


in a range of experiments and across a variety of domains.

Train Scheduling vs. Train Planning

Existing research on rail operations focuses on train schedul-
ing (Yang et al. 2016; Cacchiani, Qi, and Yang 2020; Lusby
et al. 2011), which includes network planning, line plan-
ning, timetable generation, train routing, and platform as-
signment. Our work focuses on optimal collision-free path
planning for agents with lengths. In the literature, this prob-
lem is called Multi-Train Path Finding (Atzmon et al. 2018),
although the setup applies more broadly (e.g., road convoys,
snake robots, etc.). We aim to compute paths that allow train-
like agents to move from start to goal without collisions.
Higher-level train-planning, like line planning or network
planning, is performed based on path information provided
by path planning. Lower-level train-planning is more about
train management and operation. Both are beyond the scope
of this research.

Multi-Train Path Finding (MTPF)

We assume an operating environment that can be modeled
as an undirected or directed graph G = (V,E), where each
vertex has up to 4 neighbors1 (e.g., a gridmap or rail net-
work). m agents A = {a1, ..., am} operate on the graph.
Every agent ai is assigned a start vertex si ∈ V , a goal
vertex gi ∈ V , and a body length ki ∈ N. Its total length
is ki + 1, accounting for its head. Time is discretised into
unit-size timesteps. At each timestep, the agents move to a
neighboring vertex or wait at their current vertex. Each move
or wait action takes unit time.

A path πi of agent ai consists of a set of occupation lists.
We denote the ki + 1 vertices that ai occupies at timestep t
as Oi(t) = [v0, . . . , vki

] and the first vertex in Oi(t) as hi(t)
(called the head vertex). If the head of the agent is at vertex
v0 at timestep t and moves to v−1 at timestep t+1, then the
new occupation list is Oi(t + 1) = [v−1, v0, . . . , vki−1]. If
the agent waits, then Oi(t+ 1) = Oi(t).

Each agent’s occupation list includes only its head ver-
tex when the agent is at its start vertex. When the agent
moves away from its start vertex, it grows in size to oc-
cupy ki + 1 vertices eventually. This model fits rail net-
works where trains begin in private sliding (offmap parking)
or road networks where convoys start from private parking
stations. It is also possible that the initial occupation list con-
sists of ki+1 vertices, but this goes beyond the data provided
by our set of benchmark instances.

Compared to previous models for MTPF (Atzmon, Diei,
and Rave 2019) and kR-MAPF (Atzmon et al. 2018; Chen
et al. 2021), which assume that all agents have the same
length and robustness guarantee (respectively), our approach
allows each agent ai to have an individual value for ki. We
also consider three variants of MTPF, each one of which cor-
responds to a different real-world scenario of different com-
putational difficulty:

1This restriction is only required for our rectangle symmetry
breaking technique. Otherwise, the 4-neighbor restriction can be
relaxed, and all other techniques remain applicable.

• MTPF Variant 1: Existing research (Atzmon, Diei, and
Rave 2019) considers agents that shrink to total length
1 and continue to occupy only their goal vertices once
they arrive there. This is analogous to the standard MAPF
problem.

• MTPF Variant 2: A second variant assumes that agents
enter private slidings when they arrive at their goal ver-
tices and thus disappear from the map, which means that
they shrink to total length 0 and no longer occupy any
vertices. This is the MTPF variant used in the NeurIPS
2020 Flatland Challenge (Laurent et al. 2021).

• MTPF Variant 3: A third variant assumes that each agent
parks its head at its goal vertex, thus occupying ki + 1
vertices once arrived there. This variant is distinct from a
variant where the goal fully specifies the final vertices of
the head and body of the agent.

A plan π is a set of paths πi for each agent ai. It is a
valid MTPF plan iff it does not contain any conflicts of the
following three kinds.

Definition 1 (Occupation Conflicts). An occupation conflict
〈ai, aj , v, t〉 occurs iff agents ai and aj both occupy vertex
v at timestep t, i.e., v ∈ Oi(t) ∩Oj(t).

Definition 2 (Self Conflicts). A self conflict 〈ai, v, t〉 occurs
iff agent ai occupies vertex v at timestep t more than once,
i.e., v appears more than once in Oi(t).

