
1 INTRODUCTION 
Determination of Inspection and Maintenance 
(I&M) policies for management of multi-asset infra-
structure environments requires modeling and as-
sessment of different stochastic deterioration effects, 
together with adept scheduling of action sequences, 
able to mitigate risks and serve multi-purpose life-
cycle goals. Decision-making in such complex and 
uncertain system settings comes with major compu-
tational challenges, due to heterogeneity of different 
asset classes, large number of components resulting 
in intractable state and action spaces, noisy observa-
tions, limited availability of resources, and perfor-
mance-based constraints. Advanced I&M frame-
works and their respective computational approaches 
must, therefore, facilitate integrated consideration of 
the above characteristics, a quest that needs to reach 
beyond the limits of existing methodologies. 

There is a large variety of optimization methods 
that propose solutions to the I&M planning problem, 
ranging from threshold-based formulations with reli-
ability analysis principles e.g., in (Saydam & 
Frangopol, 2014; Bocchini & Frangopol, 2011),  to 
decision tree analysis, e.g., in (Straub & Faber, 
2005), to renewal theory, e.g., in (Grall, et al., 2002; 
Rackwitz, et al., 2005), to stochastic optimal control, 

e.g., in (Madanat, 1993 ; Ellis, et al., 1995; 
Papakonstantinou & Shinozuka, 2014; 
Papakonstantinou, et al., 2018). Many of these solu-
tions, however, suffer from optimality-, scalability-, 
and uncertainty-induced complexities, and are often 
not easily extendable to environments with con-
straints (deterministic or stochastic). Moreover, de-
spite the fact that the underlying decision problem is 
dynamic in its nature, many optimization techniques 
use static formulations, with the exception of sto-
chastic optimal control approaches which incorpo-
rate dynamic programming principles (Bellman, 
1957). Due to these computational challenges, many 
practical techniques are prone to generating widely 
sub-optimal solutions, especially in settings with 
large dimensions and long horizons.  

To address the above, in this work, the decision-
making problem is cast within the joint framework 
of Partially Observable Markov Decision Processes 
(POMDP) and multi-agent Deep Reinforcement 
Learning (DRL). The dynamic programming princi-
ples of POMDPs mitigate the curse of history and al-
low adaptive reasoning in the presence of noisy real-
time data. Various studies have examined and 
demonstrated their efficacy in I&M planning, e.g., 
(Papakonstantinou & Shinozuka, 2014a,b;  
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Papakonstantinou, et al., 2016; Memarzadeh & 
Pozzi, 2015; Schöbi & Chatzi, 2016), among others. 

Based on POMDPs, a Deep Centralized Multia-
gent Actor-Critic (DCMAC) technique has been de-
veloped in (Andriotis & Papakonstantinou, 2019), 
which is part of the wider family of actor-critic 
methods (Wang, et al., 2016; Degris, et al., 2012). 
DCMAC makes use of the notion of belief-state 
MDPs, a key concept of point-based POMDP algo-
rithms and, therefore, operates directly on the poste-
rior probabilities of system states given previous ac-
tions and observations.  Deep Decentralized Multi-
agent Actor-Critic (DDMAC) (Andriotis & 
Papakonstantinou, 2021) proposes an architectural 
variant of DCMAC. In this architecture, each com-
ponent is represented by a decentralized independent 
actor and their output is used to generate a central-
ized value function, which is then employed in rele-
vant gradient calculations for updating both the actor 
and critic networks. As a further development, a new 
DDMAC version is proposed in (Saifullah, et al., in 
review), where a fully Centralized Training and De-
centralized Execution (CTDE) concept is adopted 
(Lyu, et al., 2021), with decentralization at both the 
action and information levels, an efficient paradigm 
in cooperative multi-agent DRL. The architecture, 
termed as DDMAC-CTDE, reduces the parameter 
space of the policy even further by masking for eve-
ry actor the other actors' input information. 

In this study, a stochastically deteriorating trans-
portation network with multiple asset classes is con-
sidered, i.e., pavement and bridge components, 
along with various deterministic and stochastic re-
source and condition constraints. The optimization is 
cast in a POMDP framework, utilizing a holistic 
modeling environment for the two classes of assets 
(Saifullah, et al., in review), based on their corre-
sponding damage state indices, which characterize 
their condition states, and pertinent maintenance and 
inspection actions. The results are compared with 
Condition Based Maintenance (CBM) and a variant 
of Virginia’s Department of Transportation (VDOT) 
I&M policy, outperforming both significantly. 

