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Abstract. We extend the decoupling results of the first two authors to the case of real
analytic surfaces of revolution in R3. New examples of interest include the torus and the
perturbed cone.

1. Background and the main result

Let
S = {(ξ1, ξ2, g(ξ1, ξ2)) : (ξ1, ξ2) ∈ [−1, 1]2}

be a smooth, compact surface in R3, given by the graph of the function g. For each 0 < δ < 1
let Nδ(S) be the δ-neighborhood of S.

Given a function f : R3 → C and a set τ ⊂ R3, we denote by fτ the Fourier restriction of
f to τ .

In [1], [2], the first two authors proved the following result.

Theorem 1. Assume S has everywhere nonzero Gaussian curvature. Let Pδ(S) be a parti-
tion of Nδ(S) into near rectangular boxes τ of dimensions ∼ δ1/2 × δ1/2 × δ. Then for each
f Fourier supported in Nδ(S) and for 2 ≤ p ≤ 4 we have

‖f‖Lp(R3) .ε (δ−1)
1
2
− 1
p
+ε(

∑
τ∈Pδ(S)

‖fτ‖pLp(R3))
1/p. (1)

Moreover, if Gaussian curvature is positive then

‖f‖Lp(R3) .ε δ
−ε(

∑
τ∈Pδ(S)

‖fτ‖2Lp(R3))
1/2. (2)

Inequality (2) is referred to as an l2- decoupling. It is false for p > 4.
Inequality (1) is an lp-decoupling. Since there are roughly δ−1 boxes in Pδ(S), the lp-

decoupling follows from the l2-decoupling and Hölder’s inequality when S has positive cur-
vature. However, if S has negative curvature, the stronger l2-decoupling may fail. This is
easiest to observe in the case of the hyperbolic paraboloid, corresponding to g(ξ1, ξ2) = ξ21−ξ22 .
What rules out the l2-decoupling here is the fact that this surface contains at least one line,
and the following elementary principle (applied with N ∼ δ−1/2).

Proposition 2. Let L be a line segment in Rn of length ∼ 1. For each 0 ≤ δ,N−1 < 1, let
Pδ,N be a partition of the δ-neighborhood Nδ(L) of L into ∼ N cylinders T with length N−1

and radius δ.
For p > 2 let D(δ,N, p) be the smallest constant such that

‖f‖Lp(Rn) ≤ D(δ,N, p)(
∑

T∈Pδ,N

‖fT‖2Lp(Rn))1/2 (3)
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holds for all f with Fourier transform supported on Nδ(L). Then

D(δ,N, p) ∼ N
1
2
− 1
p ,

and (approximate) equality in (3) can be achieved by using a smooth approximation of 1Nδ(L).

The implicit constants in (1) and (2) depend on ε, on the C3 norm of g and on the lower
bound for the Gaussian curvature. In [1] and [2], inequalities (2) and (1) are first proved for
the model surfaces, the elliptic and hyperbolic paraboloid, respectively. The extension to the
more general surfaces in Theorem 1 is then obtained via local approximation and induction
on scales, using Taylor’s formula with cubic error term. This is the reason why the third
derivatives are also important, in addition to the first and second order ones.

The notable feature of the choice of the diameter δ1/2 of each τ ∈ Pδ(S) in Theorem 1
is that this is the largest scale for which τ can be thought of as being essentially flat. By
that we mean that there is a rectangular box Rτ such that Rτ ⊂ τ ⊂ 1000Rτ . This is of
course a consequence of the nonzero curvature condition. The case when one of the principal
curvatures is zero leads to new types of decoupling, that have been only partially explored
(see also the last section). For future reference, we record the result from [1] for the cone

C2 := {(ξ1, ξ2,
√
ξ21 + ξ22 ) :

1

4
≤ ξ21 + ξ22 ≤ 4}

and the cylinder

Cyl2 := {(ξ1, ξ2, ξ3) : ξ21 + ξ22 = 1, |ξ3| . 1}.

Theorem 3. For S either C2 or Cyl2 we let Pδ(S) be a partition of Nδ(S) into roughly δ−1/2

essentially rectangular plates P with dimensions ∼ 1 × δ1/2 × δ. Then for each 2 ≤ p ≤ 6
and each f with Fourier transform supported in Nδ(S) we have

‖f‖Lp(R3) .ε δ
−ε(

∑
P∈Pδ(S)

‖fP‖2Lp(R3))
1/2.

