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Single-cell RNA sequencing (scRNA-seq) data has been widely used to profile cellular heterogeneities with a high-resolution picture.
Clustering analysis is a crucial step of scRNA-seq data analysis because it provides a chance to identify and uncover undiscovered
cell types. Most methods for clustering scRNA-seq data use an unsupervised learning strategy. Since the clustering step is separated
from the cell annotation and labeling step, it is not uncommon for a totally exotic clustering with poor biological interpretability to
be generated—a result generally undesired by biologists. To solve this problem, we proposed an active learning (AL) framework for
clustering scRNA-seq data. The AL model employed a learning algorithm that can actively query biologists for labels, and this
manual labeling is expected to be applied to only a subset of cells. To develop an optimal active learning approach, we explored
several key parameters of the AL model in the experiments with four real scRNA-seq datasets. We demonstrate that the proposed
AL model outperformed state-of-the-art unsupervised clustering methods with less than 1000 labeled cells. Therefore, we conclude
that AL model is a promising tool for clustering scRNA-seq data that allows us to achieve a superior performance effectively and
efficiently.
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INTRODUCTION
Single-cell RNA sequencing (scRNA-seq) technology is a revolu-
tionary tool that has been widely used to investigate cellular
heterogeneity in various tissues [1, 2]. Despite its popularity, the
analysis of scRNA-seq data remains a challenging task [3, 4].
Specifically, due to the low RNA capture rate and the low
sequencing depth per cell, gene-expression measurements in the
scRNA-seq data are low and sparse, with many “false” zero count
observations defined as dropout events [5]. Due to the noise in
scRNA-seq data, the tools designed for the analysis of bulk RNA-
seq data may not be appropriate for analyzing scRNA-seq data.
Additionally, cell types are largely unknown in most scRNA-seq
studies. Researchers generally employ unsupervised clustering
methods to group cells into sets. Based on the clustering results,
they can characterize and determine cell types [6]. Identifying cell
types is a challenging problem in the analysis of scRNA-seq data
[7]. After cells are clustered into groups, a common practice is to
use known marker genes to determine cell types [8, 9]. For
example, clusters with marker genes CD8A and CD8B highly
expressed are identified as the CD8+ T cells; cell clusters enriched
with genes CST3, CD1C, and FCER1A can be defined as the
dendritic cells [9]. However, many cells and cell types cannot be
determined by using known marker genes [8]. For example, in the
study from Wang et al., the authors used both the marker genes
and the ADTs (antibody-derived tags) to estimate cell type, but
there were still about twenty percent of cells that could not be
labeled. Thus, they had to exclude these cells when evaluating the
clustering performance [8].

Unsupervised clustering analysis has been widely used for the
analysis of scRNA-seq data. It is a crucial step for identifying and
uncovering cell types, the central goal for most scRNA-seq studies.
Numerous clustering methods have been developed for the
analysis of scRNA-seq data [10–12]. However, most, if not all, of
them are unsupervised learning approaches [6]. Biologists
annotate and label clusters using their domain knowledge after
the clustering is done. The clustering step is separated from the
cell annotation and labeling step, which may not be optimal. It is
not uncommon for a totally exotic clustering with poor biological
interpretability to be generated—a result generally undesired by
biologists. To overcome this problem, a potential solution is to
consider and integrate cell annotation and label information in the
clustering step [13, 14].
On the other hand, it is not feasible for biologists to annotate

and label all the cells in a dataset for two main reasons. First, it is
time-consuming. A typical scRNA-seq dataset can have several
thousand or even tens of thousands of cells. Biologists cannot
afford to manually examine each of them for labeling. Second,
while we recognize the value of prior biological domain
information in facilitating cell type assignment, we still hope
clustering is mainly decided by the data itself.
As a compromise, there is a (small) subset of cells that will be