Definition 3 (Edge Conflicts). If ki = 0 and kj = 0, then an
edge conflict occurs iff agents ai and aj traverse the same
edge in opposite directions at the same timestep. Otherwise,
an edge conflict implies an occupation conflict. We ignore
edge conflicts in the remainder of the paper, but they are
handled correctly by our implementation.

Our task is to find an optimal MTPF plan, which is a valid
MTPF plan that minimizes some objective. We use the Sum
of Individual Costs (SIC)

∑
i eti, where eti is the end time

(equivalent to the number of timesteps in the path) for agent
ai.

Previous Approaches

We provide a brief overview of existing work for MTPF
(which we tackle) and a closely related variant known as
kR-MAPF (from which we adapt various ideas).

MT-CBS

Multi-Train Conflict-Based Search (MT-CBS) (Atzmon,
Diei, and Rave 2019) is an algorithm capable of computing
optimal MTPF plans. It is a variant of the popular CBS al-
gorithm (Sharon et al. 2015) for optimal MAPF. We provide
a brief description of MT-CBS, since it is closely related to
our own contributions.

In MT-CBS, each agent is assigned a path from its start
vertex to its goal vertex. Coordination between agents is due
to constraints in a binary Constraint Tree (CT). Each node n
in the CT is associated with a set of constraints C and a plan
π. If n is chosen for expansion and π has no conflicts, then
MT-CBS returns π as an optimal MTPF plan. Otherwise, it
selects an occupation conflict 〈ai, aj , v, t〉 in π and deter-
mines a disjunction of constraints ci ∨ cj which is true in



any valid MTPF plan, but each of whose disjuncts prevents
the chosen conflict from repeating. n is then expanded by
adding two child nodes to the CT, one with the constraint set
C ∪ {ci} and the other one with the constraint set C ∪ {cj}.
Only one of the two agents ai and aj is replanned in each
child node to determine a new path for it. To address the
occupation conflict, MT-CBS uses the two occupation con-
straints

• ci ≡ v 6∈ Oi(t) and

• cj ≡ v 6∈ Oj(t).

Clearly, any valid MTPF plan π must satisfy ci∨cj because,
otherwise, both agents occupy vertex v at timestep t, leading
to an occupation conflict. The authors of (Atzmon, Diei, and
Rave 2019) also modified the low-level path planner to avoid
assigning agents paths with self conflicts (which we describe
in detail later).

kR-MAPF and K-CBS

kR-MAPF (Atzmon et al. 2018) is a variant of MAPF that
aims to handle the situation where agents can be unexpect-
edly delayed during the execution of the plan. Such delays
can happen for a number of reasons, e.g., due to mechanical
difference, failure, or an agent being otherwise interrupted
on the way to its goal vertex. A valid kR-MAPF plan avoids
conflicts due to such delays as long as no agent is delayed
by more than k timesteps, where the delay limit k is a user-
provided parameter. K-CBS (Atzmon et al. 2018) computes
optimal kR-MAPF plans that provide such guarantees. It de-
tects k-delay conflicts, which occur between two agents ai
and aj at vertex v at timestep t iff hi(t) = hj(t

′) = v and
0 ≤ t′ − t ≤ k, and resolves each of them by the two sets of
head constraints

• ci ≡ ∀t′ ∈ [t, t+ k], hi(t
′) 6= v and

• cj ≡ ∀t′ ∈ [t, t+ k], hj(t
′) 6= v.

Unfortunately, K-CBS suffers from a variety of issues that
can make it inefficient. Recent work (Chen et al. 2021) im-
proves it via the addition of speed-up techniques such as
admissible heuristics (Felner et al. 2018), conflict prioriti-
zation (Boyarski et al. 2015), and symmetry reasoning (Li
et al. 2020). The resulting algorithm K-CBSH-RCT repre-
sents the state-of-the-art in this area.

Low-Level Solver in MT-CBS and K-CBS

A critical component of CBS for optimal MAPF is the plan-
ning and re-planning of single-agent paths in its low level,
subject to constraints. For an agent ai with ki = 0, a sim-
ple A* search is sufficient. Here, constraints are modeled as
temporal obstacles, and a path of smallest end time is re-
turned, where ties are broken by a secondary criterion, such
as the number of times the path uses spatio-temporal vertices
assigned to the paths of other agents in the current plan. We
call this solver Low-Level Path Planning (LLPP).

