Which MAPF Model Works Best for Automated Warehousing?

Sumanth Varambally,' Jiaoyang Li,” Sven Koenig’

! Indian Institute of Technology, Delhi
2 University of Southern California
Sumanth.Varambally.mt617 @maths.iitd.ac.in, {jiaoyanl, skoenig} @usc.edu

Abstract

Multi-Agent Path Finding (MAPF) algorithms and their vari-
ants can find high-quality collision-free plans for automated
warehousing under simplified assumptions about the robot
dynamics. However, these simplifying assumptions pose
challenging implementational issues as the robots cannot fol-
low the plans precisely. Various robust execution frameworks,
such as the Action Dependency Graph (ADG) framework,
have been proposed to enable the real-world execution of
MAPF plans. Under such a framework, it is unclear how
the simplifying assumptions affect the performance of the
robots. In this work, we first argue that the ADG frame-
work provides the same robustness guarantees as the single-
agent framework (where plans are generated independently
for each robot and collisions are avoided through a reserva-
tion table), which is widely used in industry. We then improve
the efficiency of the ADG framework by integrating it with
the Rolling-Horizon Collision-Resolution framework to solve
MAPF problems with a persistent stream of online tasks.
Using the integrated framework, we compare the standard
MAPF model with many of its more complex variants, such
as MAPF with rotation, k-robust MAPF, and continuous-time
MAPF (taking robot dynamics into account). We examine
their effectiveness in improving throughput through realistic
simulations of warehouse settings with the Gazebo simulator.

1 Introduction

Multi-Agent Path Finding (MAPF) (Stern et al. 2019) is the
problem of planning collision-free paths that move a team of
agents in discretized timesteps to their predefined goal ver-
tices on a given graph while minimizing their travel times.
Despite its intractability (Yu and LaValle 2013; Ma et al.
2016), a significant amount of effort has been spent in recent
years on solving this problem more efficiently. For instance,
researchers have improved the scalability of optimal MAPF
algorithms in the past decade by one order of magnitude
in terms of agents (Lam and Bodic 2020; Li et al. 2021b)
from initially roughly less than a dozen of agents (Standley
2010; Wagner and Choset 2011; Sharon et al. 2012). Sub-
optimal MAPF algorithms can find near-optimal plans for
thousands of agents (Wang and Rubenstein 2020; Li et al.
2022). Due to the success in improving the scalability of
MAPEF, researchers have applied MAPF technologies to a

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(b) Sortation.

(a) Kiva. (c) AutoStore.

Figure 1: Photos of different types of warehouses.'

wide range of multi-robot systems, including UAV traffic
management (Ho et al. 2019), railway planning (Li et al.
2021a), and airport surface operation (Li et al. 2019).
Among the various applications, coordinating a large
team of mobile robots in automated warehouses (see exam-
ples in Figure 1) receives the most attention as the setup of
a warehouse is usually close to many assumptions used in
the traditional MAPF literature (e.g., a large team of agents
is controlled centrally in a known environment represented
by a grid map). Research includes how to adapt MAPF to
a lifelong setting, where agents are assigned new goal cells
after they reach their current ones (Li et al. 2021c; Damani
et al. 2021), and how to combine the goal-vertex assign-
ment with MAPF (Ma et al. 2017; Nguyen et al. 2017; Liu
et al. 2019; Kou et al. 2020; Chen et al. 2021b; Contini and
Farinelli 2021). These works look promising as they usu-
ally scale well (e.g., can handle hundreds or even thousands
of agents in highly congested environments) and produce a
high throughput in simulated warehouse environments.
Unfortunately, they cannot be directly applied in the real
world as they make many simplified and thus unrealistic as-
sumptions on the robot dynamics and actuator uncertainty.
Therefore, recent research has focused on more compli-
cated MAPF models to close the gap, such as MAPF with
non-unit travel times (Walker, Sturtevant, and Felner 2020;
Walker et al. 2021; Andreychuk et al. 2021), kinematic con-
straints (Le and Plaku 2018; Cohen et al. 2019; Andreychuk
2020; Solis et al. 2021; Chen et al. 2021a), and time uncer-
tainty (Ma, Kumar, and Koenig 2017; Atzmon et al. 2020b,a;
Shahar et al. 2021). These MAPF models are more applica-

1Figures (a) and (b) are from (Wurman, D’ Andrea, and Mountz
2007; Kou et al. 2020), respectively. Figure (c) is by Euro-Friwa
GmbH from https://commons.wikimedia.org/w/index.php?curid=
62341670 licensed under CC BY-SA 4.0.

ble in the real world, but they are also harder to solve. More-
over, these models cannot be directly applied since there are
still gaps between them and the real world.

Rather than building perfect MAPF models to close the
gap, Honig et al. (2019) proposed an execution framework
that modifies the MAPF plans in real-time by delaying the
robots intelligently when necessary to overcome the imper-
fection of the MAPF model. It achieves this by converting
a MAPF plan to an action dependency graph (ADG) and
making the robots execute the actions following the prece-
dence constraints indicated by the ADG. This ADG frame-
work guarantees collision-freeness, deadlock-freeness, and
persistence over a long time horizon. It also allows for re-
planning during execution, which avoids robot idle time dur-
ing replanning.

In this work, we first argue that the ADG framework pro-
vides the same robustness guarantees as the single-agent
framework (Wang and Botea 2008), which is widely used
in industry. We then combine the ADG framework with
Rolling-Horizon Collision-Resolution (RHCR) (Li et al.
2021c), an efficient lifelong MAPF framework that re-
peatedly uses windowing (i.e., a limited planning hori-
zon) to speed up the search. We call the resulting frame-
work Rolling-Horizon Collision-Resolution and Execution
(RHCRE). The efficiency of RHCRE allows us to try various
MAPF models and study their runtime and quality tradeoffs.
Intuitively, a more accurate MAPF model requires the ADG
to delay fewer actions during execution, resulting in higher
throughput. In particular, we consider four different MAPF
models, namely standard MAPF (Stern et al. 2019); MAPF
with rotations (Honig et al. 2019), that considers the rotation
time of the robots; k-robust MAPF (Atzmon et al. 2020b),
that guarantees the solution to be robust to bounded time un-
certainties; and continuous-time MAPF (Andreychuk et al.
2021), that models actions with non-unit travel times.