annotated by biologists using their domain knowledge, e.g.,
marker genes. Then cell type assignment will be done for the rest
of the cells based on this small set of labeled cells. To optimize the
cell type assignment (cell clustering), we propose to formulate it
as an active learning (AL) problem. Here we have an abundance of
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unlabeled cells, while manual labeling is expected to be applied to
only a subset of cells. In such a scenario, learning algorithms can
actively query the biologist for labels. We call this type of iterative
supervised learning AL. We hypothesize that the manual labeling by
biologists, although applied to a small number of cells, would help
to keep clustering on the right track. We expect that AL algorithms
can benefit from the labeled samples and will outperform
conventional unsupervised learning approaches. AL models allow
us to achieve good performance with fewer labeled instances [15].
Given the general AL framework, some application-specific designs
need to be investigated for optimizing its application to scRNA-seq
data. Briefly, with the fixed budget (the number of cells to be
labeled), we need to decide which cells are the most informative to
be labeled by biologists, and how often they should be labeled, in
order to make the model more effective and efficient [16].
In this study, we proposed an AL framework for scRNA-seq data

clustering. We developed an optimal iterative learning procedure
by exploring several key parameters in the experiments. Based on
testing extensive real scRNA-seq datasets, the proposed AL model
outperformed state-of-the-art unsupervised clustering methods.

MATERIALS AND METHODS
Data preprocessing
We downloaded the raw count matrices of the four scRNA-seq datasets
from online databases (see details below). Normalization is first performed
on the raw data to remove the batch effect. We performed data
normalization by Seurat [12]: feature counts for each cell are divided by
the total counts for that cell and multiplied by the scale factor (default
10,000). The values are then natural log transformed. Then the top 2000
high variable genes across the cells are selected. Generally, top 2000 genes
are adequate to cover the whole cells’ variances [12].

AL model framework
Before explaining the framework, we should introduce three key
parameters in the AL model: (1) SN, the initial number of cells used for
training, (2) K, the number of cells which will be added to the training set
in each learning iteration, and (3) Budget, the total number of cells with

labels. In the experiments, we tested the effects of these parameters on the
AL model’s clustering performance. In an AL process, samples will be
divided into several parts (Fig. 1a): (1) Pool data, which contains the total
cells allowed to be labeled by the oracle (such as a biologist), (2) Training
set. Initially, the training set has only an SN number of cells. In each
learning iteration, K cells are added to the training set until reaching the
budget, (3) Validation set (Pool data—training set). In each learning
iteration, a sample selection algorithm is performed on the validation set
by which the most informative K cells will be moved from the validation
set to the training set, and (4) Testing set (Total data—pool data). It is used
to test the performance of the model in each learning iteration. The
number of cells in the testing set is constant over the entire learning
process. In this study’s experiments, we set 70% cells as the pool data and
30% cells as the testing data. For each experiment setting, a baseline (BL)
model is built as the AL model’s benchmark. In the BL models, a budget
number of cells is randomly sampled and used to train the model. In the
initial training set, at least one cell is sampled from each class (cell type).
The pipeline of the AL model is shown in Fig. 1b. Before running the

model, classifiers, budget, SN, and K should be predefined. We first
estimate the cell types (labels) of the cells in the initial training set by prior
knowledge (marker genes or other methods). The AL model is first trained
on the initial training cells. Then, the validation set are predicted by this
model, and the probability of each sample to be classified into each cluster
is calculated. Based on these probabilities, the sample selection method
(mentioned below) is used to move K cells from the validation set to the
training set. Here, we need to estimate the cell types of the new training
cells by prior knowledge (namely ask oracle for the cell types). The updated
training set is then used to train the model again, and the training set will
be further updated by the sample selection approach on the validation set.
This loop will continue until the number of cells in the training set reaches
the predefined budget.

Classifier
In this study, we tested four classifiers in the AL framework: (1) Support-
vector machines (SVM), (2) Random Forest (RF), (3) Logistic Regression (LR),
and (4) Multilayer Perceptron (MLP). All the classifiers are implemented by
the scikit-learn package in python 3.8. For MLP, we set the layers as
256:128:64:32:16 after tunning the parameters. All other parameters are
kept in default. Specifically, the activation function is Relu; the optimizer is
Adam; the batch size is 200 and the learning rate is 0.001.