LLPP is also applicable to K-CBS since resolving con-
flicts caused by delays requires adding only head constraints.
However, this is not the case for MTPF, where self conflicts
can occur. To avoid self conflicts and to distinguish occupa-
tions with the same head vertex but different body vertices,

an agent with body length ki > 0 must remember all its
ki+1 occupied vertices during the search . In addition, if an
agent is constrained by an occupation constraint v 6∈ Oi(t),
we must record all vertices occupied by the agent to ensure
satisfaction of the constraint. This makes path planning for
MTPF much more time-consuming. We call this solver Low-
Level Train Planning (LLTP).

MTPF Plans from kR-MAPF Plans

We first extend kR-MAPF to handling agents of varying
k values and then show that kR-MAPF is a relaxation of
MTPF.

kR-MAPF with Varying Robustness

kR-MAPF assumes that the delay of each agent is at most k
timesteps. We now generalize kR-MAPF to handling agents
ai with different delay limits ki.

Definition 4 (∆-Delay Conflicts). A ∆-delay conflict
〈ai, aj , v, t,∆〉 occurs iff agents ai and aj plan to enter the
same vertex v at timesteps t and t′ = t + ∆, ∆ ∈ [0, ki],
respectively, i.e., hi(t) = hj(t

′) = v and 0 ≤ t′ − t ≤ ki.

A plan is a valid kR-MAPF plan iff it contains no ∆-delay
conflict. We resolve a ∆-delay conflict 〈ai, aj , v, t,∆〉 by
the two head constraints

• ci ≡ ∀t′ ∈ [t, t+ kj ], hi(t
′) 6= v and

• cj ≡ ∀t′ ∈ [t, t+ ki], hj(t
′) 6= v.

Theorem 1. Any valid kR-MAPF plan π satisfies ci ∨ cj .

Proof. Assume the contrary, namely that a valid kR-MAPF
plan π violates both constraints, so agent ai occupies vertex
v at timestep ti ∈ [t, t + kj ] and agent aj occupies vertex
v at timestep tj ∈ [t, t + ki]. If ti ≤ tj , then the earliest
timestep when agent ai occupies vertex v is timestep ti = t
and the latest timestep when agent aj occupies vertex v is
timestep tj = t + ki. Then, tj − ti ≤ t + ki − t = ki and
agents ai and aj have a ∆-delay conflict. If tj < ti, then
ti − tj ≤ t + kj − t = kj , and agents aj and ai have a
∆-delay conflict. Since there is a ∆-delay conflict in either
case, π is not a valid plan. Contradiction.

kR-MAPF as a Relaxation of MTPF

We now show that kR-MAPF is a strict relaxation of MTPF.

Lemma 1. A plan with a ∆-delay conflict has an occupation
conflict.

Proof. Given a ∆-delay conflict 〈ai, aj , v, t,∆〉, we know
that hi(t) = v. Because agent ai has body length ki for the
MTPF instance, it occupies vertex v at least until timestep
t + ki. Since ∆ ≤ ki, there is an occupation conflict
〈ai, aj , v, t+∆〉.

The reverse does not hold. For example, Figure 1(right)
shows an occupation conflict 〈a1, a2, D, t + 4〉, which is
not a ∆-delay conflict, as indicated by Figure 1(left). With
Lemma 1, we have the following key theorem.

Theorem 2. A valid MTPF plan is a valid kR-MAPF plan.



Algorithm 1: Lazy Train Path Finding by CBS.

