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ABSTRACT

The horizon-scale images of black holes obtained with the Event Horizon Telescope have provided
new probes of their metrics and tests of General Relativity. The images are characterized by a bright,
near circular ring from the gravitationally lensed emission from the hot plasma and a deep central
depression cast by the black hole. The metric tests rely on fact that the bright ring closely traces
the boundary of the black hole shadow with a small displacement that has been quantified using
simulations. In this paper we develop a self-consistent covariant analytic model of the accretion flow
that spans a broad range of plasma conditions and black-hole properties to explore the general validity

of this result. We show that, for any physical model of the accretion flow, the ring always encompasses
the outline of the shadow and is not displaced by it by more than half the ring width. This result is a
consequence of conservation laws and basic thermodynamic considerations and does not depend on the

microphysics of the plasma or the details of the numerical simulations. We also present a quantitative
measurement of the bias between the bright ring and the shadow radius based on the analytical models.

1. INTRODUCTION

Horizon scale images of accreting black holes are gen-
erated when the photons emitted by the surrounding
plasma propagate from the deep gravitational fields of

the black holes to observers at infinity. Because of this,
the strong fields of black holes are imprinted on the re-
sulting images, which can be used to probe the space-

time properties.
When observed at millimeter wavelengths, the radia-

tively inefficient accretion flows that surround nearby
supermassive black holes are transparent down to the

event horizon (Özel et al. 2000), allowing us to observe
directly the photons that originate at horizon scales.
These flows give rise to images in which the black holes

cast a deep shadow on the plasma emission (Jaroszynski
& Kurpiewski 1997; Falcke et al. 2000).

The boundary of the shadow is determined entirely by
the black-hole metric and, in particular, by the location
of spherical photon orbits outside its horizon (Bardeen
1973; Takahashi 2004). For a Kerr black hole, the shape
of the shadow remains nearly circular and its size nearly
constant for all black-hole spins and observer inclina-
tions, as a result of a near cancellation of frame-dragging
and spacetime-quadrupole effects (Johannsen & Psaltis

2010). This property allows using black-hole shadows
to perform a direct test of gravity at horizon scales that
depends only on the prior knowledge of the black mass
(see Psaltis 2019 for a review).

The Event Horizon Telescope (EHT) has recently ob-

tained images of the black hole in the center of the M87
galaxy. These images are characterized by a narrow ring
of emission that surrounds a deep brightness depres-

sion (Event Horizon Telescope Collaboration 2019a,b).
They have been used to infer the size of the black-hole
shadow (Event Horizon Telescope Collaboration 2019d)
and to perform tests on deviations from the Kerr met-

ric (Psaltis et al. 2020; Kocherlakota et al. 2021).
Even though the characteristics of the shadow provide

an uncontroversial metric test, fundamentally the obser-

vational measurements are based on the properties of the
bright image ring, which is used as a proxy for the size of
the shadow. Because the image itself is formed through
a combination of the spacetime of the black hole and
the emission characteristics of the plasma, this inference
was justified through an extensive suite of General Rel-
ativistic Magnetohydrodynamic (GRMHD) simulations
that spanned a wide range of relevant conditions (Event
Horizon Telescope Collaboration 2019c). These simula-
tions allowed for a quantitative calibration between the
diameter of the peak emission, which is measured, and
that of the shadow, which is inferred (Event Horizon
Telescope Collaboration 2019d).

There exists a large body of literature exploring the

sensitivity of the horizon scale images, and hence of the
metric tests, on the particular assumptions regarding
the plasma properties and simulation algorithms em-
ployed (see, e.g., Dexter & Agol 2009; Dexter et al. 2010;
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Dexter & Fragile 2013; Mościbrodzka et al. 2009, 2014;
Chan et al. 2015b,a; Medeiros et al. 2017, 2018; Mao
et al. 2017; Ryan et al. 2018; Davelaar et al. 2018, 2019;
Narayan et al. 2019; Dexter et al. 2020; White et al.
2020; Yoon et al. 2020; Chatterjee et al. 2020; Bronzwaer
et al. 2021; Mizuno et al. 2021), on the possible devia-
tions from the Kerr metric in the simulated images (see,
e.g., Johannsen & Psaltis 2010; Broderick et al. 2014; Jo-
hannsen et al. 2016b,a; Mizuno et al. 2018; Olivares et al.
2020), as well we on the astrophysical complications in-
troduced by the finite resolution of the EHT and the in-
tervening material between the source and the telescopes
(see, e.g., Fish et al. 2014; Psaltis et al. 2015; Zhu et al.
2019). These studies explored the impact on the re-
sulting images of different magnetic field configurations
and initial conditions, of electron heating and accelera-
tion models, of misaligned disk and black hole angular
momenta, etc. However, there has not been so far a
comprehensive study of the connection between model

assumptions, spacetime properties, and image charac-
teristics, especially in the context of metric tests.

Our goal is to devise a realistic but flexible plasma
model in order to explore the impact of the uncertain-

ties in the microphysics and large-scale properties of the
accretion flow without relying on the specifics of the
GRMHD models. This will also allow us to address

recent claims in the literature, made using simple ar-
guments and ad hoc constructions, that ring-like black-
hole images could be disjoint from the black-hole shad-

ows (e.g., Gralla et al. 2019; Gralla 2021). In particular,
the uncertainties in the microphysics of plasma heating,
the presence of a putative truncation in the accretion
flow at an arbitrary radius, the resolution of the simu-

lations, and their initial conditions were all invoked as
potential sources of uncertainty that could lead to such
images.

In this series of papers, we show that the universal
characteristics of the images on which the metric tests
are based do not depend on the detailed properties of the
numerical simulations, on the plasma model, or on the
particular metrics employed but arise naturally in the
black hole spacetimes that are characterized by spher-
ical photon orbits and a horizon. In this first paper,
we develop a self-consistent analytic model to explore
the dependence of image properties on a broad range
of plasma characteristics. We demonstrate that, for

any flow that obeys basic conservation laws for mass,
momentum, and energy, and that is relevant to low-
luminosity black holes, the image always closely tracks
and straddles the black-hole shadow. Because the black-
hole shadow is contained within the width of the ring,
when the latter is thin, as is the case in the image ob-

served in M87, we show that the uncertainties in the
calibration are small and limited by the fractional width
of the observed ring.

We conclude that the only way to generate an image
of the inner accretion flow where the bright emission
ring is displaced from the black hole shadow is either as
a transient event, such as an Einstein ring (Chan et al.
2015a), or by artificially truncating the plasma emissiv-
ity at an arbitrary radius. Even though the former is a
possibility that can be tested by observations that are
repeated over many dynamical timescales, the latter vi-
olates basic physical considerations. We further show
that, for any of the simulated images, the finite reso-
lution of the EHT does not preclude a measurement of
the size of the black-hole shadow; it only limits the accu-
racy of the measurement. In a companion paper (Younsi
et al. 2021), we show that these conclusions do not de-

pend on the Kerr nature of the metric but hold for other
metrics as well.

One can of course generate an image structure that

is disjoint from the black hole shadow by invoking, e.g.,
emission from a jet at large distances from the horizon
or from the shocks that may be generated in tilted ac-
cretion flows (Dexter & Fragile 2013). However, to be

viable, such models will need to account for the sta-
bility of the observed images, their thin ring-like struc-
tures, and the observed similarity between the diameter

of such rings and that of the shadow given the prior mass
measurement of the black hole.

In §2, we first employ simple emissivity profiles in the

accretion flow in order to disentangle the plasma effects
from those of the spacetime and identify the conditions
necessary to break the coupling between the ring in the
image and the black-hole shadow. In §3, we develop a

full analytic plasma model that obeys conservation laws
and basic thermodynamic considerations and in §4, we
compare this model to GRMHD simulations. In §5, we

simulate a broad range images based on the analytic
plasma model and use them to bound the bias between
the diameter of the ring and that of the shadow.

