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ABSTRACT: Efficient life-cycle bridge asset management delineates a planning optimization problem of
paramount importance for the operational reliability of transportation infrastructure. It necessitates adept in-
spection and maintenance policies able to reduce risks and costs while incorporating long-term stochastic de-
terioration models, inference under uncertain structural health data, and various probabilistic and determinis-
tic constraints. Structural integrity management policies for individual bridges, which are mere constituents of
broader complex networks, cannot be devised in isolation of the policies of other system components, such as
other bridges and pavement sections, and without considering system functions and traffic considerations.
Such network effects render the optimization problem even harder to solve. Currently, age- or condition-
based maintenance techniques, as well as risk-based or periodic inspection plans, have been used to address
this class of challenging optimization problems. However, the efficacy of these techniques is often limited by
optimality-, scalability-, and uncertainty-induced complexities. In practice, infrastructure management agen-
cies often treat interconnected systems using disjoint plans for different component types, which in general do
not ensure system-level optimality. To tackle the above, the optimization problem is herein cast within con-
strained Partially Observable Markov Decision Processes (POMDPs), which provide a comprehensive math-
ematical framework for stochastic sequential decision settings under observation/monitoring data uncertainty
and limited resources. For the problem solution, the DDMAC algorithm (Deep Decentralized Multi-agent Ac-
tor-Critic) is successfully used, a deep reinforcement learning algorithm well-suited for management of large
multi-state multi-component systems, as illustrated in an example application of an existing transportation
network in Virginia, USA. The studied network comprises several bridge and pavement components exhibit-
ing nonstationary deterioration, and various agency-imposed constraints, and traffic delay and risk factors are
considered. Comparisons against conventional management policies showcase that the DDMAC solution sig-
nificantly outperforms its counterparts.

1 INTRODUCTION

Determination of Inspection and Maintenance
(I&M) policies for management of multi-asset infra-
structure environments requires modeling and as-
sessment of different stochastic deterioration effects,
together with adept scheduling of action sequences,
able to mitigate risks and serve multi-purpose life-
cycle goals. Decision-making in such complex and
uncertain system settings comes with major compu-
tational challenges, due to heterogeneity of different
asset classes, large number of components resulting

e.g., in (Madanat, 1993 ; Ellis, et al., 1995;
Papakonstantinou & Shinozuka, 2014;
Papakonstantinou, et al., 2018). Many of these solu-
tions, however, suffer from optimality-, scalability-,
and uncertainty-induced complexities, and are often
not easily extendable to environments with con-
straints (deterministic or stochastic). Moreover, de-
spite the fact that the underlying decision problem is
dynamic in its nature, many optimization techniques
use static formulations, with the exception of sto-
chastic optimal control approaches which incorpo-
rate dynamic programming principles (Bellman,

in intractable state and action spaces, noisy observa-
tions, limited availability of resources, and perfor-
mance-based constraints. Advanced I&M frame-
works and their respective computational approaches
must, therefore, facilitate integrated consideration of
the above characteristics, a quest that needs to reach
beyond the limits of existing methodologies.

There is a large variety of optimization methods
that propose solutions to the I&M planning problem,
ranging from threshold-based formulations with reli-
ability analysis principles e.g., in (Saydam &
Frangopol, 2014; Bocchini & Frangopol, 2011), to
decision tree analysis, e.g., in (Straub & Faber,
2005), to renewal theory, e.g., in (Grall, et al., 2002;
Rackwitz, et al., 2005), to stochastic optimal control,

1957). Due to these computational challenges, many
practical techniques are prone to generating widely
sub-optimal solutions, especially in settings with
large dimensions and long horizons.

To address the above, in this work, the decision-
making problem is cast within the joint framework
of Partially Observable Markov Decision Processes
(POMDP) and multi-agent Deep Reinforcement
Learning (DRL). The dynamic programming princi-
ples of POMDPs mitigate the curse of history and al-
low adaptive reasoning in the presence of noisy real-
time data. Various studies have examined and
demonstrated their efficacy in I&M planning, e.g.,
(Papakonstantinou & Shinozuka, 2014a,b;



Papakonstantinou, et al., 2016; Memarzadeh &
Pozzi, 2015; Schobi & Chatzi, 2016), among others.