LT-CBS(G, A):
foreach ai ∈ A:

Mi = LLPP % M records each agent’s low-level solver.
πi = a shortest path for agent ai planned by Mi

Q.insert((π, ∅,M))
while Q 6= ∅:

(π,C,M) = Q.pop() % The top entry is also removed
if π has a ∆-delay conflict: % or edge conflict

choose a ∆-delay conflict x ≡ 〈ai, aj , v, t,∆〉 in π
(ci, cj) = constraints for resolving x
replan-insert(ai, C ∪ {ci}, M , π)
replan-insert(aj , C ∪ {cj}, M , π)

elseif π has a self conflict:
choose self conflict 〈ai, v, t〉 in π
Mi = LLTP
replan-insert(ai, C, M , π)

elseif π has a (head) occupation conflict:
choose occupation conflict x ≡ 〈ai, aj , v, t〉 in π
(ci, cj) = constraints for resolving x
replan-insert(ai, C ∪ {ci}, M , π)
Mj = LLTP
replan-insert(aj , C ∪ {cj}, M , π)

else: return π
return ⊥

replan-insert(ai, C, M , π):
π′

i = a shortest path for agent ai that satisfies C planned by Mi

if π′

i exists: Q.insert((π − {πi} ∪ {π′

i}, C,M))
return

Lazy Train Path Finding

As discussed, LLTP for finding valid MTPF plans is much
more time-consuming than LLPP for finding valid kR-
MAPF plans, particularly as the body lengths of agents
grow. Therefore, when solving MTPF, we delay using the
expensive LLTP by searching for valid kR-MAPF plans first
since any valid MTPF plan is also a valid kR-MAPF plan.
That is, when running CBS, we first resolve ∆-delay con-
flicts with LLPP. Only when a plan is a valid kR-MAPF
plan, we resolve its occupation and self conflicts with LLTP.
Algorithm 1 shows our algorithm. which we call Lazy Train
Path Finding by CBS (LT-CBS).

To start with, we construct an initial plan π where every
agent ai takes its shortest path, as computed by LLPP. A
priority queue of nodes Q stores triples of the type (π, C,
M ), where π is the plan, C is the set of constraints, and M
stores the low-level solver (either LLPP or LLTP) for each
agent. The root node stores the initial plan, no constraints,
and LLPP for all agents.

Like MT-CBS, we pop the node with the lowest f -value
from the priority queue. The f -value in MT-CBS is the SIC
of the plan of the node (i.e., f = g). In LT-CBS, we use
f = g + h, where the h-value is an admissible heuris-
tic adapted from MAPF (Felner et al. 2018) that under-
estimates the minimum increase of the SIC of the plan when
resolving all of its conflicts.

When expanding a node, we resolve a ∆-delay conflicts
with highest priority. This means computing constraints to

resolve the conflict (using symmetry reasoning where appli-
cable; we discuss this shortly) and replanning the paths of
the two affected agents. The result is two new child nodes
which are added to the priority queue. Each child node uses
the same low-level solvers as the parent node.

We resolve a self conflict with second-highest priority.
If any agent ai has a self conflict, we change its low-level
solver Mi to LLTP and find a new path for it. We then add
to the priority queue a new node with the revised path and
no additional constraints. All descendant nodes of this node
will use LLTP as the low-level solver for agent ai.

We resolve an occupation conflict with the lowest priority.
MT-CBS uses LLTP to plan paths for both agents involved
in an occupation conflict. But, by resolving only head occu-
pation conflicts, we only need to change the low-level solver
of one of the two agents to LLTP.

If there is no conflict, then we return the current plan.

Definition 5 (Head Occupation Conflicts). An occupation
conflict 〈ai, aj , v, t〉 is a head occupation conflict iff v =
hi(t) or v = hj(t), that is, the conflict involves the head of
some agent. Without loss of generality, we assume a head
occupation conflict 〈ai, aj , v, t〉 always has v = hi(t).

Lemma 2. An MTPF plan with an occupation conflict has
a head occupation conflict.

Proof. Consider an occupation conflict 〈ai, aj , v, t〉. If v =
hi(t) or v = hj(t), then the conflict is a head occupation
conflict, and we are done. Otherwise, both agents occupied
vertex v already one timestep earlier since their heads moved
through v. So v ∈ Oi(t − 1) ∩ Oj(t − 1), indicating that
the two agents have an occupation conflict 〈ai, aj , v, t− 1〉.
Recursing the argument gives the desired result.

Because of Lemma 2, we restrict the consideration of oc-
cupation conflicts in LT-CBS to head occupation conflicts.
We resolve a head occupation conflict 〈ai, aj , v, t〉 by a head
constraint and an occupation constraint

• ci ≡ hi(t) 6= v and

• cj ≡ v /∈ Oj(t).