2. GENERAL CHARACTERISTICS OF

HORIZON-SCALE IMAGES OF ACCRETION
FLOWS

Horizon scale images of black holes have a number of
universal properties that are shaped by the black hole
spacetime and by the physical processes in the plasmas
in the accretion flows. In this section, we disentangle the
signatures of the spacetime from those of the plasma on
the black hole images using a broad range of profiles
for the dynamic and thermodynamic properties of the
plasma. We focus on the case where the mass of the



3

−15 −10 −5 0 5 10 15

Impact Parameter (M)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
N
or
m
al
iz
ed

In
te
n
si
ty

j ∼ r−3/2

j ∼ r−2

j ∼ r−3

−15 −10 −5 0 5 10 15

Impact Parameter (M)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

In
te

n
si

ty

h/r = 0.25

i = 45◦
j ∼ r−3/2

j ∼ r−2

j ∼ r−3

−15 −10 −5 0 5 10 15

Impact Parameter (M)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

In
te

n
si

ty

j ∼ r−2

i = 45◦

h/r = 0.15

h/r = 0.25

h/r = 0.35

−15 −10 −5 0 5 10 15

Impact Parameter (M)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
al

iz
ed

In
te

n
si

ty

h/r = 0.25

j ∼ r−2

i = 15◦

i = 45◦

i = 75◦

Figure 1. Intensity across a horizontal cross section of a black hole image for different analytic emissivity profiles in optically thin

accretion flows. (a) Three radial emissivity profiles for a spherical geometry (h/r → ∞). (b) Same as (a) but for a disk scale height

h/r = 0.25. (c) Same as (b) but for varying the disk scale height. (d) Same as (b) but for varying the observer’s inclination.

black hole, the accretion rate, and the observing wave-

length are such that the accretion flow is nearly optically
thin down to the horizon of the black hole. For the case
of the two primary EHT targets, Sgr A* and M87, this
occurs at the 1.3 mm wavelength chosen for the EHT
observations (Özel et al. 2000).

In this paper, we assume that the black hole space-
time is described by the Kerr metric, which in Boyer-
Lindquist coordinates is given by

ds2 =−
(

1− 2r

Σ

)
dt2 −

(
4ar sin2 θ

Σ

)
dtdφ

+

(
Σ

∆

)
dr2 + Σ dθ2

+

(
r2 + a2 +

2a2r sin2 θ

Σ

)
sin2 θ dφ2 . (1)

Here a is the spin of the black hole,

∆ ≡ r2 − 2r + a2, (2)

and

Σ ≡ r2 + a2 cos2 θ . (3)

In this expression, G = c = M = 1, where G, c, and M

are the gravitational constant, the speed of light, and the
black-hole mass, respectively. For the remainder of this
section, we will set the spin to zero but will consider the
general case in the following sections. In the companion
paper, we will consider a variety of non-Kerr metrics.

To calculate the images, we place an observer at a
large distance and at an inclination i with respect to
the spin axis of the black hole. We set an image plane
perpendicular to the observer’s line of sight and calcu-
late null geodesics backwards from each point on the
image plane in the black hole spacetime using the code
described in Psaltis & Johannsen (2012). We then in-
tegrate the radiative transfer equation along geodesics,
which is given by

I(ν0) =

∫
ray

j(ν)g2dλ (4)
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Figure 2. (Left) The different path lengths that contribute to the observed image brightness at four impact parameters through an

accretion flow. (Right) The contribution of different impact parameters to the various features in the image cross section.

for the case of optically thin emission, where λ is the

affine parameter, jν is the emissivity and ν is the fre-
quency of the radiation in the local comoving frame, ν0

is the observed frequency, and

g ≡ ν0

ν
=
−kαuα|∞
−kαuα

(5)

is the redshift factor (Dexter & Agol 2009). Here, kα

and uα are the 4-vectors of the photon momentum and
plasma velocity.

For the purposes of this section, we allow a highly gen-
eral form of the emissivity that has an arbitrary power-

law dependence on the coordinate radius and an arbi-
trary scale height h/r:

j(r, θ) = j0r
−n exp

[
−1

2

(
θ − π/2

(h/r)π/2

)2
]
. (6)

When h/r goes to infinity, this describes a spherically
symmetric emission geometry. We consider only profiles
with n > 1 because, otherwise, the integral in Eq. (6)
does not converge and its value is determined entirely
by the artificial outer boundary condition. Similarly,
for 1 < n ≤ 2, the total flux does not converge, but
in this case, the brightness of every pixel is finite on
the image plane. In addition, for these toy models, we
will mostly consider the flow to be at rest but will also
allow for radial infall velocities that are a fraction of the

local free-fall velocity. Finally, for the majority of this
section, we consider the emissivity to be independent of
the photon frequency. In the following section, we will
construct self-consistent and physical analytic models of
the accretion flow.

Figure 1 shows the cross sections of the brightness of
images calculated for a variety of parameters of the sim-

ple emissivity model described above. The upper left

panel shows the effect of changing the emissivity pro-

file in the flow for a spherically symmetric configuration
while the upper right panel makes the same comparison
for a geometrically thick disk of h/r = 0.25 viewed at

a 45◦ inclination. The bottom two panels display the
effect of changing the scale height of the disk (left) and
the inclination of the observer (right).

It is evident from these panels that there are universal

features of the images that do not depend on the details
of the emissivity model:
(i) In all cases, there is a precipitous brightness de-

pression interior to the critical impact parameter (i.e.,
the black hole shadow). This occurs at

√
27M for non-

spinning black holes (see eq. [51] for the general expres-

sion that shows the marginal effect of spin and observer’s
inclination).
(ii) The peak brightness always occurs at or very close
to this critical impact parameter, again nearly indepen-

dent of the plasma properties, flow scale height, or the
viewing angle.
(iii) Compact images, such as the EHT images of M87,
require steep emissivity profiles.

The main impact of the emissivity profile is to deter-
mine the extent of the image at larger impact parameters
(i.e., the image compactness). Shallow density profiles
lead to extended images that are inconsistent with the
compact, narrow ring-like structure observed from the
M87 black hole with the EHT. A second aspect of the

image that is affected by the emissivity model is the
depth of the brightness depression inside the black hole
shadow. However, in none of the cases does this affect
the presence or the location of the deep depression.

Figure 2 elucidates the effect of the emissivity model
and the spacetime characteristics on the profile of the
image brightness. The brightness seen by an observer at
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Figure 3. The effect of (Left) a radial infall velocity and (Right) of a frequency-dependent emissivity on the image cross section in the

simple analytic model. Both effects cause a reduction of the image brightness at small impact parameters, increasing the contrast between

the bright emission ring and the black-hole shadow.

any given impact parameter is determined by the combi-
nation of the path length along the ray for which there is
non-zero emissivity and the magnitude of that emissiv-
ity. This mechanism is different than the image forma-

tion in the case of a geometrically thin, optically thick
disk (as used in e.g., Luminet 1979; Gralla et al. 2020;
Glampedakis & Pappas 2021), which is inapplicable to

the two primary EHT targets, as thin disks are highly
inconsistent with all of their observed characteristics.

The left panel shows a visualization of the emissiv-
ity profile on a meridional plane of the accretion flow

and sample trajectories at four impact parameters for
an observer placed at i = 45◦. The right panel shows
the corresponding image brightness as a function of im-

pact parameter as well as the location of the four tra-
jectories. At large impact parameters, the decline of the
image intensity is substantially flatter than the radial

dependence of the emissivity profile because of the op-
posing effects of the decline in emissivity and increase in
pathlength with increasing impact parameter. In other
words, trajectories of A and B give rise to similar inten-
sities because even though the emissivity sampled along
path A is smaller than that along path B, the total path
length through the densest part of the flow is longer for
path A.

The broad brightness peak around impact parameter
C is the result of strong gravitational lensing, which in-
duces a large enough deflection in the photon path to
cause it to cross the inner part of the accretion flow
twice and, thus, to pick up a larger emissivity contribu-
tion. The slight dip between impact parameters C and

D is a result of the decreasing disk thickness h with de-
creasing radius such that, in this example, the lengths of
the trajectories, even accounting for the double crossing

of the flow, decrease faster inwards than the increase

in the emissivity. The situation changes dramatically
at a very narrow range of impact parameters around
D, for which the trajectories take multiple turns around

the photon orbit and give rise to the sharp and narrow
brightness peak in the image. Note that the individual
number of crossings within the narrow range of critical
impact parameter around D will not give rise to distin-

guishable individual peaks, because the contribution to
the radiative transfer integral increases in a continuous
manner (and not discretely as in the infinitesimally thin

toy models that simply count the number of equatorial
crossings).

Figure 1 shows that the depth of the central brightness
depression (at impact parameters smaller than the criti-

cal one) has a dependence on the scale height h/r of the
accretion flow and the inclination of the observer. How-
ever, the actual brightness at these small impact param-

eters is heavily overpredicted in this simplistic model be-
cause the latter neglects two unavoidable physical effects
that further reduce the brightness. First, accretion flows
have a finite radial inflow velocity, which becomes a sub-
stantial fraction of the speed of light at the small radii
intersected by these impact parameters. As a result,
the angular dependence of emission is highly peaked to-

wards the black hole, with only a small fraction pointing
outward towards the observer. Second, the synchrotron
emissivity that gives rise to the radio/millimeter radia-
tion observed from sources such as M87 and Sgr A∗ de-
creases rapidly with increasing photon frequency. The
consequence of these redshifts is that the photons that
arrive at the observer with a wavelength of 1.3 mm have
to be emitted at increasingly higher frequencies when
they originate at larger depths in the gravitational po-
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tential. The relevant emissivity at smaller radii will,
therefore, be smaller than what is assumed in the sim-
ple model of Figure 1.

