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ABSTRACT

The image of a supermassive black hole surrounded by an optically-thin, radiatively-inefficient ac-
cretion flow, like that observed with the Event Horizon Telescope, is characterized by a bright ring
of emission surrounding the black-hole shadow. In the Kerr spacetime this bright ring, when narrow,
closely traces the boundary of the shadow and can, with appropriate calibration, serve as its proxy.
The present paper expands the validity of this statement by considering two particular spacetime ge-
ometries: a solution to the field equations of a modified gravity theory and another that parametrically

deviates from Kerr but recovers the Kerr spacetime when its deviation parameters vanish. A covariant,
axisymmetric analytic model of the accretion flow based on conservation laws and spanning a broad
range of plasma conditions is utilized to calculate synthetic non-Kerr black-hole images, which are

then analysed and characterized. We find that in all spacetimes: (i) it is the gravitationally-lensed
unstable photon orbit that plays the critical role in establishing the diameter of the rings observed
in black-hole images, not the event horizon or the innermost stable circular orbit, (ii) bright rings in
these images scale in size with, and encompass, the boundaries of the black-hole shadows, even when

deviating significantly from Kerr, and (iii) uncertainties in the physical properties of the accreting
plasma introduce subdominant corrections to the relation between the diameter of the image and the
diameter of the black-hole shadow. These results provide theoretical justification for using black-hole

images to probe and test the spacetimes of supermassive black holes.

1. INTRODUCTION

The horizon-scale images obtained with the Event
Horizon Telescope (EHT) of the black hole in the center
of M87 have opened a new avenue for probing space-

times of black holes and testing the theory of General
Relativity in the strong-field regime (EHT Collabora-
tion 2019a,c; Psaltis et al. 2020; Kocherlakota et al.
2021). The images are characterized by a deep central

brightness depression, which has been identified with
the black-hole shadow, surrounded by a bright ring of
emission produced by radiation emerging from the ac-
creting plasma. This radiation, which is produced in the
vicinity of the event horizon, is subject to strong gravi-
tational lensing as it propagates through the black-hole
spacetime, i.e., influenced by the geometrical structure
of the background gravitational field of the black hole.
Using black-hole images to infer spacetime properties
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requires establishing a connection between this bright

ring-like structure and the various characteristic prop-
erties of the spacetime.

In any black-hole spacetime, there are well defined
characteristic radii, such as the radius of the event hori-

zon, the radii of spherical photon orbits, and the radius
of the innermost stable circular orbit, which is straight-
forward to calculate mathematically1 (Bardeen et al.
1972). In recent years, characteristic radii have been
calculated for a large number of non-Kerr spacetimes
that are solutions to various modifications of General
Relativity (see, e.g., Bambi & Yoshida 2010; Amarilla

et al. 2010; Amarilla & Eiroa 2012; Amarilla & Eiroa
2013; Abdujabbarov et al. 2013; Ayzenberg & Yunes
2014; Sakai et al. 2014; Tsukamoto et al. 2014; Cunha
et al. 2015, 2017; Moffat 2015; Chiba & Kimura 2017;
Ghasemi-Nodehi et al. 2020; Kumar & Ghosh 2020;

1 Not all spacetimes possess all of these characteristic radii, even
within General Relativity. For example, naked singularities do
not have horizons and a number of them do not have unstable
circular orbits either (see, e.g., Gair et al. 2008).
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Tsupko & Bisnovatyi-Kogan 2020; Xavier et al. 2020;
Fathi et al. 2021; Li & He 2021). All of these radii
determine the trajectories of the plasma fluid elements
(particles) and those of the photons (radiation) emitted
by the plasma and, in principle, can affect the resulting
images. However, when using black-hole images to carry
out precise tests of gravity, several additional questions
arise. Which aspects of the spacetime play the most
critical role in image formation? Is there a predictable
relation between the bright emission ring that is observ-
able and the characteristic radii of the spacetime? And
finally, to what extent do plasma processes complicate
this aforementioned relation?

The image of a Kerr black hole that is surrounded by
an optically thin plasma is characterized by an abrupt
drop in brightness which marks the boundary of the so-
called black-hole shadow (Bardeen 1973). This bound-
ary occurs at the gravitationally-lensed image of the
photon orbits near the horizon. Its size and shape de-

pend very weakly on the spin of the black hole and the
inclination of the observer because of a fortuitous near
cancellation of the effects of frame dragging and of the
spacetime quadrupole (Johannsen & Psaltis 2010). The

image brightness at this boundary is formally infinite,
forming a very narrow but bright photon ring. How-
ever, the presence of an extended plasma distribution

around the black hole generates a broader ring of emis-
sion on the images, which is what can be resolved with
the EHT (EHT Collaboration 2019b).

In the first paper of this series (Özel et al. 2021, here-

after Paper I), we employed covariant analytic models
to show that the bright ring in black hole images is cou-
pled to and encompasses the photon ring in the Kerr

spacetime for any accretion flow that satisfies conserva-
tion laws and basic thermodynamic principles. In this
paper, we extend the investigation to non-Kerr space-

times, addressing the questions posed above. In order to
explore different properties of non-Kerr spacetimes and
ensure the generality of our results, we utilize two classes
of non-Kerr spacetimes: the first represents known solu-
tions to modified gravity theories; the second represents
spacetimes designed to be parametrically different from
the Kerr metric without the requirement that they are
solutions to any particular field equations.

For the first class, we employ the time-independent,
axisymmetric Einstein-Maxwell-Dilaton-Axion metric,
which is a known solution to the field equations that

arise from the 4D compactification and low-energy trun-
cation of heterotic string theories (Garćıa et al. 1995).
In addition to the metric, the field equations involve an
electromagnetic field, a dilaton scalar field, and an ax-
ion field. Taking different limits of this general metric

reproduces other known solutions, such as the Sen met-
ric (Sen 1992). The characteristic radii for variants of
this spacetime and the boundaries of black-hole shadows
have been explored previously and found to depend on
the parameters that control the couplings of the addi-
tional fields (Wei & Liu 2013; Younsi et al. 2016).

For the second class, we employ the Johannsen-Psaltis
metric, which is a time-independent, axisymmetric met-
ric that has been parametrically modified away from
Kerr (Johannsen & Psaltis 2011; Johannsen 2013b). The
modification has been imposed in such a way that the
metric remains pathology-free outside the horizon, while
admitting a Carter-like integral of motion for a broad
range of the deviation parameters (see, e.g., Johannsen
2013c). The characteristic radii and shadow boundaries
for this metric have also been explored previously (Jo-
hannsen 2013a; Medeiros et al. 2019) and, in fact, used

to place constraints on modifications of the Kerr metric
based on EHT images (Psaltis et al. 2020).

In order to go beyond the simple mathematical de-

scriptions of shadow boundaries explored in earlier pa-
pers, we utilize these two spacetime metrics to calculate
images and brightness profiles using both a spherically
symmetric simple emissivity profile as well as the full

accretion plasma model we developed in Paper I. This
model is a covariant, semi-analytic solution to the set
of basic conservation laws which govern the dynamics

and thermodynamics of the gas accreting onto the black
hole. It incorporates parameters that can be modified
in order to capture, e.g., different heating rates or ef-

ficiencies of angular momentum transport in the flow.
The model has been calibrated against time-dependent
general-relativistic magneto-hydrodynamics (GRMHD)
simulations but allows for a much broader exploration

of physical conditions in the accretion flow than such
simulations currently permit.

We use these models to investigate whether the re-

lationship between the basic features of optically thin
black-hole images like those observed with the EHT,
and spacetime characteristics, remain qualitatively un-
changed even in non-Kerr spacetimes. This paper is
organised as follows. In Section 2, we detail the differ-
ent spacetime geometries used in this study and provide
an overview of the importance of charcateristic radii
and the procedure for their evaluation. In Section 3,
we present a simple toy plasma model with free-falling
plasma velocities and subsequently summarize the full
covariant plasma model and generalized plasma velocity
profile employed throughout the bulk of calculations in
this study.

We present in Sec. 4 the results of varying space-

time geometry on black hole images, first for the toy
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model and subsequently for the full covariant plasma
model. Following this, we present the results of an ex-
ploration of over 105 non-Kerr images, probing a broad
range of both spacetime parameters and plasma proper-
ties, finding that, as in the Kerr metric, the significant
majority of non-Kerr model images possess bright rings
which are slightly larger than the black hole shadow.
We also present the results from a study of black holes
with extreme deviation parameters, yielding shadows
between 2.5 and 1000 times larger than is possible in
the Kerr spacetime, finding the above conclusions re-
main unchanged. Finally, in Section 5, we present the
conclusions and discussion. Several appendices provide
further detail on the calculation procedure for character-
istic radii and comparison with previous known results
(Appendix A), non-Kerr plasma free-fall velocities not
previously published in the literature (Appendix B), ex-
ample images excluded from the analysis (Appendix C),
and a cross-validation of non-Kerr covariant radiation

transport codes (Appendix D).

2. SPACETIME GEOMETRIES

In this section, we provide the details of the three

spacetime metrics we employ in this study. Hereafter we
adopt the [−,+,+,+] signature convention. When spec-
ifying tensors, Greek indices (e.g., µ, ν) span (0, 1, 2, 3)

and Latin indices (e.g., i, j) span (1, 2, 3). In this study
(0, 1, 2, 3) correspond, respectively, to the coordinates
(t, r, θ, φ).

2.1. The Kerr metric

We begin with the Kerr metric (Kerr 1963), which is
considered the most astrophysically relevant black hole

solution and describes the exterior of a static and ax-
isymmetric black hole in General Relativity (GR). It also
serves as the reference solution, to which we compare our
non-GR black hole solutions. In Boyer-Lindquist (oblate
spheroidal) coordinates (Boyer & Lindquist 1967), the
Kerr metric line element is given by:

ds2 =−
(

1− 2 rg r

Σ

)
c2dt2 − 4a rg r sin2 θ

Σ
c dt dφ

+
Σ

∆
dr2 + Σ dθ2 +

A sin2 θ

Σ
dφ2 ,

(1)

where

Σ := r2 + a2 cos2 θ , (2a)

∆ := r2 − 2 rg r + a2 , (2b)

A :=
(
r2 + a2

)2 − a2∆ sin2 θ . (2c)

Herein, rg ≡ GMc−2 denotes the gravitational radius
of the black hole, where M is its mass, and G and c

denote Newton’s gravitational constant and the speed
of light, respectively. Furthermore, a ≡ J/(cM) de-
notes the black hole’s dimensional spin parameter (units
of length) and J denotes its total angular momentum.
The dimensionless spin parameter may then be defined
as a∗ ≡ cJ/(GM2) ≡ a/rg. The numerical calcula-
tions in this study adopt the geometrical unit conven-
tion (wherein G = c = 1) and also let M = 1, which is
equivalent to normalizing all length scales to units of rg.