Atzmon, Diei, and Rave (2019) show that any valid MTPF
plan satisfies ci ∨ cj . We have to use LLTP to plan paths for
aj , but, for ai, which only gets a head occupation constraint,
we can still use the same low-level solver as in the parent
node.

Lemma 3. Any valid MTPF plan satisfies the constraints
of at least one node in priority queue in every iteration of
LT-CBS.

Proof. The lemma holds for the first iteration of LT-CBS
because priority queue contains only the root node, which
has no constraints. We have shown that any valid MTPF plan
must satisfy at least one of the disjunctive constraints that
are used to resolve the chosen conflict in a given node n, so
any valid MTPF plan that satisfies the constraints of n also
satisfies the constraints of at least one of its child nodes. The
lemma can be then proved by induction.

Lemma 4. The number of nodes expanded by LT-CBS with
f -values no larger than a given constant is finite.







Constraint ci asks agent ai to complete its path before
timestep t and permanently “park” on vertex v. A conse-
quence of this constraint is that any other agent occupying
vertex v at or after timestep t must also be replanned. That is,
ci implies ∀x 6= i ∀tx ≥ t, v /∈ Ox(tx). Constraint cj asks
ai to not “park” at vertex v until after timestep t. If both ci
and cj are simultaneously violated it means there exists an
agent ai with v ∈ Oi(eti), eti ≤ t and another agent aj has
hj(t

′) = v, t′ > t; i.e., there must exist a parking conflict.
Clearly ci ∨ cj holds in any valid MTPF plan.

Experiments

We compare our approaches to MTPF with the original ap-
proach MT-CBS (Atzmon, Diei, and Rave 2019). We com-
pare MT-CBS against three variants of LT-CBS, namely the
basic variant LT-CBS defined in Algorithm 1, the strongest
variant LT-CBSH-RCT, which uses admissible (H)euristics
and symmetry reasoning for (R)ectangles, (C)orridors, and
(T)arget conflicts, and a strawman variant LT-CBSH-RCT−,
which resolves only ∆-delay conflicts (i.e., ignores occu-
pation and self conflicts) and thus finds optimal kR-MAPF
plans. Because of Theorem 2, the optimal kR-MAPF plan
found by LT-CBSH-RCT− is an optimal MTPF plan iff the
plan does not contain any occupation and self conflicts. That
is, LT-CBSH-RCT− succeeds iff its found plan is a valid
MTPF plan. We use it to show the strength of the relaxation
for MTPF. (P)arking conflicts reasoning is applicable to and
thus considered in only MTPF Variant 3. All algorithms
were written in C++. The experiments were performed on
a server with Intel Xeon CPU (Skylake) and 64 GB RAM,
with a runtime limit of 90 seconds.

We use 4 grid-based maps from a standard MAPF bench-
mark set (Stern et al. 2019), namely random-32-32-10 (de-
noted random), room-32-32-4 (denoted room), warehouse-
20-40-10-2-1 (denoted warehouse), and den520d (denoted
game). We also test on Flatland Challenge (Laurent et al.
2021), a train planning problem where the trajectories of
moving agents must be coordinated on a simplified rail net-
work. Our experiments use flatland-rl v2.2.2 to generate
problem instances. For each domain, we consider an increas-
ing number of agents, and for each number of agents, we
solve 25 different instances. We uniformly generate body
lengths for agents ai with

ki = Kmax − (i− 1) mod (Kmax + 1),

where Kmax is an experiment parameter that defines the
maximum body length.

MTPF Variant 1 on Grid-Based Maps

This setup is the same as (Atzmon, Diei, and Rave 2019),
and we therefore compare the success rates of our algorithms
against those of MT-CBS on our 4 grid-based maps in Fig-
ure 5. LT-CBS has a significant advantage over MT-CBS on
some maps and is never worse on the other maps. The power
of symmetry breaking is made clear by the success rate of
LT-CBSH-RCT over that of LT-CBS. The power of relax-
ation is demonstrated by LT-CBSH-RCT−, whose success
rate is usually very close to LT-CBSH-RCT, although there