The cross sections of the image in the presence of these
two effects are shown in Figure 3. The left panel consid-
ers a radial inflow velocity that is a fraction of the local
free-fall velocity (urff =

√
2/r), while the right panel

introduces a modest power-law dependence of the syn-
chrotron emissivity (note that at high frequencies, the
frequency dependence of the synchrotron emissivity is
in fact exponential). As expected, in both cases, the
addition of these necessary physical effects substantially
reduces the brightness inside the black hole shadow and
further enhances the sharp drop at the critical impact
parameter.

These simple models demonstrate that for any contin-
uous plasma distribution in the accretion flow, compact
images of black holes are always characterized by a large
brightness depression at the critical impact parameter

independent of any details of the plasma or its emission.
This brightness depression is a unique signature of the
spacetime that cannot be overwhelmed by plasma effects
for the conditions of the primary EHT targets. Further,

its diameter is determined entirely by the size of the
photon orbit and the strength of gravitational lensing.

Given the generality of the conclusions above, one is

left to ask what conditions would be required to gener-
ate a compact ring that is disjoint from the location of
the shadow. The only remaining mechanism for decou-

pling the brightness depression from the critical impact
parameter is the introduction of an ad hoc truncation of
the emissivity profile at some arbitrary radius. We ex-
plore the consequences and the feasibility of such trun-

cations in the remainder of this section and in §5.

2.1. The effect of an arbitrary truncation of disk
emissivity

We turn to the images associated with an accretion
flow where the emissivity profile is truncated at an arbi-
trary inner boundary that is separate from the horizon
of the black hole. Previous studies (e.g., Luminet 1979;
Straub et al. 2012; Vincent et al. 2015) have invoked
such ad hoc conditions by setting the matter density to
zero at, e.g., the innermost stable circular orbit (ISCO),

motivated by the fact that matter loses centrifugal sup-
port for a cold, thin disk at that radius. In principle,
such a configuration can also be produced by setting
the electron temperature or the magnetic field strength
suddenly to negligible values at a chosen radius.

Figure 4 shows the image cross sections obtained from
the simple analytic model truncated at a variety of in-
ner disk radii rin and for different values of the disk

thickness. In all cases, the emissivity profile is given by
j ∼ r−3, the observer’s inclination is set to 15◦, and the
radial velocity is vr = 0.5vff . The left panel shows that,
if the truncation is close to the radius of the photon or-
bit (rin . 5 M), then its radius has minimal effects on
the shadow characteristics; the sharp drop in the image
brightness still occurs at the critical impact parameter.
The only way to generate a disjoint peak of emission at
a substantially different impact parameter is by truncat-
ing the emissivity at a much larger radius. Note that,
if such a truncation is associated with the ISCO, it will
be significantly displaced from the photon ring only for
slowly spinning black holes, as the coordinate radius of
the ISCO and that of the photon orbit converge to the
same value as the spin increases to its maximum value.

The right panel of Figure 4 shows a case with rin =
6M for three different values of the disk thickness. In

this case, multiple disjoint peaks are produced. The
first peak still appears near the critical impact parame-
ter, while the outer peak associated with the truncation

of the disk has a location that depends on the disk thick-
ness h/r.1 Even with this large truncation radius, the
depth between the individual peaks of emission is also a

function of the disk thickness (and to a lesser extent, of
the observer’s inclination and the radial dependence of
the emissivity, not shown in the figure).

In the next section, we develop a self-consistent, semi-

analytic, covariant model of the accretion flow in order
to explore the physicality of such truncated emissivity
profiles.

3. THE PROPERTIES OF THE PLASMA IN THE
ACCRETION FLOW

A realistic analytic model for the plasma that is
needed to calculate horizon-scale images of the accre-
tion flow requires the specification of the fluid density ρ,
the four-velocity uµ, magnetic field strength B, and the
electron temperature Te. These, in turn, are obtained
from the more general basic conservation equations for
the stress-energy tensor Tµν , which are

Tµν;ν = 0 (7)

for the conservation of energy-momentum and

(ρuµ);ν = 0 (8)

for the conservation of particle number or, equivalently,
rest-mass density. These conservation laws are satisfied

1 The claim in Gralla & Lupsasca (2020) that this peak appears
at rin + 1 is correct only in the highly specialized case of face-on
observers and purely equatorial emission.
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Figure 4. Brightness cross sections of images around a non-spinning black hole with the simple emissivity model but for profiles arbitrarily

truncated at various radii rin. (a) Images where rin = 3M and rin = 4M show extremely little difference from those with the horizon

boundary condition, even for small values of the disk thickness and observer’s inclination, and the sharp drop of image brightness occurs

still at the critical impact parameter. (b) Images with rin = 6M exhibit a disjoint feature associated with the truncation radius, in addition

to the peak at the photon radius, but the intensity drops to zero between peaks only for extremely small values of the disk thickness.

independent of whether the plasma is in the kinetic or

the fluid regime, of the validity of the MHD approxi-
mation, or of the particular dissipation mechanisms in-
volved.

By construction, our analytic model is axisymmetric
so that there is no dependence of any quantity on the
azimuthal angle φ. Furthermore, in this section, we use
vertically-averaged quantities for the accretion flow such

that the conservation equation for the mass density be-
comes

4π

(
h

r

)√−gρur = −Ṁ, (9)

where Ṁ is the constant mass accretion rate throughout
the flow and the scale height is defined as

h

r
(r) ≡

∫ 2π

0
dφ
∫ θ

0
dθ|π/2− θ|ρ√−g∫ 2π

0
dφ
∫ θ

0
dθ ρ
√−g

. (10)

In eq. [9], the factor related to the determinant of the
metric, g = | det gµν |, is understood to be evaluated at
the equatorial plane. For the Kerr metric,

√−g = r2 on
the equatorial plane and, therefore, the above equation
becomes

4π

(
h

r

)
r2ρur = −Ṁ. (11)

The electron density as a function of radius is then sim-
ply

ne(r) =
ρ(r)

mp
=

Ṁ

4πr2(h/r)urmp
, (12)

where mp is the mass of the proton (assuming a fully

ionized hydrogen plasma) and ur is the r−component of
the plasma velocity. It is evident from this equation that

the density profile only depends on the radial component

of the four-velocity, which we will specify below.
In a radiatively inefficient flow, energy conservation

implies that the energy content of the fluid is deter-

mined by viscous and compressional heating. Following
Gammie & Popham (1998), we write the stress-energy
tensor of matter as

Tµν = Pgµν + (ρ+ ε+ P )uµuν + tµν , (13)

where ε and P are the internal energy and pressure of the

plasma, respectively, and tµν is the stress-energy tensor
associated with the dissipation mechanism.

We consider three contributions to the pressure and

internal energy: the ions, the electrons, and the stress-
energy tensor of the electromagnetic field present in an
MHD flow. We write the total pressure P as the sum of
gas and magnetic pressures

P = Pg + PB = nikTi + nekTe + PB , (14)

where ni and ne are the ion and electron number densi-
ties, respectively, and Ti and Te are their temperatures.
By adopting this form of the pressure, we make the
assumption that the velocity distribution of the parti-
cles in the comoving frame is predominantly Maxwellian.
Defining the ratio of the ion-to-electron temperature as
R and the plasma-β as β = Pg/PB , we write the total
pressure as

P = nikTi
R+ 1

R

β + 1

β
. (15)

For the internal energy, we adopt the following form

ε =
1

γ̂ − 1

ρkBTi

mp

R+ 1

R
. (16)
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For a purely ionized hydrogen plasma, this equation de-
scribes the internal energy, when γ̂ = 5/3. When we
incorporate the contribution due to the magnetic field,
we keep the same expression but allow for γ̂ to be the
effective adiabatic index of the magnetized plasma.

The equation for energy conservation can be obtained
by projecting equation (7) onto the four-velocity of the
plasma

uµTµν;ν = 0. (17)

For the form of the stress-energy tensor introduced
above, this reduces to

ur
dε

dr
− ur ε+ P

ρ

dρ

dr
= Φ− Λ, (18)

where Φ is the dissipation function and Λ specifies the
cooling rate. For a radiatively inefficient flow, Λ is neg-
ligible. Inserting the expressions for the pressure and
internal energy and performing some algebraic manipu-
lations, we cast this equation in the form

d

dr

[
Tiρ
− (β+1)(γ̂−1)

β

]
=
mpR(γ̂ − 1)

kB(R+ 1)

Φ

urρ
ρ−

(β+1)(γ̂−1)
β ,

(19)
where kB is the Boltzmann constant. Using the conti-
nuity equation (9) to write the product ρur in terms of

the mass accretion rate and integrating it from infinity
down to radius r, we obtain for the ion temperature

Ti =
mpR(γ̂ − 1)

kB(R+ 1)
V, (20)

where we have defined the quantity

V ≡ ρ
(β+1)(γ̂−1)

β

∫ r

∞

Φ

Ṁ
ρ−

(β+1)(γ̂−1)
β

(
h

r

)
4π
√−gdr.