Based on POMDPs, a Deep Centralized Multia-
gent Actor-Critic (DCMAC) technique has been de-
veloped in (Andriotis & Papakonstantinou, 2019),
which is part of the wider family of actor-critic
methods (Wang, et al., 2016; Degris, et al., 2012).
DCMAC makes use of the notion of belief-state
MDPs, a key concept of point-based POMDP algo-
rithms and, therefore, operates directly on the poste-
rior probabilities of system states given previous ac-
tions and observations. Deep Decentralized Multi-
agent Actor-Critic (DDMAC) (Andriotis &
Papakonstantinou, 2021) proposes an architectural
variant of DCMAC. In this architecture, each com-
ponent is represented by a decentralized independent
actor and their output is used to generate a central-
ized value function, which is then employed in rele-
vant gradient calculations for updating both the actor
and critic networks. As a further development, a new
DDMAC version is proposed in (Saifullah, et al., in
review), where a fully Centralized Training and De-
centralized Execution (CTDE) concept is adopted
(Lyu, et al., 2021), with decentralization at both the
action and information levels, an efficient paradigm
in cooperative multi-agent DRL. The architecture,
termed as DDMAC-CTDE, reduces the parameter
space of the policy even further by masking for eve-
ry actor the other actors' input information.

In this study, a stochastically deteriorating trans-
portation network with multiple asset classes is con-
sidered, i.e., pavement and bridge components,
along with various deterministic and stochastic re-
source and condition constraints. The optimization is
cast in a POMDP framework, utilizing a holistic
modeling environment for the two classes of assets
(Saifullah, et al., in review), based on their corre-
sponding damage state indices, which characterize
their condition states, and pertinent maintenance and
inspection actions. The results are compared with
Condition Based Maintenance (CBM) and a variant
of Virginia’s Department of Transportation (VDOT)
I&M policy, outperforming both significantly.

2 BACKGROUND
2.1 Partially observable Markov decision processes

The POMDP framework is defined by 7 essential el-
ements consisting of S, 4, P, Q, O, C, and y, where
S, 4 and Q are sets of states, actions, and possible
observations, respectively, and P is the model of
transitions, O is an observation model, C are the cost
functions and y is a discount factor. In POMDPs, the
decision-maker (agent) starts at a state, s; at a time
step, ¢, takes an action a;, receives a cost, ¢;, transi-
tions to the next state, s:+1, and receives an observa-
tion, o1 € Q based on the observation probability
model, p(os1lsi+1, a;). Due to partial observability,
the agent can only form a belief b, about its state,

where b, is a probability distribution over S of all
possible discrete states. A Bayesian update can be
used to calculate the belief b+ (Papakonstantinou &
Shinozuka, 2014a):
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where probabilities b(s;), for all s;€ S, form the belief
vector by of length |S], and the denominator of Eq.
(1), p(os1|bs, a;) is the standard normalizing con-
stant. The goal for an agent is to choose actions at
each time step that minimize its expected future dis-
counted cumulative cost, defined by the value or ac-
tion-value function (Papakonstantinou & Shinozuka,
2014a). The optimal value function for POMDPs is:
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Despite existing mathematical convergence guaran-
tees for POMDPs, traditional point-based POMDP
solvers encounter scalability issues in very large
state, observation, and actions spaces. Deep rein-
forcement learning allows us to alleviate this curse
of dimensionality.

2.2 Deep reinforcement learning and DDMAC-
CTDE

Reinforcement learning (RL) is a computational
framework for evaluating and automating goal-
directed learning and decision-making that is well-
suited for solving MDP/POMDP problems as it is
usually structured around them. RL algorithms com-
bined with deep neural network parametrizations,
give rise to DRL, which has shown capabilities of
discovering powerful strategies in immense state
spaces (Silver, et al., 2016; Mnih, et al., 2015).

