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ABSTRACT

The sparse interferometric coverage of the Event Horizon Telescope (EHT) poses a significant chal-
lenge for both reconstruction and model fitting of black-hole images. PRIMO is a new principal compo-
nents analysis-based algorithm for image reconstruction that uses the results of high-fidelity general
relativistic, magnetohydrodynamic simulations of low-luminosity accretion flows as a training set. This
allows the reconstruction of images that are both consistent with the interferometric data and that live
in the space of images that is spanned by the simulations. PRIMO follows Monty Carlo Markov Chains
to fit a linear combination of principal components derived from an ensemble of simulated images to
interferometric data. We show that PRIMO can efficiently and accurately reconstruct synthetic EHT
data sets for several simulated images, even when the simulation parameters are significantly different
from those of the image ensemble that was used to generate the principal components. The resulting
reconstructions achieve resolution that is consistent with the performance of the array and do not
introduce significant biases in image features such as the diameter of the ring of emission.

Keywords: accretion, accretion disks — black hole physics — Galaxy: center — techniques: image

processing

1. INTRODUCTION

The Event Horizon Telescope (EHT) collaboration re-
cently imaged the supermassive black hole in the nearby
giant elliptical galaxy M87 for the first time using sub-
mm VLBI observations (Event Horizon Telescope Col-
laboration et al. 2019a,b,c,d,e,f). The first polarized im-
ages of the black hole in M87 were published a short
time later and indicated a strong and ordered magnetic
field in the vicinity of the black hole (Event Horizon
Telescope Collaboration et al. 2021a,b).

Reconstructing images of the M87 supermassive black
hole was challenging. The 2017 observations included
only five telescope locations, resulting in markedly
sparse interferometric (uv-plane) coverage. This chal-
lenge was extensively addressed in the EHT papers and
particularly in Event Horizon Telescope Collaboration
et al. (2019d), which is mainly concerned with a de-
tailed discussion of the image reconstruction techniques
used. In brief, a variety of algorithms was employed and
all were extensively tested with simulations and inter-
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compared on the images recovered from the actual obser-
vations. Of necessity, each algorithm incorporated a va-
riety of assumptions to address the incomplete uv-plane
coverage, which in turn imply associated uncertainties in
the images recovered. The aim of this diverse approach
was to be conservative with the reconstructions and en-
sure that the major quantities of astrophysical interest
that were recovered from the images were robust.

We begin with a discussion of the general image re-
construction techniques used so far, followed by the mo-
tivation for the PRIMO methodology that we introduce
here.

General purpose imaging algorithms: These include the
traditional CLEAN algorithm (Hogbom 1974), as well as
new maximum likelihood methods (see e.g., Event Hori-
zon Telescope Collaboration et al. 2019d; Chael et al.
2016; Akiyama et al. 2017). The challenge for general-
purpose image reconstruction algorithms is to generate
an image among an infinite set of formally allowable
solutions that are compatible with the data. In order
to reduce the range of possible solutions, regularizers
and secondary constraints (such as image global entropy,
smoothness, local curvature, etc.) are levied to recover
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an image that matches expectations of realistic struc-
ture. These methods are agnostic to theoretical predic-
tions on image morphology and can therefore be used
to determine basic image features such as the presence
of a ring or brightness depression. However, introducing
constraints on the plausibility of the image components
is unavoidable and can lead to artifacts as shown, e.g.,
in Figure 10 of Event Horizon Telescope Collaboration
et al. (2019d). Moreover, even though the regularizing
conditions are reasonable for some astronomical images,
they may not be well motivated for black hole images
since simulations predict steep gradients in parts of the
image (Psaltis et al. 2015).

Geometric fits: These are posterior sampling algorithms
that fit semi-analytic or geometric crescent- and ring-
like models directly to interferometric data (Kamruddin
& Dexter 2013; Event Horizon Telescope Collaboration
et al. 2019f). The models invoke a much smaller num-
ber of free parameters and, therefore, do not require
additional regularizers the way that the general purpose
imaging algorithms do, as described above. However, in
some cases these simple models may not be able to repro-
duce the complex image morphology predicted for black
hole images. Indeed, simulations predict that the tur-
bulent flows generate complex and stochastic structures
as a consequence of the presence of bright, magnetically
dominated flux tubes that are lensed by the black hole
(see e.g., Chan et al. 2015a; Event Horizon Telescope
Collaboration et al. 2019¢). Since the expected level
of complexity is not included in the geometric model
fits, the posteriors of the model parameters are affected
by the most influential data points and may be biased
(Psaltis et al. 2022).

Comparisons to numerical simulations: These meth-
ods compare simulated images from general relativistic
magnetohydrodynamic (GRMHD) simulations to inter-
ferometric data allowing for a rotation and scaling of
the image relative to the data (see e.g., Event Horizon
Telescope Collaboration et al. 2019¢). This comparison
leads to constraints on physically meaningful parameters
about the accretion flow. However, a single EHT obser-
vation corresponds to a particular realization of the tur-
bulent structure of the accretion that may be consistent
with simulations only in a statistical sense. As a conse-
quence, these methods benefit from prior characteriza-
tion of the statistics of the various image structures and
of the corresponding interferometric observables (Kim
et al. 2016; Event Horizon Telescope Collaboration et al.
2019f).

We present a novel principal-component interferomet-
ric modeling (PRIMO) algorithm that combines the de-
sirable characteristics of the methods listed above while

attempting to reduce their limitations. PRIMO uses a
large library of GRMHD simulations as a “training set”
for image reconstruction and model fitting. Instead of
employing images that are smooth (as in the case of
the maximum likelihood imaging methods) or consist of
a limited number of broadened point sources (as in the
case of CLEAN), it utilizes images that are broadly con-
sistent with the space of possibilities spanned by the sim-
ulations. Because it involves a relatively small number
of parameters, i.e., the coeflicients of the principal com-
ponents, it does not require imposing regularizers. Fur-
thermore, it is not limited to simple geometric shapes,
such as crescents and rings, and can accurately recon-
struct the stochastic features expected in black hole im-
ages. At the same time, it does not compare specific
realizations of the turbulent images with the data but
rather uses a principle-component decomposition to de-
rive a basis for the space of possible images that are con-
sistent with theoretical expectations. Finally, the PCA
algorithm provides not only the best-fit image but rather
a complete posterior over all image structures that are
consistent with the data.