2.2. The Einstein-Maxwell-Dilaton-Axion metric

The second black hole solution we consider is the
Einstein-Maxwell-Dilaton-Axion (EMDA) metric. It is
chosen to serve as a particular, demonstrative non-GR
black hole solution, with specific metric parameters cor-
responding to physical field couplings. Following Garćıa
et al. (1995), the EMDA line element for a static, ax-
isymmetric black hole may be written as:

ds2 =−
(

∆̂− a2 sin2 θ

Σ̂

)
c2dt2

−
2a
(
δ − ∆̂W

)
sin2 θ

Σ̂
c dt dφ+

Σ̂

∆̂
dr2

+ Σ̂ dθ2 +
Â sin2 θ

Σ̂
dφ2 ,

(3)

where

W := 1 +
[
βab (2 cos θ − βab) + β2

a

]
csc2 θ , (4a)

Σ̂ := Σ−
(
β2 + 2br

)
+ r2

g βb (βb − 2a∗ cos θ) , (4b)

∆̂ := ∆−
(
β2 + 2br

)
− rg (rg + 2b)β2

b , (4c)

Â := δ2 − a2∆̂W 2 sin2 θ , (4d)

δ := r2 − 2b r + a2 . (4e)

Here b and β denote the coupling parameters of the
dilaton and axion fields, respectively, and have units of
length. For clarity, we have also defined:

βa ≡
β∗

a∗
, βb ≡

β∗

b∗
, βab ≡

β∗

a∗b∗
, (5)

where b∗ ≡ b/rg and β∗ ≡ β/rg are dimensionless coun-
terparts of these coupling parameters.

Inspecting eq. (5), one immediately notices that for
the effects of the axion field to be non-zero, the dilaton
coupling and the black hole spin parameter must both
be non-zero, i.e., one can obtain neither a spherically-
symmetric nor an axisymmetric solely axion black hole
solution. By contrast, through setting the axion cou-
pling to zero an axisymmetric dilaton black hole solution
is obtained. Furthermore, since the term W is always

multiplied by a, the spherically-symmetric EMDA black
hole solution is recovered.
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2.3. The Johannsen-Psaltis metric

The final metric we consider is the Johannsen-Psaltis
(JP) metric, which is a general parametrized metric that
describes the exterior solution of rapidly spinning black
hole. The JP metric introduces parametric deviations
to the Kerr metric through adjustable “deviation pa-
rameters”. At lowest order, four such parameters exist,
of which three are of physical relevance to this study.
The topological structure and geodesic integrability of
the JP metric is well-studied in the literature, providing
a reliable platform upon which to perform observational
tests of astrophysical black holes (see Johannsen 2013a;
Medeiros et al. 2019). This enables the investigation
of electromagnetic radiation produced in the vicinity of
the event horizons of rapidly-spinning black holes which
cannot be described by the Kerr solution, nor be admit-
ted as a solution of the Einstein field equations of GR.
In Boyer-Lindquist-like coordinates, the JP line element
(Johannsen 2013b) is written as:

ds2 =− Σ̃B
F c2dt2 − 2a Σ̃ C sin2 θ

F c dt dφ

+
Σ̃

∆A5

dr2 + Σ̃ dθ2 +
Σ̃D sin2 θ

F dφ2 ,

(6)

where:

B := ∆− a2A2
2 sin2 θ , (7a)

C :=
(
r2 + a2

)
A1A2 −∆ , (7b)

D :=
(
r2 + a2

)2
A2

1 − a2∆ sin2 θ , (7c)

F :=
[(
r2 + a2

)
A1 − a2A2 sin2 θ

]2
, (7d)

and the useful identity F∆ ≡ BD + a2C2 sin2 θ holds.

Finally, the terms that depend on the Kerr metric de-
formation parameters are defined as follows

Σ̃ := Σ + r2
g

∞∑
n=3

εn

( rg

r

)n−2

, (8a)

A1 := 1 +

∞∑
n=3

α1n

( rg

r

)n
, (8b)

A2 := 1 +
∞∑
n=2

α2n

( rg

r

)n
, (8c)

A5 := 1 +
∞∑
n=2

α5n

( rg

r

)n
. (8d)

The metric deformation parameters are all dimension-
less and ε2 = α12 = 0 in the above expressions. As
noted in Johannsen (2013b), this form of the metric sat-

isfies asymptotic flatness, recovers the correct Newto-
nian limit, and satisfies current PPN constraints. At

lowest order in the expansion, the metric depends only
on α13, α22, α52, and ε3. When these parameters are set
to zero the Kerr metric is recovered. In this study, we
let α52 = 0, as it modifies only the grr component of
the metric and fixing it to zero ensures that the (outer)
event horizon radius is always equal to that of the Kerr
metric.

2.4. Characteristic radii

Black hole spacetimes possess several different charac-
teristic radii. These radii define regions that character-
ize different physical properties of, and processes occur-
ring in, a given spacetime geometry. This study is con-
cerned with three specific characteristic radii: the event
horizon, rH, the unstable photon orbit (UPO), rUPO, and
the innermost stable circular orbit (ISCO), rISCO.

The covariant plasma model detailed in the next Sec-

tion specifies a radial 4-velocity profile which is affected
by the location of the ISCO. The radial velocity, in
turn, determines the plasma number density and mag-
netic field strength. The critical impact parameter of

geodesics comprising a given black hole image, i.e., the
apparent size of the black hole shadow boundary curve,
is dependent on rUPO. When calculating geodesic mo-

tion in arbitrary spacetime geometries, a-priori knowl-
edge of the event horizon radius is necessary to specify
an appropriate numerical cutoff radius, rcut, for numer-
ical geodesic integration algorithms2. Owing to these

considerations, in this study, it is necessary to deter-
mine these radii to very high precision.

In integrating the geodesic equations of motion, we

typically employ a fourth-order Runge-Kutta-Fehlberg
(RKF) algorithm with adaptive step-size control. In sit-
uations where the observer is placed much further from

the black hole (fiducial distance of ∼ 104 rg), e.g., in the
large UPO cases considered later in this paper, we em-
ploy an eighth-order RKF method with adaptive step-
size control. Throughout this study, we specify an inte-
gration tolerance of 10−12.

Appendix D presents the results of a cross-validation
between two independent relativistic radiative transfer
codes, where we show that the leading discrepancy be-
tween the codes arises from the numerical accuracy by

2 Geodesics in axisymmetric non-Kerr spacetimes are usually nu-
merically integrated in Boyer-Lindquist-like coordinates, i.e., co-
ordinates where gtφ is the only non-zero off-diagonal metric com-
ponent. The event horizon is well known to be a removable co-
ordinate singularity and the numerical integration of geodesics
captured by the black hole in such coordinates must be termi-
nated when sufficiently close to rH. In this study, we assume an
inner cutoff radius rcut = 1.001 rH, i.e., integration stops when
geodesics are within 0.1% of the event horizon.
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which the ISCO radius is determined. For this reason,
we calculate all three critical radii to machine double
precision, i.e., . 10−16, prior to geodesic integration.
We detail in Appendix A the numerical procedure we
use for determining the characteristic radii and present
iso-contours of these radii for different coupling param-
eters of the EMDA and JP spacetimes.

3. PLASMA MODEL

3.1. Simple plasma model

In the subsequent exploration of black hole images and
their dependence on the metric properties, we will first
utilize a toy emissivity model where we allow the 1.3 mm
(230 GHz) emissivity to have a power-law dependence
on the co-ordinate radius and an arbitrary scale height
h/r:

j(r, θ) = j0 r
−n exp

{
−1

2

[
θ − π/2

(h/r)π/2

]2
}
. (9)

This equation simplifies to a spherically symmetric emis-

sivity as h/r goes to infinity. This will allow us to sep-
arate the effects of the spacetime from those of the ad-
ditional effects introduced by the plasma model and the

relativistic Doppler shifts introduced by the motion of
the gas. In this model, the plasma is considered to be
in free-fall. Explicit expressions for the four-velocities
of free-falling particle geodesics in the EMDA and JP

spacetimes are presented in Appendix B.

3.2. Full covariant plasma model

In the bulk of the results, we will employ an analytic

model that is based on the solution of the conserva-
tion laws for mass, momentum, and energy that govern
the dynamics and thermodynamics of the gas accret-

ing towards the black hole. This covariant semi-analytic
model is axisymmetric so that there is no dependence
of any quantity on the azimuthal angle φ. We review
here the basic equations for completeness and refer the
reader to Paper I for the details and derivations.

3.2.1. Plasma model thermodynamic properties

We set the equatorial electron density profile to

ne,eq($) =
Ṁ

4π
√−g (h/r) mp (−ur) , (10)

where $ ≡ r sin θ is the equatorial radius, mp is the pro-
ton mass (assuming a fully ionized hydrogen plasma),
and ur is the r−component of the plasma four-velocity.
The factor related to the determinant of the metric,

g = det gµν , is evaluated at the same equatorial radius.

We multiply this equatorial density profile ne,eq with an
exponential in the polar angle θ, i.e.,

ne(r, θ) = ne,eq($) exp

{
−1

2

[
θ − π/2

(h/r)π/2

]m}
, (11)

where the index m determines the slope of the vertical
density profile. In the Newtonian limit and for an ion
temperature that is constant with height, we find that
m = 2 and

h

r
=

1

ruφ

(
P

ρ

)1/2

=
√

(γ̂ − 1)ζ . (12)

The parameters γ̂ and ζ arise from energy conserva-
tion arguments and will be introduced below. We will
use these expressions hereafter, unless specified other-
wise.

Solving the energy conservation equation leads to the
following expression for the ion temperature:

Ti(r, θ) =
mpc

2

kB

R(γ̂ − 1)

(R+ 1)
V , (13)

where kB is the Boltzmann constant, γ̂ is the effective
adiabatic index of the plasma, R is the ratio of the elec-
tron to ion temperature, and V is a density-weighted

integral of the dissipation function for the process that
is responsible for heating the flow.

