DECOUPLINGS FOR REAL ANALYTIC SURFACES OF REVOLUTION

JEAN BOURGAIN, CIPRIAN DEMETER, AND DOMINIQUE KEMP

ABSTRACT. We extend the decoupling results of the first two authors to the case of real
analytic surfaces of revolution in R®. New examples of interest include the torus and the
perturbed cone.

1. BACKGROUND AND THE MAIN RESULT

Let
S={(1,6,9(&.&)) : (&1,&) € [-1,1]%}

be a smooth, compact surface in R?, given by the graph of the function g. For each 0 < § < 1
let Ns(S) be the d-neighborhood of S.

Given a function f : R® — C and a set 7 C R3, we denote by f, the Fourier restriction of
f tor.

In [1], [2], the first two authors proved the following result.

Theorem 1. Assume S has everywhere nonzero Gaussian curvature. Let Ps(S) be a parti-
tion of N5(S) into near rectangular bozes T of dimensions ~ §'/% x §/2 x 5. Then for each
[ Fourier supported in Ns(S) and for 2 < p < 4 we have

I llersy Se 672750 el (1)

TE'P(;(S)

Moreover, if Gaussian curvature is positive then

1 Flloesy S 07 D M fellznqes)™, (2)

TEPs(S)

Inequality (2) is referred to as an [*- decoupling. It is false for p > 4.

Inequality (1) is an [P-decoupling. Since there are roughly 6=! boxes in Ps(S), the IP-
decoupling follows from the [?-decoupling and Hoélder’s inequality when S has positive cur-
vature. However, if S has negative curvature, the stronger (?>-decoupling may fail. This is
easiest to observe in the case of the hyperbolic paraboloid, corresponding to g(&;, &) = £ —E2.
What rules out the [>-decoupling here is the fact that this surface contains at least one line,
and the following elementary principle (applied with N ~ §=1/2),

Proposition 2. Let L be a line segment in R™ of length ~ 1. For each 0 < §, N7! < 1, let
Ps.n be a partition of the 6-neighborhood Ns(L) of L into ~ N cylinders T with length N~
and radius 9.

For p> 2 let D(6,N,p) be the smallest constant such that

1fllzony < DO N ) D I frlldoa)'? (3)

TePs, N
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holds for all f with Fourier transform supported on Ns(L). Then
D(6,N,p) ~ N275,
and (approzimate) equality in (3) can be achieved by using a smooth approzimation of 1x:; ().

The implicit constants in (1) and (2) depend on ¢, on the C? norm of g and on the lower
bound for the Gaussian curvature. In [1] and [2], inequalities (2) and (1) are first proved for
the model surfaces, the elliptic and hyperbolic paraboloid, respectively. The extension to the
more general surfaces in Theorem 1 is then obtained via local approximation and induction
on scales, using Taylor’s formula with cubic error term. This is the reason why the third
derivatives are also important, in addition to the first and second order ones.

The notable feature of the choice of the diameter §'/2 of each 7 € P5(S) in Theorem 1
is that this is the largest scale for which 7 can be thought of as being essentially flat. By
that we mean that there is a rectangular box R, such that R, C 7 C 1000R,. This is of
course a consequence of the nonzero curvature condition. The case when one of the principal
curvatures is zero leads to new types of decoupling, that have been only partially explored
(see also the last section). For future reference, we record the result from [1] for the cone

= {666 +8): j<8+8<4)

Cyl* = {(61.62,&) : &1 +& =1, & S 1}

Theorem 3. For S either C* or Cyl® we let Ps(S) be a partition of N5(S) into roughly 6=/
essentially rectangular plates P with dimensions ~ 1 x §Y/2 x §. Then for each 2 < p < 6
and each f with Fourier transform supported in N3(S) we have

1oy Se 670 D Ifplioms) ™

PePs(S)

and the cylinder

The fact that we decouple using plates of length ~ 1 is enforced by Proposition 2. The
range (2, 6] here is larger than the range [2, 4] from Theorem 1 because of subtle dimension-
ality considerations.

As an immediate corollary of Holder’s inequality, we get the following [* decoupling for
S = C?,Cyl?, analogous to (1)

L1
11|y Se 6775 ( Z ||fP||i4(R3))1/4' (4)

PePs(S)

We will refer to this inequality for the cylinder as cylindrical decoupling.