We use two MAPF algorithms, ECBS (Barer et al. 2014)
and prioritized planning (Silver 2005) to experiment with
these MAPF models using the Gazebo simulator (Koenig
and Howard 2004). We find that windowing and considering
rotation time results in substantial improvements in through-
put. k-robust MAPF plans improve throughput in some in-
stances. Planning in continuous time with prioritized plan-
ning that takes the exact execution time of different actions
(based on the robot dynamics) into account achieves the best
throughput among all considered algorithms.

2 Preliminaries

Today, hundreds of robots already navigate autonomously
inside warehouses to move inventory shelves or flat
packages. Figure la shows a Kiva warehouse (Wurman,
D’Andrea, and Mountz 2007) whose example layout is
shown in Figure 2, where robots move the inventory shelves
from the storage locations to the work stations and human
workers pick ordered items from the shelves. By moving the
inventory to the worker, rather than the other way around, the
worker productivity at least doubles (Wurman, D’ Andrea,
and Mountz 2007). In addition to Kiva-like warehouses,
other popular warehouse structures include sortation cen-
ters (Kou et al. 2020), as shown in Figure 1b, where human

RRREEE

‘‘‘‘‘ BEEEEEEERERERE
E&&&%@Eg%

EEEERRER
§§§§E§§

Figure 2: Snapshot of the Gazebo simulator with 600 shelves
(yellow squares), 50 robots (yellow circles), and 8 stations
(blue squares).

workers put packages on the robots and the robots move the
packages from the work stations to the corresponding chutes
(which correspond to the loading docks that the packages
have to be delivered to), and AutoStore,? as shown in Fig-
ure lc, where robots navigate on grid-like tracks on top of
stacks of bins and dig out needed bins from the top.

Although these warehouses have different designs with
different target application scenarios, they share many simi-
larities: (1) the robots all navigate on a 4-neighbor grid; (2)
they use similar motion models; (3) each robot needs to visit
a stream of assigned goal cells without colliding with other
robots; and (4) each robot receives commands to execute ac-
tions from a central controller. We therefore provide a formal
definition of the graph that the robots navigate on, the agent
and robot models that we use in this paper, and MAPF.

Definition 2.1 (Graph). We use a graph G = (V, E) to
represent the work space of the warehouse, which is a 4-
neighbor grid with V' representing empty cells on the grid
and E representing the connections between empty cells that
the agents/robots can use to move from cell to cell.

Definition 2.2 (Agent). We refer to an agent as an abstract
robot model used by the MAPF algorithms during plan-
ning. Unless specified otherwise, we follow the agent model
widely used in the MAPF literature, where every agent al-
ways occupies one cell at each timestep and moves in syn-
chronized discretized timesteps with the other agents. It can
perform two types of actions, both of which consume one
timestep: A move action moves the agent from its current
cell to a neighboring cell, and a wait action keeps the agent
at its current cell. Two agents collide when they try to oc-
cupy the same cell (called a vertex collision) or swap their
positions at neighboring cells (called an edge collision) at
the same timestep.

Definition 2.3 (Robot). We refer to a robot as a realistic
robot model that reflects the physical reality of mobile robots
in warehouses and is used by our robot simulator during ex-
ecution. Each cell v € V is large enough to contain at least
one robot. Robots move in continuous time asynchronously.
Each robot can receive four action commands from the cen-
tral controller, namely move forward to the next cell, wait at
its current cell, turn-in-place by 90 degrees left, and turn-in-
place by 90 degrees right, and executes its actions indepen-
dently and autonomously using an onboard PID controller.
It uses a command queue to maintain the received action
commands and can combine sequential actions in its queue

“https://www.autostoresystem.com/

e
wv

RHCR _——|
/

— .
= Single

Juy
N

Throughput

— Due to traffic congestion

o w o v

o

200 400 600 800 1000
Number of agents

(a) Throughput comparison.

et S e

(b) Single-agent framework.

(c) Multi-agent framework.

Figure 3: Comparison of the MAPF framework RHCR (Li et al. 2021c) with the single-agent framework Single (Wang and
Botea 2008) for a sortation center (as illustrated in Figure 1b). (a) shows the throughput (= average number of reached goal
cells per timestep), and (b) and (c) show a snapshot of the simulator using Single and RHCR, respectively, with 800 agents
(represented by the black dots). This simulator follows the setup in (Li et al. 2021c), where a stream of goal cells (as opposed
to a single goal cell) is assigned to each agent. The movement of the robots is simulated with the agent model in Definition 2.2

instead of a realistic robot model.

(e.g., several actions of moving forward by one cell into one
action of moving forward by several cells) in order to per-
form smooth, continuous, and effective motions. It stands
still when its command queue is empty. As a result, the exe-
cution time of the actions is stochastic. The robot signals the
central controller when it has finished executing an action. A
robot can localize itself in the warehouse, for example, via
the fiducials on the floor, and ensure that it never diverges
significantly from its assigned path spatially.

Definition 2.4 (MAPF). The Multi-Agent Path Finding
(MAPF) problem takes as input a graph (defined in Defi-
nition 2.1) and a set of agents (defined in Definition 2.2),
each with a start cell and a goal cell. A path for an agent is a
sequence of actions that moves it from its start cell to its goal
cell, with the path cost being the arrival time of the agent at
its goal cell. The agent remains at its goal cell forever after
it completes its path. A solution, which we also call a MAPF
plan, is a set of collision-free paths, one for each agent. The
cost of a solution is the sum of the path costs of the agents.

3 Execution Frameworks

We introduce two distinct execution frameworks (used by
the central controller) to coordinate the warehouse robots.
The first framework is based on single-agent path finding
and widely used in industry. The second framework is based
on MAPF and shows promise in producing high throughput.

3.1 Single-Agent Execution Framework

Traditional single-agent frameworks approach the ware-
house robot coordination problem from a control engineer-
ing perspective by employing a reactive paradigm to colli-
sion avoidance. Each robot follows a shortest (or minimum-
estimated-travel-time) path to its goal cell, planned by a
single-agent path finding algorithm, such as A*. Robot-
robot collisions are resolved locally during execution via
manually-designed traffic rules, the most popular one of
which is a reservation system (Wang and Botea 2008).

A reservation system allows the robots to reserve the cells
ahead of time that they are going to use. The reservation sys-
tem keeps a reservation map that maps every cell to either

zero or one, indicating that the cell is empty or reserved, re-
spectively. Each robot needs to reserve a cell (or a fixed num-
ber of cells) on its path, usually in a first-come-first-served
manner, before it can move there. A cell can be reserved
only if its current value in the reservation map is zero. The
reservation is released once the robot leaves the cell.