(21)

This quantity is a volume integral throughout the accre-
tion flow of the dissipation rate per particle, weighted
by a power-law function of the density. If this weighting
function was equal to unity, the integral would simply
be comparable to the potential energy of a test particle
at radius r.

In Appendix A, we calculate the volume integral in
equation (21) for specific models of energy dissipation in
the accretion flow by viscous stresses. As we show there,
the radial profile of the density, the black-hole spin, and
other parameters introduce only subdominant effects.
Indeed, given that all the quantities in the integral have
practically power-law dependences on radius, the effect
of the weighting function is to introduce a multiplicative
factor that is nearly constant and of order unity. As a
result, we can write the ion temperature for the Kerr
metric in the form

Ti =
mpc

2

kB

R(γ̂ − 1)

(R+ 1)
ζ

(
GM

rc2

)
, (22)

where ζ is an order-unity factor. Following our defini-
tions above, we write the electron temperature as

Te =
mpc

2

kB

(γ̂ − 1)

(R+ 1)
ζ

(
GM

rc2

)
. (23)

We also obtain the magnitude of the magnetic field from
the definition of plasma-β as

B =

[
8π

β

ρ

(γ̂ − 1)mp

R+ 1

R
kBTi

]1/2

, (24)

which becomes

B =

[
8π

β
ζ

(
GM

rc2

)
ρc2
]1/2

. (25)

Using the density, temperature, and the magnetic field
strength calculated above, we can now evaluate the syn-

chrotron emissivity from a thermal and isotropic dis-
tribution of relativistic electrons. We use the analytic
fitting formula for the angle-averaged emissivity derived

by Mahadevan et al. (1996), which is accurate to within
2.6% for all temperatures and frequencies of interest:

jν =
nee

2

√
3cK2(1/θe)

νM(xM ), (26)

with M(xM ) given by

M(xM ) =
4.0505 a
x

1/6
M

(
1 +

0.40 b
x

1/4
M

+
0.5316 c
x

1/2
M

)
(27)

× exp(−1.8896 x
1/3
M ).

Here, νb ≡ eB/2πmec is the cyclotron frequency,

xM ≡
2ν

3νbθ2
e

, (28)

θe ≡ kTe/mec
2 is the dimensionless electron tempera-

ture, and K2(x) is the modified Bessel function of the
second kind. The best fit values of the coefficients a, b,
and c for different temperatures are given in Mahadevan
et al. (1996).

Finally, we calculate the disk scale height. Under

the assumption of hydrostatic equilibrium in the ver-
tical direction, Abramowicz et al. (1996) and Gammie
& Popham (1998) derive(

h

r

)2

=
P

(ρ+ ε+ P )r2ν2
z

, (29)

where νz is an effective frequency of vertical oscillations.
For a relativistic thin disk in a Kerr spacetime, this re-
duces to(

h

r

)2

=
Pr

(ρ+ ε+ P )

[
1− 3r−1 + 2ar−3/2

1− 4ar−3/2 + 3a2r−2

]
(30)
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The last term describes the relativistic corrections,
which become significant only near the location of the
photon orbit, where the assumption of hydrostatic equi-
librium clearly breaks down. On the other hand, away
from the photon orbit and under the assumptions of our
model, we can write

h

r
=

1

ruφ

(
P

ρ

)1/2

=
√

(γ̂ − 1)ζ. (31)

As we showed in the previous section, the scale height
affects only the details of the image structure and not
the presence or the location of the brightness depression.
For this reason, we proceed with this last expression that
depends only on constants, unless we specify otherwise.

3.1. Plasma Velocities

The use of the conservation laws in the previous sec-
tion demonstrated that the radial profiles of the various

plasma quantities are determined almost entirely by the
radial velocity profile in the radiatively inefficient ac-
cretion flows. Simulations and numerous analytic argu-

ments have shown that outside the radius of the inner-
most stable circular orbit rISCO, the plasma orbits with
velocities comparable to the test particle angular veloci-
ties and drifts inwards because of the outward transport

of angular momentum. Inside the ISCO, circular orbits
are unstable and the plasma plunges towards the hori-
zon. We now describe our model for the velocity profiles

that accounts for this qualitative behavior.
Throughout the flow, we set the θ−component of the

velocity equal to zero, i.e., we assume that the plasma
has orbital and radial drift velocities only. In addition,

because of the assumed axisymmetry, the velocity vector
will depend only on the spherical coordinates (r, θ).

First, we calculate the velocity profile in the equatorial

plane, i.e., at (r, θ = π/2).
Outside the ISCO radius.— We assume that the az-
imuthal velocity of plasma is equal to the local Keplerian
orbital velocity. To calculate the latter, for a general
axisymmetric metric written in Boyer-Lindquist-like co-
ordinates, we first write the general expression for the
angular velocity of a test particle, as measured by an
observer at infinity (Ryan 1995)

Ω(r) =
−gtφ,r +

√
(gtφ,r)2 − gtt,rgφφ,r
gφφ,r

, (32)

and use this to calculate the equatorial azimuthal veloc-
ity outside the ISCO as

uφeq(r) =
Ω√

−gtt − (2gtφ + gφφΩ)Ω
, (33)

where commas denote ordinary differentiation, as usual.

The radial component of the plasma velocity depends
on the Reynolds and Maxwell stresses, which control
the rate of outward angular momentum transport, as
well as on the plasma pressure and magnetic stresses
that may provide support against plunging towards the
black hole. To allow for a general form of the radial
velocity profile that does not depend on the specifics of
angular momentum transport, we write

ureq(r) = −η
(

r

rISCO

)−nr
(34)

where η and nr are free parameters. Note that when
nr = 1/2, the radial velocity becomes a fraction η of the
azimuthal velocity at large radii (i.e., the Newtonian
profile).

Finally, we compute the t−component of the velocity
by imposing the requirement

~u · ~u = gtt(u
t)2 + grr(u

r)2 + gφφ(uφ)2 + 2gtφu
tuφ = −1 .

(35)
At the ISCO radius.— We calculate the energy and an-
gular momentum of the plasma (and not of the test par-
ticles) at the ISCO, i.e., accounting for the radial veloc-

ity, using

EISCO = −gttuteq(rISCO)− gtφuφeq(rISCO) (36)

and

LISCO = gtφu
t
eq(rISCO) + gφφu

φ
eq(rISCO), (37)

where the right-hand sides of these equations have been
calculated at the equatorial plane.

Inside the ISCO radius.— Inside the ISCO, the plasma
loses centrifugal support and plunges towards the hori-
zon. In the absence of any material or magnetic stresses,
the plunging occurs along the geodesics of the spacetime
and is simply described by the velocities of the free-
falling test particles, with the energy and the angular
momentum of the plasma evaluated at the ISCO radius.
On the equatorial plane, this gives for the azimuthal
component of the velocity

uφeq(r) =
gttLISCO + gtφEISCO

gttgφφ − g2
tφ

(38)

and

uteq(r) = −gtφLISCO + gφφEISCO

gttgφφ − g2
tφ

(39)

for the t−component. Finally, we calculate ureq(r) from
the condition ~u · ~u = −1, as before.
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Figure 5. The (Left) equatorial radial velocity, (Middle) density, and (Right) the comoving 230 GHz synchrotron emissivity profiles of

accretion flows around Kerr black holes with spins equal to (Top) a = 0 and (Bottom) a = 0.7. In all panels, the region inside the horizon

is shown with a gray-filled area and the coordinate radii of the photon obit (rph) and of the ISCO (rISCO) are shown with vertical dashed

lines. Curves of different colors correspond to different radial profiles outside the ISCO whereas curves of different linestyles correspond to

different magnitudes of the radial velocity at the ISCO. In the rightmost panels, the ion-to-electron temperature ratio is set to R = 10 and

the magnetic field strength at the ISCO to BISCO = 10 G. The density and emissivity have been normalized to their respective values at

the ISCO. Even though the magnitude of the radial velocity increases rapidly inside the ISCO, conservation of mass and energy throughout

the flow causes the 230 GHz emissivity to always increase inwards. There is no evidence for a sharp reduction in emissivity with decreasing

radius, inside the ISCO or anywhere else in the flow.

3.2. Can Plunging Inside the ISCO Truncate the

Emissivity?