Fig. 1 Architecture and protocol of the active learning model. In the architecture panel (a), Rectangles stand for the data partitions and
diamonds stand for the actions. Total data is divided into two parts: pool data and testing data. Then the pool data is divided into a validation
set and a training set. Only the training set needs labels. The training set will be used to train the model. Then the validation set will be
predicted by the model. Based on the sample selection method, the most informative samples in the validation set will be moved to the
training set and the labels of them are acquired from the oracle. This is one iteration of active learning. The iterations will continue until the
number of samples in the training set reaches the pre-defined budget. The procedure of using the active learning model on the scRNA-seq data
is shown in panel b.
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Clustering performance evaluation
We use multiple metrics to quantify the performance of clustering/
classification. Firstly, we use accuracy, precision, recall and F1 score to
compare the performance between the AL models and the BL models.
Denoting the true positive, true negative, false positive, and false negative
as TP, TN, FP, and FN, the accuracy (ACC) is defined as:

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

Precision is defined as:

Precision ¼ TP
TP þ FP

Then recall is defined as:

Recall ¼ TP
TP þ FN

And F1 score is:

F1 ¼ 2 � Precision � Recall
Precision þ Recall

We also use Adjusted Rand Index (ARI) [17], Normalized Mutual
Information (NMI) [18], and CA (clustering accuracy) to compare the
clustering performance between the AL models and the unsupervised
clustering methods. In the formula of ARI below, Lp and Lt are the
predicted cluster labels and the true labels, respectively; kp and kt are the
predicted cluster number and the true cluster number, respectively; nk
denotes the number of cells assigned to a specific cluster k (k= 1, 2, …, kt);
similarly, nt denotes the number of cells assigned to cluster t (t= 1, 2, …,
kp); nkt represents the number of cells shared between cluster k and t; and
n is the total number of cells.
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NMI is defined as:

NMI ¼ IðC;GÞ
maxfH Cð Þ;HðGÞg

Where I (C, G) stands for the mutual information between the pre-
dicted clusters C and the true clusters G and is defined as:

I C;Gð Þ ¼
Xtc

p¼ 1

Xtg

q¼ 1

jCp \ Gqj log njCp \Gqj
jCpj ´ jGqj

Where tc and tg stand for the number of clusters in C and G. H (C) and H
(G) represent the entropies:

H Cð Þ ¼ �
Xtc

p¼ 1

jCpj log jCpjn

H Gð Þ ¼ �
Xtg

q¼ 1

jGqj log jGqj
n

Clustering accuracy (CA) is designed to measure the best matching
between predicted and true clusters, which is:

CA ¼ max
m

Xn

i¼ 1

1
fbli ¼ mðliÞg

n

Wherebli and li are the true and predicted labels from clustering algorithms, n is
the number of cells and m is the number of all possible one-to-one mapping
between bli and li . Hungarian algorithm [19] is used to find the best mapping.

Sample selection algorithm
In each iteration of training, K cells will be selected by a sample selection
algorithm and moved from validation set to training set. Two sample selection
methods are tested in this study: (1) Entropy-based sample selection:

H ¼ �
XC

i¼ 1

Pi log2 Pi

Fig. 2 Clustering performance test of AL models on the different datasets. This figure shows the F1 scores from the SVM (column 1), LR
(column 2), RF (column 3) and MLP (column 4) - based AL and BL models for the dataset 1) 10X PBMC (row 1); 2) human kidney (row 2); 3)
mouse bladder (row 3); and 4) worm neuron (row 4). Budgets are varied from 100 to 1000. SN and K are fixed as 50 and 20. In most datasets,
RF-based AL models outperform the BL models (P < 0.05).
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Where H is the entropy of a cell, p is the probability of the cell to be classified
into the i cluster. In each training iteration, K cells with the highest entropy will
be selected as the new training samples, (2) Margin based sample selection
[20]: the margin is calculated as the difference of the highest probability and
the second-highest probability that a cell is classified to the clusters. In each
training iteration, K cells with the lowest margin will be selected as the new
training samples. According to the results of the pre-experiments, different
sample selection algorithms led to the similar clustering performance.
Therefore, we only showed the results from the AL model with the
entropy-based sample selection algorithm.

