
(positive z direction) of Γiþ1, where Γ1, Γ3 are semi-infinite
rods having rod structures (1,0), (0,1), and Γ2, is a finite rod
of length l having rod structure (1,0). Between Γ1 and Γ2 is
a ring NMS rod Γ1

s of length 2jm1j, and between Γ2 and Γ3

is a spherical horizon rod Γ2
h of length 2m2; the values

m1 < 0 and m2 > 0 indicate the masses of these rods. See
Fig. 5. The north and south poles of the signed mass rods
will be labeled Nj ¼ ð0; njÞ, Sj ¼ ð0; sjÞ, j ¼ 1, 2 in the
ρz-plane, with s2 < n2 < s1 < n1. The potential functions
for this rod structure are

u ¼ GΓ1∪Γ1
s∪Γ2

¼ log ðrN2
− ðz − n2ÞÞ; ð7:14Þ

v ¼ GΓ1
s
þ GΓ3

¼ log

�
rN1

þ ðz − n1Þ
rS1 þ ðz − s1Þ

�
þ log ðrS2 þ ðz − s2ÞÞ: ð7:15Þ

The propagation of logarithmic angle defect across the
ring NMS rod Γ1

s may be computed with Proposition 10.

In order to accomplish this label the pole points with the
following coordinates on the z-axis

s2 ¼ −m2; n2 ¼ m2; s1 ¼ lþm2;

n1 ¼ lþ 2jm1j þm2; ð7:16Þ

and define the regularized potentials

ū¼ u−2 logρ¼− logðrN2
þðz−n2ÞÞ; ð7:17Þ

ṽn ¼ v− logðrN1
þðz−n1ÞÞ¼ log

�
rS2 þðz−S2Þ
rS1 þðz− s1Þ

�
; ð7:18Þ

ṽs¼ v− logðrS1 − ðz− s1ÞÞ¼ log

�
rS2 þðz− s2Þ
rN1

− ðz−n1Þ
�
: ð7:19Þ

We then have

b1 − b2 ¼
1

2
ðūðN1Þ − ūðS1ÞÞ þ ṽnðN1Þ − ṽsðS1Þ

¼ 1

2
log

�ðs1 − n2Þðn1 − s2Þ2
ðn1 − n2Þðs1 − s2Þ2

�

¼ 1

2
log

�
lðlþ 2jm1j þ 2m2Þ2
ðlþ 2jm1jÞðlþ 2m2Þ2

�

¼ 1

2
log

� ð1þ μ1 þ μ2Þ2
ð1þ μ1Þð1þ μ2Þ2

�
; ð7:20Þ

where μ1 ¼ 2jm1j=l and μ2 ¼ 2m2=l. As in the previous
example we may assume that b1 ¼ b3 ¼ 0, and so it

FIG. 5. Rod structure for the superposition of a ring NMS and spherical horizon.
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remains to show that (7.20) vanishes for a choice of
parameters. Indeed, this is the case if μ2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ μ1

p
since

then

ð1þ μ1 þ μ2Þ2 − ð1þ μ1Þð1þ μ2Þ2 ¼ μ1ð1þ μ1 − μ22Þ ¼ 0:

ð7:21Þ

Therefore, for any choice of l and m1 < 0, we may set
2m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 2jm1jl

p
to achieve b2 ¼ 0. Furthermore,

note that the ADM mass of this balanced solution is
3π
2
ðm1 þm2Þ by Lemma 11 below, and thus for appropriate

choices of l and m1 the ADM mass can be positive,
negative, or zero.

C. Balancing two spherical horizons surrounding
a spherical NMS

In this and the next subsection, we will present examples
to confirm Theorem 2 (ii). Namely, here we show that there
exists a balanced asymptotically flat configuration of a
spherical NMS lying between two spherical horizons.
As before, an explicit formula for the logarithmic angle
defect at each axis will be given in terms of rod data
parameters, which will then be chosen to resolve all conical
singularities.
Consider the following rod structure. Let Γi, i ¼ 1, 2, 3,

4 be a sequence of four axis rods with Γi lying to the north
(positive z direction) of Γiþ1, where Γ1, Γ4 are semi-infinite
rods having rod structures (1,0), (0,1), and Γ2, Γ3 are finite
rods of lengths l2, l3 having rod structures (0,1), (1,0).
Between Γ1 and Γ2 is a horizon rod Γ1

h of length 2m1,
between Γ2 and Γ3 is a NMS rod Γ2

s of length 2jm2j, and
between Γ3 and Γ4 is a horizon rod Γ3

h of length 2m3; as
usual mi represent the signed masses of the horizons/
NMSs. See Fig. 6. The north and south poles of the signed
mass rods are labeledNj ¼ ð0; njÞ, Sj ¼ ð0; sjÞ, j ¼ 1, 2, 3
in the ρz-plane, with s3 < n3 < s2 < n2 < s1 < n1. Thus,
the total rod structure consists of 7 rods and 6 pole points.