In Figure 5, we show the radial profiles of the radial
velocity ur, density ρ, and the resulting 230 GHz syn-

chrotron emissivity j for the covariant analytic models
described above, for two values of the black hole spin
parameter a. In each panel, radial profiles are shown
for the flow outside the ISCO for three values of the pa-

rameter nr in eq. (34) and plunging solutions are shown
interior to rISCO for different normalization of the radial
velocity at the ISCO. Even though the magnitude of the
radial velocity increases rapidly inside the ISCO because
the plasma loses centrifugal support (left panels), con-
servation of mass in the converging flow prevents the
density from decreasing significantly (or at all) in the
plunging region (middle panels). Furthermore, the con-
servation of energy and magnetic flux causes the elec-
tron temperature and the magnetic field strength to in-

crease rapidly inside the ISCO such that, in all cases,
the 230 GHz emissivity continues to increase inwards.
We also note that this characteristic rapid inward rise
of the synchrotron emissivity in inner accretion flows,

in conjunction with the rapidly increasing photon path-

lengths toward the photon ring, plays an important role
in the formation of the thin rings in horizon-scale images
of black holes, as discussed in §2.

In the previous section, we showed that a sudden

truncation of the emissivity is required to generate a
brightness depression in the image that is disjoint from
the black hole shadow. We conclude here that, in self-
consistent analytic models that obey conservation laws,
the loss of centrifugal support and the rapid plunging
of the plasma inside the ISCO do not produce such a
truncation in the emissivity.

3.3. Can Plasma Cooling Truncate the Emissivity?

We finally explore one last possibility related to

plasma thermodynamics to assess its impact on the
emissivity profile in the flow. From energy conserva-
tion in eq. (18), it is evident that the ion (and electron)
temperatures are set by the balance between the rate
of viscous and compressional heating and synchrotron
cooling in the fluid. In the Appendix, we considered the
case where the viscous heating rate may drop rapidly
at the ISCO as the shear stresses vanish and the ions
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Figure 6. Comparison of the radial profiles of various flow properties in the analytic model to an example GRMHD simulation with

a black hole spin a = 0.7. Top left shows the azimuthal velocity, top right the equatorial density, bottom left the ion temperature, and

bottom right the magnetic field strength. GRMHD simulation results have been averaged over the azimuthal direction and over multiple

snapshots. Analytic models derived from conservation laws show good agreement with the detailed GRMHD models, as expected.

and electrons are subject only to compressional heating,

neglecting synchrotron cooling. If instead we neglect
all sources of heating interior to the ISCO, the electron
temperature will then only depend on the synchrotron
cooling. We now calculate this cooling timescale and
evaluate whether it can have a substantial effect on the
electron temperature within the free fall time from the
ISCO.

The frequency integrated synchrotron emissivity is
given by

jsyn =
9
√

3cσTneB
2θ2
e

256π3K2(1/θe)

∫ ∞
0

M(xM )xMdxM , (40)

with M(xM ) defined in equation (28) and σT is the

Thomson cross section. The last integral asymptotes
to ∼ 20 for the temperature and frequency regime rele-
vant for mm-wavelength images of radiatively inefficient
accretion flows. For a fluid element at a characteristic
temperature radiating at a characteristic magnetic field

strength in the inner accretion flow, this yields a cooling

timescale of

tcool = 3.25× 108

(
B

10 G

)−2(
T

109 K

)−1

s. (41)

We compare this to the free-fall time from the ISCO,
which is given by

tff =
r

3/2
ISCO

(2GM)1/2
= 1.2×105

(
rISCO c2

6GM

)3/2(
M

6.5× 109M�

)
s.

(42)
The ratio of the free-fall time to the cooling becomes

tff
tcool

= 3.6× 10−4

(
M

6.5× 109M�

)(
rISCO c2

6GM

)3/2

(43)

×
(

B

10 G

)2(
T

1011 K

)
.

This implies that, even if electron heating ceases com-
pletely at or near the ISCO radius, the particles will fall
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in much faster than they can radiate away their energy.
As a result, even in this extreme scenario, the temper-
ature is not expected to change significantly interior to
the ISCO. Therefore, a precipitous drop in the emissivity
is inconsistent with any fluid model that obeys conser-
vation laws and cannot cause a suppression in the image
brightness that is disjoint from the black hole shadow.

4. COMPARISON TO GRMHD SIMULATIONS

The analytic model presented in the previous sections
allow us to calculate the macroscopic properties of the
gas in the accretion flow based only on conservation laws
and some basic assumptions. This model also shows that
the microscopic physics in the plasma does not have a
significant influence on these large scale properties and
the corresponding brightness profiles from the inner ac-
cretion flows for configurations that produce compact

ring-like images.
Addressing more detailed questions about accretion

flows, such as jet/wind launching, variability properties,
and the fine structure of images, on the other hand,

requires the use of numerical simulations, which allow
the incorporation of physics of the plasma at different
spatial scales. GRMHD simulations provide an avenue

for exploring some of this microphysics more broadly,
under different sets of assumptions, but at their core
are still based on basic conservation laws for fluids. This
leads to the expectation that the analytic model should

capture the average macroscopic properties of GRMHD
simulations. In this section, we use an example GRMHD
simulation to demonstrate this point.

To this end, we utilize the average physical quanti-
ties from a GRMHD simulation with a SANE (standard
and normal evolution) initial magnetic field configura-

tion and a black hole spin parameter a = 0.7 that was
first introduced in Narayan et al. (2012) and Sadowski
et al. (2013). The accretion flow is evolved using the
HARM3D code (Gammie et al. 2003) from an initial torus
located between 10M and 1000M. The simulation was
run for a time span of t = 200, 000 GM/c3 to ensure that
steady state is reached in the inner disk. The gas has an
adiabatic index γ̂ = 5/3. Several subsequent studies ex-
plored the images (Chan et al. 2015b), variability (Chan
et al. 2015a), interferometric observables (Medeiros et al.

2017, 2018), and the flaring properties (Ball et al. 2016)
of these GRMHD simulations.

In Figure 6, we show the radial profiles of the az-
imuthal velocity, density, ion temperature, and mag-
netic field strength from the GRMHD simulation and
compare them with the analytic models with different
parameters we introduced earlier. The pink band for

the GRMHD outputs represents the range we obtained

by averaging over the azimuthal direction and sampling
multiple snapshots from the long simulation that are
far apart in time to ensure that the profiles are repre-
sentative. In order to capture the physical quantities
only near the equator, we also average over polar angles
within ±π/8 from the equator. In all cases, analytic
models correctly capture the broad characteristics of the
GRMHD profiles, demonstrating that these profiles are
determined primarily by the general physical considera-
tions and conservation laws that govern the flows rather
than by the details of the plasma processes.

The azimuthal velocity profile follows the radial de-
pendence of the Keplerian velocity at all radii but is
sub-Keplerian everywhere, as is expected for radiatively
inefficient flows that have significant pressure support.
In the remaining three panels, the density, temperature,
and the magnetic field strength monotonically rise in-

ward in the simulations, supporting the conclusions from
continuity arguments that accretion flows do not have
characteristics that can cause a sudden drop in emissiv-

ity outside the event horizon.

5. IMAGES

Having developed a covariant analytical model for the
height-averaged flow quantities, we turn to calculating
black hole images at 230 GHz. Calculating these im-

ages requires specifying the density, temperature, mag-
netic field, and the flow velocities at all locations in the
spacetime, instead of only at the equatorial plane, as we

have done so far. We calculate these quantities off the
equatorial plane based on their equatorial values and the
following simple physical arguments.

Because we assumed axisymmetry, a given point in

the spacetime is specified by its radius and polar angle,
i.e., by (r, θ). A spherical surface that goes through this
point has a constant spherical radius r. A cylindrical
surface that goes through the same point has a constant
cylindrical radius $ = r sin θ.
Plasma Properties off the Equatorial Plane.— We spec-
ify the electron density using the definition of the finite
disk scale height h/r. In particular, we multiply the
equatorial density profile ne,eq with an exponential in
the polar angle θ, i.e.,

ne(r, θ) = ne,eq($) exp

{
−1

2

[
θ − π/2

(h/r)π/2

]m}
, (44)

where the index m determines the slope of the vertical
density profile. In the Newtonian limit and for an ion
temperature that is constant with height, m = 2; we
will use this value hereafter, unless we specify otherwise.