Parameter testing
The parameters tested in this study include: (1) the initial training sample
size (SN), (2) the added (selected) cells in each learning iteration (K), and (3)
the budget. Specifically, the SN is varied from 50 to 500 with the budget
and the K fixed as 1000 and 20, respectively, the budget is varied from 100
to 1000 with the K and the SN fixed as 20 and 50, respectively, and the K is
varied from 10 to 100 with the budget and the SN fixed as 1000 and 50,
respectively. Pearson’s correlation is performed between the budget, SN, K,
and the clustering performance (such as F1 score and ARI). While running
the AL model with each parameter setting, the BL model’s performance is
also calculated. The experiment with each parameter setting is replicated
ten times, and a one-tailed independent T-test is performed between the
performance of the AL and the BL models.

Real datasets
The 10× PBMC dataset is provided by the 10× scRNA-seq platform [21],
which profiles the transcriptomes of about 4000 peripheral blood
mononuclear cells (PBMCs) from a healthy donor. We downloaded the
filtered gene/cell matrix (2100 cells × 16,653 genes) from the 10×
genomics website (https://support.10xgenomics.com/single-cell-gene-
expression/datasets/2.1.0/pbmc4k). Cell labels identified by the graph-
based clustering are used as the ground-truth labels.

Worm neuron cells dataset is profiled by the sci-RNA-seq
platform (single-cell combinatorial indexing RNA sequencing) [22]. The
authors profiled about 50,000 cells from the nematode Caenorhabditis
elegans at the L2 larval stage and identified the cell types (http://atlas.gs.
washington.edu/worm-rna/docs/). We selected the subset of the neural
cells and removed the cells with the label of “Unclassified neurons”. Two
thousand one hundred neural cells are used for this study (2100 cell ×
13,488 genes).
The human kidney dataset contains 5685 cells by 25,215 genes in 11

clusters. Authors profiled 577 renal tumors and normal tissue from human
fetal, pediatric, and adult kidneys [23]. We downloaded the data from
the website (https://github.com/xuebaliang/scziDesk/tree/master/dataset/
Young). The filtered data with 2100 cells are used in this study.
Mouse bladder cell dataset is provided by the Mouse Cell Atlas project

[24] (https://figshare.com/s/865e694ad06d5857db4b). The count matrix
contains 400,000 single cells sorted by the tissues. The authors annotated
the cell types. In this study, we selected the cells from the bladder tissue
(2100 cells × 20,670 genes).
For all datasets, feature selection is performed according to the pipeline

of Seurat [12]. Top 2000 genes are selected for the downstream analyses.
As shown in Fig. S1, cells in all datasets are unevenly distributed in the
different clusters. In this case, all the initial training cells are evenly
sampled from each cluster to remove the effect of cluster size.

Tests of four popular unsupervised clustering methods
Four popular unsupervised clustering methods of scRNA-seq data are
tested on the four datasets and compared with the AL model, including: (1)
K-means, (2) Seurat [12], (3) Tscan [10], and (4) SC3 [11]. The normalized
data is used as the input for K-means and Tscan. The raw count is used for
Seurat as it has an embedded normalization. SC3 needs both the raw
count and the normalized count as the input. One-tailed independent T-
test is performed between the performance of the AL model and the
competing methods.

Fig. 3 Clustering performance of the AL model and four popular unsupervised clustering methods. This figure shows the ARI from the
unsupervised clustering methods (Seurat, SC3, Tscan, and K-means) and AL model on the four datasets (top-left: 10X PBMC; top-right: human
kidney; bottom-left: mouse bladder, and bottom-right: worm neuron). The parameters of AL model here are: {SN:50; K:20; Budget: 800 and
Classifier: RF}. AL model can always outperform other methods.
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RESULTS
The effects of the budget on the AL model
We first vary the budget and fix other parameters. We illustrate the
F1 score, ACC, ARI, and NMI in the AL models and the
corresponding BL models. Fig. 2 shows the F1 scores in the
experiments of the four datasets using the different classifiers. In all
the experiments, F1 scores are positively correlated with the
budgets for AL models (P < 0.05, Fig. S5). Here, we find a breakpoint
in the curve for each dataset, which means that using the massive
training samples in the AL model will not increase but even
decrease the model’s performance. The cutoff (breakpoint) in all the
experiments is about 600–900 cells. It is noted that for most MLP-
based AL models, the clustering performance is still rising up after
900 cells, indicating its high dependency on the sample size. The
rest of metrics (ACC, ARI, and NMI) are illustrated in Figs. S2, S3, S4,
and their correlations with budgets are shown in Figs. S6, S7, S8.