The associated potential functions for this rod structure are
given by

u ¼ GΓ1
þ GΓ3∪Γ2

s

¼ log ðrN1
− ðz − n1ÞÞ þ log

�
rN2

þ ðz − n2Þ
rN3

þ ðz − n3Þ
�
; ð7:22Þ

v ¼ GΓ2∪Γ2
s
þ GΓ4

¼ log

�
rS1 þ ðz − s1Þ
rS2 þ ðz − s2Þ

�
þ log ðrS3 þ ðz − s3ÞÞ: ð7:23Þ

We will now compute the propagation of logarithmic
angle defects across the horizon rod Γ1

h. Label the
z-coordinates of the pole points in the following way

s3 ¼ −m3; n3 ¼ m3; s2 ¼ l3 þm3;

n2 ¼ l3 þ 2jm2j þm3; ð7:24Þ

s1 ¼ l2 þ l3 þ 2jm2j þm3;

n1 ¼ l2 þ l3 þ 2m1 þ 2jm2j þm3; ð7:25Þ

and set

ûn ¼ u − log ðrN1
− ðz − n1ÞÞ

¼ log

�
rN2

þ ðz − n2Þ
rN3

þ ðz − n3Þ
�
; ð7:26Þ

v̂s ¼ v − log ðrS1 þ ðz − s1ÞÞ

¼ log

�
rS3 þ ðz − s3Þ
rS2 þ ðz − s2Þ

�
: ð7:27Þ

Then according to Proposition 7

b1 − b2 ¼ v̂sðS1Þ − ûnðN1Þ þ
1

2
ðuðS1Þ − vðN1ÞÞ

¼ 1

2
log

�ðs1 − s3Þ2ðn1 − n3Þ2ðs1 − n2Þðn1 − s2Þ
ðs1 − s2Þ2ðn1 − n2Þ2ðs1 − n3Þðn1 − s3Þ

�

¼ 1

2
log

�
l2ðl2 þ 2m1 þ 2jm2jÞðl2 þ l3 þ 2m1 þ 2jm2jÞ2ðl2 þ l3 þ 2jm2j þ 2m3Þ2
ðl2 þ 2m1Þ2ðl2 þ 2jm2jÞ2ðl2 þ l3 þ 2jm2jÞðl2 þ l3 þ 2m1 þ 2jm2j þ 2m3Þ

�
: ð7:28Þ

FIG. 6. Rod structure for the superposition of two spherical horizons surrounding a spherical NMS.
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In order to show that there is a choice of parameters for
which balancing occurs, we note that as in the previous
example it may be assumed that b1 ¼ b4 ¼ 0. Next observe
that by setting l2 ¼ l3 ¼ l and m1 ¼ m3, the rod con-
figuration admits a reflection symmetry across the line z ¼
n2þs2

2
passing through the mid point of the NMS rod Γ2

s .
Consequently the functions u, v, and α also admit this
symmetry and relieving the conical singularity along Γ2

implies that it is also relieved along Γ3. Thus, it is sufficient
to establish that the expressions in (7.28) vanishes with an
appropriate selection of symmetric parameters. To accom-
plish this define μ1 ¼ m1=l2, μ2 ¼ jm2j=l2 and note that

b1−b2¼
1

2
log

�
4ð1þμ1þμ2Þ4ð1þ2μ1þ2μ2Þ

ð1þ2μ1Þ2ð1þ2μ2Þ2ð1þμ1Þð1þ2μ1þμ2Þ
�
:

ð7:29Þ

For sufficiently small μ1 and μ2 we find b1 − b2 > 0. On
the other hand, for sufficiently large μ1 ¼ μ2 we have
b1 − b2 < 0. Therefore, the intermediate value property
yields a choice of μ1 ¼ μ2 such that b1 − b2 ¼ 0. In light of
Lemma 11 this balanced solution has ADM mass
3π
2
ðm1 þm2 þm3Þ, which is positive due to the symmetry

assumptions placed on the rod structure.