A reservation system is robust to problematic scenarios,
such as agents moving faster or slower than expected or even
breaking down and stopping forever, because it ensures that
two robots will never be at the same cell and thus never col-
lide. Due to these strong robustness guarantees and its sim-
ple implementation, the single-agent framework is widely
used in industry. However, it is prone to congestion issues as
the robot density increases. This limits the number of robots
one can put in a warehouse and the resulting throughput.

3.2 MAPF Execution Framework

Recent advances in MAPF show the promise of using MAPF
algorithms to coordinate warehouse robots: They can co-
ordinate robots with less congestion and higher throughput
than the single-agent framework, as shown in Figure 3.

A MAPF-based robot-coordination system first calls a
MAPEF algorithm to search for a set of globally coordinated
collision-free paths, one for each robot, and then asks the
robots to start following the paths. The main drawback of
the deliberative paradigm is that the robots are guaranteed to
reach their goal cells only if they follow the planned paths
precisely both in space (which is typically easy to achieve)
and time (which is typically more difficult to achieve).

Several MAPF execution frameworks (Cép, Gregoire, and
Frazzoli 2016; Honig et al. 2016; Ma, Kumar, and Koenig
2017; Coskun and O’Kane 2019) have been proposed to mit-
igate this issue and allow the robots to follow their paths
without collision. These frameworks do not change the agent
models used by the MAPF algorithms. For example, the
ADG framework (Honig et al. 2019) is such a framework
specifically designed for warehouse applications. It ensures
the collision-free and deadlock-free execution of MAPF
plans by imposing an order on several robots visiting the
same cell. More details will be provided in Section 5.2.

We argue that the ADG framework provides the same ro-

bustness against robot collisions and deadlocks as the single-
agent framework, regardless of the accuracy of the agent
model used by the MAPF algorithms. The precedence rules
enforced by the ADG framework guarantee that a robot can
never move to a cell before the robot occupying it currently
vacates it. This guarantees the collision-free execution of
MAPF plans despite robots moving faster or slower than in-
tended or breaking down and stopping forever.

4 Modeling and Solving MAPF

The ADG framework allows us to use an agent model of
our choice. However, in practice, there is a trade-off. Intu-
itively, a more accurate agent model requires the ADG to
delay fewer actions during execution, resulting in a better so-
lution quality. On the other hand, finding collision-free paths
for a more accurate agent model typically takes more time.
In addition, the solution quality and runtime also depend on
the MAPF algorithm used. Therefore, in this section, we first
provide an overview of existing search-based MAPF algo-
rithms and then an overview of four different agent models.

4.1 Overview of MAPF Algorithms

We summarize search-based MAPF algorithms in different
categories with a focus on how they have been generalized
to handle more realistic agent models.

A*-Based Algorithms. A naive way to solve MAPF op-
timally is to apply A* to the joint state space of the agents,
where a joint state is a list of different cells, one for each
agent, that represents the positions of all agents at some
timestep. Examples include EPEA* (Goldenberg et al. 2014)
and M* (Wagner and Choset 2011). However, due to the lim-
ited scalability of the A*-based algorithms and their require-
ment of synchronized actions, only limited work has been
carried out on generalizing such algorithms to more realis-
tic agent models. One example is UM* (Wagner and Choset
2017), a variant of M* that deals with uncertainty caused by
unmodeled dynamics and localization and sensing errors.

CBS-Based Algorithms. CBS (Sharon et al. 2012) solves
MAPF optimally in the collision-resolution space. It plans
paths for agents independently first (by ignoring their colli-
sions with other agents) and resolves the resulting collisions
afterward via a best-first search on a binary tree, called a
constraint tree. Significant progress has been made on speed-
ing up CBS: its optimal and bounded-suboptimal variants
can plan paths for a few hundred and a thousand agents
within a minute, respectively (Li et al. 2021b; Li, Ruml, and
Koenig 2021). Since it finds paths in the single-agent state
space, it can be easily generalized to different agent models.
For instance, researchers have developed CBS variants for
all agent models discussed in Section 4.2. Therefore, we se-
lect a bounded-suboptimal CBS variant, called ECBS (Barer
et al. 2014), as one of the MAPF algorithms for evaluating
different agent models in our experiments.

Prioritized Algorithms. Prioritized planning (Erdmann
and Lozano-Perez 1987) is a simple and fast but incomplete
and suboptimal MAPF algorithm. It uses a predefined prior-
ity ordering on the agents and plans paths for the agents one

by one from the highest-priority agent to the lowest-priority
agent. Each time, it plans a path for an agent that does not
collide with the already planned paths of all higher-priority
agents. Specifically, it records the cells and edges occupied
by all higher-priority agents at each timestep in a reservation
table and calls A* to find the shortest path for the agent that
does not use any reserved resources. Like CBS-based algo-
rithms, it finds paths in the single-agent state space and thus
can be easily generalized to different agent models. There-
fore, we select prioritized planning with random restarts (in
the following called PP), which repeatedly calls prioritized
planning with a randomly generated priority ordering until a
solution is found, as one of the MAPF algorithms for evalu-
ating different agent models in our experiments.

4.2 Overview of Agent Models

Standard MAPF. Definition 2.4 defines standard MAPF.
We use ECBS and PP in our experiments to solve it, both
of which use space-time A* (Silver 2005) to plan paths, i.e.,
A* searches in the single-agent state space where each state
(v,t)isapairof acell v € V and a timestep ¢ € N.

MAPF with Rotation. Standard MAPF assumes four pos-
sible move actions, each corresponding to a movement in
one of the four directions: move north, south, east, or west.
Thus, standard MAPF does not take the rotation time of the
agent, if any, into account. In MAPF with rotation (Honig
et al. 2019), we use the following move actions instead:
move forward, rotate 90° left, rotate 90° right, and rotate
180°. Each move action still takes one timestep to execute.
This approach explicitly models the rotation time, but it in-
creases the time needed to solve MAPF because the single-
agent state space is larger — each state is now a triple (v, ¢, 6)
that contains an orientation 6 € {north, south, east, west}
in addition to a cell and a timestep.