A natural step would be to try to extend Theorems 1 and 3 to the case of arbitrary
real analytic surfaces S in R?, without any restriction on curvature. One of the issues is
identifying the correct dimensions of the boxes in the partition of Ps(S). In analogy to the
previous examples, we would like these boxes to be essentially flat. One possible way to
formalize the question is recorded in the following conjecture.

Conjecture 4. If S is the graph of a nonconstant real analytic function g : [-1,1]> = R
then for each 0 < 0 < 1 there is a partition Ps(S) of N5(S) into essentially flat boxes T
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(of possibly different dimensions) such that for each f with Fourier transform supported in

N;5(S) we have
11 grey Se 07 IP5(S)]3( > @)

TEPs(S)
where |Ps(S)| refers to the cardinality of Ps(S).

In this generality, identifying such a partition seems to be a rather difficult task. We will
limit our investigation to the class of surfaces of revolution, which as we shall soon see, is
large enough to include some interesting new examples.

1

To get started, for each real analytic function v : [3,

surface of revolution

2] — R we consider the associated

1
Sy ={(&,6,7(& +635)) 1 <G+ <4}

For example, the cone C? corresponds to y(r) = r. Our main result can be somewhat vaguely
summarized as follows. We save the details about the precise definition of Ps(S) for the later
sections. The interesting new feature of the partitions Ps(S) is that they will consist of boxes
of different scales.

Theorem 5 (Main result). Conjecture 4 holds for all real analytic surfaces of revolution S, .

As we shall soon see, the curvature of S, is zero exactly when either 7/ or 7" is zero. Let
T1,...,ra be the zeros of 4/4” inside [3,2]. The fact that there are only finitely many such
zeros is a consequence of the real analyticity of v. We consider pairwise disjoint intervals
I = (r; — Ay + A;), with A; small enough such that the power series expansion of ~y
centered at r; has radius of convergence > A,;. Various other restrictions on the smallness of

A; will become apparent throughout the forthcoming argument. Note that the complement

%ﬂ\UL:UL

is the union of at most M + 1 intervals J;. The triangle inequality will allow us to separately
consider the part of the surface corresponding to one such interval. On the intervals J; the
surface will have nonzero curvature, so Theorem 1 is applicable.

It remains to investigate the contribution from the intervals I;. Let us fix such an interval.
To simplify notation, we will assume it to be (1 — A, 1+ A).

The partition Ps(S) and the type of analysis we will employ will depend on the derivatives
of v at 1. These derivatives encode all the necessary information concerning the size of the
two principal curvatures of S,. This will be explored in more detail the next section.

2. A CASE ANALYSIS BASED ON PRINCIPAL CURVATURES

Differential geometry ties the notion of curvature of surfaces S in R3 to the change in the
direction of the normal vector along curves in S. To be exact, it describes curvature by way
of the derivative of the map N : S — S?, whose value at p is the unit (outward) normal
vector of S at p.
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When S is given as the graph of a function g, this differential in local coordinates (&1, &2)
has the form

g11(1+ (92)%) — 9192012 g12(1 + (92)*) — 9192922
3
5

1+ (91)" + (92)°)" ()

g12(1 4 (91)*) — 9192911 g22(1 4 (91)*) — 9192912
9%g
06,0 °
With a little algebra, the determinant (also known as the Gaussian curvature of S) at a

point (&1, &2, 9(&1,&2)) is found to be

where ¢; = g—g and g;; =

g11922 — (912)2
KS glaf? - . 6
) = T (0P + (@)P ¥
The two eigenvalues A1, \s are called principal curvatures. Their product equals the Gaussian
curvature.
For a later convenience, we record the simplified version of (6) in the case that S is the

surface of revolution S,. The Gaussian curvature along \/(&1)? + (§2)? = r is

7 (r)y"(r)
Kr)=—"—"———. 7
M O "
To motivate our intuition in the following sections, we also record the following well known
formulae for the principal curvatures in the radial and angular directions

o b
P = 5 )

" O
We will split our analysis into three cases.

Case 1. If 7/(1) # 0 and 4™ (1) = 0 for all n > 2, then we have in fact v(r) = +/(1)r.
This is a cone, so it is covered by Theorem 3. The next two cases are new.

Case 2. If (1) = ... = v (1) = 0 and v (1) # 0 for some n > 2, then the
angular principal curvature is zero along the curve r = 1. We will refer to these manifolds
as quasi-tori and will discuss them in Section 3.