D. Balancing a ring horizon surrounded
by a spherical and ring NMS

Consider the following rod structure. As in the previous
example there are four axis rods: Γ1 having rod structure
(1,0), and Γi, i ¼ 2, 3, 4 having rod structure (0,1). The first
and fourth are semi-infinite, while Γ2 and Γ3 are finite of
length l2 and l3. Between Γ1 and Γ2 is a spherical NMS
rod Γ1

s of length 2jm1j, between Γ2 and Γ3 is a ring horizon
rod Γ2

h of length 2m2, and between Γ3 and Γ4 is a ring
NMS rod Γ3

s of length 2jm3j, wheremi represent the signed
masses of the horizons/NMSs. See Fig. 7. With pole
points labeled in the usual fashion, we find that the

potential functions associated with this rod structure are
given by

u ¼ GΓ1∪Γ1
s
þ GΓ3

s

¼ log ðrS1 − ðz − s1ÞÞ þ log

�
rN3

þ ðz − n3Þ
rS3 þ ðz − s3Þ

�
; ð7:30Þ

v ¼ GΓ2∪Γ1
s
þ GΓ3∪Γ3

s∪Γ4

¼ log

�
rN1

þ ðz − n1Þ
rN2

þ ðz − n2Þ
�
þ log ðrS2 þ ðz − s2ÞÞ: ð7:31Þ

We will first compute the propagation of logarithmic
angle defects across the spherical NMS rod Γ1

s . Let the
z-coordinates of the pole points be labeled as in (7.24),
(7.25) with m1, jm2j, m3 replaced by jm1j, m2, jm3j, and
observe that the relevant regularized potentials are

v̂n ¼ v − log ðrN1
þ ðz − n1ÞÞ

¼ log

�
rS2 þ ðz − s2Þ
rN2

þ ðz − n2Þ
�
; ð7:32Þ

ûs ¼ u − log ðrS1 − ðz − s1ÞÞ

¼ log

�
rN3

þ ðz − n3Þ
rS3 þ ðz − s3Þ

�
; ð7:33Þ

ū ¼ u − 2 log ρ ¼ −GΓ2∪Γ2
h∪Γ3

− GΓ4

¼ − log

�
rS1 þ ðz − s1Þ
rN3

þ ðz − n3Þ
�
− logðrS3 þ ðz − s3ÞÞ; ð7:34Þ

v̄ ¼ v − 2 log ρ ¼ −GΓ1
−GΓ2

h

¼ − logðrN1
− ðz − n1ÞÞ − log

�
rN2

þ ðz − n2Þ
rS2 þ ðz − s2Þ

�
: ð7:35Þ

Then according to Proposition 9

b1 − b2 ¼
1

2
ðūðN1Þ − v̄ðS1ÞÞ þ ṽnðN1Þ − ũsðS1Þ

¼ 1

2
log

�ðn1 − n3Þðs1 − n2Þðn1 − s2Þ2ðs1 − s3Þ2
ðn1 − s3Þðs1 − s2Þðn1 − n2Þ2ðs1 − n3Þ2

�

¼ 1

2
log

�
l2ðl2 þ l3 þ 2jm1j þ 2m2Þðl2 þ 2jm1j þ 2m2Þ2ðl2 þ l3 þ 2m2 þ 2jm3jÞ2
ðl2 þ l3 þ 2jm1j þ 2m2 þ 2jm3jÞðl2 þ 2m2Þðl2 þ 2jm1jÞ2ðl2 þ l3 þ 2m2Þ2