MAPF with Time Uncertainty. Standard MAPF unre-
alistically assumes that the robots move deterministically.
Considerable effort has gone into ensuring that MAPF plans
are robust to stochastic delays during execution (Cap, Gre-
goire, and Frazzoli 2016; Ma, Kumar, and Koenig 2017;
Wagner and Choset 2017; Li et al. 2019; Coskun and
O’Kane 2019; Atzmon et al. 2020a; Street et al. 2020). Atz-
mon et al. (2020b) propose k-robust MAPF, where a MAPF
plan is collision-free even if each agent can be delayed by
up to k timesteps. This is done by ensuring that [t; —¢;| > k
for any agents ¢ and j that visit the same cell at timesteps
t; and t; respectively. If this condition is not satisfied, then
the two agents are said to be in a vertex collision, which is
resolved in the same manner as done traditionally in MAPF
algorithms. (The definition of edge collisions remains the
same.) For example, CBS-based algorithms resolve the col-
lision via a best-first search on the constraint tree, while
prioritized algorithms record an occupied cell not only at
the timestep it is occupied but also for £k — 1 additional
timesteps after its occupation. This approach increases the
time needed to solve MAPF: CBS-based algorithms need to
resolve more collisions than their non-robust variants, and
prioritized algorithms are more prone to failure than their

non-robust counterparts since the cells are occupied by the
higher-priority agents for a longer time.

Continuous-Time MAPF. Standard MAPF assumes that
time is discretized and each action is always completed in
one timestep. In continuous-time MAPF (Andreychuk et al.
2021), we drop this assumption and allow actions to take
an arbitrary amount of time to complete. Such models can
be used to express low-level details about the agent dynam-
ics, such as the exact execution time of move actions. Since
space-time A* requires discrete timesteps, we replace it with
SIPP (Phillips and Likhachev 2011), an advanced variant of
space-time A* that allows for real-valued action execution
times. Since continuous-time CBS-based algorithms are sig-
nificantly less efficient than their discretized-time variants
(Andreychuk et al. 2021), we use only PP for this model.

S From MAPF to Automated Warehousing

In addition to the imperfection of the agent models used in
MAPF, we need to address the online nature of the coordina-
tion of warehouse robots. MAPF is an offline problem where
each agent is pre-assigned exactly one goal cell and does not
start to move until a set of collision-free paths for all agents
is found. This raises two issues, namely, how to general-
ize MAPF to lifelong MAPF with streams of newly arriv-
ing goal cells and how to overcome the computational over-
head of MAPF algorithms for real-time robot operations.
To this end, we introduce our new algorithm RHCRE (see
Section 5.3) that combines two existing algorithms, namely
RHCR introduced in Section 5.1 and the ADG framework
introduced in Section 5.2. The MAPF algorithms used in the
RHCR and ADG frameworks use the standard MAPF model
and the MAPF with rotation model, respectively. That is,
they both assume discretized timesteps and no time uncer-
tainty. We follow their convention and use “timesteps” in the
following subsections. However, all three algorithms can be
used for continuous-time MAPF with minimal changes.

5.1 Solving Lifelong MAPF

Standard MAPF is a “one-shot” version of the warehouse
robot coordination problem where each agent is assigned
only one single-start-single-goal navigation task and stays
at its goal cell forever after it completes its task. The ware-
house robot coordination problem is a lifelong MAPF prob-
lem with a continuous stream of navigation tasks that arrive
on-the-fly and that agents must address as soon as they com-
plete their currently assigned tasks. The difficulty in adapt-
ing MAPF algorithms to the lifelong setting is due to MAPF
planning being carried out jointly for all agents; yet, not all
agents finish their currently assigned tasks simultaneously.
One can address this issue in several ways. For instance,
one can decompose a lifelong MAPF instance into a se-
quence of MAPF instances where one replans paths at ev-
ery timestep for all agents (Grenouilleau, van Hoeve, and
Hooker 2019); however, this approach does not scale to
large numbers of agents. One can also decompose a lifelong
MAPF instance into a sequence of MAPF instances where
one plans new paths at every timestep for only the agents
with newly assigned goal cells; however, this approach can

——————————————

(a) MAPF plan for two agents on a 2 x 2 grid.

Agent 1: ((0,—, A, B)—{((1,{,B,D) —»{(2,+,D,C))

' | - '
R o -~ R

== o
Agent2: ((0,4,B,D) ——»{(1,+,D,C)—>((2,1,C,4))

Type 1 edge —> Type 2 edge ----- >

(b) Corresponding ADG Graph.

Figure 4: ADG example. The arrows in (b) indicate the
precedence of actions, i.e., the execution of an action that
an arrow points to can begin only after the action that the
arrow points away from is completed.

only be applied to particular types of graphs without losing
its completeness guarantee. Another drawback of the above
approaches is that they need to call MAPF algorithms at ev-
ery timestep, which may not meet the real-time requirement.

Rolling Horizon Collision Resolution (RHCR) (Li et al.
2021c) effectively combats the above issues by using win-
dowing. It decomposes a lifelong MAPF instance into a se-
quence of windowed MAPF instances where one replans
paths with a predefined frequency for all agents but resolves
collisions only for the first several timesteps within a prede-
fined time window. Specifically, RHCR uses two hyperpa-
rameters, namely a window size w and a replanning period
h. It calls a MAPF algorithm every h timesteps to replan the
paths of all agents. In each call, it resolves collisions only
for the first w timesteps, with subsequent collisions being
ignored, which can substantially reduce the computational
time. Naturally, we need w > h to ensure collision-freeness.

5.2 Overlapping Planning and Execution

The Action Dependency Graph (ADG) framework (Honig
et al. 2019) is a robust MAPF execution framework that uses
an ADG to ensure the collision-free and deadlock-free exe-
cution of MAPF plans and to prevent robots from waiting
for replanning to finish and thus from being idle.

Definition 5.1 (ADG). An Action Dependency Graph
(ADG) is a directed acyclic graph Gapc = (Vapc, €apc)
that represents the action-precedence relationships of a
given MAPF plan. A node p!, € Vapg corresponds to the
n™ action in the path of robot i. More specifically, p!, is a
4-tuple (t,at), st g) that indicates the n™ action af, exe-
cuted starting at timestep ¢, taking robot i from cell s}, € V
to cell g, € V. An edge (p’,,pi,) € Eapc indicates that
robot 4’ can only begin executing action af;, after robot ¢
completes the execution of action a’,. Type 1 edges are edges
that connect actions of the same robot. Type 2 edges are
edges that connect actions of different robots, ensuring that
the order in which robots visit the same cell does not change.