The methods for solving RL problems can be ma-
jorly classified as value-based or policy-based learn-
ing. Value-based methods learn the state or state-
action value function and act upon it by selecting the
optimal action in each given state, e.g., Q-learning
and DQN (Mnih, et al., 2015). In policy-based learn-
ing, policy w : § —P(A) is directly learned using a
separate function approximator (usually a neural
network). The policy gradient method is customarily
used for learning policies in policy-based methods
and the policy gradient, g .., can be estimated in a

multi-agent actor-critic setting as:
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where, s,= {s7}" state vector for m-component sys-
tem, a, = {a/"}" is an action vector for n-agents (no.
of agents and no. of components can be different), 0"
is the policy network parameter vector, w; is the im-
portance sampling weight, p is a n-dimensional vec-
tor of agents’ behavior policies, p is the m-
dimensional state distribution under these policies,
and A*(ssa;) is the advantage function:

A (s,.a, 10" )=c(s,.a)+ 77" (s, 10)-V"(s,10") (4

where, 0" are the weight parameters of the critic neu-
ral network. The mean squared error is considered as
a loss function for the critic network and the relevant
critic gradient can be accordingly derived.

Within this context, DDMAC, as proposed in
(Andriotis & Papakonstantinou, 2021), provides an
algorithm for I&M optimal planning well-suited for
large multi-component systems. The framework also
considers the presence of constraints through state
augmentation and Lagrange multipliers. DDMAC
uses a sparse parametrization of the actor-network
without parameter sharing between agents (i.e., each
component has its own actor-network). For even
larger systems, DDMAC-CTDE formulation
(Saifullah, et al., in review) is used herein, allowing
for even sparser actor parametrizations. DDMAC-
CTDE employs a fully decentralized logic along the
lines of centralized training and decentralized execu-
tion, postulating that state accessibility for each ac-
tor network is restricted to its corresponding compo-
nent. Component actions, as well as various possible
sub-system actions, are assumed conditionally inde-
pendent given their own state, thus the policy and its
gradient are:

7(a, |s,):ﬁ7r,-(a,(i) |s,(i)) (%)
i=1
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This technically means that each control unit is seen
as an autonomous agent that only utilizes compo-
nent-state information to decide about its actions.
For further details refer to (Saifullah, et al., in
review).

3 ENVIRONMENT DESCRIPTION
3.1 Component states

The considered network is comprised of 85 pave-
ment and 11 bridge components. Various indicators
can describe the pavement condition, e.g., Pavement
Condition Index (PCI), Critical Condition Index
(CCI), International Roughness Index (IRI), and
Load Related Distress Index (LDR), among many
others. CCI and IRI are used in this work as they of-
fer a joint quantification of condition, as per struc-
tural distresses and ride quality, respectively. A non-
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Figure 1: Fitted gamma model for CCI (top). Transition prob-
abilities for heavy traffic, with starting state 6 (bottom).

stationary CCI model is used in this study, devised
as a modified version based on a VDOT report
(Katicha, et al., 2016). This model can incorporate
various aspects, including different traffic levels. A
gamma process is utilized, with its mean being in
time equal to the modified mean CCI predictions
and a relevant model variance (Katicha, et al., 2016).
In Figure 1 (top), simulation results are indicatively
shown for a heavy traffic level with 300 different re-
alizations. The solid line represents the mean CCI
and the red curve is the mean CCI gamma model
prediction.

To determine the transition probabilities, the CCI
values are discretized into 6 condition states, with 6
being the intact state. These discretized condition
states are largely adapted from the prescribed VDOT
maintenance guidelines (VDOT, 2016), and the de-
tailed description is reported in (Saifullah, et al., in
review). 10° sequences are generated in total to ob-
tain the transition probabilities for a given traffic
level. Figure 1 (b) indicatively shows a few comput-
ed transition probabilities for heavy traffic.

The observation uncertainty for CCI is appropri-
ately modeled by the likelihood functions p(o/|s:),
which quantify the probability of receiving an ob-
servation o, at time ¢ given a state s,. A normal dis-
tribution is considered in this work as a likelihood
function, with mean the actual CCI value and 3 dif-
ferent error variances, i.e.,0, 72, and 18, corre-
sponding to no-inspection, low- and high-fidelity in-
spections, respectively. Similarly, the IRI (in m/km)
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Figure 2: Transition probabilities in time, starting from state 9.

can be discretized into 5 states, with 5 being the in-
tact state, as in (FHWA, 1999). Unlike CCI, the IRI
transition model is stationary. In this case too, three
different inspection activities are assumed, and the
measurement errors associated with the respective
inspection technologies are considered to be normal-
ly distributed with zero mean and standard devia-
tions of oo, 0.32, and 0.08 m/km, respectively. All
resulting CCI and IRI observation probabilities are
reported in (Saifullah, et al., in review).