The typical example to have in mind is the torus, corresponding to

1
) = (3 = (= 17) ®)
defined on (1 — A, 1+ A), A < 1.
Case 3. If /(1) 0, 7"(1) = ... = vy I(1) = 0 and v™(1) # 0 for some n > 3, then

the radial principal curvature is zero along the curve r = 1. These manifolds can be thought
of as perturbations of the cone and will be discussed in Section 4.
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3. THE CASE OF THE QUASI-TORUS
To simplify notation we will assume (1) = 1 and v (1) = n!, so that
Y(r)y =14 (r — 1"+ O0((r — 1)"). 9)

Fix 6. Our task is to describe the partition Ps(S). Recall that we want each element of
Ps(S) to be an essentially rectangular box.

We start with a dyadic decomposition near 1
[1 — A, 1+ A] = [1 — (51/n7 1+ 51/"] U UkZl{r . ‘7" _ 1’ c (2k—151/n’ 2k51/n] }

Note that k is restricted to O(log %) values. Thus, since we can afford € losses in Theorem
5 we may invoke again the triangle inequality and restrict our attention to a fixed k. Due
to symmetry, we may further restrict attention to the right halves of these sets in the above
decomposition, which we call Uy.

For k > 0 let us call Sy the part of the surface S, above the thin annulus

Ap={(&,&): (E+8)?eli}).

Figure 1 depicts Sy, S1,S2, with Sy being the nearly horizontal circular strip at the top.
The rationale for bringing in such a decomposition is that the two principal curvatures are
essentially constant on each .Sy,

Araa(r)] ~ (286/m)"2

ang ()] ~ (256%/)"

We will first see how to deal with the surface Sy corresponding to the interval U, =
[1,14 6Y/"]. Note that N5(Sp) sits inside the C'§*/"-neighborhood of the cylinder Cyl?, with
C' = O(1). We may thus apply cylindrical decoupling (Theorem 3) with § replaced with
§'/". Each vertical plate of dimensions ~ 1 x 527 x &w will intersect Sy in a cap 6y with
dimensions ~ /2" x §'/. Note that for each such 6, the box Ns(f) is essentially flat.

Let Ps(Sp) be the partition consisting of all boxes 79 = N;(6y). Invoking cylindrical
decoupling, we find that whenever f has Fourier transform supported inside N5(Sy) we have

1Fllzas) Se 07 Ps(SOITC D [ frollgages) ™.

T0€Ps(S0)

The collection Ps(Sy) will provide the first elements of the final partition Ps(.5).

Figure 1. The partition Ps(5)
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02,3(02,4

Let us now investigate Sy, for £ > 1. Fix f with Fourier transform supported inside
N;5(Sk). There will be two steps needed in order to produce the desired partition Ps(Sk).
The first step is very similar to the one we did for £ = 0. Namely, we invoke cylindrical
decoupling to write

1 llesces) Se 0 Ps(SEC Y | FrellEaan) ™ (10)

Tk E€Ps(Sk)

Each 7, € P5(S)) is equal to N(6;) for some cap ), of dimensions ~ (28§1/7)1/2 x (2851/7).

It is not hard to see that 7, is curved. This is because Sy has big radial curvature. More
concretely, note that (9) forces the §-neighborhood of the graph of v on Uy to be a curved
tube. This observation suggests that each f; can be further decoupled into smaller pieces.
The principal curvatures of 6, while nonzero, are very small. Consequently, Theorem 1 is not
directly applicable. What compensates for the small curvatures is the fact that 6, has tiny
area. This will allow us to stretch it into a surface of scale ~ 1, whose principal curvatures
are also ~ 1. To execute this strategy we use a linear transformation in the style of parabolic
rescaling.

To simplify notation, let us denote by s; the scale 256%™, It is also convenient to deal
with 6y sitting directly above the & axis, so that a point (&1, s, &3) € 0y satisfies

1/2
’51’5%/7 =1~ & —1~s).
We will use the transformation

Lk(flag%gi’,) = (8§}2, 52 - 1’ 53 —1

n

).

Let us call 0 e = Li(0r). We make a few observations related to this new surface.