Because the flow is radiatively inefficient, the ion tem-

perature at any radius becomes comparable to the lo-
cal virial temperature, evaluated appropriately for each
spacetime. Following the procedure outlined in Ap-

pendix A of Paper I and keeping only the leading-order
corrections introduced by the various metric deviation
parameters, we write

Ti(r, θ) =
mpc

2

kB

R(γ̂ − 1)

(R+ 1)
ζ
( rg

r

)
Tc , (14)

where Tc is a spacetime-dependent correction to the tem-
perature which is equal to unity for the Kerr black hole.
For the EMDA and JP metrics used in this study, these
corrections are given respectively by

Tc = 1 +
1

3

( rg

r

) [
7b∗ + 4 (b∗ + 1)β2

b

]
+

1

9

( rg

r

)2 [
b∗ (45b∗ + 51.5)

+ (b∗ + 1) (42b∗ + 11)β2
b

]
+O

(
r−3
)
,

(15)

and

Tc = 1 +
1

6

( rg

r

)2

(10α13 − α52 − 5ε3) +O
(
r−3
)
. (16)
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In both cases ζ is an order-unity factor. We then write
the electron temperature as

Te(r, θ) =
Ti(r, θ)

R
. (17)

Finally, we specify the magnetic field everywhere such
that the plasma-β parameter is constant throughout the
flow, i.e., such that

B(r, θ) ∝ [ne(r, θ) Ti(r, θ)]
1/2

. (18)

In the absence of synchrotron self absorption, which is
negligible for the frequency and range of accretion rates
of interest here, the overall normalization of the mag-
netic field can be specified at a fiducial equatorial loca-
tion and scaled according to relation (18). We, therefore,
write

B (r, θ) = B0

[
ne(r, θ)Ti (r, θ)

ne (r0, π/2) Ti (r0, π/2)

]1/2

, (19)

such that B0 is the strength of the magnetic field at the
spherical radius r0 ≡ rISCO (a∗=0, θ=π/2), i.e., at the
equatorial ISCO radius for a non-spinning black hole

in the spacetime being considered. This particular nor-
malization for non-Kerr spacetimes is chosen in order to
smoothly recover the Kerr expression in Paper I, while

properly accounting for cases of large metric deviation
parameters where the ISCO radius for a∗ = 0 can devi-
ate significantly from the 6 rg Schwarzschild value.

We use the analytic fitting formula for the angle-

averaged emissivity derived by Mahadevan et al. (1996),
which is accurate to within 2.6% for all temperatures
and frequencies of interest:

jν =
ne e

2ν√
3 cK2(1/Θe)

M(xM) , (20)

with M(xM) given by:

M(xM) =
4.0505 a
x

1/6
M

(
1 +

0.40 b
x

1/4
M

+
0.5316 c
x

1/2
M

)
× exp

(
−1.8896 x

1/3
M

)
.

(21)

Here, νb ≡ eB/ (2πmec) is the cyclotron frequency and

xM ≡
2ν

3 νb Θ2
e

, (22)

where Θe ≡ kBTe/
(
mec

2
)

is the dimensionless electron
temperature, e is the electron charge, me is the electron
mass, and K2(x) is the modified Bessel function of the
second kind of order two and with argument x. The
best fit values of the coefficients a, b, and c for different

temperatures are given in Mahadevan et al. (1996).

3.2.2. Plasma model four-velocity profile

For each spacetime, the equatorial radius of the ISCO
provides a natural separatrix for the specification of the
plasma velocities. On the equatorial plane and outside
the ISCO, we set the azimuthal component of the 4-
velocity uφ equal to the orbital velocity of test particles
at the same location. The radial velocity profile depends
on the efficiency of the angular momentum transport by
material and magnetic stresses. In order to allow for a
general form does not depend on the specifics of angular
momentum transport, we write

ureq(r) = −η
(

r

rISCO

)−nr
, (23)

where η and nr are free parameters.
On the equatorial plane and inside the ISCO, we cal-

culate the azimuthal and radial velocity profiles by fol-
lowing the trajectories of test particles that free-fall
with the energy and angular momentum of the plasma

at the ISCO radius. Throughout the flow, we assume
that the polar component of the 4-velocity is zero, i.e.,
uθ = 0, and calculate ut by imposing the condition
gµνu

µuν = −1.

In order to model the plasma velocities off the equato-
rial plane, we use the fact borne out from semi-analytic
models and GRMHD simulations that the azimuthal

components uφ are approximately constant on spherical
surfaces and that the radial components ur are approx-
imately constant on cylindrical surfaces. We again refer

the reader to Paper I for the details of the model.
We choose a set of fiducial values for the plasma pa-

rameters to employ for the majority of the paper that
are representative of disk accretion and are also consis-

tent with the numerical solutions obtained in GRMHD
models of M87. In particular, unless stated otherwise,
we use η = 0.1 and nr = 1.5 for the radial velocity
profile (eq. [23]), ζ = 0.25 and γ̂ = 5/3 for the ion tem-
perature, R = 5 for the electron temperature (eq. [17]),
and B0 = 20 G for the magnetic field scale (eq. [19]).
These values lead to h/r ' 0.4 for the disk scale height

(eq. [12]). Although we have demonstrated the lack of
sensitivity of our conclusions on the specific plasma pa-
rameters in Paper I, we nevertheless use a second set of
plasma parameters to show that this lack of sensitivity
is not specific to the Kerr metric.

3.3. Ray-Tracing and General-Relativistic Radiative
Transfer

We integrate the geodesic equations of motion and
the equations of general-relativistic radiative transfer

(GRRT) using the formalisms described in Younsi et al.
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Figure 1. The effect of varying spacetime geometry on hori-

zontal image cross-sections produced by free-falling matter with a

simple power-law emissivity profile given by eq. (9). The panels

present: a large retrograde spin EMDA black hole with varying

dilaton coupling (top), a non-rotating JP metric with varying α13

parameter (middle), and a large prograde spin JP metric with

varying α22 parameter (bottom). Metric parameter values of b∗,

α13, and α22 are varied to sample from the minimum allowed value

to considerably larger than the reference Kerr value (black curve

in all panels). Vertical dashed colored lines delineate the left and

right critical impact parameters of each cross-section.

(2012, 2016). In this study the equations of motion gov-
erning null geodesics (hereafter rays) are integrated as

d2xµ

dλ2
= −Γµαβ

dxα

dλ

dxβ

dλ
, (24)

where λ is the affine parameter parametrizing the ray
and xµ its position four-vector. After specifying the
expressions for the covariant metric tensor components
(gµν), the Christoffel symbols, Γµαβ , are computed via
centered finite differences, with the contravariant metric
tensor computed via LU-decomposition of gµν . Equa-
tion (24) is typically integrated using a fourth-order
Runge-Kutta-Fehlberg (RKF) method with adaptive
step-size control, and in instances where the spacetime
under consideration strongly deviates from Kerr and the
required precision is necessarily higher, a sixth-order
RKF method is used. In numerically integrating the
black hole shadow boundary curves using a bisection
method (see Younsi et al. 2016), an eighth-order RKF

method is used.
After determining the ray trajectories, we solve the

relativistic radiative transfer equations along these rays,

accounting for emission and the effects of attenuation
of the ray intensities by the intervening media between
the black hole event horizon and the observer receiving
the radiation. The equation expressing the covariant

radiative transport of unpolarised, unscattered radiation
(see, e.g., Lindquist 1966; Fuerst & Wu 2004; Younsi
et al. 2012) is written as:

dIν
dλ

= −kαuα
(
−χν,0 Iν +

jν,0
ν0

3

)
, (25)

where kα is the photon four-momentum, uα is the

plasma four-velocity, ν denotes the observing frequency,
subscript “0” denotes quantities evaluated in the co-
moving frame of the accretion flow, χν and jν denote
the frequency-dependent absorption and emission coef-
ficients, respectively, and Iν ≡ Iν/ν

3 is the (frequency-
dependent) Lorentz-invariant intensity and Iν the cor-
responding specific intensity.

We solve these equations numerically in decoupled
form, as originally expressed in Younsi et al. (2012),
which for an observer (subscript “obs”) at λobs may be
written as:

dτν
dλ

= g−1χν,0 , (26a)

dIν
dλ

= g−1

(
jν,0
ν0

3

)
e−τν , (26b)

where g ≡ ν/ν0 = (kβu
β |λobs

)/(kαu
α|λ) is the relative

energy shift of the photon between the observer and co-
moving frames, and τν denotes the frequency-dependent
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optical depth. We solve these equations using a simple
first-order Euler method, with the step size determined
from the RKF geodesic integration. This formulation
has the advantage of integrating the GRRT equation in
tandem with the geodesic equations, i.e., from observer
to source. This avoids storing geodesics in memory for
the GRRT integration, enables the tracking and trun-
cation of ray optical depth, and is computationally fast
and extendable to multi-frequency integration. In this
study, we assume that the emission is optically thin, i.e.,
χν = 0, and therefore integrate eq. (26b) alone.

4. RESULTS

Having specified the metric and plasma models used
in this paper in the previous two sections, we turn to
exploring the properties of black hole images that result
from these models. We separately vary the spacetime
and plasma parameters in order to disentangle their ef-
fects. As in Paper I, we begin by first utilizing a simple
power-law emissivity model before focusing on the con-

volution of effects arising from both the full covariant
plasma model and the spacetime geometry.

4.1. Simple power-law emissivity with free-fall plasma

We calculate images using the power-law emissivity
profile of eq. (9) for a power-law index n = 2, a disk scale
height h/r = 0.25, and an observer inclination of 45◦.