The fact that we decouple using plates of length ∼ 1 is enforced by Proposition 2. The
range [2, 6] here is larger than the range [2, 4] from Theorem 1 because of subtle dimension-
ality considerations.

As an immediate corollary of Hölder’s inequality, we get the following l4 decoupling for
S = C2, Cyl2, analogous to (1)

‖f‖L4(R3) .ε δ
−ε− 1

8 (
∑

P∈Pδ(S)

‖fP‖4L4(R3))
1/4. (4)

We will refer to this inequality for the cylinder as cylindrical decoupling.

A natural step would be to try to extend Theorems 1 and 3 to the case of arbitrary
real analytic surfaces S in R3, without any restriction on curvature. One of the issues is
identifying the correct dimensions of the boxes in the partition of Pδ(S). In analogy to the
previous examples, we would like these boxes to be essentially flat. One possible way to
formalize the question is recorded in the following conjecture.

Conjecture 4. If S is the graph of a nonconstant real analytic function g : [−1, 1]2 → R
then for each 0 < δ ≤ 1 there is a partition Pδ(S) of Nδ(S) into essentially flat boxes τ
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(of possibly different dimensions) such that for each f with Fourier transform supported in
Nδ(S) we have

‖f‖L4(R3) .ε δ
−ε|Pδ(S)|

1
4 (

∑
τ∈Pδ(S)

‖fτ‖4L4(R3))
1/4,

where |Pδ(S)| refers to the cardinality of Pδ(S).

In this generality, identifying such a partition seems to be a rather difficult task. We will
limit our investigation to the class of surfaces of revolution, which as we shall soon see, is
large enough to include some interesting new examples.

To get started, for each real analytic function γ : [1
2
, 2] → R we consider the associated

surface of revolution

Sγ = {(ξ1, ξ2, γ(
√
ξ21 + ξ22 )) :

1

4
≤ ξ21 + ξ22 ≤ 4}.

For example, the cone C2 corresponds to γ(r) = r. Our main result can be somewhat vaguely
summarized as follows. We save the details about the precise definition of Pδ(S) for the later
sections. The interesting new feature of the partitions Pδ(S) is that they will consist of boxes
of different scales.

Theorem 5 (Main result). Conjecture 4 holds for all real analytic surfaces of revolution Sγ.

As we shall soon see, the curvature of Sγ is zero exactly when either γ′ or γ′′ is zero. Let
r1, . . . , rM be the zeros of γ′γ′′ inside [1

2
, 2]. The fact that there are only finitely many such

zeros is a consequence of the real analyticity of γ. We consider pairwise disjoint intervals
Ii = (ri − ∆i, ri + ∆i), with ∆i small enough such that the power series expansion of γ
centered at ri has radius of convergence > ∆i. Various other restrictions on the smallness of
∆i will become apparent throughout the forthcoming argument. Note that the complement

[
1

2
, 2] \

M⋃
i=1

Ii =
⋃

Ji

is the union of at most M + 1 intervals Ji. The triangle inequality will allow us to separately
consider the part of the surface corresponding to one such interval. On the intervals Ji the
surface will have nonzero curvature, so Theorem 1 is applicable.

It remains to investigate the contribution from the intervals Ii. Let us fix such an interval.
To simplify notation, we will assume it to be (1 −∆, 1 + ∆).

The partition Pδ(S) and the type of analysis we will employ will depend on the derivatives
of γ at 1. These derivatives encode all the necessary information concerning the size of the
two principal curvatures of Sγ. This will be explored in more detail the next section.

2. A case analysis based on principal curvatures

Differential geometry ties the notion of curvature of surfaces S in R3 to the change in the
direction of the normal vector along curves in S. To be exact, it describes curvature by way
of the derivative of the map N : S → S2, whose value at p is the unit (outward) normal
vector of S at p.
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When S is given as the graph of a function g, this differential in local coordinates (ξ1, ξ2)
has the form

(1 + (g1)
2 + (g2)

2)−
3
2


g11(1 + (g2)

2)− g1g2g12 g12(1 + (g2)
2)− g1g2g22

g12(1 + (g1)
2)− g1g2g11 g22(1 + (g1)

2)− g1g2g12

 (5)

where gi = ∂g
∂ξi

and gij = ∂2g
∂ξi∂ξj

.