[[N
o ul o

remaining actions

[}

Minimum number of

% 50 100 150 200 250 300 350 400
Time (s)

Figure 5: Minimum number of remaining actions over all
robots in their command queues over time. The red bars in-
dicate the time during which planning takes place. The min-
imum number of remaining actions never reaches 0, indicat-
ing that the robots are never idle, even during replanning.

We therefore add a Type 2 edge from node p?, to node pi’;, iff
robot 4 visits a certain cell before robot i’ (or, more specifi-
cally, s’ = g%, and ¢!, < t¥,). Figure 4 shows an example.

Execution. Each robot maintains a command queue dur-
ing execution (recall Definition 2.3). Our task is to enqueue
actions into the command queue in a timely manner so that
the robots always have actions to execute while ensuring that
no deadlocks or collisions can happen during execution. We
enqueue an action a!, (with p!, € Vapg) into the command
queue of robot i when action a,_; is already enqueued and
the execution of all actions whose corresponding nodes are
connected to node p?, via Type-2 edges is finished. An ac-
tion is marked as finished once the robot notifies the central
controller of the successful execution of the action.

Replanning. A significant benefit that stems from encod-
ing MAPF plans in this manner is the ability to overlap plan-
ning and execution. When a robot has fewer actions left to
execute than a given threshold, replanning is triggered. Ev-
ery robot i picks one of its future nodes pﬁ2 € Vapg to

be the last node® in the ADG that it will execute and dis-
cards all nodes afterward (i.e., all nodes p!, with n > n;).
The next round of planning commences with the start cell
of each agent ¢ being gfli. A MAPF algorithm is then called
to replan paths for all agents from these start cells to their
goal cells, assuming that the agents will be at these start
cells at timestep 0. While the MAPF algorithm is running,
the robots keep moving. When the MAPF algorithm termi-
nates, the found MAPF plan is converted to a new ADG and
appended to the current one. In this manner, we can overlap
planning and execution, as illustrated in Figure 5.

5.3 RHCRE

The ADG framework calls a MAPF algorithm to plan
collision-free paths for all agents. We improve it by incor-
porating the windowing idea from RHCR into it. During re-

3The last nodes are chosen so that their end cells gf” can be
reached simultaneously without violating the precedences indi-
cated by the ADG, and the expected execution time of the remain-
ing actions is greater than the expected runtime of the MAPF algo-
rithm (to avoid idle time). See (Honig et al. 2019) for details.

planning, we call a windowed MAPF algorithm to plan paths
that are collision-free for only the first w timesteps, where w
is a predefined parameter. Then, instead of converting the
entire MAPF plan to an ADG, we only convert the part of
the MAPF plan that contains the actions from the first w
timesteps. We call the resulting algorithm Rolling-Horizon
Collision Resolution and Execution (RHCRE).

In addition, the procedure for determining the last nodes
in (Honig et al. 2019) has a corner-case problem since the
last nodes of two different agents can result in the same cell
and thus a collision at timestep 0 when we replan paths for
them. This can happen for both the ADG framework and
RHCRE. We address this issue by explicitly checking for
such a situation and, if necessary, advancing the last node
for one of the agents to its next node in the ADG.

During replanning, RHCRE calls a MAPF algorithm that
always considers exactly the next goal cell for each agent.
This is different from the original RHCR (Li et al. 2021c),
which can ask the MAPF algorithm to consider the next plus
one or more of the subsequent goal cells for each agent in
order to prevent any agent from reaching its goal cell within
h timesteps and then being idle. RHCRE does not need to
worry about this issue because it replans when a robot might
run out of actions to execute. That is, its replanning period h
is adaptive instead of being a fixed value.

6 Empirical Evaluation

We follow the experimental setup in (Honig et al. 2019)
and use the Gazebo simulator (Koenig and Howard 2004)
to simulate a Kiva warehouse on map smalll from Ama-
zon’s HARMONIES simulator, containing 600 shelves, 50
robots (based on the iRobot Create 2 robots), and 8 stations
(shown in Figure 2). A job describes the task of a robot pick-
ing up a shelf from the warehouse floor, delivering it to a
station where it waits for a few seconds (during which the
worker presumably picks items off the shelf), and return-
ing it to a potentially different location in the warehouse.
Therefore, in addition to the navigation-related actions in-
troduced in Definition 2.3, the robots can perform three ad-
ditional warehouse-specific actions when they wait, namely
attaching themselves to a shelf, detaching themselves from
a shelf, and waiting at a station. More details can be found
in (Honig et al. 2019).

We use three MAPF algorithms, namely ECBS, PP, and
Continuous PP (i.e., PP with SIPP for its low-level search).
In order to allow RHCRE to work properly, we also need a
task assigner that assigns the jobs to the robots. For ECBS,
we follow (Honig et al. 2019) and use ECBS-TA (Honig
et al. 2018) instead of ECBS, a variant of ECBS that simulta-
neously assigns tasks and plans collision-free paths in a way
so that the costs of its solutions are at most a factor of e larger
than optimal. We use € = 2 in our experiments. For PP and
Continuous PP, we assign tasks with the task-assignment al-
gorithm in ECBS-TA, which produces optimal assignments
(if one ignores robot-robot collisions).

Our implementation is based on (Ho6nig et al. 2019) and
written in C++. We use AWS EC2 instances to run our ex-
periments. The server program (running the Gazebo simula-
tor) is run on m4 . xlarge instances, while the client pro-