Following eq. (12), we set the equatorial electron density
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Figure 7. Radial and azimuthal components of the velocity in the flow as a function of the polar angle θ. The top panels show the

velocity components at constant cylindrical radii $ and the bottom panels at constant spherical radii r for a GRMHD simulation with a

black hole spin a = 0.7. The shaded bands in the left panels show the rms range of the azimuthal velocities, for different azimuths and

snapshots. The curves in the right show the mean values of the radial velocities, averaged over azimuth and time. The vertical arrows in

all panels denote the polar angle that corresponds to one disk scale height θ = h/r. As expected from the self-similar analytic solutions,

the radial velocity vr is constant along cylindrical surfaces whereas the angular velocity uφ is constant on spherical surfaces.

profile to

ne,eq($) =
Ṁ

4π$2(h/r)urmp
. (45)

In order to be consistent with the above expression
for the density profile, we set the electron temperature
Te to its equatorial value at the corresponding spherical
radius. Using eq. (23), we write

Te(r, θ) =
mpc

2

kB

(γ̂ − 1)

(R+ 1)
ζ

(
GM

rc2

)
. (46)

Finally, we specify the magnetic field everywhere such
that the plasma-β parameter is constant throughout the

flow, i.e., such that

B(r, θ) ∝ [ne(r, θ)Ti(r, θ)]
1/2

. (47)

In this expression, the overall scale of the magnetic field
in the accretion flow depends on the accretion rate.
However, because we do not consider explicitly the ef-
fects of synchrotron self-absorption in the present cal-
culation, the overall normalization of the accretion rate
does not enter the calculation explicitly. For this reason,
we simply specify the strength of the magnetic field at
a fiducial equatorial location and scale it according to

relation (47). In other words, we write

B(r, θ) = B0

[
ne(r, θ)Ti(r, θ)

ne(6M,π/2)Ti(6M,π/2)

]1/2

, (48)

such that B0 is the strength of the magnetic field at
r = 6M on the equatorial plane.
Velocities off the Equatorial Plane.— To specify the ra-

dial and azimuthal components of the velocity off of
the equatorial plane, we turn to the results of semi-
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Figure 8. Images of black holes at 1.3mm calculated using the analytic plasma model described in §3, for different black-hole spins,

observer inclinations, and parameters of the radial velocity profile. In all panels, we have set R = 5 and B0 = 20 G. The outline of the

black-hole shadow on each image is shown as a dashed red line. The bright ring of emission closely traces the boundary of the shadow for

a wide range of assumptions regarding the spacetime, the plasma properties, or the observer.
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analytical models (e.g., Narayan & Yi 1996) and of
GRMHD simulations (e.g., Sadowski et al. 2013) of ge-
ometrically thick flows. These self-similar analytic solu-
tions as well as numerical simulations suggest that (i)
the azimuthal component uφ of the velocities are ap-
proximately constant on spherical surfaces and (ii) the
radial component ur of the velocities are approximately
constant on cylindrical surfaces.

We show an example of this behavior from a GRMHD
simulation in Figure 7, where we plot as a function of
the polar angle θ the radial and azimuthal components
of the velocity in the same SANE simulation that was
introduced in §4. Indeed, the top right panel shows that
the radial velocity varies weakly with θ at constant cylin-
drical radius $, while the lower left panel shows that
the azimuthal velocity depends weakly on θ at constant
spherical radii. This behavior is typical in other simula-
tions as well.

Based on these considerations, we write

uφ(r, θ) = uφeq(r) (49)

and

ur(r, θ) = ureq(r sin θ) (50)

and calculate ut from the requirement ~u · ~u = −1. We
note that this model breaks down when r sin θ ≤ rhor,
where rhor is the equatorial horizon radius of the black
hole. We, therefore, excise this cylinder of radius rhor

from the simulation. Moreover, this model introduces
some pathologies to the velocity profile for near maxi-
mum negative black hole spins (a . −0.9) because of

the large mismatch between the vertical dependence of
the angular velocity of the plasma and of the rate of
frame dragging, which occurs in the opposite sense.

Figure 8 shows six examples of images calculated at
230 GHz by integrating the radiative transfer equation
along geodesics from an image plane at infinity at an in-
clination i from the spin axis of the black hole. In each
panel, we vary various spacetime and plasma character-
istics. As found in all earlier numerical investigations of
black-hole images that are dominated by the accretion
flows, the structure of the image is dictated primarily by
gravitational lensing and, in particular, by the presence
of the deep brightness depression that we identify with
the black-hole shadow. This shadow is surrounded by

a bright, narrow ring of emission. The boundary of the
shadow is always contained within the bright ring. In
other words, the bright ring in the image closely traces
the boundary of the shadow. Therefore, the diameter of
this ring can be used as a proxy for the diameter of the
shadow, when an appropriate calibration factor between

the two is applied.

5.1. Characterizing Black-Hole Images

We now turn to identifying the location of the peak
brightness of a black-hole image and quantify its rela-
tion to the size of the black-hole shadow. In principle, as
shown in all previous examples, the peak brightness al-
ways occurs at the critical impact parameter because,
be definition, the optical path along the critical null
geodesics is infinite. However, the finite resolution of
the EHT does not allow us to resolve this photon ring
on the black-hole image, which appears blended with the
nearby emission (see, e.g., Fig. 8). For this reason, we
have developed an image-domain characterization algo-
rithm that allows us to quantify the size of the bright
ring in a black-hole image in a manner that accommo-
dates the finite resolution of the EHT but, at the same
time, does not alter the interferometric observables on
which the measurement is based.

The image-domain characterization algorithm com-
prises the following steps (see Fig. 9 for a visual rep-
resentation of the algorithm):

(i) We first filter the original image at the nominal res-
olution of the EHT. Following Psaltis et al. (2021), we
employ a Butterworth filter with n = 2 and a character-

istic scale of 15 Gλ. Unlike a Gaussian filter, the But-
terworth filter minimizes any alteration of the image at
scales that are accessible to the EHT observations, while
suppressing any small-scale structures that are not.

(ii) We calculate analytically the center of the black-hole
shadow. This is displaced from the coordinate center
of the image because of the effects of differential frame

dragging. For the Kerr metric we employ here, this dis-
placement depends only on black-hole spin and inclina-
tion.

(iii) Starting from the center of the black-hole shadow,
we use a rectangular bivariate spline interpolation to ob-
tain radial cross sections of the filtered image brightness
at 128 equidistant azimuthal orientations. We define the
fractional coverage of a ring-like shape F as the fraction
of these radial cross sections for which the image bright-
ness is at least 10% of the maximum of the entire image.

We chose this value to reflect the dynamical range of
∼ 10 of the 2017 EHT images.
(iv) We measure, in each radial cross section, the dis-
tance of the location of peak brightness from the center
of the black-hole shadow. We identify the diameter of
the bright emission ring as twice the median value of
this distance.
(v) For each radial cross section, we generate an equiva-
lent asymmetric Gaussian representation of the bright-
ness by setting the location and peak brightness of the
Gaussian equal to those of the filtered cross section and
the widths of the asymmetric Gaussian towards larger
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Figure 9. A demonstration of the image characterization algorithm employed in §5. (Upper left) A sample 1.3 mm black-hole image

for a spin of a = 0.6, an observer inclination of 30◦, and the analytic plasma model described in §3. (Upper right) The same image

after a 15 Gλ, n = 2 Butterworth filter has been applied to mimic the finite resolution of the EHT. The solid green curve identifies the

location of maximum brightness along each radial cross section of the image. The dashed green curves identify the FWHM of the brightness

distribution of the equivalent Gaussian representation of the image along each radial cross section. (Lower left) A horizontal cross section

of the image. The green curve shows the brightness of the original image; the blue curve shows the brightness of the filtered image; the

red curve shows the equivalent Gaussian representation of the cross section. (Lower right) Two cross sections of the visibility amplitudes

of the original and filtered images. The Butterworth filter only marginally affects the visibility amplitudes and not at the locations of the

deep minima, on which the observational measurement of the image size is based.

and small radial distances such that the corresponding
integrated brightness of the cross section of the filtered
image is equal to that of the Gaussian. We measure the
FWHM of the asymmetric equivalent Gaussian repre-
sentation for each cross section and identify their median
with the FWHM of the bright ring.

Employing this algorithm, we measure the diameter
dim and FWHM of the bright emission ring in each sim-
ulation image and compare them to the average diame-

ter dsh of the Kerr black-hole shadow. For the latter, we
use the analytic approximation derived in Chan et al.
(2013)

dsh = 2R0 + 2R1 cos(2.14i− 22◦.9) , (51)

where the inclination i is expressed in degrees and

R0 = (5.2− 0.209a+ 0.445a2 − 0.5673a3)M

R1 =

[
0.24− 3.3

(a− 0.9017)2 + 0.059

]
× 10−3M .(52)
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Figure 10. The fractional difference α1 − 1 between the average diameter of peak brightness in a 1.3 mm black-hole image and the

diameter of the black-hole shadow (i.e., twice the critical impact parameter) shown against the fractional FWHM of the bright ring in the

image, for a broad range of black-hole spins, observer inclinations, and plasma model parameters (see text for details). The left and right

panels correspond to positive and negative black hole spins, respectively. The purple-filled area shows the minimum fractional width of the

ring imposed by the 15 Gλ Butterworth filter that has been applied to the image to mimic the finite resolution of the EHT. The red-filled

area represents configurations in which the fractional diameter difference is larger than the fractional FWHM of the bright ring; the dashed

red line corresponds to the fractional diameter difference being equal to the fractional HWHM of the bright ring. If configurations existed

in the red-filled area, their black-hole shadows would have been disjoint from the bright rings. All the images fall near the vertical dashed

line at a1− 1 = 0, demonstrating that, in all cases, the diameter of the black-hole shadow is very close to that of peak brightness. The fact

that all images fall within the white area demonstrates that the bright rings always encompass the critical impact parameters.

