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Abstract

Multi-Agent Path Finding (MAPF) algorithms and their vari-
ants can find high-quality collision-free plans for automated
warehousing under simplified assumptions about the robot
dynamics. However, these simplifying assumptions pose
challenging implementational issues as the robots cannot fol-
low the plans precisely. Various robust execution frameworks,
such as the Action Dependency Graph (ADG) framework,
have been proposed to enable the real-world execution of
MAPF plans. Under such a framework, it is unclear how
the simplifying assumptions affect the performance of the
robots. In this work, we first argue that the ADG frame-
work provides the same robustness guarantees as the single-
agent framework (where plans are generated independently
for each robot and collisions are avoided through a reserva-
tion table), which is widely used in industry. We then improve
the efficiency of the ADG framework by integrating it with
the Rolling-Horizon Collision-Resolution framework to solve
MAPF problems with a persistent stream of online tasks.
Using the integrated framework, we compare the standard
MAPF model with many of its more complex variants, such
as MAPF with rotation, k-robust MAPF, and continuous-time
MAPF (taking robot dynamics into account). We examine
their effectiveness in improving throughput through realistic
simulations of warehouse settings with the Gazebo simulator.

1 Introduction
Multi-Agent Path Finding (MAPF) (Stern et al. 2019) is the
problem of planning collision-free paths that move a team of
agents in discretized timesteps to their predefined goal ver-
tices on a given graph while minimizing their travel times.
Despite its intractability (Yu and LaValle 2013; Ma et al.
2016), a significant amount of effort has been spent in recent
years on solving this problem more efficiently. For instance,
researchers have improved the scalability of optimal MAPF
algorithms in the past decade by one order of magnitude
in terms of agents (Lam and Bodic 2020; Li et al. 2021b)
from initially roughly less than a dozen of agents (Standley
2010; Wagner and Choset 2011; Sharon et al. 2012). Sub-
optimal MAPF algorithms can find near-optimal plans for
thousands of agents (Wang and Rubenstein 2020; Li et al.
2022). Due to the success in improving the scalability of
MAPF, researchers have applied MAPF technologies to a
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(a) Kiva. (b) Sortation. (c) AutoStore.

Figure 1: Photos of different types of warehouses.1

wide range of multi-robot systems, including UAV traffic
management (Ho et al. 2019), railway planning (Li et al.
2021a), and airport surface operation (Li et al. 2019).

Among the various applications, coordinating a large
team of mobile robots in automated warehouses (see exam-
ples in Figure 1) receives the most attention as the setup of
a warehouse is usually close to many assumptions used in
the traditional MAPF literature (e.g., a large team of agents
is controlled centrally in a known environment represented
by a grid map). Research includes how to adapt MAPF to
a lifelong setting, where agents are assigned new goal cells
after they reach their current ones (Li et al. 2021c; Damani
et al. 2021), and how to combine the goal-vertex assign-
ment with MAPF (Ma et al. 2017; Nguyen et al. 2017; Liu
et al. 2019; Kou et al. 2020; Chen et al. 2021b; Contini and
Farinelli 2021). These works look promising as they usu-
ally scale well (e.g., can handle hundreds or even thousands
of agents in highly congested environments) and produce a
high throughput in simulated warehouse environments.

Unfortunately, they cannot be directly applied in the real
world as they make many simplified and thus unrealistic as-
sumptions on the robot dynamics and actuator uncertainty.
Therefore, recent research has focused on more compli-
cated MAPF models to close the gap, such as MAPF with
non-unit travel times (Walker, Sturtevant, and Felner 2020;
Walker et al. 2021; Andreychuk et al. 2021), kinematic con-
straints (Le and Plaku 2018; Cohen et al. 2019; Andreychuk
2020; Solis et al. 2021; Chen et al. 2021a), and time uncer-
tainty (Ma, Kumar, and Koenig 2017; Atzmon et al. 2020b,a;
Shahar et al. 2021). These MAPF models are more applica-

1Figures (a) and (b) are from (Wurman, D’Andrea, and Mountz
2007; Kou et al. 2020), respectively. Figure (c) is by Euro-Friwa
GmbH from https://commons.wikimedia.org/w/index.php?curid=
62341670 licensed under CC BY-SA 4.0.



ble in the real world, but they are also harder to solve. More-
over, these models cannot be directly applied since there are
still gaps between them and the real world.