Then, we focus on the improvements from AL to BL models
with various budgets. For most datasets, the RF-based AL models
get the higher F1 scores than the BL models (P < 0.05) (Fig. 2). The
only exception is the mouse bladder dataset, in which the AL
models only have subtle differences with the BL models. The LR-
based AL models also show satisfactory improvements from the
BL models (Fig. 2) in human kidney, mouse bladder and worm
neuron datasets, but the magnitude of improvements is lower
than that from RF-based AL models. The results for all the metrics
of the models are listed in Table S1 and the results for the T-tests
between the AL and the BL models with various budgets are listed
in Table S2. For the SVM and MLP-based AL models, the
improvements of F1 score (and other metrics) to the BL models
are negligible (Figs. 2, S1, S2, S3).
In addition, we explore the best model for each dataset.

Although different datasets prefer different classifiers, AL models

Fig. 4 Low-dimensional representations of the real datasets with the predicted labels from different methods. U-map is built for the
dataset a 10X PBMC, b mouse bladder, c human kidney, and d worm neuron with the labels from 1) true label (1st row); 2) active learning
model (2nd row); 3) Seurat (3rd row); 4) SC3 (4th row); 5) Tscan (5th row) and 6) K-means (6th row). The pattern of clustering from the AL
model is more similar to that from the true labels than all other methods and for all datasets.
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can always outperform all the BL models. Specifically, for human
kidney dataset, the LR-based AL model with budget 900 has the
best clustering performance overall models (T-test for F1 score
with P < 0.001). For 10X PBMC dataset, the RF-based AL model
with budget 800 outperforms all other models (T-test for F1 score
with P < 0.001). For mouse bladder dataset, the RF-based AL
model with budget 900 has the optimal clustering performance
overall models (T-test for F1 score with P < 0.001). For the worm
neuron dataset, the LR-based AL model with budget 1000
outperforms all other models (T-test for F1 score with P < 0.05).
The RF-based AL model with budget 1000 also performs well on
this dataset. Combining with the results before, we conclude that
LR and RF are the superior classifiers for AL framework.

The effects from the K and SN to the AL model
We then fix the budget as 1000 and vary the K from 10 to 100 and
then vary the SN from 50 to 500. We find that both K and SN have
no significant influence on the clustering performance of the AL
models (Figs. S9, S10). Similar to the results before, RF-based AL
models always outperform the BL models in most datasets
regardless of the variation of K and SN.

Comparing the AL model with the unsupervised competing
methods
To demonstrate the advantages of using AL models, we compare
it with four popular unsupervised clustering methods (Seurat, SC3,
Tscan, and K-means) for the four scRNA-seq datasets. RF-based AL
model with budgets = 800, K = 20, and SN = 50 is used to
compare with the unsupervised methods. The experiment for
each dataset is replicated ten times. The clustering metrics ARI,

NMI, and CA are used. Fig. 3 indicates that the AL model has the
highest ARI in all the methods. It exceeded about 10 percent (P <
0.001) and 30 percent (P < 0.001) of ARI than other methods in
human kidney and worm neuron dataset, respectively. For 10×
PBMC and mouse bladder dataset, the magnitude of improvement
is lower but still significant (P < 0.05). The results of CA and NMI
are shown in Figs. S11, S12. The data for this experiment is in
Table S3.
On the U-map of the four datasets (Fig. 4), we find that the AL