We also assume that the plasma is free-falling (see Ap-
pendix B for the derivation of the relevant 4-velocities).
Figure 1 shows horizontal image cross-sections for dif-

ferent parameters of the EMDA and JP metrics and for
different values of the black hole spin. We show the
locations of the critical impact parameters as vertical

dashed lines.
Comparing these cross-sections to those in Figure 1

of Paper I for the Kerr metric, we see that all of the
same universal features persist for images in the non-

Kerr case. In particular, the peak of the emission al-
ways occurs very close to the critical impact parame-
ter3 even when the latter varies substantially with the
metric parameters. Inside the critical impact parame-
ter, there is always a sharp brightness depression that
would be identified with the black hole shadow. Finally,
in the effective absence of azimuthal velocities in the
free-falling regime, brightness asymmetries in the im-
age are caused almost exclusively by frame-dragging ef-
fects. These asymmetries are relatively minor unless

3 Formally, the intensity approaches infinity at the critical impact
parameter. As this narrow feature is indistinguishable from the
broader ring at the current EHT resolution, we indicate the broad
ring when we refer to peak intensity.

frame dragging is enhanced substantially beyond the
Kerr value (e.g., by increasing the α22 parameter in the
JP metric to significantly large values).

4.2. Full plasma model

For the remainder of this paper, we employ the full
covariant plasma model to describe the accreting ma-
terial and its emission characteristics around the black
hole (see Sec. 3.2). In addition, we incorporate realistic
velocities, which include substantial azimuthal compo-
nents that can give rise to images with a large brightness
asymmetry.

Figure 2 shows a selection of model images with the
full covariant plasma model, for different values of the
EMDA and JP metric parameters as well as for different
black-hole spins, observer inclination angles, and plasma
parameters. In all cases, the images of these optically-
thin accretion flows are ring-like or crescent-like, with

a deep central brightness depression, despite the signif-
icantly different spacetime geometries being explored.
The main effect of changing the plasma parameters (cf.
first and second rows in the figure) is to alter the width

of the emission ring: shallow density profiles lead to
broader rings and vice-versa. Increasing the observer in-
clination (cf. the top two and bottom two rows) increases

the brightness asymmetry between the approaching and
receding part of the image, which is caused by relativis-
tic Doppler effects arising from the azimuthal velocity

component of the accreting material. For the model pa-
rameters displayed here, low inclinations correspond to
ring-like images, whereas high inclinations correspond
to crescents (see Medeiros et al. 2021 for exceptions to

this behavior).
The diameters of the bright image rings (or crescents)

do not change appreciably when the black-hole metric is

fixed, i.e., moving down any column in this figure. On
the other hand, changing the metric or its parameters,
i.e., comparing different columns in the figure, alters the
diameters of the bright rings. However, in all cases the
diameters of the images scale with the diameters of the
shadows, which are shown as dashed red lines. As a
result, measuring the diameter of the ring for a black

hole of known mass can indeed be used as a test of the
metric (Psaltis et al. 2020).

In Figure 3, we explore in more detail the image
brightness near the critical impact parameters for a
number of EMDA metrics with no spin. As in the case
of the analytic emissivity models discussed in Sec. 4.1,
strong gravitational lensing near the unstable photon
orbits causes a sharp increase in the brightness at im-
pact parameters close to the critical values (denoted in
the figure by vertical dashed lines). Even when the lo-
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Figure 2. 1.3 mm images from the full covariant plasma model for the EMDA and JP spacetimes. Image panels are individually

normalized such that the brightest pixel intensity is unity. The field of view is [−15 rg, 15 rg] in both directions. From left to right, the

four columns correspond to: (i) the EMDA metric with b∗ = 0.1, (ii) the EMDA metric with b∗ = 1, β∗ = 0.5, (iii) the JP metric with

α13 = 5, and (iv) the JP metric with α22 = −1. All other metric parameters are set to zero. The four rows present different values of

(a∗, i, η, nr). Images in the top two rows fix a∗ = 0 and i = 15◦, varying (η, nr), i.e., they alter the radial 4-velocity profile in eq. (23).

The bottom two rows present images with fixed a∗ = 0.9375 and i = 60◦, again varying (η, nr) as in the upper two rows. The dashed red

curve in each panel marks the black hole shadow boundary.
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Figure 3. Horizontal normalized intensity cross-sections of 1.3 mm non-rotating EMDA black-hole images calculated from the full

covariant plasma model. The axion field coupling parameter is set to zero and the observer inclination angle is 15◦. Solid red (b∗ = −0.5),

black (b∗ = 0, i.e., Schwarzschild), green (b∗ = 0.1), and blue (b∗ = 0.5) curves show the four different horizontal intensity cross-sections.

Vertical dashed lines represent the critical impact parameters for the four cases. Left and right zoomed-in regions show the behavior of the

four image intensity cross-sections of each image in the vicinity of its critical impact parameters. The zoomed-in regions demonstrate that

a final local maximum in intensity is always observed at, or in close proximity but external to, the left and right critical impact parameters

of each image cross-section.

cations of the critical impact parameters change as the
metric properties are varied, the dominant brightness
peaks are displaced concurrently.

Finally, we present in Figure 4 image brightness cross-
sections of EMDA and JP metrics with different devi-
ation parameters, black-hole spins, observer inclination
angles, and plasma model parameters. This broader ex-

ploration confirms that:

(i) the diameter of the bright ring follows the shadow
diameter closely,

(ii) it is the critical impact parameter that plays the
dominant role in determining the properties of the
image,

(iii) images from optically-thin accretion flows remain
narrow even in non-Kerr spacetimes.

In the following subsections we explore a comprehen-
sive library of non-GR black-hole images, considering

the variation of ten different model parameters and sub-

sequently quantifying the relationship between image
properties and spacetime metric parameters.

4.3. Image library and α-calibration

The close proximity of the peak brightness of the
black-hole image to the critical impact parameter makes
it possible to use the characteristics of black hole images
to perform measurements of the underlying spacetime
properties and conduct tests of the Kerr metric. Ac-
complishing this in a quantitative manner requires es-
tablishing a relationship, together with its correspond-
ing uncertainty, between the diameter dim of the peak
brightness, which is the observed quantity, and the di-
ameter dsh of the black-hole shadow, which probes the

metric. To this end, we introduced in previous work the
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Figure 4. Horizontal normalized intensity cross-sections of

EMDA and JP black hole images from the full covariant plasma

model, at 1.3 mm. Panels represent: (top) a rapidly-spinning

EMDA black hole, with a fixed dilaton field coupling and vary-

ing axion field coupling, (middle) a non-rotating JP metric with

varying α13 deviation parameter, and (bottom) a rapidly-spinning

JP metric with varying α22 parameter. Main plots and zoomed-in

regions again demonstrate the near-coincidence of the peak bright-

ness (albeit externally) with the critical impact parameter.

calibration parameter:

α1 ≡
dim

dsh
, (27)

and used numerical and analytic models within GR to
measure the range of possible values of this parameter
in the Kerr spacetime (see Paper I)4. Here, we extend
this calculation to images in non-Kerr spacetimes.

For the majority of the spacetime parameters explored
in this study, the shadow is nearly circular and its diam-
eter can be characterized by a single number for present
purposes. Using the numerical method discussed earlier,
we calculate the diameter of the shadow along different
azimuthal cross-sections and adopt the average value as
dsh. We then measure the image diameter dim using
a characterization algorithm, as before, where we filter
the image at the resolution of the EHT array, calcu-
late analytically the center of each black hole shadow,
and measure over a number of azimuthal cross-sections
the distance of the peak emission from that center (see

Paper I for additional details). We then identify the
the diameter of the bright emission ring as being twice
the value of the median distance. Within the same al-

gorithm, we also measure the full width at half max-
imum (FWHM) of the shadow ring by approximating
the brightness distribution along each azimuthal cross-
section with an asymmetric Gaussian and then calculate

the median value of the widths of these Gaussians.
We carry out these measurements for a wide range

of 230 GHz images obtained using the spacetimes and

plasma models described in Sections 2 and 3. Specifi-
cally, for the EMDA metric, we sample five values of the
observer inclination angle i = (15◦, 30◦, 45◦, 60◦, 75◦)

and two sets of plasma model parameters: Model 1 cor-
responding to (η, nr, ζ, R,B0) = (0.1, 1.5, 0.25, 5, 20 G)
and Model 2 corresponding to (0.1, 1, 0.25, 5, 40 G).
We run each case for eight values of the dimensionless
black hole spin a∗, chosen such that the Kerr ISCO is
approximately uniformly sampled between 9 rg and 2 rg

(as specified in Table 1). In addition, we explore a wide
range of metric parameters, which we show in the isocon-
tour plots presented in Figures 10–12. For the EMDA
metric, we allow the dilaton and axion parameters to be
simultaneously equal to 0.1, 0.5, or 1, i.e., we consider
nine different combinations of (b∗, β∗).

For the JP metric, we consider a more fine-
grained sampling of the ten model parameters:

4 Calibration of the image diameter to the shadow diameter also
has a component that arises from model fitting and imaging al-
gorithms. To distinguish this component from the purely theo-
retical displacement explored here, we refer to the latter as α1.
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Figure 5. Shadow boundary curves of black holes in the JP image library (see Table 1). Coloured lines denote different dimensionless

spin parameters and their line styles correspond to different observer inclination angles (see legends in left panel). Kerr shadows are shown

as black curves. Left and right panels present shadows cast by non-Kerr black holes when varying α13 ∈ [−6, 10] and α22 ∈ [−2, 10],

respectively, whilst fixing all other deviation parameters to zero. For α13 < 0, shadows are always interior to their corresponding (black)

Kerr shadows (left panel). Most notably, for the extreme case of α13 = −6, a∗ = 0.5585, i = 15◦, the shadow drastically decreases in

angular size and is contained within the region ∼ [−1, 1] × [−1, 1] (in units of rg). Conversely, when α13 is increased to larger positive

values the shadows substantially increase in angular size as compared to their Kerr counterparts and become more circular, masking the

effects of spin-induced (and observer inclination-induced) asymmetry. By contrast, varying α22 leads to pronounced deviations from Kerr

with significantly enhanced asymmetry (right panel). This can be seen when comparing the red and cyan curves (a∗ = −0.9965 and

a∗ = 0.9428) with respect to the horizontal critical impact parameters of the Kerr shadows. Note that the parameter ε3 alters the location

of rISCO while leaving rUPO unchanged, hence the shadow boundary curve properties are independent of ε3.