Rather than building perfect MAPF models to close the
gap, Hönig et al. (2019) proposed an execution framework
that modifies the MAPF plans in real-time by delaying the
robots intelligently when necessary to overcome the imper-
fection of the MAPF model. It achieves this by converting
a MAPF plan to an action dependency graph (ADG) and
making the robots execute the actions following the prece-
dence constraints indicated by the ADG. This ADG frame-
work guarantees collision-freeness, deadlock-freeness, and
persistence over a long time horizon. It also allows for re-
planning during execution, which avoids robot idle time dur-
ing replanning.

In this work, we first argue that the ADG framework pro-
vides the same robustness guarantees as the single-agent
framework (Wang and Botea 2008), which is widely used
in industry. We then combine the ADG framework with
Rolling-Horizon Collision-Resolution (RHCR) (Li et al.
2021c), an efficient lifelong MAPF framework that re-
peatedly uses windowing (i.e., a limited planning hori-
zon) to speed up the search. We call the resulting frame-
work Rolling-Horizon Collision-Resolution and Execution
(RHCRE). The efficiency of RHCRE allows us to try various
MAPF models and study their runtime and quality tradeoffs.
Intuitively, a more accurate MAPF model requires the ADG
to delay fewer actions during execution, resulting in higher
throughput. In particular, we consider four different MAPF
models, namely standard MAPF (Stern et al. 2019); MAPF
with rotations (Hönig et al. 2019), that considers the rotation
time of the robots; k-robust MAPF (Atzmon et al. 2020b),
that guarantees the solution to be robust to bounded time un-
certainties; and continuous-time MAPF (Andreychuk et al.
2021), that models actions with non-unit travel times.

We use two MAPF algorithms, ECBS (Barer et al. 2014)
and prioritized planning (Silver 2005) to experiment with
these MAPF models using the Gazebo simulator (Koenig
and Howard 2004). We find that windowing and considering
rotation time results in substantial improvements in through-
put. k-robust MAPF plans improve throughput in some in-
stances. Planning in continuous time with prioritized plan-
ning that takes the exact execution time of different actions
(based on the robot dynamics) into account achieves the best
throughput among all considered algorithms.

2 Preliminaries
Today, hundreds of robots already navigate autonomously
inside warehouses to move inventory shelves or flat
packages. Figure 1a shows a Kiva warehouse (Wurman,
D’Andrea, and Mountz 2007) whose example layout is
shown in Figure 2, where robots move the inventory shelves
from the storage locations to the work stations and human
workers pick ordered items from the shelves. By moving the
inventory to the worker, rather than the other way around, the
worker productivity at least doubles (Wurman, D’Andrea,
and Mountz 2007). In addition to Kiva-like warehouses,
other popular warehouse structures include sortation cen-
ters (Kou et al. 2020), as shown in Figure 1b, where human

Figure 2: Snapshot of the Gazebo simulator with 600 shelves
(yellow squares), 50 robots (yellow circles), and 8 stations
(blue squares).

workers put packages on the robots and the robots move the
packages from the work stations to the corresponding chutes
(which correspond to the loading docks that the packages
have to be delivered to), and AutoStore,2 as shown in Fig-
ure 1c, where robots navigate on grid-like tracks on top of
stacks of bins and dig out needed bins from the top.

Although these warehouses have different designs with
different target application scenarios, they share many simi-
larities: (1) the robots all navigate on a 4-neighbor grid; (2)
they use similar motion models; (3) each robot needs to visit
a stream of assigned goal cells without colliding with other
robots; and (4) each robot receives commands to execute ac-
tions from a central controller. We therefore provide a formal
definition of the graph that the robots navigate on, the agent
and robot models that we use in this paper, and MAPF.