�
: ð7:36Þ

FIG. 7. Rod structure for the superposition of a ring horizon surrounded by a spherical and ring NMS.
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Next consider the propagation of logarithmic angle defect across the ring NMS rod Γ3
s . The relevant regularized potential

functions are given by

n̂n ¼ u − log ðrN3
þ ðz − n3ÞÞ ¼ log

�
rS1 − ðz − s1Þ
rS3 þ ðz − s3Þ

�
; ð7:37Þ

ûs ¼ u − log ðrS3 − ðz − s3ÞÞ ¼ log

�
rS1 − ðz − s1Þ
rN3

− ðz − n3Þ
�
; ð7:38Þ

v̄ ¼ v − 2 log ρ ¼ −GΓ2
s
−GΓ1

¼ − log

�
rS2 − ðz − s2Þ
rN2

− ðz − n2Þ
�
− logðrN1

− ðz − n1ÞÞ: ð7:39Þ

It then follows from Proposition 10 that

b3 − b4 ¼
1

2
ðv̄ðN3Þ − v̄ðS3ÞÞ þ ũnðN3Þ − ũsðS3Þ

¼ 1

2
log

�ðn2 − n3Þðs2 − s3Þðn1 − s3Þðs1 − n3Þ2
ðs2 − n3Þðn1 − n3Þðn2 − s3Þðs1 − s3Þ2

�

¼ 1

2
log

�ðl3 þ 2m2Þðl3 þ 2jm3jÞðl2 þ l3 þ 2jm1j þ 2m2 þ 2jm3jÞðl2 þ l3 þ 2m2Þ2
l3ðl2 þ l3 þ 2jm1j þ 2m2Þðl3 þ 2m2 þ 2jm3jÞðl2 þ l3 þ 2m2 þ 2jm3jÞ2

�
: ð7:40Þ

As in the previous example we may assume that b1 ¼ b4 ¼ 0. In order to show that there is a choice of parameters for
which b2 ¼ b3 ¼ 0, let l2 ¼ l3 ¼ l and set μ1 ¼ jm1j=l, μ2 ¼ m2=l, μ3 ¼ jm3j=l. Then the conical singularity
propagation formulas may be rewritten as

−b2 ¼ b1 − b2 ¼ −
1

2
log

�ð1þ μ1 þ μ2 þ μ3Þð1þ μ2Þ2
ð1þ μ1 þ μ2Þð1þ μ2 þ μ3Þ2

�
þ 1

2
log

� ð1þ 2μ1 þ 2μ2Þ2
ð1þ 2μ2Þð1þ 2μ1Þ2

�
; ð7:41Þ

b3 ¼ b3 − b4 ¼
1

2
log

�ð1þ μ1 þ μ2 þ μ3Þð1þ μ2Þ2
ð1þ μ1 þ μ2Þð1þ μ2 þ μ3Þ2

�
þ 1

2
log

�ð1þ 2μ2Þð1þ 2μ3Þ
ð1þ 2μ2 þ 2μ3Þ

�
: ð7:42Þ

Then b2 ¼ b3 ¼ 0 is equivalent to

ð1þ 2μ1 þ 2μ2Þ2
ð1þ 2μ2Þð1þ 2μ1Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I

¼ ð1þ μ1 þ μ2 þ μ3Þð1þ μ2Þ2
ð1þ μ1 þ μ2Þð1þ μ2 þ μ3Þ2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

II

¼ ð1þ 2μ2 þ 2μ3Þ
ð1þ 2μ2Þð1þ 2μ3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

III

: ð7:43Þ

Notice that I ¼ III is satisfied if

μ3 ¼
ð1þ 2μ1Þ2 − 4ð1þ 2μ1Þ − 4μ2

4ð1þ 2μ1Þ þ 4μ2
> 0: ð7:44Þ

In order to also achieve I ¼ II, consider a curve in
parameter space τ → ðμ1ðτÞ; μ2ðτÞ; μ3ðτÞÞ for τ ∈ ½0; ε�,
where ε > 0 is small. The component functions are as
follows: μ2ðτÞ ¼ τ, μ3ðτÞ is defined by (7.44), and μ1ðτÞ is
chosen to obtain

ð1þ 2μ1ðτÞÞ2 − 4ð1þ 2μ1ðτÞÞ − 4μ2ðτÞ ¼ 4ε2

⇒ μ1ðτÞ ¼
1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ τ þ ε2

p
: ð7:45Þ

This prescription for the curve implies

μ3ðτÞ ¼
1

4
ε2 þOðτε2 þ ε4Þ > 0;

log IðτÞ ¼ −τ þOðτε2 þ τ2Þ;

log IIðτÞ ¼ −
2

5
ε2 þOðτε2 þ ε4Þ: ð7:46Þ

Thus, along the curve we have that IðτÞ ¼ IIIðτÞ for all
small τ, and

log IIð0Þ ¼ −
2

5
ε2 þOðε3Þ < log Ið0Þ ¼ 0; ð7:47Þ

KHURI, WEINSTEIN, and YAMADA PHYS. REV. D 104, 044063 (2021)