For the objectives of this study, only the decks of
bridges are considered, as they are directly influ-
enced by traffic. To determine the serviceability of
decks, 9 states are considered, with state 9 being the
undamaged state, as adopted in (FHWA, 1999) and
other DOTs. Condition 4 now denotes an irreversi-
ble damage state, and is thus regarded as a terminal
state, as also suggested by (Manafpour, et al., 2018).
The nonstationary transition probabilities are based
on 30 years of in-service performance data for more
than 22,000 bridges in Pennsylvania, as analyzed in
(Manafpour, et al., 2018) and illustrated in Figure 2.
Apart from these 6 nonstationary transitions, station-
ary failure probabilities are also considered, where a
bridge is assumed to have a failure probability of Py
=0.001 if it is in states 8 and 9, and Pr= 0.005 if it is
in states 7, 6, 5. Py finally reaches 0.01 if the bridge
state is 4.

3.2 Action description

There are various guidelines for pavement mainte-
nance from different agencies. According to
(VDOT, 2016), four different maintenance actions
are recommended, i.e., Do Nothing, Minor Re-
pair, Major Repair, and Reconstruction. Minor Re-
pair (crack filling, moderate patching, etc.) can im-
prove the CCI and IRI states but does not affect the
rate of deterioration, Major Repair can improve
condition states and reduce the deterioration rate by
5 years, and Reconstruction resets the pavement to
an intact condition. A detailed description of these
actions and their costs can be found in (VDOT,
2016). Maintenance actions taken at any given time
will simultaneously improve both CCI and IRI indi-

ces. The maintenance action transition probabilities
for CCI and IRI, their duration, and their costs are
reported in (Saifullah, et al., in review).

Similar to pavements, four maintenance actions
are considered for maintaining the bridge decks, i.e.,
Do Nothing, Minor Repair, Major Repair, and Re-
construction, however, the involved performed ac-
tions are different. It is again assumed that the Minor
Repair action does not change the rate of deteriora-
tion of the deck but it can improve the condition
state of the structure. Similarly, Major Repair can
improve both, and Reconstruction can reset the deck
to a newly built one. The transition probabilities, ac-
tion durations, and their costs are described in
(Saifullah, et al., in review). Maintenance action-
induced delays that can be translated to costs are
considered as in (Vadakpat, et al., 2000).

There is a variety of destructive and nondestruc-
tive inspection techniques that are used for bridge
decks, such as visual inspections, acoustic sensing,
infrared/thermal imaging, ground penetrating radar,
coring and chipping, and half-cell potential tests,
among many others. Towards generality, inspection
techniques are herein characterized as uninforma-
tive, low-fidelity, and high-fidelity inspection tech-
niques, respectively. The observation probabilities
for the corresponding inspections can be seen in
(Saifullah, et al., in review).

3.3 Transportation network

As a reference example, the Hampton Roads trans-
portation network in Virginia, USA, is considered.
The original topology and average daily traffic data
of the network are used along with 11 main bridges.
Each bridge is bidirectional, with the same number
of lanes as in the original network, illustrated in Fig-
ure 3. The different deck types I-III are categorized
based on their relevant sizes. Type I bridges have
length more than 5 km, type II have lengths between
1.2-5 km, and type III are the smallest having a
length less than 1.2 km.

Similarly, the network has various pavement
components categorized as type I-III. Type I pave-
ments are interstate highways, with bidirectional
traffic having four lanes in each direction, thus, con-
stituting the class of highest vehicular miles. Type 11
are primary highways with a bidirectional medium
level of traffic, having two lanes in each direction.
Lastly, type III are secondary highways with low-
level bidirectional traffic and one lane in each direc-
tion. The deterioration rate of pavements is selected
based on these classes, as high-volume roads have a
higher rate than low-volume ones. These rates are
taken from (Saifullah, et al., in review).