Definition 2.1 (Graph). We use a graph G = (V,E) to
represent the work space of the warehouse, which is a 4-
neighbor grid with V representing empty cells on the grid
and E representing the connections between empty cells that
the agents/robots can use to move from cell to cell.

Definition 2.2 (Agent). We refer to an agent as an abstract
robot model used by the MAPF algorithms during plan-
ning. Unless specified otherwise, we follow the agent model
widely used in the MAPF literature, where every agent al-
ways occupies one cell at each timestep and moves in syn-
chronized discretized timesteps with the other agents. It can
perform two types of actions, both of which consume one
timestep: A move action moves the agent from its current
cell to a neighboring cell, and a wait action keeps the agent
at its current cell. Two agents collide when they try to oc-
cupy the same cell (called a vertex collision) or swap their
positions at neighboring cells (called an edge collision) at
the same timestep.

Definition 2.3 (Robot). We refer to a robot as a realistic
robot model that reflects the physical reality of mobile robots
in warehouses and is used by our robot simulator during ex-
ecution. Each cell v ∈ V is large enough to contain at least
one robot. Robots move in continuous time asynchronously.
Each robot can receive four action commands from the cen-
tral controller, namely move forward to the next cell, wait at
its current cell, turn-in-place by 90 degrees left, and turn-in-
place by 90 degrees right, and executes its actions indepen-
dently and autonomously using an onboard PID controller.
It uses a command queue to maintain the received action
commands and can combine sequential actions in its queue

2https://www.autostoresystem.com/





bustness against robot collisions and deadlocks as the single-
agent framework, regardless of the accuracy of the agent
model used by the MAPF algorithms. The precedence rules
enforced by the ADG framework guarantee that a robot can
never move to a cell before the robot occupying it currently
vacates it. This guarantees the collision-free execution of
MAPF plans despite robots moving faster or slower than in-
tended or breaking down and stopping forever.

4 Modeling and Solving MAPF

The ADG framework allows us to use an agent model of
our choice. However, in practice, there is a trade-off. Intu-
itively, a more accurate agent model requires the ADG to
delay fewer actions during execution, resulting in a better so-
lution quality. On the other hand, finding collision-free paths
for a more accurate agent model typically takes more time.
In addition, the solution quality and runtime also depend on
the MAPF algorithm used. Therefore, in this section, we first
provide an overview of existing search-based MAPF algo-
rithms and then an overview of four different agent models.

4.1 Overview of MAPF Algorithms

We summarize search-based MAPF algorithms in different
categories with a focus on how they have been generalized
to handle more realistic agent models.

A*-Based Algorithms. A naı̈ve way to solve MAPF op-
timally is to apply A* to the joint state space of the agents,
where a joint state is a list of different cells, one for each
agent, that represents the positions of all agents at some
timestep. Examples include EPEA* (Goldenberg et al. 2014)
and M* (Wagner and Choset 2011). However, due to the lim-
ited scalability of the A*-based algorithms and their require-
ment of synchronized actions, only limited work has been
carried out on generalizing such algorithms to more realis-
tic agent models. One example is UM* (Wagner and Choset
2017), a variant of M* that deals with uncertainty caused by
unmodeled dynamics and localization and sensing errors.

CBS-Based Algorithms. CBS (Sharon et al. 2012) solves
MAPF optimally in the collision-resolution space. It plans
paths for agents independently first (by ignoring their colli-
sions with other agents) and resolves the resulting collisions
afterward via a best-first search on a binary tree, called a
constraint tree. Significant progress has been made on speed-
ing up CBS: its optimal and bounded-suboptimal variants
can plan paths for a few hundred and a thousand agents
within a minute, respectively (Li et al. 2021b; Li, Ruml, and
Koenig 2021). Since it finds paths in the single-agent state
space, it can be easily generalized to different agent models.
For instance, researchers have developed CBS variants for
all agent models discussed in Section 4.2. Therefore, we se-
lect a bounded-suboptimal CBS variant, called ECBS (Barer
et al. 2014), as one of the MAPF algorithms for evaluating
different agent models in our experiments.