(i, a∗, ε3 , α13, α22, η, nr , R, B0, ζ), which are listed in
Table 1, yielding a library of ∼ 105 images. Each one

affects a different aspect of the image and the space-
time. Varying a∗ controls the location of the character-
istic radii of the spacetime and changes physical effects
such as the degree of frame-dragging, and, in the case

of deviations from Kerr, the multipolar structure of the
black hole. Deviation parameters (ε3, α13, α22), which
are varied one at a time while the others are set to zero,

control the strength of deviation of the spacetime from
the Kerr metric. For instance, as the value of α22 in-
creases, the quadrupole moment of the black hole and
the effects of frame-dragging are significantly enhanced
beyond what is possible for even an extremal Kerr black
hole. This leads to highly asymmetric shadow bound-
ary curves as well as UPO radii very close to rH (see
Appendix C for an example of this).

Adjusting (η, nr) directly alters the plasma radial 4-
velocity profile, which affects the amount of extended

emission produced in black hole images within the ISCO
radius in particular, but also in its outer vicinity. The
parameters R and B0 control the radiative properties of
the plasma. As noted in Paper I, we do not consider
values of R = 1 since this is inconsistent with the as-

sumption of a radiatively-inefficient accretion flow, as
anticipated for EHT target sources (see, e.g., EHT Col-
laboration 2019b). We also avoid consideration of mod-

els with R > 10, because larger values of R strongly
suppress emission from the accretion flow in the mod-
els. We choose values of B0 which, based on isothermal

one-zone modeling, yield electron temperatures consis-
tent with the observed maximum brightness tempera-
ture of M87 (EHT Collaboration 2021). The largest
value of B0 = 50 G, which is slightly larger than the
upper-bound of the one-zone model, allows us to probe
the broader range of potential electron number densities
possible within non-Kerr accretion flow models. Finally,
in all models, we fix the adiabatic index as γ̂ = 5/3 while
varying ζ, in effect adjusting the disk scale height. We
find that library image morphologies exhibit the weakest
dependence on ζ.

4.4. Results from the Image Library α-calibration

In Figure 6, we plot the fractional width for each
model image against the fractional diameter difference
α1−1. As in the case of the Kerr metric discussed in Pa-
per I, the fractional diameter difference is almost always
positive and small, i.e., the bright ring has a slightly
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Figure 6. Density plots of the photon ring fractional diameter deviation against its fractional width. The blue dotted, dashed,
and solid contour lines correspond, respectively, to 75%, 90%, and 95% of all models sampled for a given spacetime. The left
panel presents results from the JP image library and the right panel presents, for illustrative purposes, the results from a smaller
sample of EMDA model images. The JP metric models total ∼ 105 and probe deviations very far away from the Kerr metric,
as seen in the broad spread of the contour lines.

Table 1. Ranges of the model parameters used to construct

the JP metric image library. Every image has a field of view of

[−20 rg, 20 rg] in both the horizontal and vertical directions and

is calculated at a resolution of 128 × 128 pixels. All images are

produced at an observing frequency of 230 GHz. The total number

of models is ∼ 105. Models with deviation parameters outside the

allowed range are omitted (see Appendix. A).

Model parameter JP library values

i 15◦, 30◦, 45◦, 60◦, 75◦

a∗ −0.9965, −0.6509, −0.3165,

0, 0.2940, 0.5585, 0.7819, 0.9428

ε3 −6, −4, −2, 0, 2, 4, 6, 8, 10

α13 −6, −4, −2, 0, 2, 4, 6, 8, 10

α22 −2, 0, 2, 4, 6, 8, 10

η 0.05, 0.1, 0.2

nr 0.5, 1.0, 1.5

R 5, 10

B0 [G] 5, 20, 50

ζ 0.25, 0.4

larger diameter than the shadow in the vast majority of
cases. This is true for all metric deformation parameters

in the various metrics we considered as well as for the
details of the plasma model. This is a direct consequence
of strong gravitational lensing effects close to rUPO that

cause a rapid increase in image brightness near the criti-
cal impact parameter and a strong brightness depression

interior to it.
The red filled regions in Figure 6 correspond to im-

ages in which the fractional width of the ring is smaller

than the fractional diameter difference, while the diago-
nal dashed lines correspond to half of this value. In other
words, models present in that region correspond to those
images where the bright ring is displaced from the black

hole shadow by more than the ring width. The fact that
only a very small fraction of model images lie in that
region shows that, even in non-Kerr metrics, ring-like

images scale with the diameter of the black-hole shadow
and, in the vast majority of cases, are not disjoint from
it.

In the case of the non-Kerr images used in calculating
the α-calibration plots in Figure 6, we have restricted
the analysis to images satisfying two particular require-
ments.

The first requirement is that a given image must con-
tain at least half of a ring-like feature so that a well-
defined diameter is measurable. As in Paper I, where
we defined the fractional coverage of a circle in an im-
age, F , we consider only images with F ≥ 0.5.

The second requirement is that the aspect ratio of the
non-Kerr black hole shadow, i.e., the ratio of its princi-
pal axes, is 0.8 ≤ Rnon−Kerr ≤ 1.38. We note that for the
Kerr spacetime, this aspect ratio is always constrained
to 1 . RKerr . 1.15; our requirement corresponds to

aspect ratios within 20% of Kerr.
These two requirements are based on the observation

that the 1.3 mm image of the M87 black hole is a nearly
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-3

-2

-1

0

1

2

3

y
(r

U
P
O
)

i = 15◦

a∗ = −0.9965

rUPO=10rg

a∗ = −0.9965

rUPO=100rg

a∗ = −0.9965

rUPO=1000rg

-3

-2

-1

0

1

2

3

y
(r

U
P
O
)

a∗ = 0 a∗ = 0 a∗ = 0

-3 -2 -1 0 1 2 3

x (rUPO)

-3

-2

-1

0

1

2

3

y
(r

U
P
O
)

a∗ = 0.9987

-3 -2 -1 0 1 2 3

x (rUPO)

a∗ = 0.9987

-3 -2 -1 0 1 2 3

x (rUPO)

a∗ = 0.9987

00

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

In
te
n
si
ty

Horizontal Cross-Section

rUPO=10rg

rUPO=100rg

rUPO=1000rg

Vertical Cross-Section

00

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

In
te
n
si
ty

-3 -2 -1 0 1 2 3

Impact Parameter (rUPO)

00

0.2

0.4

0.6

0.8

1

N
or
m
al
iz
ed

In
te
n
si
ty

-3 -2 -1 0 1 2 3

Impact Parameter (rUPO)

Figure 7. From left to right, columns 1–3 present image panels of non-Kerr black holes with UPO radii located at 10 rg (column 1),

at 100 rg (column 2), and at 1000 rg (column 3). Each image is individually normalised such that the brightest pixel is of unit intensity.

The color scheme is identical to Figure 2. The observer inclination angle is 15◦ in all panels. The length scale is specified in units of the

black hole UPO radius. All panels in the top, middle, and bottom rows correspond, respectively, to black holes with a∗ = −0.9965 (near-

extremal, retrograde spin), a∗ = 0 (non-rotating), and a∗ = 0.9987 (near-extremal, prograde spin). Columns 4 and 5 present, respectively,

horizontal and vertical intensity cross-sections of their corresponding images in columns 1–3, with horizontal and vertical cross-section

pairs normalised such that the largest intensity in the pair is unity. Vertical black dashed, blue dash-dotted, and red dotted lines delineate

the critical impact parameters of non-Kerr black holes with UPO radii of 10 rg (black), 100 rg (red), and 1000 rg (blue). The peak flux

for every image cross-section is always nearly coincident with its associated critical impact parameter, irrespective of the size of the black

hole’s UPO.

circular ring (EHT Collaboration 2019c) and are im-
posed to eliminate image morphologies that prevent us
from using a single radius to characterize images, as is
required in the α-calibration. Examples of images elim-
inated based on the above considerations are presented

and discussed in Appendix C.

4.5. Extreme Deviations from Kerr

In the choice of values of metric deviation parame-
ters considered in Secs. 4.3 and 4.4, we explored those
parameters limited to the ranges shown in Figures 10–

13. In particular, for the JP metric, we have restricted
ourselves to black holes with UPO radii up to ∼ 5 rg.
However, in order to demonstrate the dominant role of
gravitational lensing and, in particular, of the critical
impact parameter in determining the characteristic fea-
tures of optically thin black-hole images, Figs. 7 and 8
explore the images for a number of spacetime parame-

ters with extreme deviations from Kerr. (Note that such

deviations are already excluded by the present M87 im-
ages).

In particular, these figures show 230 GHz images of
black holes described by the JP metric with parameters
chosen such that the radius of the equatorial circular un-
stable photon orbit is equal to 10 rg, 100 rg, and 1000 rg.
For these three values of rUPO, we choose the dimension-
less spin of each of these three black holes to be −0.9965,
0, and 0.9987, yielding nine images per observer inclina-

tion angle and probing a broad range of a∗ and rUPO. For
comparison, for a Kerr black hole 1 rg < rUPO < 4 rg,
with rUPO = 3 rg in the case of a Schwarzschild black
hole (a∗ = 0). For each pair (a∗, rUPO) the correspond-
ing value of α13 is obtained numerically to an accuracy
better than 10−16. Table 2 presents the numerical val-
ues of the parameters that produce these extreme UPO
radii. We note that while these values of rUPO are un-
physical in that they are much larger than is constrained
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Figure 8. Same as Figure 7, but now for an observer inclination angle of 75◦.

by EHT measurements (EHT Collaboration 2019c), the
underlying parameter choices for the metric do not give
rise to any pathological behavior or violate any fun-

damental properties of the spacetime manifold (e.g.,
closed time-like curves, curvature singularities outside
the event horizon, or positive-definite metric determi-

nant values).
The plasma parameters for these extreme examples

are: (η, nr, R, B0, ζ) = (0.5, 1.5, 5, 20 G, 0.25). Each

row in Figures 7 and 8 presents three images for a fixed
value of a∗, varying the value of rUPO, along with their
corresponding normalized horizontal and vertical inten-
sity cross-sections. In order to demonstrate the scaling

of the image diameters with the spacetime properties,
both the images and the cross sections are displayed
with the impact parameters divided by the correspond-
ing radii of the unstable photon orbits. Despite such
extreme deviations from the Kerr metric which yield
enormous UPO radii, one sees that the peak flux in the
image is still effectively coincident with the critical im-
pact parameter and a characteristic pronounced central
brightness depression is still seen, demonstrating that
such image features are effectively independent of both

the accretion plasma and the spacetime geometry.