The PCA approach is very general but employs its
own restrictions on the subset of allowable images by
only requiring that the solution is likely to fall within
the span of image morphologies produced by the train-
ing set of simulations. However, as it is well known (see
e.g., Turk & Pentland 1991) and we will also demon-
strate later, the PCA-based algorithm can reconstruct
images even if the particular image structures are differ-
ent in their details from the individual simulation snap-
shots that were used for the training set. Therefore, the
method can be applied to reconstruct a black hole image
even if the GRMHD outputs do not precisely represent
all of its characteristics.

In Medeiros et al. (2018b), we showed that PCA could
be used to efficiently represent the “space” of image mor-
phologies seen in GRMHD simulations of an accreting
black hole. The full range of structures seen in a sim-
ulation can then be encoded as a linear combination of
a compact set of orthogonal “eigenimages,” with each
eigenimage describing a portion of the structure seen in
the simulation. Critically, PCA minimizes the number
of components needed to describe the full variance of the
simulation and the components can be ordered by the
decreasing fraction of the variance that they describe.

A particular benefit of the PCA approach is that the
orthogonal compact basis derived in image space trans-
forms identically to the same basis that would be de-
rived directly by representing the simulations in visi-
bility (Fourier) space (see Medeiros et al. 2018b for a
mathematical proof). In short, the basis can be built



in the image domain, where we have the best a priori
knowledge of the likely image morphology, but is fitted
in the complementary visibility space in which the ob-
servations are presented.

Another benefit of PRIMO is that it not only provides
excellent recovery of structure up to the formal resolu-
tion limit of the observations, but can provide “super-
resolution” at yet finer scales. Rich knowledge of the in-
trinsic source structure allows for quantitative measures
of features that could not be recovered without strong
priors. The principal-component basis encodes the in-
trinsic correlations of the source structure over a range
of angular scales. Interferometric observations of struc-
ture within the resolution limit can implicitly constrain
the structure at finer angular scales somewhat beyond
it.

Given a set of interferometric data and a compact set
of eigenimages, the problem of image reconstruction and
model fitting reduces to finding the relative weights of
the eigenimages that are necessary for their weighted
linear combination to be consistent with the data. It is
important to emphasize, however, that while the image
space of simulated images is completely sampled by the
PCA basis, the EHT coverage provides only sparse, in-
complete sampling of the visibility space. As such, the
basis functions in that space (i.e., the visibility maps of
the eigenimages) are no longer orthogonal when sampled
only at the discrete EHT baselines. As a result, their
coefficients must be fitted to the data with a procedure
that respects the resultant covariances that now appear
when the PCA components are fitted to the visibilities.

The goal of this paper is to progress from the initial
presentation of the PCA image reconstruction method-
ology introduced by Medeiros et al. (2018b) to a com-
plete description of how to apply it to analyzing the EHT
observations of accreting supermassive black holes. In
Section 2, we describe the GRMHD simulations that we
used to construct the PCA basis, the preprocessing of
the simulated images, and finally the PCA basis that we
derived from them. In Section 3, we describe the MCMC
algorithm we use to fit interferometric data in order to
obtain posteriors over the relative weights of the PCA
components. We present results of applying PRIMO to
simulated interferometric data in Section 4 and summa-
rize our work in Section 5.

2. BUILDING A PCA BASIS FROM GRMHD
SIMULATIONS

As outlined in Medeiros et al. (2018b), we perform
PCA on images generated from GRMHD simulations
to describe the image space in which EHT images of
real accreting black holes are likely to reside. In this
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section, we detail the methodology used to derive the
linear combination of PCA components needed to fit a
given data set.

2.1. The GRMHD Simulations

The GRMHD simulation images employed to generate
the PCA basis were created using the massively parallel
GPU-based code GRay (Chan et al. 2013). As input to
the radiative transfer and ray-tracing simulations, we
use two high-resolution GRMHD simulations with long
time spans that were created using the 3D HARM code
(Gammie et al. 2003; Narayan et al. 2012; Sadowski et al.
2013).

The configuration of a GRMHD simulation is speci-
fied by a set of physical parameters. For the purposes
of validating our algorithm, we generated a set of 30
simulation runs, with parameters covering a wide range
of possible emission models of the inner accretion flow
around the black hole in M87, as follows:

¢ GRMHD simulations only evolve the energy den-
sity of the plasma and, therefore, primarily the
temperature of the ions and not of the electrons.
In the accretion flow, the ion-to-electron tempera-
ture ratio is expected to be determined primarily
by the plasma S = Psas/Pmag Parameter, which
is the ratio of the local gas to magnetic pres-
sures (Chan et al. 2015b). In the polar funnel,
which is magnetically dominated, the two tem-
peratures are expected to be nearly equal due to
magnetic conduction (Ressler et al. 2015). In or-
der to capture this behaviour, we used a prescrip-
tion for the electrons that sets the ion-to-electron
temperature ratio Ti/T. to (Moscibrodzka et al.
2016; Event Horizon Telescope Collaboration et al.
2019d)
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We explore three values for Ryjgn = 1, 20, 80, but
note that the Ryign = 1 simulations effectively re-
sult in an electron temperature that is equal to the
ion temperature throughout the plasma, which is
inconsistent with the assumption of a radiatively
inefficient flow. We choose to include the Rpjgn = 1
simulations in our library only for consistency with
previous EHT publications and in order to explore
a broad, albeit somewhat unphysical, range of im-
age structures.

e The electron density scale provides an overall nor-
malization that sets the total accretion rate in the
simulation. We explored values for the electron
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Figure 1. Effect of changing the electron density scale n. (different columns) and the ion-to-electron temperature ratio Rhigh
(different rows) on a single snapshot from a GRMHD simulation. This snapshot is from a MAD simulation with a black-hole spin
of a = 0.9 pointing upwards in each panel, with an observer inclination of i = 17°, and a black-hole mass of M = 6.5 x 10° Mg;
the brightness in each panel is normalized such that panels with the same value of n. have the same total flux. Increasing
the electron density scale leads to images with large ring widths whereas changing the temperature ratio alters the relative
brightness of the accretion flow and funnel regions.

density scale of n, = 10°, 2.5 x 10°, 5 x 10°, 7.5 x
10°, 10°cm™3. We note that the higher values
of electron number density are unlikely for M87,
given the measured 1.3 mm flux and polarization
signatures (Event Horizon Telescope Collabora-
tion et al. 2019e, 2021b), but we include them in

our simulation data set for completeness.