Prioritized Algorithms. Prioritized planning (Erdmann
and Lozano-Perez 1987) is a simple and fast but incomplete
and suboptimal MAPF algorithm. It uses a predefined prior-
ity ordering on the agents and plans paths for the agents one

by one from the highest-priority agent to the lowest-priority
agent. Each time, it plans a path for an agent that does not
collide with the already planned paths of all higher-priority
agents. Specifically, it records the cells and edges occupied
by all higher-priority agents at each timestep in a reservation
table and calls A* to find the shortest path for the agent that
does not use any reserved resources. Like CBS-based algo-
rithms, it finds paths in the single-agent state space and thus
can be easily generalized to different agent models. There-
fore, we select prioritized planning with random restarts (in
the following called PP), which repeatedly calls prioritized
planning with a randomly generated priority ordering until a
solution is found, as one of the MAPF algorithms for evalu-
ating different agent models in our experiments.

4.2 Overview of Agent Models

Standard MAPF. Definition 2.4 defines standard MAPF.
We use ECBS and PP in our experiments to solve it, both
of which use space-time A* (Silver 2005) to plan paths, i.e.,
A* searches in the single-agent state space where each state
(v, t) is a pair of a cell v ∈ V and a timestep t ∈ N.

MAPF with Rotation. Standard MAPF assumes four pos-
sible move actions, each corresponding to a movement in
one of the four directions: move north, south, east, or west.
Thus, standard MAPF does not take the rotation time of the
agent, if any, into account. In MAPF with rotation (Hönig
et al. 2019), we use the following move actions instead:
move forward, rotate 90◦ left, rotate 90◦ right, and rotate
180◦. Each move action still takes one timestep to execute.
This approach explicitly models the rotation time, but it in-
creases the time needed to solve MAPF because the single-
agent state space is larger – each state is now a triple (v, t, θ)
that contains an orientation θ ∈ {north, south, east, west}
in addition to a cell and a timestep.

MAPF with Time Uncertainty. Standard MAPF unre-
alistically assumes that the robots move deterministically.
Considerable effort has gone into ensuring that MAPF plans
are robust to stochastic delays during execution (Cáp, Gre-
goire, and Frazzoli 2016; Ma, Kumar, and Koenig 2017;
Wagner and Choset 2017; Li et al. 2019; Coskun and
O’Kane 2019; Atzmon et al. 2020a; Street et al. 2020). Atz-
mon et al. (2020b) propose k-robust MAPF, where a MAPF
plan is collision-free even if each agent can be delayed by
up to k timesteps. This is done by ensuring that |ti− tj | > k
for any agents i and j that visit the same cell at timesteps
ti and tj respectively. If this condition is not satisfied, then
the two agents are said to be in a vertex collision, which is
resolved in the same manner as done traditionally in MAPF
algorithms. (The definition of edge collisions remains the
same.) For example, CBS-based algorithms resolve the col-
lision via a best-first search on the constraint tree, while
prioritized algorithms record an occupied cell not only at
the timestep it is occupied but also for k − 1 additional
timesteps after its occupation. This approach increases the
time needed to solve MAPF: CBS-based algorithms need to
resolve more collisions than their non-robust variants, and
prioritized algorithms are more prone to failure than their







ECBS-TA, k = 0 ECBS-TA, k = 1 ECBS-TA with rot., k = 0 ECBS-TA with rot., k = 1
w #Replans Throughput #Replans Throughput #Replans Throughput #Replans Throughput

12 42.78 0.235± 3.5% 49.67 0.246± 0.5% 50.33 0.257± 1.0% 51.67 0.286± 3.8%
15 44.75 0.230± 2.4% 45.33 0.240± 1.2% 46.00 0.251± 1.7% 46.33 0.271± 6.0%
17 43.57 0.232± 1.6% 44.00 0.233± 1.9% 44.00 0.245± 2.1% 44.00 0.263± 0.2%
20 43.04 0.238± 1.9% 43.00 0.227± 2.2% 42.00 0.238± 3.3% 42.33 0.256± 2.4%
22 41.26 0.233± 1.8% 41.75 0.227± 1.3% 39.67 0.233± 2.0% 42.67 0.258± 2.7%
25 39.91 0.221± 3.5% 40.33 0.217± 2.9% 40.67 0.233± 1.7% 42.67 0.269± 2.6%
∞ 40.25 0.225± 3.7% 41.00 0.226± 4.7% 38.00 0.229± 2.5% 42.56 0.262± 2.6%

Table 1: Number of replans and throughput for ECBS-TA.