model’s clustering pattern is more similar to that of the true label
than other methods. Specifically, on the U-maps of the 10× PBMC
dataset (column a in Fig. 4), the clustering patterns on the cell
island p and q from the AL model are almost the same as that
from the true labels, in which the cell island p and q are divided
into 3 and 4 clusters, respectively. However, Seurat divide the cell
island q into five clusters; SC3 define the cell island p as a whole
cluster; Tscan and K-means divide the cell island q into three
clusters. All the unsupervised methods have some biases on the
clustering patterns, even for the large clusters. Similar scenarios
can be found on the island i, j, and k from the U-maps of the
mouse bladder, human kidney, and worm neuron dataset,
respectively. Only the AL model has a similar clustering pattern
with that from the true labels on these cells. In summary, these
results indicate that the domain knowledge (cell types) is essential
for the scRNA-seq data clustering. By only acquiring the cell types
of a few hundred cells, the clustering performance will be highly
improved using the AL model rather than using the unsupervised
methods.

Running time of the AL model
Fig. 5 shows the running times of the AL models on 10× PBMC
dataset. A large budget will prolong the AL model’s running time.
A small k will also increase the running time because, with a small
k, more iterations of training are needed to reach the budget. SN
just has a slight influence on the running time. Combining the
results from Fig. 2, we claim that it is essential to find an
appropriate budget for an AL model. A too-large budget will
prolong the running time and impact the clustering performance.
We find that the RF-based models always have the lowest running
time than other models. When increasing the budgets or
decreasing the K, RF-based AL models get the slowest growth of
running time. This result demonstrates that RF is the best classifier
for AL framework.

DISCUSSION
The real-world application of the AL model
As shown in Fig. 1b, the AL models can be easily employed in the
real-world scRNA-seq data clustering. For using the AL model,
researchers need to normalize the raw count data firstly. We
suggest running the feature selection before doing the clustering
analysis in which the top 2000 (or less) most informative genes
can be selected. After preprocessing, the K, SN, and budget should
be predefined according to the total number of cells. According to
this study’s results, we recommend setting the budget as a tenth
of the total cell number, the SN as a tenth of the budget, and the K
as half of the SN. Then, researchers need to estimate the cell types
of the initial training cells by using marker genes. It is
recommended to include as many cell types as possible in the
initial training set. After the first iteration of training, the unlabeled
cells will be evaluated by the model, and the most informative
cells will be selected by the sample selection algorithm.
Researchers need to estimate the cell types of these cells (by
marker genes or other methods) and add them to the training set.
Then the model will be trained again by the new training set. The
training iterations will continue until the training set reaches the
budget. After this AL process, only a tenth of the total cells is

Fig. 5 Running time test of SVM and RF-based AL models. We
varied Budgets (row 1), K (row 2), and SN (row 3) to explore their
influence on the running time. Budgets and K are positively and
negatively correlated with the running times, respectively. RF-based
AL models have lower running time than other AL models. All the
experiments here are performed on the 10X PBMC dataset.
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labeled by the researchers. The well-trained model can be used for
the final clustering (classification).

Explaining the high variances in the clustering performance of
the AL model
In our experiments, we find that even with the same setting, the
AL models’ performance still has a high variance among the ten
runs. The variances are higher when the budget is 100 and 200
and lower when the budget is higher. To explore the variances’
causes, we choose the best and the worst run in the budget
experiment of the 10× PBMC dataset where the budget is set as
100, 200, and 1000. The label distribution in the training set of the
best run is shown in Fig. 6b top, c top, d top, and that of the worst
run are shown in Fig. 6b bottom, c bottom, d bottom. The true
label distribution is shown in Fig. 6a. We find that the training cells
in the best runs (see Fig. 6b, c top) contain more cells from the big
clusters (clusters 1 and 2 from the true label) and fewer cells from
the small clusters. In other words, the best runs’ training cell
distribution is more consistent with that of the true label. On the
contrary, the training cells in the worst runs (see Fig. 6b, c bottom)
are majorly from the small clusters (clusters 4 and 5), so the cell
distribution is inconsistent with that of the true label (Fig. 6a). For
the experiments with budget 1000, the cell distribution of the best
and the worst runs get closer (see Fig. 6d top, bottom). As a result,
their performance also tend to be uniform. In further studies, as
indicated by Wei et al. [25], adding a monitor for the cluster
distribution of the training cells during the AL iterations may
further improve the AL model’s performance. An algorithm is
needed here, which should consider the tradeoff between the
cluster distribution of the overall training cells and the information
carried by the individual cells.