044063-24



log IIðε3=2Þ ¼ −
2

5
ε2 þOðε3Þ > log Iðε3=2Þ

¼ −ε3=2 þOðε3Þ; ð7:48Þ

if ε is appropriately small. It follows that there is a time
τ ∈ ð0; ε3=2Þ such that IðτÞ ¼ IIðτÞ. This yields a solution
of (7.43), and consequently the balancing of all axis rods.
Moreover, according to Lemma 11 the ADM mass of the
balanced solution is 3π

2
ðm1 þm2 þm3Þ, which is negative

since both m2 and m3 are small compared to m1 < 0.

E. The ADM mass of superpositioned signed
masses in 5 dimensions

Here the ADM mass of asymptotically flat, biaxisym-
metric, static vacuum spacetimes having both horizons and
negative mass singularities is computed in terms of the
horizon/NMS rod lengths. Recall that the total mass is
given by the Komar integral

m ¼ −
3

32π

Z
S3∞

⋆dξ; ð7:49Þ

where ξ denotes the dual 1-form to the timelike Killing field
∂t, and S3∞ denotes a limit of 3-dimensional coordinate
spheres S3r in the asymptotically flat end as r → ∞. Write
U ¼ uþ v − 2 log ρ so that the spacetime metric (5.1)
becomes

g¼−e−Udt2þeudϕ2þevdψ2þe2αðdρ2þdz2Þ: ð7:50Þ

We find that

⋆dξ ¼ ρe2α−Uð−Uρdz ∧ dϕ ∧ dψ þUzdρ ∧ dϕ ∧ dψÞ
¼ Ure2α−Ur3 sinð2θÞdθ ∧ dϕ ∧ dψ ; ð7:51Þ

where the polar coordinates are defined by ρ ¼ r2 sin 2θ,
z ¼ r2 cos 2θ for θ ∈ ½0; π=2�. Since U is harmonic, an
expansion in spherical harmonics in the asymptotically
flat end yields U ¼ c

r2 þOðr−3Þ, for some constant c.
Moreover, as in the 4-dimensional case treated in
Sec. IV C, the quadrature equations for α imply that
j∇ð2α − UÞj ¼ Oðr−1Þ. It follows that

⋆dξ ¼
�
−
2c
r3

þOðr−4Þ
�
ð1þOðr−1ÞÞr3 sinð2θÞdθ

∧ dϕ ∧ dψ : ð7:52Þ

We may now evaluate the Komar mass integral to find
m ¼ 3πc

4
, or rather

U ¼ 4m
3πr2

þOðr−3Þ: ð7:53Þ

Consider now a general asymptotically flat rod structure
with horizon rods Γi

h, i ¼ 1;…; i0 having masses mi > 0,
and NMS rods Γj

s, j ¼ 1;…; j0 having masses mj < 0,
then

U ¼ −
Xi0
i¼1

GΓi
h
þ
Xj0
j¼1

GΓj
s
: ð7:54Þ

If the z-components of the north and south poles of the
horizon/NMS rods are labeled ni, si, nj, sj, then the
Green’s functions have the expansions at infinity

GΓi
h
¼ si−ni

r2
þOðr−3Þ; GΓj

s
¼ sj−nj

r2
þOðr−3Þ: ð7:55Þ

We have thus obtained the following formula for the
ADM mass.
Lemma 11. Consider a 5-dimensional, asymptotically

flat, biaxisymmetric, static vacuum configuration consist-
ing of the superposition of signed mass Schwarzschild-
Tangherlini and signed mass black ring solutions having
horizon masses 3π

2
mi > 0, i ¼ 1;…; i0, and NMS masses

3π
2
mj < 0, j ¼ 1;…; j0. If the corresponding horizon and

NMS rods have z-components in Weyl-Papapetrou coor-
dinates given by ni, si, nj, sj respectively, then the ADM
mass of this configuration is

m ¼ 3π

4

�Xi0
i¼1

ðni − siÞ −
Xj0
j¼1

ðnj − sjÞ
�

¼ 3π

2

�Xi0
i¼1

mi þ
Xj0
j¼1

mj

�
: ð7:56Þ
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