PP, k = 0 PP, k = 1 PP with rot., k = 0 PP with rot., k = 1
w #Replans Throughput #Replans Throughput #Replans Throughput #Replans Throughput

12 47.00 0.243± 1.1% 50.33 0.241± 3.5% 56.00 0.283± 2.7% 57.33 0.276± 3.5%
15 44.33 0.242± 1.9% 45.33 0.236± 2.1% 50.00 0.272± 3.1% 52.33 0.277± 3.1%
17 44.33 0.242± 2.8% 44.33 0.235± 2.2% 46.33 0.258± 5.4% 50.00 0.272± 1.6%
20 44.00 0.238± 0.2% 43.33 0.229± 2.8% 45.33 0.254± 1.4% 47.00 0.260± 1.7%
22 43.33 0.240± 3.2% 43.00 0.228± 4.0% 46.00 0.261± 4.5% 46.33 0.260± 4.5%
25 43.00 0.245± 5.8% 45.00 0.237± 1.5% 43.33 0.258± 3.4% 42.67 0.252± 5.5%
∞ 41.33 0.232± 2.7% 43.67 0.233± 2.5% 43.00 0.255± 4.3% 43.33 0.257± 3.4%

Table 2: Number of replans and throughput for PP.

Continuous PP with rot., k = 0.0s Continuous PP with rot., k = 0.5s Continuous PP with rot., k = 1.0s
w #Replans Throughput #Replans Throughput #Replans Throughput

12s 68.67 0.299± 1.6% 72.00 0.305± 2.0% 73.33 0.302± 1.6%
15s 60.00 0.295± 1.5% 62.50 0.298± 2.0% 63.67 0.289± 2.8%
17s 55.67 0.280± 2.7% 57.33 0.288± 2.4% 59.33 0.285± 2.5%
20s 51.67 0.274± 1.0% 52.50 0.272± 2.2% 53.75 0.269± 2.7%
22s 49.00 0.268± 2.6% 49.67 0.266± 3.5% 51.67 0.262± 1.7%
25s 47.33 0.258± 0.7% 47.00 0.253± 0.9% 47.33 0.248± 2.9%
30s 43.67 0.242± 5.4% 44.00 0.241± 2.2% 44.00 0.243± 2.6%
35s 43.67 0.250± 1.3% 40.75 0.232± 4.7% 41.33 0.225± 5.0%
∞ 35.33 0.211± 2.8% 36.33 0.217± 4.5% 33.00 0.197± 3.7%

Table 3: Number of replans and throughput for Continuous PP.

gram is run on m4.large instances. Due to computational
constraints, the Gazebo simulator does not run in real-time.
To compensate for this disparity, we delay the communica-
tion of the commands from the client to the server by the
ratio of the simulation time of the Gazebo simulator and the
wall-clock time. We run each setting for 1,000 simulation-
time seconds and record the throughput, measured in jobs
finished per second. In calculating this quantity, we omit the
planning time for generating the first MAPF plan as we are
more interested in the long-term performance.

We present the throughputs and numbers of replans for
all algorithms in Tables 1 to 3. We also present their average
planning time in Table 4. All results are averaged over three
runs, with the standard deviation expressed as a percentage
of the mean. “Rot.” in the tables is short for rotation. We
do not present results for Continuous PP without rotations
in Table 3 because we designed Continuous PP to take the
actual execution times of different actions into account and
ignoring the rotation time thus does not make sense.

Effect of Windowing. A smaller window size w tends to
result in higher throughput in most cases. For high enough
values of w, the throughput plateaus and reaches roughly
the same level as without windowing (i.e., w = ∞) in most
cases. We attribute this to smaller window sizes resulting in
shorter MAPF plans to be sent to the ADG each time and
thus leading to higher numbers of replans. Frequent replan-
ning corrects the errors caused by the simplifying assump-
tions made by the MAPF algorithms.