2 BACKGROUND  

2.1 Partially observable Markov decision processes  
The POMDP framework is defined by 7 essential el-
ements consisting of S, A, P, Ω, O, C, and γ, where 
S, A and Ω are sets of states, actions, and possible 
observations, respectively, and P is the model of 
transitions, O is an observation model, C are the cost 
functions and γ is a discount factor. In POMDPs, the 
decision-maker (agent) starts at a state, st at a time 
step, t, takes an action at, receives a cost, ct, transi-
tions to the next state, st+1, and receives an observa-
tion, ot+1 ϵ Ω based on the observation probability 
model, p(ot+1|st+1, at). Due to partial observability, 
the agent can only form a belief bt about its state, 

where bt is a probability distribution over S of all 
possible discrete states. A Bayesian update can be 
used to calculate the belief bt+1 (Papakonstantinou & 
Shinozuka, 2014a):  
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where probabilities b(st), for all st ϵ S, form the belief 
vector bt of length |S|, and the denominator of Eq. 
(1), p(ot+1|bt, at) is the standard normalizing con-
stant. The goal for an agent is to choose actions at 
each time step that minimize its expected future dis-
counted cumulative cost, defined by the value or ac-
tion-value function (Papakonstantinou & Shinozuka, 
2014a). The optimal value function for POMDPs is: 
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Despite existing mathematical convergence guaran-
tees for POMDPs, traditional point-based POMDP 
solvers encounter scalability issues in very large 
state, observation, and actions spaces. Deep rein-
forcement learning allows us to alleviate this curse 
of dimensionality. 

2.2 Deep reinforcement learning and DDMAC-
CTDE 
Reinforcement learning (RL) is a computational 
framework for evaluating and automating goal-
directed learning and decision-making that is well-
suited for solving MDP/POMDP problems as it is 
usually structured around them. RL algorithms com-
bined with deep neural network parametrizations, 
give rise to DRL, which has shown capabilities of 
discovering powerful strategies in immense state 
spaces (Silver, et al., 2016; Mnih, et al., 2015).  

The methods for solving RL problems can be ma-
jorly classified as value-based or policy-based learn-
ing. Value-based methods learn the state or state-
action value function and act upon it by selecting the 
optimal action in each given state, e.g., Q-learning 
and DQN (Mnih, et al., 2015). In policy-based learn-
ing, policy π : S →P(A) is directly learned using a 
separate function approximator (usually a neural 
network). The policy gradient method is customarily 
used for learning policies in policy-based methods 
and the policy gradient, θg , can be estimated in a 
multi-agent actor-critic setting as: 
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where, st = {st
(i)}m state vector for m-component sys-

tem, at = {at
(i)}n is an action vector for n-agents (no. 

of agents and no. of components can be different), θπ

is the policy network parameter vector, wt is the im-
portance sampling weight, µ is a n-dimensional vec-
tor of agents’ behavior policies, ρ is the m-
dimensional state distribution under these policies, 
and Aπ(st,at) is the advantage function: 
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where, θV are the weight parameters of the critic neu-
ral network. The mean squared error is considered as 
a loss function for the critic network and the relevant 
critic gradient can be accordingly derived.

Within this context, DDMAC, as proposed in
(Andriotis & Papakonstantinou, 2021), provides an 
algorithm for I&M optimal planning well-suited for 
large multi-component systems. The framework also
considers the presence of constraints through state 
augmentation and Lagrange multipliers. DDMAC 
uses a sparse parametrization of the actor-network 
without parameter sharing between agents (i.e., each 
component has its own actor-network). For even 
larger systems, DDMAC-CTDE formulation 
(Saifullah, et al., in review) is used herein, allowing 
for even sparser actor parametrizations. DDMAC-
CTDE employs a fully decentralized logic along the 
lines of centralized training and decentralized execu-
tion, postulating that state accessibility for each ac-
tor network is restricted to its corresponding compo-
nent. Component actions, as well as various possible 
sub-system actions, are assumed conditionally inde-
pendent given their own state, thus the policy and its 
gradient are: 