With a little algebra, the determinant (also known as the Gaussian curvature of S) at a
point (ξ1, ξ2, g(ξ1, ξ2)) is found to be

KS(ξ1, ξ2) =
g11g22 − (g12)

2

(1 + (g1)2 + (g2)2)2
. (6)

The two eigenvalues λ1, λ2 are called principal curvatures. Their product equals the Gaussian
curvature.

For a later convenience, we record the simplified version of (6) in the case that S is the

surface of revolution Sγ. The Gaussian curvature along
√

(ξ1)2 + (ξ2)2 = r is

K(r) =
γ′(r)γ′′(r)

r(1 + γ′(r)2)2
. (7)

To motivate our intuition in the following sections, we also record the following well known
formulae for the principal curvatures in the radial and angular directions

|λrad(r)| =
|γ′′(r)|

(1 + (γ′(r))2)3/2

|λang(r)| =
|γ′(r)|

r(1 + (γ′(r))2)1/2
.

We will split our analysis into three cases.

Case 1. If γ′(1) 6= 0 and γ(n)(1) = 0 for all n ≥ 2, then we have in fact γ(r) = γ′(1)r.
This is a cone, so it is covered by Theorem 3. The next two cases are new.

Case 2. If γ′(1) = . . . = γ(n−1)(1) = 0 and γ(n)(1) 6= 0 for some n ≥ 2, then the
angular principal curvature is zero along the curve r = 1. We will refer to these manifolds
as quasi-tori and will discuss them in Section 3.

The typical example to have in mind is the torus, corresponding to

γ(r) = (
1

4
− (r − 1)2)1/2 (8)

defined on (1−∆, 1 + ∆), ∆ < 1
2
.

Case 3. If γ′(1) 6= 0, γ′′(1) = . . . = γ(n−1)(1) = 0 and γ(n)(1) 6= 0 for some n ≥ 3, then
the radial principal curvature is zero along the curve r = 1. These manifolds can be thought
of as perturbations of the cone and will be discussed in Section 4.
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3. The case of the quasi-torus

To simplify notation we will assume γ(1) = 1 and γ(n)(1) = n!, so that

γ(r) = 1 + (r − 1)n +O((r − 1)n+1). (9)

Fix δ. Our task is to describe the partition Pδ(S). Recall that we want each element of
Pδ(S) to be an essentially rectangular box.

We start with a dyadic decomposition near 1

[1−∆, 1 + ∆] = [1− δ1/n, 1 + δ1/n] ∪ ∪k≥1{r : |r − 1| ∈ (2k−1δ1/n, 2kδ1/n] }.

Note that k is restricted to O(log 1
δ
) values. Thus, since we can afford ε losses in Theorem

5 we may invoke again the triangle inequality and restrict our attention to a fixed k. Due
to symmetry, we may further restrict attention to the right halves of these sets in the above
decomposition, which we call Uk.

For k ≥ 0 let us call Sk the part of the surface Sγ above the thin annulus

Ak = {(ξ1, ξ2) : (ξ21 + ξ22)1/2 ∈ Uk}.

Figure 1 depicts S0, S1, S2, with S0 being the nearly horizontal circular strip at the top.
The rationale for bringing in such a decomposition is that the two principal curvatures are
essentially constant on each Sk

|λrad(r)| ∼ (2kδ1/n)n−2

|λang(r)| ∼ (2kδ1/n)n−1.

We will first see how to deal with the surface S0 corresponding to the interval U0 =
[1, 1 + δ1/n]. Note that Nδ(S0) sits inside the Cδ1/n-neighborhood of the cylinder Cyl2, with
C = O(1). We may thus apply cylindrical decoupling (Theorem 3) with δ replaced with

δ1/n. Each vertical plate of dimensions ∼ 1 × δ
1
2n × δ

1
n will intersect S0 in a cap θ0 with

dimensions ∼ δ1/2n × δ1/n. Note that for each such θ0, the box Nδ(θ0) is essentially flat.

Let Pδ(S0) be the partition consisting of all boxes τ0 = Nδ(θ0). Invoking cylindrical
decoupling, we find that whenever f has Fourier transform supported inside Nδ(S0) we have

‖f‖L4(R3) .ε δ
−ε|Pδ(S0)|

1
4 (

∑
τ0∈Pδ(S0)

‖fτ0‖4L4(R3))
1/4.

The collection Pδ(S0) will provide the first elements of the final partition Pδ(S).