Effect of Rotations. Adding rotations as separate actions
and considering their costs during planning improves the
throughput of both ECBS-TA and PP, presumably due to the
more accurate MAPF model being used.

Effect of k-Robustness. The effect of k-robustness ap-
pears to depend on the algorithm. k-robustness improves
the throughput of ECBS-TA with rotations by roughly 11%
on average, while it leads to mixed results for ECBS-TA
without rotations, especially with large window sizes. k-



Algorithm Rot. k w Planning time (s)

ECBS-TA

X

0
∞ 12.7± 3.7%
12 11.9± 0.4%

1
∞ 16.2± 1.5%
12 14.6± 4.8%

7

0
∞ 7.2± 2.1%
12 5.3± 1.2%

1
∞ 7.5± 3.7%
12 6.4± 1.8%

PP

X

0
∞ 3.5± 4.1%
12 3.0± 6.7%

1
∞ 4.9± 6.2%
12 3.9± 3.2%

7

0
∞ 0.8± 3.3%
12 0.6± 2.8%

1
∞ 1.3± 14.8%
12 1.1± 2.2%

X

0.0s
∞ 4.6± 6.8%
12s 3.2± 7.0%

Continuous
0.5s

∞ 4.2± 4.1%
PP 12s 3.2± 9.0%

1.0s
∞ 5.8± 15.2%
12s 4.2± 7.3%

Table 4: Average planning time.

robustness appears to have a slightly negative effect on the
throughput of PP. The throughput of Continuous PP with
small window sizes slightly increases from k = 0s to
k = 0.5s but decreases from k = 0.5s to k = 1s. We at-
tribute this behavior to a trade-off between increasing the
throughput due to shorter wait times caused by the Type
2 edges of the ADG and decreasing the throughput due to
longer planning times and MAPF plans.

Effect of Using Exact Execution Times. In order to es-
timate the execution times of different actions, we run pre-
determined action sequences on small maps and record the
average execution time of each action. Based on these mea-
surements, we use 1.250s as the time of a forward action,
0.540s as the time of a 90◦ (left or right) turn, 0.956s as the
time of a 180◦ turn, 2.000s as the time of both attaching to
and detaching from a shelf, and 5.000s as the time of waiting
at a station. Using exact execution times with Continuous PP
substantially improves the throughput of the comparable al-
gorithm PP, especially for small window sizes.

Planning Times. Table 4 shows the average planning time
of each algorithm. We only include the planning times for
the lowest and highest window sizes used, namely w = 12
and w = ∞. We observe that: (1) Windowing reduces the
average planning time. This is expected, since solving win-
dowed problems is easier than solving the original problems,
(2) Using rotation actions and k-robustness increases the av-
erage planning time. This can be attributed to the resulting
increased problem difficulty. (3) Both PP algorithms are sig-
nificantly faster than ECBS-TA. PP is slightly faster than
Continuous PP. We also observe a higher standard devia-
tion for the planning time of the PP algorithms compared

to ECBS-TA. A few anomalous runs of the PP algorithms
had high planning times and thus idle times between plans
for the agents due to the frequent restarts of the planner.

7 Conclusion

We studied the real-world performance of different MAPF
models in warehouse settings. We first argued that the
MAPF execution frameworks, such as the ADG framework,
offer the same robustness guarantees as the single-agent ex-
ecution frameworks currently used in industry. We incorpo-
rated the windowing framework RHCR for lifelong MAPF
into the ADG framework and ran extensive simulations on
the robot simulator Gazebo to compare different MAPF
models in the resulting framework. We observed that: (1)
Using windowing and considering rotation time during plan-
ning significantly improves throughput in most cases. (2)
Using k-robustness boosts the throughput in some cases. (3)
Considering the robot dynamics to determine and use the
exact execution times of actions during planning achieves
the highest throughput when used in conjunction with win-
dowing, rotation, and k-robustness. It is future work to in-
corporate higher-order dynamics models (Kou et al. 2019;
Andreychuk 2020) into our framework.
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