ECBS-TA, k=0 ECBS-TA, k=1 ECBS-TA with rot., k =0 | ECBS-TA with rot., k = 1
w | #Replans | Throughput | #Replans | Throughput | #Replans | Throughput | #Replans | Throughput
12 4278 0.235 + 3.5% 49.67 0.246 + 0.5% 50.33 0.257 + 1.0% 51.67 0.286 + 3.8%
15 44.75 0.230 £ 2.4% 45.33 0.240 £ 1.2% 46.00 0.251 £ 1.7% 46.33 0.271 £ 6.0%
17 43.57 0.232 £ 1.6% 44.00 0.233 £ 1.9% 44.00 0.245 +2.1% 44.00 0.263 £ 0.2%
20 43.04 0.238 + 1.9% 43.00 0.227 +2.2% 42.00 0.238 + 3.3% 42.33 0.256 + 2.4%
22 41.26 0.233 £1.8% 41.75 0.227 £ 1.3% 39.67 0.233 £ 2.0% 42.67 0.258 +2.7%
25 39.91 0.221 £ 3.5% 40.33 0.217 £ 2.9% 40.67 0.233 £ 1.7% 42.67 0.269 £+ 2.6%
00 40.25 0.225 + 3.7% 41.00 0.226 + 4.7% 38.00 0.229 + 2.5% 42.56 0.262 + 2.6%
Table 1: Number of replans and throughput for ECBS-TA.
PP, k=0 PP, k=1 PP with rot., K = 0 PP withrot., k. = 1
w | #Replans | Throughput | #Replans | Throughput | #Replans | Throughput | #Replans | Throughput
12 47.00 0.243 £ 1.1% 50.33 0.241 £ 3.5% 56.00 0.283 +2.7% 57.33 0.276 £ 3.5%
15 4433 0.242 + 1.9% 45.33 0.236 +2.1% 50.00 0.272+3.1% 52.33 0.277+3.1%
17 44.33 0.242 + 2.8% 44.33 0.235 +2.2% 46.33 0.258 +5.4% 50.00 0.272 + 1.6%
20 44.00 0.238 +0.2% 43.33 0.229 + 2.8% 45.33 0.254 + 1.4% 47.00 0.260 + 1.7%
22 43.33 0.240 + 3.2% 43.00 0.228 + 4.0% 46.00 0.261 + 4.5% 46.33 0.260 + 4.5%
25 43.00 0.245 + 5.8% 45.00 0.237 £ 1.5% 43.33 0.258 + 3.4% 42.67 0.252 +5.5%
00 41.33 0.232+2.7% 43.67 0.233 +2.5% 43.00 0.255 + 4.3% 43.33 0.257 + 3.4%
Table 2: Number of replans and throughput for PP.
Continuous PP with rot., kK = 0.0s | Continuous PP with rot., £ = 0.5s | Continuous PP with rot., k¥ = 1.0s
w | #Replans Throughput #Replans Throughput #Replans Throughput
12s 68.67 0.299 + 1.6% 72.00 0.305 + 2.0% 73.33 0.302 £ 1.6%
15s 60.00 0.295 + 1.5% 62.50 0.298 + 2.0% 63.67 0.289 + 2.8%
17s 55.67 0.280 +2.7% 57.33 0.288 +2.4% 59.33 0.285 + 2.5%
20s 51.67 0.274 + 1.0% 52.50 0.272 +2.2% 53.75 0.269 + 2.7%
22s 49.00 0.268 + 2.6% 49.67 0.266 + 3.5% 51.67 0.262 + 1.7%
25s 47.33 0.258 + 0.7% 47.00 0.253 + 0.9% 47.33 0.248 +2.9%
30s 43.67 0.242 + 5.4% 44.00 0.241 +£2.2% 44.00 0.243 + 2.6%
35s 43.67 0.250 + 1.3% 40.75 0.232 £ 4.7% 41.33 0.225 +5.0%
00 35.33 0.211 +2.8% 36.33 0.217 + 4.5% 33.00 0.197 £ 3.7%

Table 3: Number of replans and throughput for Continuous PP.

gram is run on m4 . large instances. Due to computational
constraints, the Gazebo simulator does not run in real-time.
To compensate for this disparity, we delay the communica-
tion of the commands from the client to the server by the
ratio of the simulation time of the Gazebo simulator and the
wall-clock time. We run each setting for 1,000 simulation-
time seconds and record the throughput, measured in jobs
finished per second. In calculating this quantity, we omit the
planning time for generating the first MAPF plan as we are
more interested in the long-term performance.

We present the throughputs and numbers of replans for
all algorithms in Tables 1 to 3. We also present their average
planning time in Table 4. All results are averaged over three
runs, with the standard deviation expressed as a percentage
of the mean. “Rot.” in the tables is short for rotation. We
do not present results for Continuous PP without rotations
in Table 3 because we designed Continuous PP to take the
actual execution times of different actions into account and
ignoring the rotation time thus does not make sense.

Effect of Windowing. A smaller window size w tends to
result in higher throughput in most cases. For high enough
values of w, the throughput plateaus and reaches roughly
the same level as without windowing (i.e., w = 00) in most
cases. We attribute this to smaller window sizes resulting in
shorter MAPF plans to be sent to the ADG each time and
thus leading to higher numbers of replans. Frequent replan-
ning corrects the errors caused by the simplifying assump-
tions made by the MAPF algorithms.

Effect of Rotations. Adding rotations as separate actions
and considering their costs during planning improves the
throughput of both ECBS-TA and PP, presumably due to the
more accurate MAPF model being used.

Effect of k-Robustness. The effect of k-robustness ap-
pears to depend on the algorithm. k-robustness improves
the throughput of ECBS-TA with rotations by roughly 11%
on average, while it leads to mixed results for ECBS-TA
without rotations, especially with large window sizes. k-

Algorithm | Rot. k w | Planning time (s)
00 127+ 3.7%

v 12 11.9+ 0.4%

1 00 16.2 £+ 1.5?

12 14.6 = 4.8%

ECBS-TA 0 00 72+ 21%
X 12 53+ 1.2%

| 00 75+ 3.7%

12 6.4+ 1.8%

0 00 3.5+ 4.1%

v 12 3.0+ 6.7%

1 00 49+ 6.2%

PP 12 39+ 3.2%

0 00 0.8+ 3.3%

X 12 0.6 £ 2.8%

) 00 1.3+ 14.8%

12 1.1+ 22%

00s L2 4.6+ 6.8%

‘ 12s 32+ 7.0%

Continuous v | oss L2 42+ 41%
PP ‘ 12s 32+ 9.0%
10s L 5.8 £15.2%

‘ 12s 42+ 7.3%

Table 4: Average planning time.

robustness appears to have a slightly negative effect on the
throughput of PP. The throughput of Continuous PP with
small window sizes slightly increases from & = 0s to
k = 0.5s but decreases from & = 0.5s to k = 1s. We at-
tribute this behavior to a trade-off between increasing the
throughput due to shorter wait times caused by the Type
2 edges of the ADG and decreasing the throughput due to
longer planning times and MAPF plans.