Figure 1. The partition Pδ(S)
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ξ1
ξ2

ξ3 θ0

θ1

θ2,2θ2,1

θ2,4θ2,3

θ2

Let us now investigate Sk, for k ≥ 1. Fix f with Fourier transform supported inside
Nδ(Sk). There will be two steps needed in order to produce the desired partition Pδ(Sk).
The first step is very similar to the one we did for k = 0. Namely, we invoke cylindrical
decoupling to write

‖f‖L4(R3) .ε δ
−ε|P̃δ(Sk)|

1
4 (

∑
τk∈P̃δ(Sk)

‖fτk‖4L4(R3))
1/4. (10)

Each τk ∈ P̃δ(Sk) is equal to Nδ(θk) for some cap θk of dimensions ∼ (2kδ1/n)1/2× (2kδ1/n).

It is not hard to see that τk is curved. This is because Sk has big radial curvature. More
concretely, note that (9) forces the δ-neighborhood of the graph of γ on Uk to be a curved
tube. This observation suggests that each fτk can be further decoupled into smaller pieces.
The principal curvatures of θk while nonzero, are very small. Consequently, Theorem 1 is not
directly applicable. What compensates for the small curvatures is the fact that θk has tiny
area. This will allow us to stretch it into a surface of scale ∼ 1, whose principal curvatures
are also ∼ 1. To execute this strategy we use a linear transformation in the style of parabolic
rescaling.

To simplify notation, let us denote by sk the scale 2kδ1/n. It is also convenient to deal
with θk sitting directly above the ξ2 axis, so that a point (ξ1, ξ2, ξ3) ∈ θk satisfies

|ξ1| . s
1/2
k , ξ2 − 1 ∼ sk, ξ3 − 1 ∼ snk .

We will use the transformation

Lk(ξ1, ξ2, ξ3) = (
ξ1

s
1/2
k

,
ξ2 − 1

sk
,
ξ3 − 1

snk
).

Let us call θk,new = Lk(θk). We make a few observations related to this new surface.

First, note that Lk(Nδ(θk)) ⊂ N δ
sn
k

(θk,new). Thus the function fnew defined by

f̂new = f̂τk ◦ L−1k
has Fourier transform supported in N δ

sn
k

(θk,new).
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Second, note that the equation of θk,new in the new coordinates η1, η2, η3 is

η3 =
γ(
√

1 + sk(η21 + 2η2) + s2kη
2
2 )− 1

snk
, |η1| . 1, η2 ∼ 1.

Using (9) and the fact that
√

1 + r = 1 + r
2

+O(r2) we may write

η3 =
1

2nsnk
(sk(η

2
1 + 2η2) + s2kη

2
2)n +O(s−nk (sk(η

2
1 + 2η2) + s2kη

2
2)n+1)

=
1

2n
(η21 + 2η2)

n +O(sk)Ψ(η1, η2).

Here Ψ is a C∞ function. Let Sref be the surface

{(η1, η2,
1

2n
(η21 + 2η2)

n), |η1| . 1, η2 ∼ 1}.

The fact that n ≥ 2 and the discussion from the previous section implies that Sref has both
principal curvatures ∼ 1. The same remains true for θk,new, as sk � 1.

We can thus apply Theorem 1 to decouple fnew using N essentially flat boxes B of dimen-
sions ∼ ( δ

snk
)1/2 × ( δ

snk
)1/2 × ( δ

snk
)

‖fnew‖L4(R3) .ε N
1/4δ−ε(

∑
B

‖fnew,B‖4L4(R3))
1/4. (11)

Let us call τk,l the boxes L−1k (B). These boxes partition Nδ(θk) and are essentially flat.
Each τk,l is essentially the δ-neighborhood of some cap θk,l ⊂ θk. Figure 1 depicts the
decomposition of some θ2 into four smaller caps θ2,l.

Note that for each B
f̂new,B = ̂fτk,L−1(B) ◦ L−1k .

Thus, using a change of variables, (11) can be rewritten as

‖fτk‖L4(R3) .ε N
1/4δ−ε(

∑
τk,l

‖fτk,l‖4L4(R3))
1/4. (12)

The number N is the same for each τk. We can now define the partition Pδ(Sk) to consist
of all τk,l with τk ∈ P̃δ(Sk). Combining (10) with (12) we get the following decoupling for a
function f with Fourier transform supported in Nδ(Sk), k ≥ 1

‖f‖L4(R3) .ε δ
−ε|Pδ(Sk)|

1
4 (

∑
τk,j∈Pδ(Sk)

‖fτk,j‖4L4(R3))
1/4.

The partition Pδ(S) will be the union of all Pδ(Sk), k ≥ 0.