3.4 Network level risks and constraints

Risk is defined as an expected cumulative discount-
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Figure 3: Hampton Roads transportation network model.

ed failure state cost over the life cycle, as in
(Andriotis & Papakonstantinou, 2021). The risk cost
consists of two parts: (1) accruable cost, which is
taken as two times the rebuilding cost of the bridge,
and (2) instantaneous cost, which is considered here
as ten times the rebuilding cost of the bridge. The to-
tal risk is estimated using (i) the risk of individual
bridge failures (for all network bridges), and (ii) the
system-level risk, defined based on the connecting
bridges over James River and York River as in
(Saifullah, et al., in review). The system risk has 3
failure modes, i.e., (A) the bridge over York River
fails, (B) the 3 bridges over James River fail, and
(C) modes A and B occur simultaneously.

There are various constraints that are considered,
based on the condition states of pavements and
bridges, imposed by the FHWA and VDOT agen-
cies. For National Highway System (NHS) bridges,
no more than 10% of the total bridge deck area
should be deficient (i.e., condition rating < 4), and
for NHS pavements, no more than 10% of lane-
miles should be in poor condition (i.e., CCI<60 and
IR[>2.2 m/km). Based on VDOT targets, no more
than 18% of interstate and primary pavements and
35% of secondary pavements should be classified as
deficient (i.e., CCI<60). Regarding serviceability, no
more than 15% of interstate and primary roadways
should be classified as deficient in terms of ride
quality (i.e., IRI>2.2 m/km). VDOT also aims to
achieve ‘no’ CCI lower than 35 for the interstate
system (VDOT, 2019). It is essential here to mention
that the above constraints are satisfied in an expecta-
tion sense (i.e., soft constraints). Therefore, the last
constraint is modified here from 0 to 2%.

Finally, a budget constraint is imposed due to
limited available resources. A five-year budget of
$1.3 billion is allocated to Hampton Roads districts

for FY2021-2026 (Nichols, 2021). This budget
needs to be strictly satisfied (hard constraint) and is
implemented as an augmented state of the network
(Andriotis & Papakonstantinou, 2021).

4 RESULTS

This study considers a 96-component network with a
total number of ~7x10'3* possible system states at
any given time instant. 10 actions per component are
considered which makes the total number of availa-
ble actions equal to 10% for the entire network at
each time step. The network components start from
intact states, with an episode length of 20 years, and
a discount factor y = 0.97. The DDMAC-CTDE
training is performed for 1.3x10° episodes. Training
details can be found in (Saifullah, et al., in review).
To assess the DDMAC-CTDE solutions, we for-
mulate and evaluate 2 baselines, i.e., (i) a condition-
based maintenance (CBM) policy and (ii) a policy
baseline following VDOT guidelines. The CBM pol-
icy is heuristically optimized to find the relevant
thresholds based on the condition of each component
type, i.e., bridge, interstate, primary, and secondary
pavements. The policy involves the full suite of 10
actions at every even time step. However, at every
odd year, action 6 is taken for every component, i.e.,
do-nothing and high-fidelity-inspection, as also
shown in Figure 5. The detailed CBM algorithm is
presented in (Saifullah, et al., in review). The VDOT
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CBM and VDOT policy baselines (bottom).
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policy baseline is approximated from (VDOT, 2016)
for pavement components. The original VDOT poli-
cy uses CCI and other distress metrics for action se-
lection, but here only CCI is used. For bridge decks,
the same criterion is used as for interstate compo-
nents due to their similar importance.

The expected total costs during training are com-
pared in Figure 4 (top). Figure 4 (bottom) also pre-
sents a histogram comparing the total costs with
their constituents based on Monte-Carlo simulations.
It can be observed that our DDMAC-CTDE solution
surpasses both baselines during training and simula-
tion by a significant margin, being 27% cheaper than
the CBM policy and 48% cheaper than the VDOT
policy, as given in Table 1. Table 1 also compares
the average performance over 10* simulations in
terms of poor condition states, as per the 6 different
constraints discussed in Section 3.4. The perfor-
mance constraints are in the rows of the table, and I,
P, and S Hwy are the abbreviations of interstate,
primary, and secondary highways, respectively.