In half of the simulations, we used initial condi-
tions that resulted in strong, ordered magnetic
fields and a magnetically arrested disk (MAD,
see e.g., Narayan et al. 2012); in the other
half, we used initial conditions that resulted in
a less-ordered, weaker, magnetic field, commonly
referred to as standard and normal evolution
(SANE, see e.g., Igumenshchev et al. 2003).

We set the inclination angle of the black hole
spin axis relative to the observer’s line of sight to
i = 17°. This parameter only enters the radia-
tive transfer calculation and determines the rela-
tive asymmetry of the image (see, e.g., Medeiros

et al. 2022). We made this choice under the as-
sumption that the spin axis of the black hole is par-
allel to the large scale jet that has been observed
at radio wavelengths (Walker et al. 2018). In the
PCA model described below, we will allow for the
possibility that the spin axis is either aligned or
anti-aligned with the large scale jet as well as for
an arbitrary position angle of the spin axis in the
plane of the sky. Even though the last two con-
siderations affect the orientation of the black-hole
image in the sky, they are trivial geometric trans-
formations and do not enter the GRMHD simula-
tions.

We set the black hole mass to M = 6.5x 109 M, for
the initial preparation of the simulations, which is
a value consistent with the one obtained by stellar
dynamics (Gebhardt et al. 2011) and by the first
EHT imaging results (Event Horizon Telescope
Collaboration et al. 2019f). Changing this value
has two effects on the resulting simulations. First,
it rescales the linear size of each image by a factor
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Figure 2. (top row) Five representative snapshots from the MAD simulation with ne = 5 x 10°, Ruign = 20, 4 = 17°, and
M = 6.5 x 10°Mg. Even within a single simulation, there is significant structural variability between the various snapshots.
(Bottom row) The same snapshots as the top row but filtered using a Butterworth filter with n = 2 and r = 15GA, to mimic
the finite resolution of the EHT. The brightness in each panel has been normalized such that they all have the same total flux.

proportional to the mass. Second, it affects the
outcome of the radiative transfer calculations by
altering the synchrotron emission/absorption coef-
ficients and by rescaling the photon path lengths.
For the former effect, which is a trivial geometric
transformation, we explore different mass values
by rescaling the angular size of the PCA basis.
For the latter effect, we note that, in the relevant
range of parameters, the black-hole mass is nearly
degenerate with the electron number density scale
ne, with the image brightness at each pixel scaling
as ~ n?M (see Appendix A of Satapathy et al.
2022; see also Chan et al. 2015b). By exploring
a broad range of values for the electron density
scale and allowing for a rescaling of the images,
we effectively probe a broad range of black-hole
masses.

e We assumed a single black hole spin parameter
of a = 0.9 for simplicity since image morphology
is only weakly dependent on spin (Event Horizon
Telescope Collaboration et al. 2019¢). Indeed, as
we show in later sections, the same PCA basis can
also be used to reconstruct images of black holes
with other spins.

Figure 1 shows the effect of changing the electron num-
ber density scale, n., and the ion-to-electron tempera-
ture ratio Rpjgn on a single snapshot from a MAD simu-
lation. The electron number density scale affects primar-
ily the width of the bright ring with the latter increasing

significantly with increasing n. (Satapathy et al. 2022).
In contrast, the temperature ratio Ryign affects the rela-
tive brightness of different parts of the flow, altering the
relative brightness between the funnel region and that
of the accretion flow.

The set of parameters we discussed reflects a decision
as to which sources of image variance to include in the
PCA analysis and which parameters to treat externally.
The position angle (¢) of the image on the sky, for exam-
ple, can be included in our model trivially by an overall
rotation of the PCA components and need not be in-
cluded in the derivation of the components themselves.
Whether the spin axis is pointing towards us at 17° or
away from us at the complementary angle can also be
incorporated in a similar manner, as it describes (statis-
tically) a simple reflection. The effect of the black hole
mass on image morphology is mostly degenerate with
the electron density except for a change in the overall
size of the image, which can be included trivially in the
PCA model as a scaling of angular distances applied
to all components. The overall source position is also
not included in the PCA basis since the current set of
EHT data only involve visibility amplitudes and closure
phases, which are independent of the image location.

For each set of parameters, we generated 1024 image
snapshots with a time resolution of 10 GM/c3. For the
mass of M87, the time resolution equals ~ 3 days and
17 hours and each simulation covers a total time span
of over ten years. Each snapshot has a field of view of
64 GM /c* and a resolution of 1/8 GMc~2 per pixel (ap-
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Figure 3. The first 20 PCA components for the set of simulated images employed in this paper. The respective eigenvalues
are shown at the top left corner of each panel. Red closed curves show the analytically calculated size and shape of the black
hole shadow boundary, defined as the critical impact parameter between photons that fall into the black hole and those that
escape, as seen by an observer at infinity. The first PCA component is similar to the average image of the simulations while
contributions from the second component lead to thicker and thinner rings. The third and fourth components allow for either
up-down or left-right asymmetries. The higher order components describe smaller scale structure indicative of the variance seen
in the simulated snapshots. Each panel is normalized such that the full range of values falls within the color bar range.

proximately 0.5 pas resolution). Critically, the field of
view is substantially larger than the ~ 10 GM/c? mea-
sured size of the image and the resolution scale is suffi-
ciently fine to avoid deleterious aliasing effects (Psaltis
et al. 2020).