( ) ( )( ) ( )

1

| |
n

i i
t t i t t

i

a s 
=

=a s                                             (5)

( ) ( )( ) ( )
,

1
~ ~ log | , ,

t t

i i
t i t t

n

t t
i

w a s A 

 
=

  
=   

  
s ρ a μθ θg θ s a

 
=  =  

 
 
 

=  = w= w w= w =    =  w w= w w w w= w w
 

= 
 
 
 

= 
 

 
 =  s ρ a μ =  θ θ θ θ  =  θ θ =   θ θ    θ θ    =    =  θ θ =    =  w w= w w w w= w wθ θw w= w w w w= w w

 
θ θ

 
 
 
 θ θ 
 
 s ρ a μθ θs ρ a μ~ ~s ρ a μ~ ~θ θ~ ~s ρ a μ~ ~t ts ρ a μt tθ θt ts ρ a μt t,t t,s ρ a μ,t t,θ θ,t t,s ρ a μ,t t,~ ~t t~ ~s ρ a μ~ ~t t~ ~θ θ~ ~t t~ ~s ρ a μ~ ~t t~ ~ s ρ a μ θ θ s ρ a μ ~ ~ ~ ~s ρ a μ~ ~ ~ ~θ θ~ ~ ~ ~s ρ a μ~ ~ ~ ~ =  s ρ a μ =  θ θ =  s ρ a μ =  ~ ~ ~ ~= ~ ~ ~ ~s ρ a μ~ ~ ~ ~= ~ ~ ~ ~θ θ~ ~ ~ ~= ~ ~ ~ ~s ρ a μ~ ~ ~ ~= ~ ~ ~ ~ (6)

This technically means that each control unit is seen 
as an autonomous agent that only utilizes compo-
nent-state information to decide about its actions.
For further details refer to (Saifullah, et al., in 
review).

3 ENVIRONMENT DESCRIPTION

3.1 Component states
The considered network is comprised of 85 pave-
ment and 11 bridge components. Various indicators 
can describe the pavement condition, e.g., Pavement 
Condition Index (PCI), Critical Condition Index 
(CCI), International Roughness Index (IRI), and 
Load Related Distress Index (LDR), among many 
others. CCI and IRI are used in this work as they of-
fer a joint quantification of condition, as per struc-
tural distresses and ride quality, respectively. A non-

Figure 1: Fitted gamma model for CCI (top). Transition prob-
abilities for heavy traffic, with starting state 6 (bottom).

stationary CCI model is used in this study, devised 
as a modified version based on a VDOT report 
(Katicha, et al., 2016). This model can incorporate 
various aspects, including different traffic levels. A 
gamma process is utilized, with its mean being in 
time equal to the modified mean CCI predictions 
and a relevant model variance (Katicha, et al., 2016). 
In Figure 1 (top), simulation results are indicatively 
shown for a heavy traffic level with 300 different re-
alizations. The solid line represents the mean CCI 
and the red curve is the mean CCI gamma model 
prediction.

To determine the transition probabilities, the CCI 
values are discretized into 6 condition states, with 6 
being the intact state. These discretized condition 
states are largely adapted from the prescribed VDOT 
maintenance guidelines (VDOT, 2016), and the de-
tailed description is reported in (Saifullah, et al., in 
review). 106 sequences are generated in total to ob-
tain the transition probabilities for a given traffic 
level. Figure 1 (b) indicatively shows a few comput-
ed transition probabilities for heavy traffic.

The observation uncertainty for CCI is appropri-
ately modeled by the likelihood functions p(ot|st), 
which quantify the probability of receiving an ob-
servation ot at time t given a state st. A normal dis-
tribution is considered in this work as a likelihood 
function, with mean the actual CCI value and 3 dif-
ferent error variances, i.e., , 72, and 18, corre-
sponding to no-inspection, low- and high-fidelity in-
spections, respectively. Similarly, the IRI (in m/km) 



 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 2: Transition probabilities in time, starting from state 9.  

can be discretized into 5 states, with 5 being the in-
tact state, as in (FHWA, 1999). Unlike CCI, the IRI 
transition model is stationary. In this case too, three 
different inspection activities are assumed, and the 
measurement errors associated with the respective 
inspection technologies are considered to be normal-
ly distributed with zero mean and standard devia-
tions of ∞, 0.32, and 0.08 m/km, respectively. All 
resulting CCI and IRI observation probabilities are 
reported in (Saifullah, et al., in review).  