In particular, we define the ratio α1 between the two
diameters as

a1 ≡
dim

dsh
(53)

and the fractional width of the ring as FWHM/dGR. We
will refer to the difference α1− 1 as the fractional diam-

eter difference. If the diameter of the image is equal to
the diameter of the shadow, then α1− 1 = 0. Note that
calibrating the image diameter inferred from observa-
tions to the shadow diameter has a second component

(α2) that quantifies potential biases introduced by the
imaging and model-fitting algorithms. To distinguish
the purely theoretical displacement explored here from
the observational component, we refer to the former as
α1.

Using this method, we can quantify the expected
fractional diameter difference between the diameter of
the bright image ring and that of the shadow for a
very broad range of model, black-hole, and observer
parameters. Figure 10 shows the fractional diameter
difference α1 − 1 and the fractional FWHM measured
from images that use the semi-analytic plasma model
described in §3. We employed a grid of model im-

ages in which the black-hole spin was varied as a =
−0.65,−0.32, 0.0, 0.29, 0.56, 0.78, 0.94, corresponding to
equidistant spacing in ISCO radii. The observer inclina-
tion was varied as i = 15, 30, 45, 60, 75 degrees. We set
the scale of the magnetic field to B0 = 5 G, 20 G, and

50 G, based on theoretical expectations (Satapathy et al.
2021) and limits arising from the observed polarization

signatures in the M87 image (Event Horizon Telescope
Collaboration 2021). We set the ion-to-electron temper-
ature ratio to R = 5 and 10. We do not consider the case

R = 1, which is inconsistent with the assumption of a
radiatively inefficient flow (see §6) or larger values of R
for which the emission from the accretion flow, which we
model here, is eliminated. Finally, we take the follow-

ing two sets of parameters for the radial velocity profile:
η = 0.05, 0.1, 0.2 for nr = 1.5 and nr = 0.5, 1.0, 1.5 for
η = 0.1. We then characterized all 3780 images using

the algorithm described above and consider in this fig-
ure all images for which F ≥ 0.5, such that a radius can
be defined.

The blue shaded region in the figure corresponds to
the FWHM that an infinitesimal ring would have been
broadened to by our 15 Gλ filter. In order to apply
this filter, we have assumed that the angular size of one
gravitational radius for a black hole located at distance
D is θg ≡ GM/(c2D) = 3.6µas, i.e., similar to that of
the M87 black hole.

In each of the simulated images, the diameter of the
ring that the EHT would observe is comparable to and,
in general, only marginally larger than the diameter of
the black-hole shadow. This is expected from the pre-

ceding discussion, which presented the physical reasons
why the image diameter is not identically equal to that
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of the shadow, i.e., in general, |α1−1| 6= 0. Furthermore,
the exact value of the fractional diameter difference does
depend on the plasma model, but it is always a small
correction. As this figure shows, the fractional diam-
eter difference is |α1 − 1| < 0.1 for the positive spins
and |α1 − 1| . 0.3 for negative spins. The higher val-
ues of this displacement always correlate with the larger
values of the ring widths. In both cases, the peak of
the distribution is in good agreement with the value of
∼ 9% inferred for a series of 100 GRMHD snapshots
in Event Horizon Telescope Collaboration (2019d), al-
beit the latter also incorporates biases introduced by
the model fitting process to the EHT data.

Perhaps more importantly, the bright rings in the im-
ages always encompass the boundaries of the black-hole
shadows. This is demonstrated by the fact that no im-
ages in Figure 10 are within the red-shaded area, the
boundary of which is determined by the condition that
the fractional diameter difference is equal to the frac-

tional FWHM of the image. In other words, all black-
hole images calculated here obey

|α1 − 1| � FWHM

dGR
. (54)

Given the definition of the diameter bias, this implies
that

dGR − FWHM� dim � dGR + FWHM . (55)

In words, the above inequality describes the fact that,
in all images calculated here, the boundary of the black-

hole shadow is never disjoint from the bright emission
ring that the EHT observes and the expected offset be-
tween the two is contained within the measured width

of the ring image.

6. DISCUSSION

We developed an analytic model based on conserva-
tion equations and simple thermodynamic arguments in
order to disentangle the effects of the black-hole space-
time imprinted on black-hole images, through the gravi-
tationally lensed optical paths, redshift, and plasma ve-
locities, from those of the emissivity and thermodynamic
properties of the plasma. We showed that there is a tight
relationship between the location of the bright ring that
is observable near the horizon of a black hole and that
of its shadow. We further quantified the ratio between
the diameter of peak brightness of the image rings and
the shadow diameter in order to facilitate the use of mil-

limeter image characteristics observed with the EHT as
tests of the black hole metric.

The question remains as to whether the models con-
sidered here are general enough to definitively sup-
port these conclusions. For example, some recent

work (Gralla et al. 2019, 2020) made use of geometri-
cally thin (h/r → 0) configurations to argue about the
characteristics of image formation and the relationship
between the diameter of peak brightness and that of
the black-hole shadow. Similar calculations were per-
formed earlier for the case of geometrically thin, opti-
cally thick accretion disks (Luminet 1979) as well as
more recently (Glampedakis & Pappas 2021). Albeit
instructive as exercises, it is important to acknowledge
that such constructions are not applicable to the EHT
targets and are not useful in understanding their image
properties. Indeed, it is well established that the ob-
served spectral properties and the low inferred radiative
efficiencies of these sources require that the accretion
flow is optically thin at all but the longest wavelengths.
This can be achieved only if the accretion flow consists
of a two-temperature plasma in which the ions heat up
to the local virial temperature but the electrons cannot
couple efficiently to the ions on relevant timescales in
order to cool them and radiate away the accretion lu-

minosity (see Narayan & Yi 1994; Narayan et al. 1995;
Narayan & Yi 1995). The large temperature of the ions
is what provides the pressure support that makes the ac-

cretion flow geometrically thick, rarefied, and optically
thin (see eq. [31]). In such a configuration, the forma-
tion of the black-hole image cannot be understood in

terms of the lensed images of the accretion disk surface
but rather in terms of the optical paths traversed by the
photon trajectories that reach the distance observer, as
we have done here.

Perhaps more revealing is the fact that the alternative
of a geometrically thin accretion disk (as modeled, e.g.,
in Luminet 1979 and Gralla et al. 2020) would not only

have been inconsistent with the overall observations of
M87, but horizon-scale imaging would not have been
possible at all at the millimeter wavelengths used for
the EHT observations. A geometrically thin accretion

flow (such a Novikov-Thorne disk) would be optically
thick and emit nearly blackbody radiation at horizon
scales at a much smaller temperature. Obtaining an
image similar to that observed by the EHT would have
required observations at UV wavelengths2.

A more plausible situation in which a bright emission

ring may be observed that is disjoint from the black-
hole shadow is related to transient events, as discussed
in Chan et al. (2015a). Figure 11 shows two example
snapshots of such events from a SANE GRMHD simula-

2 Such models might be useful if, in the future, new interferom-
eters are developed operating at the UV to X-ray wavelengths
necessary to observe horizon-scale images from high-luminosity
sources such as quasars (see, e.g., Özel & Di Matteo 2001).
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Figure 11. Sample snapshots from a SANE GRMHD simulation of accretion around a black hole with spin a = 0.9, showing two transient

events that generate ring-like structures that are disjoint from the black-hole shadow (after Chan et al. 2015a). In both cases, the boundary

of the shadow is displayed with a red curve. The left panel shows an Einstein ring generated when a very localized structure in the accretion

flow crosses a caustic behind the black hole. The right panel shows a structure generated by an azimuthally stretched flux tube that has

been lensed above and below the equatorial plane. Both structures, albeit plausible, are very short lived and inconsistent with the inferred

stability of the black-hole image at the center of the M87 galaxy.