The set of 30 simulations provides a total of 30,720
images covering a broad range of image morphologies.
Figure 2 shows several snapshots from a single simula-
tion. Here we emphasize that although the parameters
of the radiative transfer simulations can significantly af-
fect gross image properties, such as the width of the
ring of emission (see Figure 1), there is significant vari-
ance in image morphology even within a single simula-
tion because of the stochastic nature of the MHD tur-

bulence in the accretion flow (see also Medeiros et al.
2017, 2018a,b).

2.2. Preparing the Simulated Images for PCA

The simulated images have significant structure at
small scales, which the EHT cannot probe. Because we
want the PCA basis to only reflect image variance on
the physical scales observed by the EHT, we first need
to eliminate the high spatial-frequency structure in each
simulated image.

To achieve this, we use a Butterworth filter (Butter-
worth 1930), which is effectively a low-pass filter, having
a flat response for low Fourier frequencies and declining
to zero smoothly at high-frequencies. The Butterworth



filter is defined as
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where r is the scale of the filter and n is a power-law
index. We discuss in detail the motivation for using a
Butterworth filter as well as the choice of parameters for
EHT data analysis in Psaltis et al. (2020). The bottom
row of Figure 2 shows the snapshots of the top row fil-
tered by a Butterworth filter with n = 2 and r = 15G\.
This choice of filter parameters allows us to retain most
of the power at baseline lengths probed by the EHT
array, while filtering out most of the power at larger
lengths.

As a second step, we normalize each filtered image to
have the same total flux. Because images with higher
electron density scale n, have significantly higher total
flux, not normalizing would have biased the PCA basis
towards images with higher n. values. We explored the
effects of standardizing the images by their variance and
found that this has a negligible effect on the PCA basis
other than on the overall normalizations. We, therefore,
do not standardize the images by their variance. We
also do not mean subtract the images before performing
PCA, i.e., similar to what was done in Medeiros et al.
(2018b), since the properties of the mean image are criti-
cal in fitting the observed data. If, instead, we had mean
subtracted the images before performing PCA, we would
have needed to add back the mean image to the linear
combination of PCA components, resulting in the same
number of free parameters in the model.

Since all of the images correspond to the same black
hole spin a = 0.9 and the same inclination angle i =
17°, all of the black hole shadows are concentric and
aligned with each other. For the case of M87, this is
justified because of the known inclination of the large-
scale jet as well as the weak dependence of the simulated
images on black-hole spin. If that were not the case, we
would have also needed to recenter and align the images
before performing PCA, along the line of the approach
in Medeiros et al. (2020).

Fpw(b) =

2.3. Building the PCA Basis

Given the complete set of filtered simulated images,
we generated the PCA basis following the procedures
established in Medeiros et al. (2018b). Figure 3 shows
the first 20 PCA components. The first PCA component
is similar to the average image and contains a positive
flux. The higher order PCA components contain both
positive and negative fluxes, since these components re-
distribute the flux present in the first component to ap-
proximate each individual snapshot.
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Figure 4. The spectrum of normalized eigenvalues for the
first 5000 PCA components derived from a set of 30,720
GRMHD snapshots. Only ten PCA components are neces-
sary to reconstruct 98% of the total variance, whereas twenty
PCA components can recover 99% of it.

The normalized eigenvalues corresponding to each
PCA component are shown in the top left corner of
each panel. Each eigenvalue measures the variance in
pixel brightness of each PCA component, normalized
such that the sum of all eigenvalues is equal to unity.
Figure 4 shows the eigenvalue spectrum for this PCA
decomposition. The first few PCA components account
for the majority of brightness variance in the image and
only 20 components are needed to account for 99% of
the variance found in the full set of simulations. The
slope of the eigenvalue spectrum for higher components
is set by the power spectrum of the structures in the
images (Medeiros et al. 2018b).

Figures 5 and 6 show the corresponding visibility am-
plitude and phase maps of the first 20 PCA components.
It is a linear combination of these components in visi-
bility space that we will fit directly to the data. As ex-
pected, the first few components contain primarily struc-
tures with low spatial frequencies (i.e., small baseline
lengths) and describe primarily the broad-brush struc-
ture of the image. The remaining components contain
significant power at high spatial frequencies (i.e., large
baseline lengths) and describe the smaller structures in
the image.

It is interesting that, although this was not explicitly
imposed when performing the principal component de-
composition, components of increasing PCA order cor-
respond to higher order (m-fold) azimuthal symmetry.
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Figure 5. The visibility amplitude maps of the first 20 PCA components shown in Figure 3, normalized such that the peak in
each component is equal to unity. The peak values in visibility amplitude for many of the components are offset from the center,
indicating that there is significant negative flux in the images, as can be seen in Figure 3. White curves show the baseline tracks
during the 2017 April EHT observations for the black hole in M87. In all panels, the black hole spin points upwards and the
orientation of North is shown by the green line segment in the upper-left panel.

This is important when comparing the angular struc-
ture of the PCA components to the locations of the
EHT baselines for the 2017 M87 observations (Event
Horizon Telescope Collaboration et al. 2019¢), as also
shown in Figures 5 and 6. Note that we have rotated
the baseline tracks such that the black-hole spin axis,
which points upwards in all these panels, is at 288° East
of North. Clearly, the first 20 PCA components already
incorporate a substantial degree of azimuthal structure,
which is finer than the angular separation of the dom-
inant locations in visibility space probed by the EHT
array. Lastly, note that each component comprises de-
tail over a broad range of spatial frequencies. Within a
given component, structural information on fine angu-
lar scales is correlated with that on broader scales. This
allows visibilities within the EHT band limit to lead to

inferences on the structure somewhat beyond it, produc-
ing reconstructions with a degree of “super-resolution.”

3. MCMC ALGORITHM

In order to fit EHT data, we implement the lin-
ear PCA model (PRIMO) into the MCMC algorithm
MARkov Chains for Horizons (MARCH, Psaltis et al.
2022). For the purposes of this initial exploration, we
fit this model to synthetic EHT data calculated for the
baseline tracks of the array during the 2017 April 5th
observations of M87.

3.1. The PCA Image Model

The PCA decomposition described in Section 2 allows
us to construct a model for a black-hole image that is a
linear combination of N PCA components, with an ap-
propriate rescaling, to account for a different black-hole
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Figure 6. Same as Figure 5 but for visibility phase maps.

mass, and an appropriate rotation, to allow for different
orientations in the sky.