For the objectives of this study, only the decks of 
bridges are considered, as they are directly influ-
enced by traffic. To determine the serviceability of 
decks, 9 states are considered, with state 9 being the 
undamaged state, as adopted in (FHWA, 1999) and 
other DOTs. Condition 4 now denotes an irreversi-
ble damage state, and is thus regarded as a terminal 
state, as also suggested by (Manafpour, et al., 2018). 
The nonstationary transition probabilities are based 
on 30 years of in-service performance data for more 
than 22,000 bridges in Pennsylvania, as analyzed in 
(Manafpour, et al., 2018) and illustrated in Figure 2. 
Apart from these 6 nonstationary transitions, station-
ary failure probabilities are also considered, where a 
bridge is assumed to have a failure probability of Pf 
= 0.001 if it is in states 8 and 9, and Pf = 0.005 if it is 
in states 7, 6, 5. Pf  finally reaches 0.01 if the bridge 
state is 4.  

3.2 Action description 
There are various guidelines for pavement mainte-
nance from different agencies. According to 
(VDOT, 2016), four different maintenance actions 
are recommended, i.e., Do Nothing, Minor Re-
pair, Major Repair, and Reconstruction. Minor Re-
pair (crack filling, moderate patching, etc.) can im-
prove the CCI and IRI states but does not affect the 
rate of deterioration, Major Repair can improve 
condition states and reduce the deterioration rate by 
5 years, and Reconstruction resets the pavement to 
an intact condition. A detailed description of these 
actions and their costs can be found in (VDOT, 
2016). Maintenance actions taken at any given time 
will simultaneously improve both CCI and IRI indi-

ces. The maintenance action transition probabilities 
for CCI and IRI, their duration, and their costs are 
reported in (Saifullah, et al., in review).  

Similar to pavements, four maintenance actions 
are considered for maintaining the bridge decks, i.e., 
Do Nothing, Minor Repair, Major Repair, and Re-
construction, however, the involved performed ac-
tions are different. It is again assumed that the Minor 
Repair action does not change the rate of deteriora-
tion of the deck but it can improve the condition 
state of the structure. Similarly, Major Repair can 
improve both, and Reconstruction can reset the deck 
to a newly built one. The transition probabilities, ac-
tion durations, and their costs are described in 
(Saifullah, et al., in review). Maintenance action-
induced delays that can be translated to costs are 
considered as in (Vadakpat, et al., 2000). 

There is a variety of destructive and nondestruc-
tive inspection techniques that are used for bridge 
decks, such as visual inspections, acoustic sensing, 
infrared/thermal imaging, ground penetrating radar, 
coring and chipping, and half-cell potential tests, 
among many others. Towards generality, inspection 
techniques are herein characterized as uninforma-
tive, low-fidelity, and high-fidelity inspection tech-
niques, respectively. The observation probabilities 
for the corresponding inspections can be seen in 
(Saifullah, et al., in review).  

3.3 Transportation network  
As a reference example, the Hampton Roads trans-
portation network in Virginia, USA, is considered. 
The original topology and average daily traffic data 
of the network are used along with 11 main bridges. 
Each bridge is bidirectional, with the same number 
of lanes as in the original network, illustrated in Fig-
ure 3. The different deck types I-III are categorized 
based on their relevant sizes. Type I bridges have 
length more than 5 km, type II have lengths between 
1.2-5 km, and type III are the smallest having a 
length less than 1.2 km. 

Similarly, the network has various pavement 
components categorized as type I-III. Type I pave-
ments are interstate highways, with bidirectional 
traffic having four lanes in each direction, thus, con-
stituting the class of highest vehicular miles. Type II 
are primary highways with a bidirectional medium 
level of traffic, having two lanes in each direction. 
Lastly, type III are secondary highways with low-
level bidirectional traffic and one lane in each direc-
tion. The deterioration rate of pavements is selected 
based on these classes, as high-volume roads have a 
higher rate than low-volume ones. These rates are 
taken from (Saifullah, et al., in review). 