To better understand how policies change over
time, a detailed policy realization for some repre-
sentative components is shown in Figure 5. The fig-
ure illustrates actions generated by one of the in-
stances of the optimum policy and the evolution of
component belief states is shown with contours. Ad-
ditionally, Figure 5 displays the discounted budget
usage over time and the 5-year budget discounted
for every cycle. The budget is a hard constraint that
the agents are not allowed to exceed, a requirement
that is satisfied by the obtained solution. The evolu-
tion of the total risk cost associated with individual
bridges and the 3 modes of system risk is also pre-
sented. Moreover, the cost distribution among dif-
ferent types of pavements and bridges is shown in a
pie chart.

Plots with control actions represent the actions
taken over time. The maintenance actions, taken at

Table 1: Comparison of different solution schemes in terms of
total cost and performance with respect to average condition
states of different pavement and bridge components.

Objective & DDMAC CBM VDOT
Constraints -CTDE policy policy
Total budget used (billion
1.86 2.54 3.62
USD)
CCI<60 and IRI>2.2m/km
2. 2. .
for I-Hwy (%) 0 ? 0.0
CCI<35 of I-Hwy (%) 1.9 0.5 0.0
CCI<60 for I and P-Hwy
7.3 4.7 0.1
(%)
IRI>2.2 m/km for I and P-
15.0 14.0 12.0
Hwy (%)
CCI<60 for S-Hwy (%) 10.3 43 0.9
Bridges with condition rat- 9.2 21 2.7

ing <4 (%)

every time step, update the current belief of the sys-
tem, as manifested in the next time step. The evolu-
tion of contour plots in the case of pavements shows
current beliefs for both CCI and IRI states, and the
current belief states at each step for two bridge decks
are also shown. For example, the agent is shown to
take action 7 at ¢t = 6 years for a type III bridge, and
then the updated belief is shown at ¢ = 7 years, in-
corporating both I&M actions.

As seen in Figure 5, control actions are compati-
ble with belief states. For example, the agents initial-
ly choose Do-Nothing actions since the belief states
for both pavements and bridges initiate in the intact
condition. As the conditions gradually worsen, more
interventions are considered. Similarly, at the hori-
zon end, the Do-Nothing action is optimal for pave-
ments, as pavements do not contribute to disconnec-
tion risks, while any action without inspection can
be optimal for bridges. It has also been observed that
the agents maintain and inspect type I bridges more
systematically. This is because type I bridges have
their individual failure risk as well as mode B and
mode C system failure risks associated with them.

From the pie chart, shown in Figure 5, it is ob-
served that cost distribution is heavily skewed (as
much as 75%) towards the bridge components, due
to their high maintenance cost, associated risk cost,
and lower traffic delay cost. Among pavements,
primary highways have the largest contribution as
they represent the most components in the network
(47 in total). Figure 5 also shows the evolution of the
system risk with time. As expected, the risk is mini-
mal in the beginning and it increases with time, with
downward jumps mainly due to the maintenance ac-
tions taken for bridges, especially of type 1.

5 CONCLUSIONS

In this work, the I&M problem of a large deteriorat-
ing bridge-pavement network with 96-components is
formulated within a POMDP-DRL framework, in-
cluding risks and other condition and budget related
constraints. Pavement states are defined by CCI and
IRI metrics and bridge states are defined by deck
condition ratings. Due to immensely large state and
action spaces, the problem is solved with a newly
and originally developed DRL algorithmic approach
named Deep Decentralized Multi-agent Actor Critic
with Centralized Training and Decentralized Execu-
tion (DDMAC-CTDE) which uses sparse parametri-
zations and local component state information for
actor networks to obtain near optimal solutions. The
optimal life-cycle policies are compared against a
Condition-Based Maintenance (CBM) policy and an
adapted VDOT policy. The DDMAC-CTDE solu-
tion is shown to surpass the two baselines by 27%
and 48%, respectively, satisfying all the considered
constraints.
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