We will be fitting data in the visibility domain and,
therefore, define the linear combination of the first N
PCA components in that domain as

N
I(u,v) = Z an iy, (u, v), (3)

where #,, are the PCA components in the Fourier (u, v)
domain, I is the Fourier domain visibility of the recon-
structed image, and a, is the amplitude of the n—th
PCA component. Without loss of generality and in
order to facilitate comparison with other astrophysical
measurements of the sources, we set a; = 1 and instead
fit for the total zero baseline visibility amplitude, which
is also equal to the image flux

N
F=>a,0i,(0,0) . (4)

By construction, this same linear combination of the
PCA components in the image domain also generates
the “best-fit” image, i.e.,

N
IX,Y) =) anu,(X,Y), (5)

where now I is the reconstructed image and u,, are the
PCA components, both in the image domain (X,Y).
In addition to the N —1 PCA amplitudes and the flux
normalization F', the model also includes three param-
eters that are implemented as a scaling, a rotation, and
an up-down flip of the image. In particular, we introduce

e A scaling parameter 6, = GM /(Dc?) that is ap-
plied to all PCA components in the sky domain
(or equivalently 0;1 that is applied in the visi-
bility domain). This scaling parameter quantifies
the mass-to-distance ratio of the particular black
hole we are modeling and allows us to convert the
length scales in our images, which are in gravi-
tational units, to angular sizes in the sky. This
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parameter can also be informed by the strong pri-
ors obtained by modeling the dynamics of stars
around the black hole (Event Horizon Telescope
Collaboration et al. 2019f).

e A position angle ¢, measured in degrees East of
North, applied to all PCA components, that quan-
tifies the orientation of the black-hole spin on the
plane of the sky.

e A flip parameter j = —1,1 that accounts for the
possibility that the spin axis is pointing away from
the observer and therefore that the accretion flow
is rotating in a sense that is opposite (i.e., clock-
wise) to that of the simulation. In other words,
if j = —1, we mirror all PCA components along
the x-axis such that the rotation patterns will be
orientated in the clockwise direction.

We note that, for computational efficiency, we do not
use the three parameters 0,, ¢, and j to scale, rotate,
and flip each of the PCA components. Instead, we use
them to scale, rotate, and flip appropriately the small
number of discrete u — v locations of the EHT base-
lines. We then calculate the linear sum of the PCA
components in these locations using the interpolation
technique we discuss below.

In total, the PCA model has N + 3 free parameters,
where N is the number of PCA components used. Fi-
nally, it is worth emphasizing that, even though the
PCA model is linear in most of its parameters, the vis-
ibility amplitudes and closure phases that we fit it to
involve non-linear operations.

3.2. Two-Dimensional Interpolation

At each step of the MCMC chain, the algorithm calcu-
lates the model prediction at the (u,v) location of each
data point and compares it to the data. Since the PCA
image model is numerical and sampled on a regular ar-
ray of pixels, we evaluate its prediction at any desired
location using a 2D sinc interpolation, which has been
demonstrated to cause no degradation of resolution of
the 2D maps (Bracewell 1986). In 1-D, a sinc function

is defined as in(ru)
sin(mu

. _ 6

sine(u) = 21 (6)

where u is the pixel coordinate in the Fourier domain.
Interpolation in 2D is done with separable sinc kernels
in v and v that are multiplied to form a 2-D kernel.

Along each orientation, the value of the visibility at
u’ is given by

r) =S, )

n

where f(n) is the image value at the integer n locations,
and Au = v/ — u. In practice, we limit the kernel to
a finite domain of Fug, and taper it smoothly with a
Gaussian to produce a well-behaved cutoff in the Fourier
domain,

wo/Au

1 o (n—Bw)? /207 sin[m(n — Au)]

m(n — Au)

N —
f(u ) B Csinc
n=—ug/Au

(8)
where o is chosen such that 2-3 cycles of the sinc function
are included. The normalization constant Cg;,. ensures
that the interpolation kernel has an integral of unity,
given the tapering and finite domain:

C... — u‘f“ 7(n7Au)2/202 Sin[ﬂ' n— AU)] (9)
sinc — nzfuo/Aue —W(’I’L _ Au)

However, since the sin[m(n — Au)] term is periodic with
an amplitude specified by the Awu phase, its particular
value, but for an alternating sign, is constant and thus is
absorbed in the normalization. In practice, evaluating
a trigonometric function is not required, since we can
write

wo/Au o 2 2
1 0 e (n—Au)* /20 (_1)n
f') = =— f(u) (10)
where
sinc — A (n _ A’U,)

3.3. The Posterior Distribution

Having defined a visibility-domain PCA model that
depends on N + 3 model parameters, which we collec-
tively denote by the vector é: we use Bayes’ theorem to
write the posterior over these parameters as

—

P(fldata) = C Pyy(0) L(datald) . (12)

Here, Ppri(g) is the prior distribution over the model
parameters, £(datal|f) is the likelihood that the set of
observations can be obtained from the model, and C is
an appropriately defined normalization constant.

The set of data obtained by the EHT is a series of visi-
bility amplitudes at the various baseline lengths between
the different pairs of stations as well as a series of closure
phases along all possible baseline triangles (Event Hori-
zon Telescope Collaboration et al. 2019¢). We calculate
the likelihood function by multiplying the likelihoods
of the individual visibility amplitude and closure phase

f(n)7



data (see, however, Blackburn et al. 2019), assuming
that all likelihoods are independent of each other

L(datalf) = ] [ £i(datal6) . (13)

The precise definition of the various likelihoods is pro-
vided in detail in Psaltis et al. (2022). Because they
depend only on the data products, they are the same
for all models. The priors over the model parameters,
however, are specific to each model, as we discuss in
detail in the following subsection.

3.4. Priors

To ensure that our PCA model is probing physically
relevant areas of the parameter space, we include a com-
bination of informative and non-informative priors on
the various model parameters.