Effect of Using Exact Execution Times. In order to es-
timate the execution times of different actions, we run pre-
determined action sequences on small maps and record the
average execution time of each action. Based on these mea-
surements, we use 1.250s as the time of a forward action,
0.540s as the time of a 90° (left or right) turn, 0.956s as the
time of a 180° turn, 2.000s as the time of both attaching to
and detaching from a shelf, and 5.000s as the time of waiting
at a station. Using exact execution times with Continuous PP
substantially improves the throughput of the comparable al-
gorithm PP, especially for small window sizes.

Planning Times. Table 4 shows the average planning time
of each algorithm. We only include the planning times for
the lowest and highest window sizes used, namely w = 12
and w = oco. We observe that: (1) Windowing reduces the
average planning time. This is expected, since solving win-
dowed problems is easier than solving the original problems,
(2) Using rotation actions and k-robustness increases the av-
erage planning time. This can be attributed to the resulting
increased problem difficulty. (3) Both PP algorithms are sig-
nificantly faster than ECBS-TA. PP is slightly faster than
Continuous PP. We also observe a higher standard devia-
tion for the planning time of the PP algorithms compared

to ECBS-TA. A few anomalous runs of the PP algorithms
had high planning times and thus idle times between plans
for the agents due to the frequent restarts of the planner.

7 Conclusion

We studied the real-world performance of different MAPF
models in warehouse settings. We first argued that the
MAPF execution frameworks, such as the ADG framework,
offer the same robustness guarantees as the single-agent ex-
ecution frameworks currently used in industry. We incorpo-
rated the windowing framework RHCR for lifelong MAPF
into the ADG framework and ran extensive simulations on
the robot simulator Gazebo to compare different MAPF
models in the resulting framework. We observed that: (1)
Using windowing and considering rotation time during plan-
ning significantly improves throughput in most cases. (2)
Using k-robustness boosts the throughput in some cases. (3)
Considering the robot dynamics to determine and use the
exact execution times of actions during planning achieves
the highest throughput when used in conjunction with win-
dowing, rotation, and k-robustness. It is future work to in-
corporate higher-order dynamics models (Kou et al. 2019;
Andreychuk 2020) into our framework.

Acknowledgments

Sumanth performed his research as an [IUSSTF-Viterbi sum-
mer student at the University of Southern California. The
research was supported by the National Science Foundation
under grant numbers 1409987, 1724392, 1817189, 1837779,
1935712, and 2112533 as well as a gift from Amazon.

References

Andreychuk, A. 2020. Multi-Agent Path Finding with Kinematic
Constraints via Conflict Based Search. In RCAI, 29-45.

Andreychuk, A.; Yakovlev, K.; Boyarski, E.; and Stern, R. 2021.
Improving Continuous-Time Conflict Based Search. In AAAI
11220-11227.

Atzmon, D.; Stern, R.; Felner, A.; Sturtevant, N. R.; and Koenig, S.
2020a. Probabilistic Robust Multi-Agent Path Finding. In ICAPS,
29-37.

Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Bartdk, R.; and
Zhou, N. 2020b. Robust Multi-Agent Path Finding and Executing.
Journal of Artificial Intelligence Research, 67: 549-579.

Barer, M.; Sharon, G.; Stern, R.; and Felner, A. 2014. Subopti-
mal Variants of the Conflict-Based Search Algorithm for the Multi-
Agent Pathfinding Problem. In SoCS, 19-27.

Cap, M.; Gregoire, J.; and Frazzoli, E. 2016. Provably Safe and
Deadlock-Free Execution of Multi-Robot Plans under Delaying
Disturbances. In IROS, 5113-5118.

Chen, J.; Li, J.; Fan, C.; and Williams, B. 2021a. Scalable and
Safe Multi-Agent Motion Planning with Nonlinear Dynamics and
Bounded Disturbances. In AAAI 11237-11245.

Chen, Z.; Alonso-Mora, J.; Bai, X.; Harabor, D. D.; and Stuckey,
P. J. 2021b. Integrated Task Assignment and Path Planning for
Capacitated Multi-Agent Pickup and Delivery. IEEE Robotics and
Automation Letters, 6(3): 5816-5823.

Cohen, L.; Uras, T.; Kumar, T. K. S.; and Koenig, S. 2019. Optimal
and Bounded-Suboptimal Multi-Agent Motion Planning. In SoCS,
44-51.

Contini, A.; and Farinelli, A. 2021. Coordination Approaches for
Multi-Item Pickup and Delivery in Logistic Scenarios. Robotics
and Autonomous Systems, 146: 103871.

Coskun, A.; and O’Kane, J. M. 2019. Online Plan Repair in Multi-
robot Coordination with Disturbances. In /CRA, 3333-3339.

Damani, M.; Luo, Z.; Wenzel, E.; and Sartoretti, G. 2021.
PRIMAL;: Pathfinding Via Reinforcement and Imitation Multi-
Agent Learning - Lifelong. IEEE Robotics and Automation Letters,
6(2): 2666-2673.

Erdmann, M.; and Lozano-Perez, T. 1987. On Multiple Moving
Objects. Algorithmica, 2(1-4): 477.

Goldenberg, M.; Felner, A.; Stern, R.; Sharon, G.; Sturtevant,
N. R.; Holte, R. C.; and Schaeffer, J. 2014. Enhanced Partial Ex-
pansion A*. Journal of Artificial Intelligence Research, 50: 141—
187.

Grenouilleau, F.; van Hoeve, W.; and Hooker, J. N. 2019. A Multi-
Label A* Algorithm for Multi-Agent Pathfinding. In ICAPS, 181-
185.

Ho, F.; Salta, A.; Geraldes, R.; Goncalves, A.; Cavazza, M.; and
Prendinger, H. 2019. Multi-Agent Path Finding for UAV Traffic
Management. In AAMAS, 131-139.

Honig, W.; Kiesel, S.; Tinka, A.; Durham, J. W.; and Ayanian, N.
2018. Conflict-Based Search with Optimal Task Assignment. In
AAMAS, 757-765.

Honig, W.; Kiesel, S.; Tinka, A.; Durham, J. W.; and Ayanian, N.
2019. Persistent and Robust Execution of MAPF Schedules in
Warehouses. IEEE Robotics and Automation Letters, 4(2): 1125—
1131.

Honig, W.; Kumar, T. K. S.; Cohen, L.; Ma, H.; Xu, H.; Ayanian,
N.; and Koenig, S. 2016. Multi-Agent Path Finding with Kinematic
Constraints. In ICAPS, 477-485.