Potential problems of the scRNA-seq data clustering
Two critical problems in the scRNA-seq data are the high ratio of
zero and the low count per cell [6]. Fig. 7 shows the ratio of zero
(b) and the average per cell count (a) in the four datasets. The
worm neuron dataset has the highest zero ratios and the lowest
average per cell count. Some classifiers cannot keep an excellent
performance on the highly zero-inflated data. Our experiment
show that the SVM-based models only got about 0.6 of F1 score
and 0.4 of ARI for this dataset. However, RF and LR-based AL
models can maintain a satisfactory performance on this dataset
(Figs. 2, S1, S2, S3).

Limitations of the AL model
Like the AL model, semi-supervised clustering approaches
typically focus on using labeled data (obtained from known
datasets or derived from marker genes) to help initialize clusters
and adjust clusters during the training. These approaches would
always assume that the labeled data and the unlabeled data share
the same distribution and therefore require high-quality labeled
data. Also, the tuning of weights of labeled data and unlabeled
data for the model would be tricky and varies with the size of
labeled data. Recently, Tian et al. proposed a semi-supervised
clustering method, scDCC [13], which converts the prior knowl-
edge from marker genes into soft pairwise constraints to supervise
the clustering. Although both the scDCC and the AL model can
take advantages of the knowledge provided by the marker genes,
they are different on both the clustering algorithm and the way of
integrating prior knowledge. Compared to scDCC, AL model can
integrate more prior knowledge from marker genes. However, as a
supervised approach, it also has some disadvantages. As we
showed in our experiments, we arbitrarily sampled at least one cell

Fig. 6 The label distribution of the training cells in the best and worst AL models. The label distributions are from: 1) the best model with
budget 100 (b top); 2) the best model with budget 200 (c top); 3) the best model with budget 1000 (d top); 4) the worst model with budget
100 (b bottom); 5) the worst model with budget 200 (c bottom); 6) the worst model with budget 1000 (d bottom). Panel a shows the
distribution of the true labels. The dataset and model used here are 10X PBMC and RF-based AL model, respectively. K and SN are set as 20
and 50, respectively. When the model uses the data with a similar label distribution from the true labels, it tends to perform better.
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from each cluster as the initial training samples. This is consistent
with the theory of active learning but is challenging to be
achieved in reality since the total number of clusters (cell types)
is unknown. Although it only needs a few cells for each cell type,
AL models can only cluster cells into the known cell types
estimated by the marker genes (or other methods). For the cell
types that cannot be estimated, AL models cannot cluster cells
into it. Two potential methods can, to some extent, solve this
problem. Firstly, if the selected cells could not be labeled (by
oracle), we could define them as an unknown class, such as a
class X, then the AL model could cluster some cells into this class.
After running the AL model, if there were too many cells
clustered in the class X, we could use an unsupervised method to
separate them further. We can also define more than one
unknown class, such as class X, Y, Z, etc., based on the limited
domain knowledge. In addition, although the cell types of some
selected cells are unable to be identified, the probabilities of
their clustering preferences are still useful to us. For example,
suppose some unknown cells have a high probability of being
classified in a cell type A, we can deduce that these cells are close
to the cell type A in the cell differentiation trajectory. Combining
with some domain knowledge, we may have an acceptable
estimation of the cell type of these cells. However, these
methods are unproven and underdeveloped; more studies are
needed to improve them further.
In this study, we develop an AL model for the scRNA-seq data

clustering. We find that the budget size is positively correlated
with the performance of the AL model. RF is the best classifier for
the AL model in terms of the clustering performance and the
running time. The AL model can significantly exceed the clustering
performance of the unsupervised methods with <1000 labeled

cells, indicating it is a promising tool for the scRNA-seq data
clustering.

DATA AVAILABILITY
The code and all datasets of this study are available on the GitHub: https://github.
com/xianglin226/scAL.
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