5. DISCUSSION & CONCLUSIONS

Table 2. Values of the JP deviation parameter α13 which yield

black hole UPO radii of 10 rg, 100 rg, and 1000 rg. For every UPO

radius, a∗ is chosen as (−0.9965, 0, 0.9987). For each calculated

value of α13 the resulting ISCO radius is also shown. By construc-

tion, the JP spacetime event horizon radius is the corresponding

Kerr value, i.e., rH/rg ' (1.08359, 2, 1.05097).

rUPO (rg) a∗ α13 rISCO (rg)

−0.9965 3.27447 × 102 3.59824 × 101

10 0 4.11765 × 102 3.84384 × 101

0.9987 4.90103 × 102 4.06180 × 101

−0.9965 4.84779 × 105 1.20952 × 103

100 0 4.92386 × 105 1.21871 × 103

0.9987 4.99890 × 105 1.22773 × 103

−0.9965 4.98500 × 108 3.86751 × 104

1000 0 4.99249 × 108 3.87041 × 104

0.9987 4.99998 × 108 3.87331 × 104

In this paper, we explored the dependence of optically
thin black-hole images, such as those observed at 1.3 mm
(230 GHz) from supermassive black holes with the EHT,
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Figure 9. Various characteristic radii in the JP metric, as a

function of the deviation parameter α13. The dashed green curve

shows the mean radius of the numerically calculated black-hole

shadow boundary curve (dsh/2). The solid green curve shows the

mean radius of the bright ring feature in the image, as obtained

from the image characterization procedure (rim ≡ dim/2). The

three shaded regions show the range of values for the ISCO radii

(blue), UPO radii (red), and horizon radii (gray) for the full span

of black hole spins explored. This figure demonstrates that the

size of the bright image ring always traces the size of the shadow

and that both are determined by the radius of the unstable photon

orbit and not by the ISCO or horizon radii.

on the properties of their spacetimes. We employed the
covariant, semi-analytic model of the accretion plasma

we developed in a companion paper (Paper I) that is
based primarily on conservation laws but allows for a
large degree of flexibility in those aspects of the model
that depend on the largely unknown mechanism for the

turbulent transport of angular momentum. We applied
this model to two different non-Kerr black-hole space-
times. One of these spacetimes is the solution to the
EMDA field equations, the other is the JP metric that
enables the exploration of parametric deviations from
Kerr while remaining agnostic as to the underlying grav-
itational theory.

We found that, as in the case of the Kerr metric, the
dominant characteristics of the images are dictated by
the strong gravitational lensing of photons in the vicinity
of the unstable photon orbits very close to the black-hole
event horizon. When relativistic Doppler abberational
effects due to the azimuthal plasma velocities are not

significant, e.g., at lower observer inclinations (where
transverse Doppler shifts are negligible), the optically
thin images present as narrow rings. At higher observer

inclinations the images can acquire significant brightness
asymmetries and become crescent-like. In all cases the
diameters of the images scale with the diameters of the
black-hole shadows, with the fractional difference be-
tween the two diameters being limited to a small bias.
Moreover, for the vast majority of model images, this
fractional difference is not larger than the FWHM of
the image itself, i.e., the ring-like images are not dis-
joint from the boundaries of the shadows.

Driven by the fact that the inferred shadow size of the
black hole in the M87 galaxy is found to be within . 20%
of the value predicted by the Kerr metric (EHT Col-
laboration 2019c) and the corresponding constraints on
non-Kerr metric parameters are rather stringent (Psaltis
et al. 2020), we have focused so far on metric deviations
that are of a similar order.

However, to further underscore the leading role grav-
itational lensing, coupled with the location of the crit-
ical impact parameter and UPO radius, plays in deter-
mining the characteristic features of optically-thin black

hole images, we also explored black holes with more ex-
treme deviation parameters. In particular, these black
holes, which sampled a broad range of spin parameters,

considered UPO radii at 10 rg, 100 rg, and 1000 rg (see
Figs. 7–8). Even in the most extreme cases, these fig-
ures demonstrate that non-Kerr images remain ring-like

or crescent-like with diameters that closely follow the
diameters of the black-hole shadows, even though the
latter change (with respect to Kerr) by factors of 10,
100, and even 1000.

Figure 9 emphasizes this result by showing various
characteristic radii in the JP metric for a very broad
range of the deviation parameter α13. This large range

enables us to generate radii for the unstable photon or-
bit and the ISCO that span 3–4 orders of magnitude in
size, while fixing the horizon radius to the Kerr value.
The fact that the image radius closely traces that of the

shadow boundary and both track the radius of the un-
stable photon orbit demonstrates that the latter is the
key spacetime characteristic that is accessible to black-
hole images. In contrast, neither the ISCO nor the hori-
zon radii play a significant role in determining the im-
age properties and, therefore, cannot be readily inferred

from the observed image sizes.
The examples presented in this study, while varying

from marginally different from Kerr to increasingly ex-
treme in deviation and potentially non-physical, serve to
provide additional justification for using the diameters
of optically-thin back-hole images to infer the sizes of
black-hole shadows and, therefore, test the Kerr space-
times of supermassive black holes.



Black hole images as tests of GR: effects of spacetime geometry 17

ACKNOWLEDGEMENTS

Z. Y. is supported by a UK Research & Innovation
(UKRI) Stephen Hawking Fellowship and acknowledges
partial support from a Leverhulme Trust Early Career
Fellowship. D. P. and F. Ö. acknowledge support from
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APPENDIX

A. CHARACTERISTIC RADII

As discussed in Sec. 3, the covariant plasma model
presented in this study depends crucially on the accurate
determination of the radii corresponding to the event
horizon, UPO, and ISCO. These calculations depend on
specifying the components of the metric tensor of a given
spacetime, along with their first and second derivatives

(usually in r alone) to machine precision. We perform
our calculations of rH, rUPO, and rISCO using quadruple
precision arithmetic in Fortran within the BHOSS code.

The BHOSS code takes the covariant metric tensor of

the desired spacetime and numerically calculates all nec-
essary contravariant components and associated met-
ric derivatives to a desired target precision (always .
10−16), which is chosen to be significantly smaller than
the geodesic integration tolerance (. 10−12). These cal-
culations have been validated against a suite of equiv-

alent arbitrary precision routines in Mathematica, con-
firming their accuracy across the entire range of met-
ric parameters considered in this study. In the follow-
ing subsections the equations defining the characteristic

radii are described. Results of their solution for differ-
ent spacetimes, which are in excellent agreement with
previously-published results, are also presented.

A.1. Calculation of rH

As described in Johannsen (2013b), a sufficiently gen-
eral definition of the event horizon of a general black
hole may be encompassed by the condition r = H(θ),
which is defined by the condition:

grr(r, θ)−2grθ(r, θ)

[
dH(θ)

dθ

]
+gθθ(r, θ)

[
dH(θ)

dθ

]2

= 0 ,

(A1)
where grθ = 0 for all metrics investigated in this study.
Equation (A1) is solved numerically through discretisa-
tion of the zenith derivative using a backward finite-
difference approximation, starting on the polar axis
(θ = 0) and iterating until θ = π/2.

For the Kerr black hole the (outer) event horizon ra-

dius is given by the larger solution to ∆ = 0, namely:

rH,Kerr = rg

(
1 +

√
1− a2

∗

)
. (A2)

The EMDA black hole event horizon radius is given by:

rH,EMDA = rg

[
(1 + b∗) +

√
(1 + β2

b ) (1 + b∗)
2 − a2

∗

]
.

(A3)
Given a choice of metric parameters which yield a “well-
behaved” metric, when α52 = 0 the event horizon of the
JP metric is precisely the Kerr event horizon. In this

study the event horizon radii for the EMDA and JP met-
rics are both calculated fully numerically via eq. (A1),
with the analytic expressions above serving as a check

of the accuracy of the numerical root finding algorithms
used to determine rH.

A.2. Calculation of rUPO

Consider a general static and axisymmetric metric:

ds2 = gttdt
2 + 2gtφdt dφ+ grrdr

2 + gθθdθ
2 + gφφdφ2 .

(A4)
The Lagrangian equations of motion 2L = gµν ẋ

µẋν for

this metric yield the constants pt ≡ −E = gttṫ + gtφφ̇
and pφ ≡ Lz = gtφṫ + gφφφ̇, where an overdot denotes
differentiation with respect to proper time (τ). For a

fluid particle, the normalization condition uµu
µ = −1,

together with the assumption of circular orbits in the
equatorial plane, i.e., θ = π/2 and θ̇ = 0, when paired
with the radial equation of geodesic motion yields:

ρ2ṫ= (gtφLz + gφφE) , (A5a)

ρ2φ̇=− (gttLz + gtφE) , (A5b)

grr ṙ
2 =−

(
gtt + 2gtφΩ + gφφΩ2

)
ṫ2 − 1 , (A5c)

where Ω := φ̇/ṫ and ρ2 ≡ (gtφ)2 − gtt gφφ.
Circular equatorial orbits imply ṙ = r̈ = 0, from which

one obtains the condition gtt,r + 2gtφ,rΩ + gφφ,rΩ
2 = 0,

where f,µ ≡ ∂µf := ∂f/∂xµ. Solving this condition
yields the orbital angular velocity of circular orbits in
terms of first derivatives of the metric:

Ω =
−gtφ,r ±

√
(gtφ,r)2 − gtt,r gφφ,r
gφφ,r

, (A6)
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Figure 10. Isocontours of the JP metric ISCO radius as a function of dimensionless spin parameter and the deviation parameters ε3

(left), α13 (middle), and α22 (right). In all panels only one deviation parameter is varied, with all others set to zero. For ε3, the ISCO

radius increases as ε3 decreases and a∗ increases. This holds for all but the highest spins (a∗ & 0.8), where the effect of decreasing ε3

yileds an increase in the ISCO radius. For α13, increasing a∗ and decreasing the deviation parameter yields a decrease in the ISCO radius.

For α22, the ISCO radius decreases for a∗ < 0 and α22 decreasing, whereas for a∗ > 0 the ISCO radius increases as α22 decreases. The

horizontal dashed line corresponds to a Kerr black hole. The red shaded region in the middle panel denotes the region where circular

equatorial orbits do not exist for radii ∼ 2.5rg. The black shaded region delineates the excluded region of the JP parameter space. These

calculations show excellent agreement with Figure 6 of Johannsen (2013b).

where the positive sign denotes orbits which are co-
rotating with a prograde spinning black hole (a∗ > 0).