Map Kmax RSOD LLPP LLTP

Random
2 0.87 558.3± 518.52 1.62± 2.04
4 0.94 887.06± 800.33 1.94± 3.35
8 0.97 577.93± 923.68 21.87± 43.73

Warehouse
2 0.96 146.45± 89.51 0.32± 0.58
4 0.91 171.21± 120.63 0.12± 0.10
8 0.86 261.75± 246.46 0.14± 0.12

Room
2 0.66 2392.46± 1230.56 1.67± 1.11
4 0.65 2130.81± 1187.86 170.67± 284.33
8 0.64 1636.83± 995.56 63.53± 69.01

Game
2 1.0 87.49± 26.52 0.00± 0.00
4 1.00 109.80± 52.05 0.00± 0.00
8 1.00 40.30± 13.56 0.00± 0.00

Table 1: RSOD and average number of LLPP/LLTP searches
±2×Standard Error over all solved instances using LT-
CBSH-RCT.

is a notable difference on the room map. This shows that
we do not need to use train planning that often. The main
drawback of LT-CBSH-RCT− is its incompleteness: If the
returned plan is not a valid MTPF plan, it reports failure,
even if a valid MTPF plan exists.

Table 1 reports the average number of LLPP and LLTP
searches and the ratio of the instances solved by resolving
only ∆-delay conflicts (RSOD) over all solved instances us-
ing LT-CBSH-RCT. First of all, LLTP is used on most of the
maps, indicating that resolving head occupation or self con-
flicts is needed. LT-CBSH-RCT has high RSOD and barely
uses LLTP for most of the solved instances on the warehouse
and game maps. However, on the random and room maps,
it requires more LLTP searches, indicating that there exist
more head occupation or self conflicts that are not ∆-delay
conflicts on these two maps.

Furthermore, we count the average number of nodes ex-
panded per low-level search for MT-CBS and LT-CBS. MT-
CBS expanded 355 nodes per search and LT-CBS expanded
180 nodes per search, which shows LLTP is more expensive
than LLPP.

MTPF Variant 2 on Simplified Railway Systems

Figure 6b shows an example Flatland instance. The map
contains several cities connected by rails. Each city has a sta-
tion that provides off-map parking: before trains begin and
after they reach their goal vertices. Each station can be the
start or goal vertex for multiple trains. A departure timetable
specifies the earliest timestep di when a train ai can enter
the map and leave its start station. If train ai has the small-
est ID over all trains departing from the same station, then
it can enter the map at or after timestep di = 1. The train
aj with the next largest ID can enter the map at or after
timestep dj = di + ki + 1. The same rules apply for later
trains. We use the simulator generator with a random seed
varying from 1 to 25 to generate two sets of 25 instances.
The first set uses 50× 50 grids with a maximum of 8 cities,
denoted small railways, and the second set uses 100 × 100
grids with a maximum of 20 cities, denoted large railways.
In both cases, the generator creates at most 2 rails between





MT-CBS, a state-of-the-art MTPF planner from the recent
literature. To improve LT-CBS further, we introduced a num-
ber of generalized symmetry-breaking techniques. This in-
cludes resolution strategies for rectangle, corridor and target
symmetries, which had previously been considered only for
MAPF and kR-MAPF with varying robustness, as well as
newly identified parking symmetry conflicts, which only oc-
cur in MTPF. Together, these changes improve the efficiency
of state-of-the-art MTPF algorithms substantially.

Future research will focus on other kinds of symmetries
that arise in MTPF, e.g., two agents traversing a wide cor-
ridor in the same direction but their paths intersect. We
will also overcome the issue that current rectangle reason-
ing sometimes cannot remove all collision plans in one split
to guarantee optimality.

Acknowledgments

The research at Monash University was partially sup-
ported by the Australian Research Council under grants
DP190100013 and DP200100025 as well as a gift from
Amazon. The research at the University of Southern Califor-
nia was partially supported by the National Science Foun-
dation under grant 1409987, 1724392, 1817189, 1837779,
1935712, and 2112533 as well as a gift from Amazon. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the spon-
soring organizations, agencies, or the U.S. government.

References

Atzmon, D.; Diei, A.; and Rave, D. 2019. Multi-Train Path
Finding. In Proceedings of the Annual Symposium on Com-
binatorial Search (SoCS), 125–129.