tion of a black-hole with spin a = 0.9 (Model B in Chan
et al. 2015b). In the left panel, an Einstein ring that
is clearly displaced from the boundary of the black-hole

shadow is formed by lensing when a localized hot flux
tube crosses a caustic behind the black hole. In the right
panel, a hot flux tube becomes azimuthally sheared by

the differential rotation of the flow and appears gravita-
tionally lensed above and below that black-hole shadow.
At the resolution of the EHT, this snapshot would also
appear as a bright emission ring, but one that is disjoint

from the black-hole shadow.
Even though such transient events appear in simula-

tions and are expected to happen in nature, albeit very
rarely because of the alignment required, their distinc-
tive characteristic is temporariness. Their appearance
will change dramatically and they will even disappear
at timescales comparable to the dynamical timescale in
the inner accretion flow. For the black hole at the cen-
ter of the M87 galaxy, this timescale is ∼ 4 − 34 days,
depending on the unknown black-hole spin. Neverthe-

less, there is only evidence for marginal change in the
black-hole image across the 7 days of the 2017 EHT
observations, which would be inconsistent with such a
transient event (Event Horizon Telescope Collaboration

2019a; Satapathy et al. 2021). More importantly, re-
analysis of 1.3 mm data obtained between 2009 and
2017 demonstrate that the images are consistent with

a persistent asymmetric ring of ∼ 40 µas diameter that
only shows position-angle wandering over a period of a
decade (Wielgus & the EHT Collaboration 2020). Fur-
ther EHT observations separated by ∼year timescales

can help rule out the possibility of the bright ring image
being associated with transient events even more defini-
tively.
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A. PLASMA HEATING

In this Appendix, we calculate numerically the inte-
gral in eq. (19) using one explicit form of the dissipation
function in the accretion flow around a Kerr black hole.
We then generalize this calculation and discuss the mo-
tivation for the analytic form we use in the paper.

The dissipation function, calculated at the local co-
moving frame with the plasma, is equal to

Φ = −t(a)(b)σ(a)(b) = −2t(r)(φ)σ(r)(φ), (A1)

where we used the fact that the metric in the comoving
frame is locally Minkowski and the only non-negligible
component of the stress is rφ. The t(r)(φ) component of
the stress tensor in the comoving frame is related to the
mixed component in the coordinate frame trφ by (Gam-
mie et al. 2003)

trφ = γr(AD)1/2t(r)(φ), (A2)

where γ ' 1 is the local Lorentz factor,

A = 1 + a2/r2 + 2a2/r3 (A3)

and
D = 1− 2/r + a2/r2 . (A4)

We obtain the stress-energy tensor from the conserva-
tion of angular momentum. Using the azimuthal Killing
vector ξ(φ) = (0, 0, 0, 1), we write this as(

T νµ ξ
ν
(φ)

)
;ν

= 0, (A5)

which, after appropriate averaging and vertical integra-
tion, gives

d

dr

[
ṀLz − 4π

(
h

r

)
r2trφ

]
= 0, (A6)

or equivalently

ṀLz − 4π

(
h

r

)
r2trφ = Ṁj, (A7)

where j is an eigenvalue of the problem. Under the as-
sumption that the viscous torques vanish at the ISCO,
the eigenvalue is equal to the angular momentum at

rISCO. However, both numerical and analytic models
show that there are non-zero stresses at the ISCO (Kro-
lik et al. 2005; Shafee et al. 2008). To account for both
possibilities, we write in general

j = λLz(rISCO). (A8)

Combining these equations, we obtain

4π

(
h

r

)
r2 Φ

Ṁ
= −2σ(Lz − j)

r(AD)1/2
(A9)

For a geometrically thin flow, where the radial pres-
sure gradients are negligible, we can write (Novikov &
Thorne 1973)

σ(r)(φ) =
1

2
rAdΩ

dr
= −3D

4C r
−3/2 , (A10)

where
C = 1− 3/r + 2a/r3/2. (A11)

The pressure gradients are, in general, not negligible
in radiatively inefficient flows, leading to both sub-
Keplerian orbital velocities as well as smaller shear. To
account for this, we write

4π

(
h

r

)
r2 Φ

Ṁ
=

3ε

2

( D
AC

)1/2

(Lz − j)r−5/2 , (A12)

where the parameter ε accounts for the non-Keplerian
profiles. Using this as well as the radial velocity profile

in eq. (34) and the corresponding density from mass
continuity, we can now evaluate the density-weighted
integral of eq. (21).

In the Newtonian limit, this becomes

kTi
mpc2

=
GM

rc2

[(
R

R+ 1

)
3ε(γ̂ − 1)

6 + 2nr(γ̂ − 1)− 4γ̂

]
.

(A13)
It is important to note that the values of the various pa-
rameters in the square bracket cannot all be chosen inde-

pendently because the radial velocity profile, the devia-
tion from a Keplerian azimuthal velocity profile, and the
adibatic index that determines the pressure profile are
all coupled to one another through, e.g., the Bernoulli

equation. However, regardless of the specific values, the
thermal energy in the flow at a given radius is propor-
tional to the gravitational potential energy dissipated

down to that radius, as expected.
Figure 12 shows the ion temperature calculated from

eq. (20) and the complete expression (A12) for a Kerr
black hole, for two values of the black hole spin parame-
ter. In this figure, the temperature has been normalized
by the factor in the square brackets in eq. (A13) in or-
der to highlight the effects of relativity and the inner
boundary conditions. The power-law index of the radial
velocity profile, ηr, determines the radial dependence
of the density, via eq. [11]. Independent of the density
profile, the black-hole spin, or the adiabatic index, the
r−1 temperature profile is sustained down to small radii,
with small differences that arise primarily from the par-
ticular choice of the angular momentum eigenvalue λ.

The temperature continues to rise inward in all cases,
again as expected from energy conservation.

Inside the ISCO, if there is no additional viscous dis-
sipation, the temperature can either remain constant
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Figure 12. The radial profile of the ion temperature for radiatively inefficient accretion flows around Kerr black holes, for different values

of the model parameters. Here nr is the power-law index of the radial velocity profile and λ is the angular momentum eigenvalue of the

solution. The ion temperature has been normalized by the factor in the square brackets in eq. (A13) in order to highlight the effects of

relativity and the inner boundary conditions. The temperature in a radiatively inefficient flow increases inwards because of the combined

effects of “viscous” and compressional heating.

or increase due to compressional heating. However, ex-

tensive numerical and analytic work again shows that
the MHD turbulence does not abruptly decay inside the
ISCO, and therefore, in realistic set ups, the tempera-
ture continues to rise (see Fig. 6).

All the above suggest that the radial velocity struc-
ture and corresponding density profile of the accretion
flow, as well as the spin of the black hole introduce com-

plexities that are subdominant. This happens because,
in a radiatively inefficient flow, the ion temperature at a
given radius is determined by the total amount of heat

dissipated outwards of that radius, which itself is dic-
tated by the available gravitational potential energy.

We can now use this understanding to write a gen-
eral expression that captures the basic properties of ion

heating in a general spacetime. We first neglect the
subdominant effects of black hole spin and understand
all the equations below to be evaluated on the equato-
rial plane. The transformation (A2) involves a Lorentz
boost (for which we assume that γ̂ ' 1) and a transfor-
mation between the coordinates in which the metric is

expressed and those of the local comoving frame. For
the latter, we write (see also Bardeen et al. 1972)

trφ '
√
gφφ
grr

t(r)(φ) . (A14)

Similarly, we approximate equation (A10) by

σ(r)(φ) '
1

2

√
gφφ

dΩ

dr
(A15)

and assume that the eigenvalue in the problem is negli-
gible (λ = 0).

Following the above set of steps, we can then write for
the dissipation integral∫ r

∞

Φ

Ṁ

(
h

r

)
4π
√−gdr ' −

∫ r

∞
Lz
dΩ

dr

√
grrdr . (A16)

To leading order, in the Schwarzschild metric, Lz '
gφφΩ and

Ω =

√
−gtt,r
gφφ,r

(A17)

(see eq. [32]). Inserting these expressions into eq. [A16]

and performing the integral gives

∫ r

∞

Φ

Ṁ

(
h

r

)
4π
√−gdr ' 3GM

2rc2
+O(r−2) . (A18)

Similarly, assuming a power-law density profile and

evaluating the integral in eq. (21) gives the same radial
dependence but with a different constant coefficient, as
was the case in the Newtonian limit (cf eq. [A13]). Com-
bining all these constant coefficients into one, which we
denote by ζ, and inserting the value of the integral into
eq. (20) allows us to write

Ti =
mpc

2

kB

R(γ̂ − 1)

(R+ 1)
ζ

(
GM

rc2

)
. (A19)

Note that, near the radius of the photon orbit, the inte-
gral in eq. (A16) formally diverges; this is an artifact of
the simplifications employed here and is not supported
by the temperature profiles found in simulations. For
this reason, we will only consider the leading-terms in
our analytic model for the heating of ions in the accre-
tion flow, as we have done in the above expression.
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Sadowski, A. 2015b, ApJ, 799, 1

Chatterjee, K., Younsi, Z., Liska, M., et al. 2020, MNRAS,

499, 362
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