First, note that Ly(N5(6k)) € Ns (0knew). Thus the function fye, defined by
%k

fnew - ka o L];I

has Fourier transform supported in N s (6x new)-
K
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Second, note that the equation of 8y e, in the new coordinates 1y, 72,73 is

(V1 + s.(nf +2m2) + 5705 ) — 1
k

Using (9) and the fact that v/1+7 =14 % 4 O(r?) we may write

1
2nsp

Ny = (se(m; + 2m2) + sim3)" + O(s " (se(nf + 2m2) + sim3)™ ™)

1
= on S (07 4+ 2m2)" + O(s8) W (11, 12).

Here ¥ is a C* function. Let S,.s be the surface

1
{n,m2, 5 (07 +202)"), Im| S 1, m2 ~ 1}

2
The fact that n > 2 and the discussion from the previous section implies that S,.; has both
principal curvatures ~ 1. The same remains true for 0y pew, as sp < 1.

We can thus apply Theorem 1 to decouple f,,.., using N essentially flat boxes B of dimen-

sions ~ (2)12 x (Z)12 x (&)
k k

Sk

anew”L“(R:‘) Se Nl/45_6(z anew,BHAi‘l(R?’))lM' (11)
B

Let us call 7,; the boxes L,;l(B). These boxes partition Ns(6)) and are essentially flat.
Each 74, is essentially the d-neighborhood of some cap 0x; C 0. Figure 1 depicts the
decomposition of some 65 into four smaller caps 6.

Note that for each B

—

fnew,B f'rk, —1(B) o L
Thus, using a change of variables, (11) can be rewritten as

1 frllasy Se NV N I agesy) ™. (12)
Tkl

The number N is thfz same for each 7,. We can now define the partition Ps(Sy) to consist
of all 74, with 7, € Ps(Sk). Combining (10) with (12) we get the following decoupling for a
function f with Fourier transform supported in Nj(Sy), k > 1

1 lzes) Se 6 IPs(STC Y g llzagee)

Tk,5 €Ps (Sk)
The partition Ps(S) will be the union of all Ps(Sy), k > 0.

4. THE PERTURBED CONE

To simplify notation we will assume
Y(r)=r+(r—1)"+0((r—1)"*). (13)
We will use the decomposition into intervals Uy from the previous section
[L,14+A) = [1,1+ 67" UUgsq[1 4 287164 1 4 2k61/).
We continue to denote by S the part of S corresponding to Uy, and to write s, = 286/,
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Let us deal first with Sy. Note that N(Sp) sits inside Nos)(C?), so we can use the cone
decoupling from Theorem 3 to produce the relevant partition Ps(.Sp), consisting of essentially
flat boxes of dimensions ~ §/™ x §/2 x 6.

Next, we fix some k > 1 and assume f has Fourier transform supported inside Nj(Sg).
We will decouple in two stages. The first one is similar to the case k = 0. More precisely,
note that Ns(Sy) C /\/’O(SE)(CQ). This allows us to run a cone decoupling

el 1
£l 2oy Se 6 IPs(STC Y I frllfoqesy) ™ (14)
7 E€Ps(Sk)

Each 7, € 755(Sk) is equal to Ns(6) for some cap 6, of dimensions ~ SZ/ 2 % 8. Tt is worth

observing that cylindrical decoupling would have led to much wider caps of dimensions
~ 5114:/ 2 % sg. The caps 0, however are small enough to behave well under rescaling.
We next perform a finer decoupling for each 7. It is convenient to deal with 6 sitting

directly above the & axis, so that a point (£, &2, &3) € O satisfies

2
|§1|§SZ/, S—1r~sg, §—1~s
To understand better how to rescale 6, we rotate it with 7 about the & axis and rescale
the & and &; variables by /2. Thus, the new coordinates satisfy

&G =&
L =868
& =& +&
Using (13), the equation of 6, appears now in an implicit form
€+ € = \JER (& — &)+ (\JER + (& — &)2 — )" + O((/62 + (& — &) — 1)),
with
Gl Grlas, G (15)
This can be rearranged as follows
5 5 + _O 5 —1 n+1 )
° 452 452 \/ 485 \/ )

Note that & = 45, is the equation of the cone C? in the new coordinates.