Because the EHT is an interferometer, the total flux F'
of the compact image cannot be directly measured with-
out perfect knowledge of the prior calibration of the var-
ious telescope gains. However, it can often be indepen-
dently constrained using other single-dish observations.
For the purposes of this study, we impose a Gaussian
prior on the image flux with a mean value of 0.6 Jy and
a standard deviation of 0.2 Jy.

For the scaling parameter ,, there often exist prior
measurements based on gas and/or stellar dynamics.
For the M87 black hole, the two measurements are not
statistically consistent with each other (see Gebhardt
et al. 2011; Walsh et al. 2013). The envelope of the cred-
ible intervals for these two measurements is contained
within the conservative range 1 pas < 6, < 6 pas. For
this reason, we simply use an uninformative prior

P, = 0, if 1 pas < 0, < 6 pas (14)
g 0 otherwise.

For the orientation parameter ¢, we employ a highly
informative prior based on the assumption that the
black-hole spin is either aligned or anti-aligned with the
large-scale jet observed at longer wavelengths, i.e., that

1
24 /27rai
(15)

Here ¢g = 288° is the orientation of the large scale jet
(Walker et al. 2018). We set the widths of the two Gaus-
sians to a nominal value of o4 = 7/16. We allow the flip
parameter j to be equal to either 1 or -1, with the same
prior.

Finally, we employ informative priors on the ampli-
tudes of the PCA components. Our aim is to give higher

P(¢) = [e*(¢*¢0)2/203¢> 1 e (6=d0+m)? /203
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priors to images for which the amplitudes of the PCA
components are not very dissimilar from the amplitudes
that correspond to the simulated images used to calcu-
late the PCA decomposition. However, we also do not
wish to limit the fit to images that have precisely the
same range of amplitudes as the training set. To achieve
this, we first calculate the distribution of amplitudes for
each PCA component found in the ensemble of training
images and then broaden this distribution by a factor of
two.

Figure 7 shows the distribution of normalized ampli-
tudes, a,/ai1, for the PCA components 2 through 21
that we calculated above; note that, by definition, we
have set a; = 1. Each panel also shows a Gaussian
(in orange) with the same mean and standard deviation
as the numerical distribution. These Gaussians provide
good descriptions of the distributions for almost all of
the components shown in the figure, with components
two and five being notable exceptions. Both of these
components contain structure that controls the width of
the ring in the image, which is strongly dependent on
the simulation parameters (e.g., n.). Therefore, the dis-
tributions of amplitudes for these components are not
expected to follow a Gaussian distribution but rather
will depend on the particular set of parameters used for
the simulation library.

Gaussian distributions with the same mean but twice
the standard deviation are also shown in each panel
(green dashed lines) and comfortably include the full
range of amplitudes found in the training image set.
In practice, for computational efficiency, we use these
broadened Gaussians as priors on the amplitudes of each
PCA component. In other words, we write the prior for
the normalized amplitude of the n—th PCA component
an/ay as

an/ay—an/ay

Planjar) = [ 5) ]/ Vama0,) , (16)

where a,/a; and o, is the mean value and standard
deviation of the distribution of normalized amplitudes
of the training set.

3.5. Theoretical uncertainty

In most applications of PCA, one can reconstruct an
image by simply projecting the image onto the PCA
components to find the relative amplitude of each com-
ponent that will result in the best possible reconstruc-
tion. Using a higher number of components will invari-
ably result in a higher-fidelity reconstruction. A loss-
less reconstruction can always be achieved using all of
the PCA components, if the image is part of the original
set that was used to calculate the PCA decomposition.
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Figure 7. The distribution of the normalized amplitudes, an/a1, for PCA components 2 through 21. The red dotted lines
show the mean of the distribution in each panel and the dashed orange lines show Gaussians with widths set by the standard
deviations of the distributions and with peaks at the means of the distributions. The green dashed curves show the Gaussians
broadened by a factor of two. We use the broadened Gaussians as priors to allow for reconstruction of images that are outliers
within the distributions as well as of images that are similar to but are not contained in our training set.

In the present application, however, we do not have a
full image onto which we can project the components;
we instead have sparse u — v coverage. Attempting to fit
a large number of components to sparse interferometric
data can result in overfitting since there may be several
possible linear combinations of components that fit the
data. Therefore, there exists an optimal number of PCA
components for which the highest-fidelity reconstruction
can be achieved by fitting the sparse interferometric data
while respecting the resolution of the array.

In order to determine this optimal number and asses
the error introduced by the truncation, we quantify the
error in the visibility amplitudes between a reconstruc-
tion with N components and the original, unfiltered im-
age in the Fourier domain as

Vo —Va)(Vg — V3
€complex = \/l( 0 NF),( 0 N)| ) (17)

where F is the total flux of the image, Viy are the com-
plex visibilities of the reconstruction, vertical bars indi-
cate magnitude, and the asterisk denotes complex con-
jugation. We define the fractional error in visibility am-

plitude as
_ |V0rig| - |‘/}econ|

- (19)

EVA
where |Vorig|, and |Viecon| denote the amplitude of the
complex visibilities for the original and reconstructed
images respectively. The error in visibility phase is de-
fined as

evp = |arg(Vorig) - arg(vrecon” (19)
if this quantity is < 180° and
eEyp = 360° — |arg(Vorig) - arg(v;econ” (20)

otherwise. We calculate these errors for each baseline
length by averaging along different azimuthal orienta-
tions and over the complete set of images in the training
set.

In both equations above, arg(V') denotes the argument
or phase of the complex visibilities of the images. When
taking the average of the error in visibility phase, we
follow Mardia & Jupp (2009) and define the average of
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Figure 8. Fractional complex error (€complex, left), fractional error in visibility amplitude (eva, middle), and error in visibility
phase (evp, right) for reconstructions with 5, 10, 15, 20, 25, 30, and 35 PCA components. The black curve shows the error
between the original unfiltered snapshot and the snapshot filtered with the Butterworth filter with r = 15 GA and n = 2. All
reconstructions are compared to the original unfiltered snapshot. We calculate these error quantities for each of the 30,720
snapshots, and then average them as a function of baseline length. The longest baseline that the 2017 EHT array could observe
was ~ 8 GA. Reconstructions with 20 components achieve errors less than ~ 3% for €complex, ~ 2% for eva, and ~ 15° for eyp

for baseline lengths observable by the 2017 EHT array.

a directional quantity as
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= — - 2
C anosé?J (23)

Figure 8 shows the errors €complex, €va, and eyp as
a function of baseline length, for all 30,720 snapshots
and for different values of the number N of PCA com-
ponents. The Figure also compares these errors to those
introduced to the original images by the application of
the Butterworth filter. In all three error quantities, there
are significant broad peaks at around 1 — 4 G\, which
are introduced by the dips, or nulls, that exist in the
training set around these baseline lengths (see Medeiros
et al. 2017 for a discussion of the origin of these uncer-
tainties).