Counter-rotating orbits (negative sign in eq. (A6)) are
not considered separately in this study, as we allow for
the black-hole spin to be negative. The condition ṙ = 0

yields:

ut =
(
−gtt − 2gtφΩ− gφφΩ2

)−1/2
, (A7)

from which the energy and angular momentum of a par-
ticle in circular orbit in the equatorial plane may be
written as:

E=−ut (gtt + gtφΩ) , (A8a)

Lz =ut (gtφ + gφφΩ) . (A8b)

The UPO radius is given by the smallest real value of
r ≥ rH for which, in the limit r → rUPO, both E−1 and

L−1
z tend to zero. Consequently, rUPO is obtained from

(ut)−1 = 0 and is calculated numerically as the solution
of the equation:(

gtt + 2gtφΩ + gφφΩ2
)
|r=rUPO

= 0 . (A9)

A.3. Calculation of rISCO

Substituting eqs. (A5a) and (A5b) into eq. (A5c)
yields, upon simplification:

ρ2grr ṙ
2 = gφφE

2 + 2gtφELz + gttL
2
z − ρ2 . (A10)

Recalling the condition ṙ = r̈ = 0, upon application to
(A10), one obtains:

gφφ,rrE
2 + 2gtφ,rrELz + gtt,rrL

2
z − (g2

tφ− gttgφφ),rr = 0 .
(A11)

The ISCO radius is then obtained numerically as the
smallest real solution of (A11) satisfying rISCO ≥ rUPO.

A.4. Characteristic radii for JP and EMDA spacetimes

This subsection presents figures of isocontours of UPO

and ISCO radii for the JP and EMDA spacetimes,
as a function of different metric parameters and a∗.
The excluded regions for the JP spacetime are given
by: ε3 ≤ −r3

+, α13 ≤ −r3
+, and α22 ≤ −r2

+, where

r+ ≡ 1 +
√

1− a2
∗. For the EMDA spacetime an ex-

clusion region exists when β∗ = 0, and is given by:
b∗ ≤ −(1− a2

∗)/2.

In the case of the JP metric, the parameter α52 affects
only the grr metric component, which does not affect the
UPO and ISCO radii, thus fixing α52 = 0 ensures the JP
and Kerr horizon radii are always coincident. The ε3 pa-
rameter only affects, albeit weakly, the ISCO radius (see
Fig. 10). JP metric isocontours of ISCO and UPO ra-
dius, for varying values of one deviation parameter and
spin (with all other parameters set to zero) are shown
in Figs. 10 and 11. These results are in excellent agree-
ment with Johannsen (2013a), where we note the shaded
red region in the α13 UPO plot of Figure 11, which is
absent in Figure 2 of Johannsen (2013a) since they con-
sidered a truncated Taylor expansion approximation of

the underlying equations rather than the full numerical
solution employed here. This was subsequently rectified
in Figure 6 of Johannsen (2013b). For the EMDA met-
ric, the cases β∗ = 0, b∗ = 1, and b∗ = 0.1 are shown in
Figs. 12 and 13.
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Figure 11. Isocontours of circular UPO radius in the JP met-

ric, for the deviation parameters α13 (top) and α22 (bottom). Pa-

rameters and plots as in Figure 10. For α13 the circular UPO

radius decreases for decreasing α13 and increasing a∗. For α22,

when a∗ < 0 the circular UPO radius decreases as α22 decreases,

whereas for a∗ > 0 the circular UPO radius increases as α22 de-

creases. Calculations show excellent agreement with Figure 2 of

Johannsen (2013a). The dashed orange contour in the upper-left

corner of the bottom panel, which was not included in Johannsen

(2013a), denotes rUPO = 5.0 rg.

B. FREE-FALL PLASMA 4-VELOCITIES

This section presents the derivation of 4-velocity pro-
files describing free-falling particle geodesics in the
EMDA and JP spacetimes. Test particle motion in
arbitrary spacetime geometries may be described in a
straightforward manner as follows. Static, axisymmet-
ric spacetimes which are integrable admit two Killing
vectors corresponding to the particle energy relative to
infinity, E ≡ −pt, and the component of the particle
angular momentum about the axis of symmetry of the
black hole, Lz ≡ pφ.

In addition to these symmetries, which arise from the
stationary and axisymmetric nature of these spacetimes,
like the Kerr metric, such spacetimes admit a rank-2
Killing tensor which acts as a separation constant in the
Hamilton-Jacobi equation, i.e., it yields a Carter con-
stant, Q (Carter 1968; Walker & Penrose 1970). Such
spacetimes therefore admit three constants of motion
and by further utilising the conservation of rest mass,

µ, of the particle itself, i.e., µ2 ≡ −gαβpαpβ (where
pβ is the particle’s canonical 4-momentum), the system
of equations describing the particle’s motion is well-

determined and expressible as a system of four first-
order ordinary differential equations (ODEs). This re-
duces the geodesic motion to a quadrature problem.

B.1. Free-fall in the EMDA spacetime

It is a straightforward albeit lengthy exercise to de-

termine the EMDA metric equations of motion from
the Hamilton-Jacobi equation. After specifying an ap-
propriate ansatz for the separation constant of the

Hamilton-Jacobi equation, simplification of the result-
ing equations of motion of a test particle in the EMDA
spacetime yields:

µΣ̂

(
dt

dτ

)
=−aW

(
aEW sin2 θ − Lz

)
+
δP
∆̂

, (B12a)

µ
Σ̂

c

(
dr

dτ

)
=±

√
R̂(r) , (B12b)

µ
Σ̂

c

(
dθ

dτ

)
=±

√
Θ̂ (θ) , (B12c)

µ
Σ̂

c

(
dφ

dτ

)
=−

(
aEW − L2

z csc2 θ
)

+
aP
∆̂

, (B12d)

and where

R̂(r) := P2 − ∆̂
[
µ2
(
r2 − 2br − β2

)
+Q

]
, (B13a)

Θ̂ (θ) := −µ2
[
a2 cos2 θ + r2

gβb (βb − 2a∗ cos θ)
]

−
(
Lz − aEW sin2 θ

)2
sin2 θ

+Q , (B13b)

P := Eδ − aLz , (B13c)

Q := Q+ (Lz − aE)
2
. (B13d)
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Figure 12. Isocontours of ISCO radius in the EMDA metric, for the dimensionless dilaton coupling (left), and for the dimensionless axion

coupling with fixed dilaton coupling values of 1 (middle) and 0.1 (right). The horizontal dashed line corresponds to a Kerr black hole. The

black shaded region delineates the excluded region of the EMDA parameter space when β∗ = 0. In the left panel, the dilaton coupling

parameter is varied whilst the axion coupling is set to zero. The ISCO radius decreases for decreasing dilaton coupling and increasing a∗.

For the middle and right panels, the EMDA ISCO radius dependence on the axion coupling is symmetric under β∗ → −β∗, exhibiting

the same trend as the dilaton case. Letting b∗ → 0 causes βb → ∞ to diverge, resulting in all characteristic radii of the (non-zero axion

coupling) EMDA solution to increase rapidly.
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Figure 13. Isocontours of circular UPO radius in the EMDA metric, for the dimensionless dilaton coupling (left), and for the dimensionless

axion coupling with fixed dilaton coupling values of 1 (middle) and 0.1 (right). Plots and trends are as described in Figure 12.

The velocities of radially free-falling test particles are ob-
tained when the constants of motion are E = µ, Lz = 0,
and Q = 0. Here Q is the Carter (separation) constant.

Upon substitution into eqs. (B12), one obtains:

Σ̂

(
dt

dτ

)
ff

=−a2W 2 sin2 θ +
δ2

∆̂
, (B14a)

Σ̂

c

(
dr

dτ

)
ff

=−
√
δ2 − ∆̂ (δ − β2) , (B14b)

Σ̂

c

(
dθ

dτ

)
ff

=±
√
−β
[
β +

X

b2
+

βX2

a2b4 sin2 θ

]
, (B14c)

Σ̂

c

(
dφ

dτ

)
ff

=a

(
−W +

δ

∆̂

)
, (B14d)

where X ≡ 2 a b rg cos θ + β(b2 − r2
g) and the subscript

“ff” denotes free fall. In the above, the negative root
of the radial motion is taken, corresponding to free fall

onto the black hole. Note, however, that even in the free
fall case the zenith motion does not vanish for the full
EMDA metric, due to the axion field coupling parame-
ter, i.e., the aforementioned ansatz fails since the axion
field coupling breaks the integrability of the motion. In
this study we therefore set β∗ = 0 when considering
free fall motion in the EMDA spacetime. This ensures
eqs. (B12c) & (B14c) vanish when Lz = Q = 0, thereby
constraining the motion of a test particle to be confined
to a two-dimensional plane, as required. The standard

Kerr expressions are recovered in the limit b→ 0.
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B.2. Free fall in the JP spacetime

Similar to the previous subsection for the EMDA
spacetime, the equations of motion for particles in the
JP metric (see Johannsen, 2015) may be re-expressed in
the free-falling regime as:

Σ̃

(
dt

dτ

)
ff

=−a2 sin2 θ +

(
r2 + a2

)2
A2

1

∆
, (B15a)

Σ̃

c

(
dr

dτ

)
ff

=−
√
A5

√
K + 2 rgr (r2 + a2) , (B15b)

Σ̃

c

(
dθ

dτ

)
ff

= 0 , (B15c)

Σ̃

c

(
dφ

dτ

)
ff

=a

[
−1 +

(
r2 + a2

)
A1A2

∆

]
, (B15d)

where K ≡
(
A2

1 − 1
) (
r2 + a2

)2−∆
(

Σ̃− Σ
)

. Note that

for the JP metric the existence of three constants of
motion is guaranteed by construction. The standard
Kerr metric expressions are recovered when all deviation
parameters are zero.