3.4 Network level risks and constraints  
Risk is defined as an expected cumulative discount-   



Figure 3:  Hampton Roads transportation network model.

ed failure  state  cost  over  the  life   cycle,  as  in 
(Andriotis & Papakonstantinou, 2021). The risk cost 
consists of two parts: (1) accruable cost, which is 
taken as two times the rebuilding cost of the bridge, 
and (2) instantaneous cost, which is considered here
as ten times the rebuilding cost of the bridge. The to-
tal risk is estimated using (i) the risk of individual 
bridge failures (for all network bridges), and (ii) the 
system-level risk, defined based on the connecting 
bridges over James River and York River as in 
(Saifullah, et al., in review). The system risk has 3 
failure modes, i.e., (A) the bridge over York River 
fails, (B) the 3 bridges over James River fail, and 
(C) modes A and B occur simultaneously.

There are various constraints that are considered, 
based on the condition states of pavements and 
bridges, imposed by the FHWA and VDOT agen-
cies. For National Highway System (NHS) bridges, 
no more than 10% of the total bridge deck area 
should be deficient (i.e., condition rating ≤ 4), and 
for NHS pavements, no more than 10% of lane-
miles should be in poor condition (i.e., CCI<60 and 
IRI>2.2 m/km). Based on VDOT targets, no more 
than 18% of interstate and primary pavements and 
35% of secondary pavements should be classified as 
deficient (i.e., CCI<60). Regarding serviceability, no 
more than 15% of interstate and primary roadways 
should be classified as deficient in terms of ride 
quality (i.e., IRI>2.2 m/km). VDOT also aims to
achieve ‘no’ CCI lower than 35 for the interstate 
system (VDOT, 2019). It is essential here to mention 
that the above constraints are satisfied in an expecta-
tion sense (i.e., soft constraints). Therefore, the last 
constraint is modified here from 0 to 2%. 

Finally, a budget constraint is imposed due to 
limited available resources. A five-year budget of 
$1.3 billion is allocated to Hampton Roads districts 

for FY2021-2026 (Nichols, 2021). This budget 
needs to be strictly satisfied (hard constraint) and is 
implemented as an augmented state of the network
(Andriotis & Papakonstantinou, 2021). 

4 RESULTS
This study considers a 96-component network with a 
total number of ~7x10134 possible system states at 
any given time instant. 10 actions per component are 
considered which makes the total number of availa-
ble actions equal to 1096 for the entire network at 
each time step. The network components start from 
intact states, with an episode length of 20 years, and 
a discount factor γ = 0.97. The DDMAC-CTDE
training is performed for 1.3x106 episodes. Training 
details can be found in (Saifullah, et al., in review).

To assess the DDMAC-CTDE solutions, we for-
mulate and evaluate 2 baselines, i.e., (i) a condition-
based maintenance (CBM) policy and (ii) a policy 
baseline following VDOT guidelines. The CBM pol-
icy is heuristically optimized to find the relevant 
thresholds based on the condition of each component 
type, i.e., bridge, interstate, primary, and secondary 
pavements. The policy involves the full suite of 10 
actions at every even time step. However, at every 
odd year, action 6 is taken for every component, i.e., 
do-nothing and high-fidelity-inspection, as also 
shown in Figure 5. The detailed CBM algorithm is 
presented in (Saifullah, et al., in review). The VDOT 

Figure 4: Total life cycle costs comparison of DDMAC-
CTDE solution with CBM and VDOT policy baselines 
(top). Comparison of the total cost and its constituents with 
CBM and VDOT policy baselines (bottom).
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policy baseline is approximated from (VDOT, 2016) 
for pavement components. The original VDOT poli-
cy uses CCI and other distress metrics for action se-
lection, but here only CCI is used. For bridge decks, 
the same criterion is used as for interstate compo-
nents due to their similar importance.  

The expected total costs during training are com-
pared in Figure 4 (top). Figure 4 (bottom) also pre-
sents a histogram comparing the total costs  with 
their constituents based on Monte-Carlo simulations. 
It can be observed that our DDMAC-CTDE solution 
surpasses both baselines during training and simula-
tion by a significant margin, being 27% cheaper than 
the CBM policy and 48% cheaper than the VDOT 
policy, as given in Table 1. Table 1 also compares 
the average performance over 104 simulations in 
terms of poor condition states, as per the 6 different 
constraints discussed in Section 3.4. The perfor-
mance constraints are in the rows of the table, and I, 
P, and S Hwy are the abbreviations of interstate, 
primary, and secondary highways, respectively. 