4. The perturbed cone

To simplify notation we will assume

γ(r) = r + (r − 1)n +O((r − 1)n+1). (13)

We will use the decomposition into intervals Uk from the previous section

[1, 1 + ∆) = [1, 1 + δ1/n] ∪ ∪k≥1[1 + 2k−1δ1/n, 1 + 2kδ1/n].

We continue to denote by Sk the part of S corresponding to Uk, and to write sk = 2kδ1/n.
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Let us deal first with S0. Note that Nδ(S0) sits inside NO(δ)(C2), so we can use the cone
decoupling from Theorem 3 to produce the relevant partition Pδ(S0), consisting of essentially
flat boxes of dimensions ∼ δ1/n × δ1/2 × δ.

Next, we fix some k ≥ 1 and assume f has Fourier transform supported inside Nδ(Sk).
We will decouple in two stages. The first one is similar to the case k = 0. More precisely,
note that Nδ(Sk) ⊂ NO(snk )

(C2). This allows us to run a cone decoupling

‖f‖L4(R3) .ε δ
−ε|P̃δ(Sk)|

1
4 (

∑
τk∈P̃δ(Sk)

‖fτk‖4L4(R3))
1/4. (14)

Each τk ∈ P̃δ(Sk) is equal to Nδ(θk) for some cap θk of dimensions ∼ s
n/2
k × sk. It is worth

observing that cylindrical decoupling would have led to much wider caps of dimensions

∼ s
1/2
k × sk. The caps θk however are small enough to behave well under rescaling.

We next perform a finer decoupling for each τk. It is convenient to deal with θk sitting
directly above the ξ2 axis, so that a point (ξ1, ξ2, ξ3) ∈ θk satisfies

|ξ1| . s
n/2
k , ξ2 − 1 ∼ sk, ξ3 − 1 ∼ sk.

To understand better how to rescale θk, we rotate it with π
4

about the ξ1 axis and rescale

the ξ2 and ξ3 variables by
√

2. Thus, the new coordinates satisfy
ξ1 = ξ′1
ξ2 = ξ′2 − ξ′3
ξ3 = ξ′2 + ξ′3.

Using (13), the equation of θk appears now in an implicit form

ξ′2 + ξ′3 =
√
ξ′21 + (ξ′2 − ξ′3)2 + (

√
ξ′21 + (ξ′2 − ξ′3)2 − 1)n +O((

√
ξ′21 + (ξ′2 − ξ′3)2 − 1)n+1),

with
|ξ′1| . s

n/2
k , ξ′2 ∼ 1 + sk, ξ′3 ∼ snk . (15)

This can be rearranged as follows

ξ′3 =
ξ′21
4ξ′2

+
1

4ξ′2
(
√
ξ′21 + (ξ′2 − ξ′3)2 − 1)n +

1

4ξ′2
O((

√
ξ′21 + (ξ′2 − ξ′3)2 − 1)n+1).

Note that ξ′3 =
ξ′21
4ξ′2

is the equation of the cone C2 in the new coordinates.

We will use the transformation

Lk(ξ
′
1, ξ
′
2, ξ
′
3) = (η1, η2, η3) := (

ξ′1

s
n/2
k

,
ξ′2 − 1

sk
,
ξ′3 − 1

snk
).

Let us call θk,new = Lk(θk). If we define ξ′3 = ψ(ξ′1, ξ
′
2) then the equation of θk,new in the

coordinates η1, η2, η3 becomes

η3 = ψk(η1, η2) :=
1

snk
[ψ(s

n/2
k η1, skη2 + 1)− 1], |η1|, |η2| . 1.

It remains to check that this surface satisfies the requirements in Theorem 1. More precisely,
we have to show that the C3 norm of ψk is O(1), independent of k. Also, we need to show
that the Gaussian curvature is away from zero, uniformly over k.
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Lemma 6. Write

φ(ξ′1, ξ
′
2) =

1

4ξ′2
(
√
ξ′21 + (ξ′2 − ψ(ξ′1, ξ

′
2))

2 − 1)n +
1

4ξ′2
O((

√
ξ′21 + (ξ′2 − ψ(ξ′1, ξ

′
2))

2 − 1)n+1).

Then for each p, q ≥ 0 with

|ξ′1| . s
n/2
k , ξ′2 − 1 ∼ sk (16)

we have
|Dp

1D
q
2φ(ξ′1, ξ

′
2)| . min{(sk)n−p−q, 1}.