The longest baselines included in the 2017 EHT ar-
ray are about 8 GA. Reconstructions with 20 compo-
nents achieve fractional complex errors less than ~ 3%
at all baselines less than 8 G\, even at baseline lengths
that frequently have a significant dip in visibility am-
plitude. The same reconstructions achieve a fractional

error in visibility amplitude of less than ~ 2% and an
error in visibility phase less than ~ 15° at all baselines
less than 8 GA. At baselines that do not coincide with
the visibility amplitude minima, the errors are signifi-
cantly smaller; fractional complex error in visibility am-
plitude for reconstructions with just 20 PCA compo-
nents is ~ 2% in regions between visibility amplitude
minima.

Since the reconstructions with only 20 PCA compo-
nents achieve errors which are comparable to the errors
in the EHT 2017 data for M87, in this work we settle on
fitting 20 PCA components to synthetic data as a proof
of concept. However, a slightly higher or lower number
of components may achieve comparable, or even better
results. We use the results presented in Figure 8 to add a
“theoretical error” to our model, which is implemented
as an additional uncertainty, as a function of baseline
length. In order to account for the fact that the peaks
in the theoretical uncertainties shown in Figure 8 cor-
respond to the locations of the visibility minima, which
themselves scale inversely with 6,, we scale the baseline
lengths of the theoretical error curves in a similar way.
Moreover, because the errors shown in this figure are
fractional, we multiply them by the total flux F' in the
image.

3.6. Preparing Simulated Data

The EHT observations are simulated as follows. For
each data point in the M87 EHT data, we use sinc in-
terpolation to interpolate between pixels in u — v space
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Figure 9. (Top left) Simulated image used for the generation of the first synthetic data set. (Top right) The highest likelihood
PRIMO reconstruction for the synthetic data. PRIMO can accurately reproduce the depth and shape of the brightness depression,
the size and width of the ring of emission, and the brightness asymmetry of the ring. (Bottom left) The original image blurred
by a Gaussian filter with a width of 15 pas, which mimics the nominal resolution of the EHT (see text). (Bottom right) The
simulated image convolved with a Butterworth filter with radius 7 = 15 GA and index n = 2. The brightness in all panels has
been normalized such that all images have the same total flux, with the exception of the Gaussian broadened image, which
has a total flux that is 1.5 times higher than the other panels. In all panels, the gray dotted circles indicate the analytically
calculated size and shape of the black hole shadow. The original and filtered images have been rotated to the position angle
used to generate the synthetic data set and the PRIMO reconstruction has been rotated by the position angle ¢ derived from the

model.

and approximate the visibility at that u — v location. In
order to mimic thermal noise, we dither each data point
with errors derived from a Gaussian distribution with
a standard deviation set by the error in the EHT data
at each u — v location for the 2017 EHT observations of
M87. We do not include gain errors in our synthetic data
at this time, nor do we include gains as free parameters
in our model.

4. RESULTS FROM SYNTHETIC DATA

In order to demonstrate the performance of PRIMO
with EHT data, we apply it to a number of synthetic
data sets created from simulated snapshots. We start
with two snapshots from a single GRMHD+radiative
transfer MAD simulation with electron number den-
sity scale n, = 10° cm ™3, electron temperature param-
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tion. The theoretical uncertainty (see section 3.5) is shown as error bars on the model. The residuals of the fit are shown below,
with the theoretical and observational uncertainties having been added in quadrature. (Right) The same but for the synthetic

closure phase data.

eter Ruign = 20, black hole spin agy = 0.9 and mass
M = 6.5x 109 M. This set of parameters is relevant to
the black hole in M87 and is consistent with the recent
EHT results that showed that the polarization structure
of M87 shows preference to MAD models over SANE
models (Event Horizon Telescope Collaboration et al.
2021a,b). These two snapshots were also considered in
Psaltis et al. (2022) but for different values of the Ryign
parameter.

We begin by applying our algorithm to a simulated
image snapshot that resembles a crescent shape but has
some extended structure. This snapshot was not easily
fit by a simple geometric crescent model (Psaltis et al.
2022, see Figures 16 and 17). The top row of Figure 9
shows the simulated image and the highest likelihood re-
construction from PRIMO after 10,000,000 MCMC steps.
Unlike the geometric crescent model, PRIMO can easily
reproduce the morphology of this image, arriving at the
correct ring size and width, and the correct position an-
gle for the peak of emission along the ring.

The bottom row of the Figure shows the original im-
age blurred by a Gaussian filter with a width of 15 pas
and the original image after it was filtered with an n = 2,
r = 15 G\ Butterworth filter. The Gaussian broadened
image approximates previously published EHT images,
since most of the EHT reconstructed images published
to date have been broadened by Gaussians. The width
of the Gaussian kernel was chosen such that the me-
dian FWHM of the image, along 128 equispaced radial

cross sections emanating from the center of the black-
hole shadow, is equal to 20 pas, i.e., similar to the M87
images reconstructed with other algorithms. (We note
that we simply broadened the original simulated image
and did not simulate CLEAN or RML imaging of it;
still, the Gaussian broadened GRMHD image provides
a simplified comparison to the resolution of previously
published EHT images.) PRIMO achieves much higher
image fidelity than the Gaussian blurred image and ap-
proaches the fidelity of the GRMHD input image simply
blurred by the Butterworth filter.