To better understand how policies change over 
time, a detailed policy realization for some repre-
sentative components is shown in Figure 5. The fig-
ure illustrates actions generated by one of the in-
stances of the optimum policy and the evolution of 
component belief states is shown with contours. Ad-
ditionally, Figure 5 displays the discounted budget 
usage over time and the 5-year budget discounted 
for every cycle. The budget is a hard constraint that 
the agents are not allowed to exceed, a requirement 
that is satisfied by the obtained solution. The evolu-
tion of the total risk cost associated with individual 
bridges and the 3 modes of system risk is also pre-
sented. Moreover, the cost distribution among dif-
ferent types of pavements and bridges is shown in a 
pie chart.  

Plots with control actions represent the actions 
taken over time. The maintenance actions, taken at  
Table 1: Comparison of different solution schemes in terms of 
total cost and performance with respect to average condition 
states of different pavement and bridge components.  

Objective & 
Constraints 

DDMAC
-CTDE 

CBM  
policy 

VDOT  
policy 

Total budget used (billion 
USD) 1.86 2.54 3.62 

CCI<60 and IRI>2.2m/km 
for I-Hwy (%) 2.0 2.9 0.0 

CCI<35 of I-Hwy (%) 1.9 0.5 0.0 
CCI<60 for I and P-Hwy 

(%) 
7.3 4.7 0.1 

IRI>2.2 m/km for I and P-
Hwy (%) 15.0 14.0 12.0 

CCI<60 for S-Hwy (%) 10.3 4.3 0.9 
Bridges with condition rat-

ing ≤4 (%) 9.2 2.1 8.7 

every time step, update the current belief of the sys-
tem, as manifested in the next time step. The evolu-
tion of contour plots in the case of pavements shows 
current beliefs for both CCI and IRI states, and the 
current belief states at each step for two bridge decks 
are also shown. For example, the agent is shown to 
take action 7 at t = 6 years for a type III bridge, and 
then the updated belief is shown at t = 7 years, in-
corporating both I&M actions.  

As seen in Figure 5, control actions are compati-
ble with belief states. For example, the agents initial-
ly choose Do-Nothing actions since the belief states 
for both pavements and bridges initiate in the intact 
condition. As the conditions gradually worsen, more 
interventions are considered. Similarly, at the hori-
zon end, the Do-Nothing action is optimal for pave-
ments, as pavements do not contribute to disconnec-
tion risks, while any action without inspection can 
be optimal for bridges. It has also been observed that 
the agents maintain and inspect type I bridges more 
systematically. This is because type I bridges have 
their individual failure risk as well as mode B and 
mode C system failure risks associated with them. 

From the pie chart, shown in Figure 5, it is ob-
served that cost distribution is heavily skewed (as 
much as 75%) towards the bridge components, due 
to their high maintenance cost, associated risk cost, 
and lower traffic delay cost. Among pavements, 
primary highways have the largest contribution as 
they represent the most components in the network 
(47 in total). Figure 5 also shows the evolution of the 
system risk with time. As expected, the risk is mini-
mal in the beginning and it increases with time, with 
downward jumps mainly due to the maintenance ac-
tions taken for bridges, especially of type I. 

5  CONCLUSIONS          
In this work, the I&M problem of a large deteriorat-
ing bridge-pavement network with 96-components is 
formulated within a POMDP-DRL framework, in-
cluding risks and other condition and budget related 
constraints. Pavement states are defined by CCI and 
IRI metrics and bridge states are defined by deck 
condition ratings. Due to immensely large state and 
action spaces, the problem is solved with a newly 
and originally developed DRL algorithmic approach 
named Deep Decentralized Multi-agent Actor Critic 
with Centralized Training and Decentralized Execu-
tion (DDMAC-CTDE) which uses sparse parametri-
zations and local component state information for 
actor networks to obtain near optimal solutions. The 
optimal life-cycle policies are compared against a 
Condition-Based Maintenance (CBM) policy and an 
adapted VDOT policy. The DDMAC-CTDE solu-
tion is shown to surpass the two baselines by 27% 
and 48%, respectively, satisfying all the considered 
constraints.  
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