Atzmon, D.; Stern, R.; Felner, A.; Wagner, G.; Barták, R.;
and Zhou, N.-F. 2018. Robust Multi-Agent Path Finding.
In Proceedings of the Annual Symposium on Combinatorial
Search (SoCS), 2–9.

Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin, D.;
Betzalel, O.; and Shimony, S. E. 2015. ICBS: Improved
Conflict-Based Search Algorithm for Multi-Agent Pathfind-
ing. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), 740–746.

Cacchiani, V.; Qi, J.; and Yang, L. 2020. Robust Opti-
mization Models for Integrated Train Stop Planning and
Timetabling with Passenger Demand Uncertainty. Trans-
portation Research Part B: Methodological, 136: 1–29.

Chen, Z.; Harabor, D.; Li, J.; and Stuckey, P. J. 2021. Sym-
metry Breaking for k-Robust Multi-Agent Path Finding. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 12267–12274.

Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar,
T. S.; and Koenig, S. 2018. Adding Heuristics to Conflict-
Based Search for Multi-Agent Path Finding. In Proceedings
of the International Conference on Automated Planning and
Scheduling (ICAPS), 83–87.

Laurent, F.; Schneider, M.; Scheller, C.; Watson, J.; Li, J.;
Chen, Z.; Zheng, Y.; Chan, S.-H.; Makhnev, K.; Svidchenko,

O.; Egorov, V.; Ivanov, D.; Shpilman, A.; Spirovska, E.;
Tanevski, O.; Nikov, A.; Grunder, R.; Galevski, D.; Mitro-
vski, J.; Sartoretti, G.; Luo, Z.; Damani, M.; Bhattacharya,
N.; Agarwal, S.; Egli, A.; Nygren, E.; and Mohanty, S. 2021.
Flatland Competition 2020: MAPF and MARL for Efficient
Train Coordination on a Grid World. In Proceedings of the
NeurIPS 2020 Competition and Demonstration Track, 275–
301.

Li, J.; Gange, G.; Harabor, D.; Stuckey, P. J.; Ma, H.; and
Koenig, S. 2020. New Techniques for Pairwise Symmetry
Breaking in Multi-Agent Path Finding. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 193–201.

Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and
Koenig, S. 2019a. Disjoint Splitting for Multi-Agent Path
Finding with Conflict-Based Search. In Proceedings of
the International Conference on Automated Planning and
Scheduling (ICAPS), 279–283.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; Gange, G.; and
Koenig, S. 2021. Pairwise Symmetry Reasoning for Multi-
Agent Path Finding Search. Artificial Intelligence, 301:
103574.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig,
S. 2019b. Symmetry-Breaking Constraints for Grid-Based
Multi-Agent Path Finding. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI), 6087–6095.

Lusby, R. M.; Larsen, J.; Ehrgott, M.; and Ryan, D. 2011.
Railway Track Allocation: Models and Methods. OR Spec-
trum, 33(4): 843–883.

Mokhtar, H.; Krishnamoorthy, M.; Dayama, N. R.; and Ku-
mar, P. R. 2020. New Approaches for Solving the Convoy
Movement Problem. Transportation Research Part E: Lo-
gistics and Transportation Review, 133: 101802.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-Based Search for Optimal Multi-Agent Pathfind-
ing. Artificial Intelligence, 219: 40–66.

Singh, A.; Gong, C.; and Choset, H. 2018. Modelling and
Path Planning of Snake Robot in Cluttered Environment.
In International Conference on Reconfigurable Mechanisms
and Robots (ReMAR), 1–6.

Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. S.;
et al. 2019. Multi-Agent Pathfinding: Definitions, Variants,
and Benchmarks. In Proceeding of the Annual Symposium
on Combinatorial Search (SoCS), 151–158.

Takemori, T.; Tanaka, M.; and Matsuno, F. 2018. Gait
Design for a Snake Robot by Connecting Curve Segments
and Experimental Demonstration. IEEE Transactions on
Robotics, 34(5): 1384–1391.

Yang, L.; Qi, J.; Li, S.; and Gao, Y. 2016. Collaborative
Optimization for Train Scheduling and Train Stop Planning
on High-Speed Railways. Omega, 64: 57–76.