C. IMAGES EXCLUDED FROM THE

α-CALIBRATION

As mentioned in Sec. 4.4, model images that deviate
significantly from circular shapes are excluded from the

α-calibration analysis presented therein. Specifically,
such images do not present at least half circles, as char-
acterized by F < 0.5, or fall outside of the constraint
0.8 ≤ Rnon−Kerr ≤ 1.38. In these cases, even though the

ring-like shapes still closely follow the shadow bound-
aries, a characterization based on a circular shape fails
to correctly capture the true relationship between the

two. In other words, violating the two conditions listed
above prevent us from using a single radius to charac-
terize these images, as is required in the α-calibration
approach, which is based on the observation that the

image in the M87 black hole is nearly circular.
The models with those characteristics typically have

large dimensionless spin magnitudes, are viewed close to
edge-on (i = 75◦), and arise from the largest values of
deviation parameters. Many of these models have large
values of α22, as discussed in Figure 14, rendering the
shadow boundary curve highly prolate and the images
asymmetric. As can be seen in the rightmost panels of
this figure, the present characterisation algorithm is not
suited to dealing with highly non-circular images, which

are not consistent with observations. If future obser-
vations of other black holes reveal highly non-circular
images, the calibration can easily be extended to incor-
porate such shapes.

D. NON-GR RADIATIVE TRANSFER CODE
COMPARISON

Cross-code verification of time-dependent GRMHD
and of radiative transfer algorithms in the Kerr metric
have been reported in earlier publications by the EHT
collaboration (Porth et al. 2019; Gold et al. 2020). In
this Appendix, we provide a cross-code verification of
the numerical implementation for radiative transfer in
non-GR metrics and for the plasma model that we em-
ploy in this study.

For the purposes of this verification, we employ two ra-
diative transfer algorithms, which were designed specifi-
cally to handle general spacetimes that may not possess
the symmetries of the Kerr metric.

The first algorithm is described in Psaltis & Johannsen
(2012). It employs the Killing vectors related to the
stationarity and axisymmetry of a general spacetime
but integrates the second-order geodesic equations for
the remaining spacetime coordinates using a fourth or-
der Runge-Kutta-Fehlberg integrator with adaptive step

size control.
The second algorithm is described in Younsi et al.

(2012, 2016). It integrates the second-order geodesic

equations for all spacetime coordinates and does not
make use of any symmetries of the spacetime. It
solves these equations using fourth-order, sixth-order,
and eighth-order Runge-Kutta-Fehlberg integration rou-

tines with adaptive step size control, as well.
Figures 15 and 16 compare the profiles of the three

non-zero components of the plasma four-velocities cal-

culated as described in Sec. 3.2.2. These velocity com-
ponents depend on different combinations of metric ele-
ments and their derivatives throughout the spacetime, as

well as on the location of the ISCO, which is calculated,
in general, numerically. These profiles, therefore, pro-
vide an intricate verification of the different spacetime
metric implementations. These figures present compar-
isons for the Kerr and JP metrics, for different black-
hole spins, and along different radial cross sections of the
three-dimensional (axisymmetric) domain. In all cases,
the fractional difference between the two algorithms is
< 10−6, which is the target accuracy imposed in the
numerical calculation of the characteristic radii.

Geodesic integration is performed to an accuracy bet-
ter than 10−12, with the discrepancy between both codes
in evaluating the synchrotron emissivity being ∼ 10−16

across all parameter values. Consequently, it has been
established that the leading source of discrepancy be-
tween codes arises from the accuracy by which the char-
acteristic radii are evaluated, particularly the ISCO ra-

dius. Figures 17 and 18 compare the images calculated
with the two algorithms for the plasma model described
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�20 �10 0 10 20

x (rg)

�20

�10

0

10

20
y
(r

g
)

099110

rH = 1.3334 rg
rUPO = 1.3346 rg
rISCO = 1.4848 rg

�20 �10 0 10 20

Angular Distance (rg)

0.00

0.25

0.50

0.75

1.00

1.25

N
or
m
al
is
ed

In
te
n
si
ty

Horizontal

Vertical

Hor. Filtered

Ver. Filtered

�20 �10 0 10 20

x (rg)

�20

�10

0

10

20

y
(r

g
)

0 5 10 15

Image Radius (rg)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
ve

D
is
tr
ib
u
ti
on

0.0 0.5 1.0

FWHM/Shadow Diameter

0.0

0.2

0.4

0.6

0.8

1.0
C
u
m
u
la
ti
ve

D
is
tr
ib
u
ti
on

0 5 10

Baseline Length (G�)

10�2

10�1

100

V
is
ib
ili
ty

A
m
p
lit
u
d
e

Horizontal

Vertical

⌘r = 0.20, nr = 1.5, ⇣ = 0.25, R = 10, B0 = 5
✓obs = 75�, a⇤ = 0.9428, ✏3 = 0, ↵13 = 0, ↵22 = 10

�20 �10 0 10 20

x (rg)

�20

�10

0

10

20

y
(r

g
)

095041

rH = 1.0836 rg
rUPO = 5.2760 rg
rISCO = 11.2881 rg

�20 �10 0 10 20

Angular Distance (rg)

0.00

0.25

0.50

0.75

1.00

1.25
N
or
m
al
is
ed

In
te
n
si
ty

Horizontal

Vertical

Hor. Filtered

Ver. Filtered

�20 �10 0 10 20

x (rg)

�20

�10

0

10

20

y
(r

g
)

0 5 10 15

Image Radius (rg)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
ve

D
is
tr
ib
u
ti
on

0.0 0.5 1.0

FWHM/Shadow Diameter

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
ve

D
is
tr
ib
u
ti
on

0 5 10

Baseline Length (G�)

10�2

10�1

100
V
is
ib
ili
ty

A
m
p
lit
u
d
e

Horizontal

Vertical

⌘r = 0.05, nr = 0.5, ⇣ = 0.25, R = 5, B0 = 5
✓obs = 15�, a⇤ =�0.9965, ✏3 = 0, ↵13 = 0, ↵22 = 10

Figure 14. Examples of images excluded from the α-calibration analysis summarised in Figure 6, which the α-calibration would artificially

characterize as disjoint. The top row presents an example of a model where F ' 0.13, the smallest fraction of all models in the image

library. The bottom row presents a model with F = 1 and Rnon−Kerr outside the Kerr aspect ratio constraints. The left column presents

these example images, for an a∗ = 0.9428, i = 75◦, α22 = 10 black hole (top) and an a∗ = −0.9965, i = 15◦, α22 = 10 black hole (bottom).

The middle column presents horizontal and vertical intensity cross-sections of these images, together with these cross-sections, as obtained

from the filtered images (right column). The black hole shadow boundary curve is delineated by the cyan curve in the left and right

columns. The blue line in the rightmost panels denotes the contour of median radii where the flux is non-negligible and FWHM radii are

denoted by dashed green lines. The large quadrupole moments of these black hole produce highly non-circular “D-shaped” shadows that

cannot be characterized by a single diameter.

in §3, for the Kerr and the JP spacetimes. This compari-
son verifies the implementation of the integration of null
geodesics as well as of the thermodynamic plasma quan-
tities and the synchrotron emissivities. The fractional
difference between the images calculated with the two
algorithms is larger for impact parameters that graze
the photon orbits in both spacetimes. This is expected
given the large gradients in the intensity near these im-
pact parameters. Nevertheless, in all cases the fractional
difference is . 10−3, which is more than adequate for the
purposes of the calculations reported here.
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Figure 15. The three non-zero components of the plasma velocities in the model described in Sec. 3.2, as calculated using the algorithms

developed by Psaltis & Johannsen (2012) (C1) and by Younsi et al. (2016) (C2). The secondary (lower) plots in each of the six panels

show the fractional differences between the two algorithms, which are always at the < 10−6 level. In all panels, the dimensionless spin of

the black hole is set to a∗ = 0. Panels in the top row correspond to radial cross-sections on the equatorial plane (θ = 90◦), whereas the

bottom row panels correspond to radial cross-sections on a plane at a polar angle of θ = 45◦. Panels in the left, middle, and right columns

correspond to the Kerr metric, the JP metric with α13 = 2, and the JP metric with ε3 = 2, respectively. All other deviation parameters

are zero. In all panels, vertical dashed lines delineate the spherical radii (r) or cylindrical radii ($) of the event horizon (rH), of the UPO

(rUPO), and of the ISCO (rISCO). The leftmost shaded grey region in each panel denotes the region interior to the event horizon of the

black hole. The relevant plasma velocity parameters are η = 0.5 and nr = 1.5.
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Figure 16. Same as Figure 15 but for black holes with a dimensionless spin parameter of a∗ = 0.9.
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Figure 17. Comparison of 1.3 mm images of Kerr black holes with dimensionless spin parameter a∗ = 0.5 and observer inclination angle

i = 15◦, as calculated using the algorithms developed by Psaltis & Johannsen (2012) (C1) and by Younsi et al. (2016) (C2). The upper

panels show the two images as well as their pixel-by-pixel difference. The bottom-left panel shows a horizontal and a vertical cross-section

of the images from both codes, with the bottom-right panel showing their difference. The vertical green dashed lines in the bottom panels

correspond to the locations of the left and right horizontal critical impact parameters. The two algorithms generate images which agree to

the . 10−3 level.
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Figure 18. Same as Figure 17 but for the JP spacetime, with α13 = 2.0 being the only non-zero deviation parameter.
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Garćıa, A., Galtsov, D., & Kechkin, O. 1995, PhRvL, 74,

1276

Ghasemi-Nodehi, M., Azreg-Aı̈nou, M., Jusufi, K., & Jamil,

M. 2020, PhRvD, 102, 104032

Gold, R., Broderick, A. E., Younsi, Z., et al. 2020, ApJ,

897, 148

Johannsen, T. 2013a, ApJ, 777, 170

—. 2013b, PhRvD, 88, 044002

—. 2013c, PhRvD, 87, 124017

Johannsen, T., & Psaltis, D. 2010, ApJ, 718, 446

—. 2011, PhRvD, 83, 124015

Kerr, R. P. 1963, PhRvL, 11, 237

Kocherlakota, P., Rezzolla, L., & EHT Collaboration. 2021,

PhRvD, 103, 104047

Kumar, R., & Ghosh, S. G. 2020, JCAP, 2020, 053

Li, G.-P., & He, K.-J. 2021, JCAP, 2021, 037

Lindquist, R. W. 1966, Annals of Physics, 37, 487

Mahadevan, R., Narayan, R., & Yi, I. 1996, ApJ, 465, 327

Medeiros, L., Chan, C.-K., Narayan, R., Ozel, F., & Psaltis,

D. 2021, arXiv e-prints, arXiv:2105.03424

Medeiros, L., Psaltis, D., & Özel, F. 2019, arXiv e-prints,
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