Koenig, N. P.; and Howard, A. 2004. Design and Use Paradigms for
Gazebo, an Open-Source Multi-Robot Simulator. In JIROS, 2149—
2154.

Kou, N. M.; Peng, C.; Ma, H.; Kumar, T. K. S.; and Koenig, S.
2020. Idle Time Optimization for Target Assignment and Path
Finding in Sortation Centers. In AAAI, 9925-9932.
Kou, N. M.; Peng, C.; Yan, X.; Yang, Z.; Liu, H.; Zhou, K.; Zhao,
H.; Zhu, L.; and Xu, Y. 2019. Multi-agent Path Planning with Non-
constant Velocity Motion. In AAMAS, 2069-2071.

Lam, E.; and Bodic, P. L. 2020. New Valid Inequalities in Branch-
and-Cut-and-Price for Multi-Agent Path Finding. In /ICAPS, 184—
192.

Le, D.; and Plaku, E. 2018. Cooperative, Dynamics-based, and
Abstraction-Guided Multi-Robot Motion Planning. Journal of Ar-
tificial Intelligence Research, 63: 361-390.

Li, J.; Chen, Z.; Harabor, D.; Stuckey, P. J.; and Koenig, S.
2022. MAPF-LNS2: Repairing Multi-Agent Path Finding via
Large Neighborhood Search. In AAAIL

Li, J.; Chen, Z.; Zheng, Y.; Chen, S.-H.; Harabor, D.; Stuckey, P. J.;
Ma, H.; and Koenig, S. 2021a. Scalable Rail Planning and Replan-
ning: Winning the 2020 Flatland Challenge. In ICAPS, 477-485.
Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.; and Koenig,
S. 2021b. Pairwise Symmetry Reasoning for Multi-Agent Path
Finding Search. Artificial Intelligence, 301: 103574.

Li, J.; Ruml, W.; and Koenig, S. 2021. EECBS: Bounded-
Suboptimal Search for Multi-Agent Path Finding. In AAAI, 12353—
12362.

Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.; and
Koenig, S. 2021c. Lifelong Multi-Agent Path Finding in Large-
Scale Warehouses. In AAAI 11272-11281.

Li, J.; Zhang, H.; Gong, M.; Liang, Z.; Liu, W.; Tong, Z.; Yi, L.;
Morris, R.; Pasareanu, C.; and Koenig, S. 2019. Scheduling and
Airport Taxiway Path Planning under Uncertainty. In AIAA Avia-
tion Forum.

Liu, M.; Ma, H.; Li, J.; and Koenig, S. 2019. Task and Path Plan-
ning for Multi-Agent Pickup and Delivery. In AAMAS, 1152-1160.
Ma, H.; Kumar, T. K. S.; and Koenig, S. 2017. Multi-Agent Path
Finding with Delay Probabilities. In AAAZ, 3605-3612.

Ma, H.; Li, J.; Kumar, T. K. S.; and Koenig, S. 2017. Lifelong
Multi-Agent Path Finding for Online Pickup and Delivery Tasks.
In AAMAS, 837-845.

Ma, H.; Tovey, C. A.; Sharon, G.; Kumar, T. K. S.; and Koenig, S.
2016. Multi-Agent Path Finding with Payload Transfers and the
Package-Exchange Robot-Routing Problem. In AAAI 3166-3173.
Nguyen, V.; Obermeier, P.; Son, T. C.; Schaub, T.; and Yeoh, W.
2017. Generalized Target Assignment and Path Finding Using An-
swer Set Programming. In IJCAI, 1216-1223.

Phillips, M.; and Likhachev, M. 2011. SIPP: Safe Interval Path
Planning for Dynamic Environments. In /CRA, 5628-5635.
Shahar, T.; Shekhar, S.; Atzmon, D.; Saffidine, A.; Juba, B.; and
Stern, R. 2021. Safe Multi-Agent Pathfinding with Time Uncer-
tainty. Journal of Artificial Intelligence Research, 70: 923-954.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2012.
Conflict-Based Search For Optimal Multi-Agent Path Finding. In
AAAI 563-569.

Silver, D. 2005. Cooperative Pathfinding. In AIIDE, 117-122.

Solis, I.; Motes, J.; Sandstrom, R.; and Amato, N. M. 2021.
Representation-Optimal Multi-Robot Motion Planning Using
Conflict-Based Search. IEEE Robotics and Automation Letters,
6(3): 4608-4615.

Standley, T. S. 2010. Finding Optimal Solutions to Cooperative
Pathfinding Problems. In AAAI, 173-178.

Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.; Walker,
T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.; Boyarski, E.;
and Bartak, R. 2019. Multi-Agent Pathfinding: Definitions, Vari-
ants, and Benchmarks. In SoCS, 151-159.

Street, C.; Lacerda, B.; Miihlig, M.; and Hawes, N. 2020. Multi-
Robot Planning Under Uncertainty with Congestion-Aware Mod-
els. In AAMAS, 1314-1322.

Wagner, G.; and Choset, H. 2011. M*: A Complete Multirobot Path
Planning Algorithm with Performance Bounds. In /ROS, 3260-
3267.

Wagner, G.; and Choset, H. 2017. Path Planning for Multiple
Agents under Uncertainty. In ICAPS, 577-585.

Walker, T. T.; Sturtevant, N. R.; and Felner, A. 2020. Generalized
and Sub-Optimal Bipartite Constraints for Conflict-Based Search.
In AAAIL 7277-7284.

Walker, T. T.; Sturtevant, N. R.; Zhang, H.; Li, J.; Felner, A.; and
Kumar, T. K. S. 2021. Conflict-Based Increasing Cost Search. In
ICAPS, 385-395.

Wang, H.; and Rubenstein, M. 2020. Walk, Stop, Count, and Swap:
Decentralized Multi-Agent Path Finding With Theoretical Guaran-
tees. IEEE Robotics and Automation Letters, 5(2): 1119-1126.
Wang, K. C.; and Botea, A. 2008. Fast and Memory-Efficient
Multi-Agent Pathfinding. In ICAPS, 380-387.

Wurman, P. R.; D’ Andrea, R.; and Mountz, M. 2007. Coordinating
Hundreds of Cooperative, Autonomous Vehicles in Warehouses. In
AAAI 1752-1760.

Yu, J.; and LaValle, S. M. 2013. Structure and Intractability of
Optimal Multi-Robot Path Planning on Graphs. In AAAI 1444—
1449.