Consequently, for each p, q ≥ 0

sup
|η1|,|η2|.1

|Dp
1D

q
2ψk(η1, η2)| . 1,

with an implicit constant independent of k.

Proof. It is clear that ψ ∈ C∞. Note that due to (15) we have

ξ′2 ∼ 1

and

|(
√
ξ′21 + (ξ′2 − ψ(ξ′1, ξ

′
2))

2 − 1)m| . smk

for each 0 ≤ m ≤ n. The bound on the derivatives of φ is now quite immediate, using
repeated differentiation.

Next, recall that
ψ(ξ′1, ξ

′
2) = ϕ(ξ′1, ξ

′
2) + φ(ξ′1, ξ

′
2),

where

ϕ(ξ′1, ξ
′
2) =

ξ′21
4ξ′2

.

Note that in the domain (16) we have

|Dp
1D

q
2ϕ(ξ′1, ξ

′
2)| . (sk)

2−p

for each 0 ≤ p ≤ 2, q ≥ 0 and the derivative becomes zero if p ≥ 3.
Using all these observations, the desired bound on the derivatives of ψk is now immediate.

�

According to (6), the Gaussian curvature of θk,new is roughly

Hess(ψk) = det

 ψ11(s
n/2
k η1, skη2 + 1) (sk)

1+n2

snk
ψ12(s

n/2
k η1, skη2 + 1)

(sk)
1+n2

snk
ψ12(s

n/2
k η1, skη2 + 1) ψ22(s

n/2
k η1, skη2 + 1)

 .
It is immediate that

Hess(ψk) = (sk)
2−nHess(ψ).

Another application of (6) shows that Hess(ψ) is roughly the Gaussian curvature of θk, in
the coordinates (ξ′1, ξ

′
2, ξ
′
3). This is in turn comparable to the Gaussian curvature of θk in

the original coordinates (ξ1, ξ2, ξ3). But (7) determines this curvature to be ∼ (sk)
n−2. We

conclude that the curvature of θk,new is ∼ 1, as desired.

Note that Lk mapsNδ(θk) insideNO( δ
sn
k
)(θk,new). The rest of the argument is very similar to

the one from the end of the previous section. We apply Theorem 1 to partition NO( δ
sn
k
)(θk,new)
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into essentially flat boxes with dimensions ∼ ( δ
snk

)1/2×( δ
snk

)1/2×( δ
snk

). Applying L−1k , this gives

rise to a partition of Nδ(θk) into essentially flat boxes τk,l = Nδ(θk,l), where each θk,l has
radial length ∼ sk(

δ
snk

)1/2 and angular length ∼ (sk)
n/2( δ

snk
)1/2.

The desired partition Pδ(Sk) will consist of all boxes τk,l corresponding to all θk ∈ P̃δ(Sk).
This concludes the analysis of the perturbed cone.

5. Final remarks

There are various ways in which one could refine the analysis in this paper. We have only
aimed to prove a universal l4 decoupling on the space L4. A more careful inspection of the
argument will reveal that sometimes this can be naturally upgraded to an l2 decoupling. For
example, the torus (8) is positively curved on the outside (r > 1) and negatively curved on
the inside (r < 1). Thus, the partition from Section 3 leads in fact to an l2 decoupling, while
the analogous partition for the inside part leads only to an l4 decoupling.

Also, the boxes in our partitions are maximal, subject to the requirement of being es-
sentially flat. Under this mild constraint some surfaces perform better than others. For
example, we have seen earlier that the critical exponent for cone decoupling into plates is 6,
rather than 4. Given a surface S, one may instead search for partitions consisting of boxes
of smallest possible size, for which the l4 decoupling holds. This issue seems to be much
more delicate. For example, one of the most interesting open questions about surfaces in R3

is whether the cone can be decoupled into square-like caps. We conjecture the following.

Conjecture 7. Let Pδ(C2) be a partition of Nδ(C2) into roughly δ−1 near rectangular boxes
τ of dimensions ∼ δ1/2 × δ1/2 × δ. Then for each f with Fourier transform supported in
Nδ(C2) and for 2 ≤ p ≤ 4 we have

‖f‖Lp(R3) .ε (δ−1)
1
2
− 1
p
+ε(

∑
τ∈Pδ(C2)

‖fτ‖pLp(R3))
1/p.

The only range where this is known to hold is 2 ≤ p ≤ 3, using trilinear restriction
technology.
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