We will use the transformation

& -1 61
Lk(giagéagi/’)) = (77177727773) = ( n1/27 2 ) : n )
S Sk St
k
Let us call Oy pew = Li(6k). If we define & = (£],&5) then the equation of 6y e, in the
coordinates 1y, 12,13 becomes

1 n
= 1/)1@(7717772) = S—n[¢(sk/2n1, SkM2 + 1) - 1]7 |771|, |772| 5 L.
k

It remains to check that this surface satisfies the requirements in Theorem 1. More precisely,
we have to show that the C® norm of 1, is O(1), independent of k. Also, we need to show
that the Gaussian curvature is away from zero, uniformly over k.



DECOUPLINGS FOR REAL ANALYTIC SURFACES OF REVOLUTION 9

Lemma 6. Write

1 1
B(E160) = g7 (V&7 + (6 — v(EL &) — )" + g O /&f + (6 — (e &) — ™).

Then for each p,q > 0 with
G5 G—1~s (16)
we have
[DYD3(&1, &)| < min{(s)" "4, 1}
Consequently, for each p,q >0

sup | DY D3y (i, m2)] S 1,

In1,|m2]S1

with an implicit constant independent of k.
Proof. 1t is clear that ¢» € C*. Note that due to (15) we have

&~ 1
and

(&7 + (& — (&, )2 - ™| < s

for each 0 < m < n. The bound on the derivatives of ¢ is now quite immediate, using
repeated differentiation.
Next, recall that

(&1, 8) = @(&1, &) + 0(81, &),
/2

452

where

(flv 52)
Note that in the domain (16) we have

|DYDSp(€7,65)] S (s1)> 77
for each 0 < p <2, ¢ > 0 and the derivative becomes zero if p > 3.

Using all these observations, the desired bound on the derivatives of 1, is now immediate.
O

According to (6), the Gaussian curvature of Oy e, is roughly

(Sk

1/J11(<‘>‘Z/27717 spne + 1) ¢1 (Sk M, skM2 + 1)

Hess(iy,) = det (st )1+2
¢12(3k M, SkMe + 1) ¢22(Sk N, SkMo + 1)

It is immediate that
Hess(Yr) = (sk)* "Hess(v).

Another application of (6) shows that Hess(1) is roughly the Gaussian curvature of 6, in
the coordinates (&1, &), &;). This is in turn comparable to the Gaussian curvature of 6 in
the original coordinates (£,&,&3). But (7) determines this curvature to be ~ (s;,)" 2. We
conclude that the curvature of 0, ;¢ is ~ 1, as desired.

Note that L maps N(6},) inside /\/’O(%) (O new). The rest of the argument is very similar to
°k

the one from the end of the previous section. We apply Theorem 1 to partition N, o )(Qk,new)

2
*k
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into essentially flat boxes with dimensions ~ ()12 x (2)1/2x (<), Applying L', this gives
k k k
rise to a partition of Nj3()) into essentially flat boxes 7,; = Ns(6k,), where each 6, has
radial length ~ s,(2)"/? and angular length ~ (s;)"/%(2)"/2.
k k N
The desired partition Ps(S) will consist of all boxes 7;; corresponding to all 8, € Ps(Sk).
This concludes the analysis of the perturbed cone.

5. FINAL REMARKS

There are various ways in which one could refine the analysis in this paper. We have only
aimed to prove a universal [* decoupling on the space L*. A more careful inspection of the
argument will reveal that sometimes this can be naturally upgraded to an [? decoupling. For
example, the torus (8) is positively curved on the outside (r > 1) and negatively curved on
the inside (r < 1). Thus, the partition from Section 3 leads in fact to an {? decoupling, while
the analogous partition for the inside part leads only to an {* decoupling.

Also, the boxes in our partitions are maximal, subject to the requirement of being es-
sentially flat. Under this mild constraint some surfaces perform better than others. For
example, we have seen earlier that the critical exponent for cone decoupling into plates is 6,
rather than 4. Given a surface S, one may instead search for partitions consisting of boxes
of smallest possible size, for which the [* decoupling holds. This issue seems to be much
more delicate. For example, one of the most interesting open questions about surfaces in R?
is whether the cone can be decoupled into square-like caps. We conjecture the following.

Conjecture 7. Let P5(C?) be a partition of Ns(C?) into roughly 6~ near rectangular bozes
7 of dimensions ~ 6%/% x 6/ x §. Then for each f with Fourier transform supported in
N;5(C?) and for 2 < p < 4 we have

i1,
£ ey Se (6727250 > Nf Il a) -
T€Ps(C2)
The only range where this is known to hold is 2 < p < 3, using trilinear restriction
technology.
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