Figure 10 compares the visibility amplitudes and the
closure phases of the synthetic data created from the
simulated image as described in Section 3.6 to those
of the reconstructed image with the highest likelihood.
The model shows very good agreement with the syn-
thetic data and no structure is present in the residuals.
As expected, because of the very large signal-to-noise
ratio of most of the EHT measurements, the residu-
als are dominated by the theoretical errors introduced
by the truncation in the number of PCA components
used. Nevertheless, this truncation does not introduce
any substantial biases in the image structure or its prop-
erties.

Figure 11 compares the vertical (N-S) and horizontal
(E-W) cross sections of the original image, the Butter-
worth filtered snapshot, the Gaussian filtered snapshot,
and the most likely reconstruction with PRIMO. There
is remarkable agreement between the properties of the
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Figure 11. Comparison of the horizontal (fop) and verti-
cal (bottom) cross sections of the images shown in Figure 9.
The curves show the original snapshot (green), the snap-
shot filtered with a Butterworth filter (blue), the most-likely
PRIMO reconstruction (red), the snapshot filtered with a 15
pas Gaussian (cyan), and the analytically calculated edges of
the black hole shadow (gray dotted vertical lines). The cross
sections are normalized such that all images have the same
total flux, except for the Gaussian broadened image, which
has 1.5 times the flux of the other images. The y—axis is
in arbitrary units. PRIMO can accurately reproduce the main
features of the image and does not introduce a significant
bias in the ring size.

reconstrcted image and those of the original one. In
particular, the PRIMO fit is a much more accurate rep-
resentation of the original snapshot than the snapshot
convolved with a 20 pas beam. The main features of the
cross sections, i.e., the location and amplitude of the
peaks, the width of the peaks, the size and depth of the
central flux depression, and the relative amplitude dif-
ference between the two peaks is well approximated by
the reconstruction.

Figure 12 shows a corner plot for numerous key param-
eters for the MCMC run discussed above. The corner
plot shows a few correlations between parameters, such
as between the scaling parameter 0, and the amplitude
of the second PCA component, as well as with several
other components but to a lesser extent. Although the
PCA components are orthogonal when considered across
the entire image (or u — v space), they are no longer or-
thogonal when we consider only the discrete locations of
the EHT baselines. Because of this, some correlations
between different PCA components are also visible, such
as between the second and fourth components. The cor-

relation between the overall scale (6,) and the second
component is not surprising; the second component af-
fects the width of the ring, which is highly correlated
with the diameter of the ring.

The widths of the posteriors of most of the low-order
PCA components are significantly smaller than those of
the priors, demonstrating that the broad-brush proper-
ties of the reconstructed image are driven by the data
and not by the priors. This is increasingly less the
case for the higher-order PCA components, justifying
the level at which we truncated the series of compo-
nents. The Figure also compares the ground-truth val-
ues (shown in green) to the highest likelihood values
from the reconstruction (shown in red)!. In all cases,
there is a remarkable agreement between the two.

As a second example, we apply PRIMO to synthetic
data generated from a second snapshot that is domi-
nated by an extended flux tube. The geometric crescent
fit to this image failed to reconstruct a reasonable ring
size even when a Gaussian component was added to the
model (see Figures 18 and 19 in Psaltis et al. 2022).
However, as can be seen in Figures 13-16, PRIMO can
accurately reconstruct the location of the peak of emis-
sion along the ring, the width of the peak, the shape
and depth of the central flux depression, and the ex-
tended flux tube towards the top left of the image. The
visibility amplitudes and closure phases from the recon-
structed image show good agreement with the synthetic
data and very little structure is visible in the residuals.

Finally, we consider an image that is not included in
the training ensemble used to generate the PCA compo-
nents. While all images in the training set have a black
hole spin of apy = 0.9, for the final synthetic data set we
use an image from a simulation with a black hole spin of
agy = 0.7. This image has a SANE magnetic field geom-
etry and a plasma parameter of Ry, = 20. Figures 17,
18, and 19 show the results of reconstructing this image
with PRIMO. Even though this image was not included
in the ensemble used to generate the PCA components,
the algorithm was still able to accurately reconstruct
the salient image features, such as the depth and shape
of the brightness depression, the size and width of the
peak, the orientation of the peak brightness asymmetry
in the ring feature, and the extended structure towards
the top left of the image.

5. SUMMARY

1 For the amplitudes of the PCA components, we treat the ampli-
tudes derived by projecting the original image onto the first N

PCA components as the ground-truth values.
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Figure 13. Same as Figure 9 but for the second synthetic data set we consider.
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Figure 15. Same as Figure 11 but for the second synthetic
data set.

We have presented a novel PCA-based image recon-
struction algorithm, PRIMO, for reconstruction of black
hole images from EHT data. Our algorithm is unique
in that it combines prior information from physically
motivated simulations to reconstruct images that lie in
the same general space of images spanned by the sim-
ulations. Each simulation can create countless images
with different morphologies due to the turbulent nature
of the accretion flow, making it unlikely that the par-
ticular realization of the turbulent flow of the source

that the EHT observes would be well fit by any one
of the thousands of simulation images included in our
library. However, the PCA-based algorithm allows us
to reconstruct images regardless of whether or not they
are contained within the library of images from which
the PCA basis was created. Compared to the results
of previous work, PRIMO is not severely affected by the
biases identified in Psaltis et al. (2022), where simulated
images were fit with analytic crescent models.

Throughout this work we have used the EHT base-
line coverage from the 2017 observations. Since then,
the EHT has observed several more times with addi-
tional telescopes. We expect that, with additional base-
lines, we will be able to incorporate a higher number
of PCA components to generate images from the data
and achieve even better angular resolution. The EHT is
also planning to observe at 345 GHz in the coming years,
which will allow us to probe even higher spatial frequen-
cies. PRIMO can easily be adapted to exploit these new
observations.
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Figure 16. Same as Figure 12 but for the MCMC run shown in Figures 13, 14 and 15.
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Figure 17. Same as Figure 9 but for the third synthetic data set, which was not contained in the training set but was generated
from a GRMHD simulation with a SANE magnetic field geometry and a black-hole spin of agy = 0.7. Despite not being part
of the training set, salient features of the images are accurately reconstructed by PRIMO.
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