
Registered Report: First, Fuzz the Mutants

Alex Groce

and Goutamkumar Tulajappa Kalburgi

Northern Arizona University

alex.groce@nau.edu, gk325@nau.edu

Claire Le Goues

and Kush Jain

Carnegie Mellon University

clegoues@cs.cmu.edu, kdjain@andrew.cmu.edu

Rahul Gopinath

CISPA, Saarland University

rahul@gopinath.org

Abstract—Most fuzzing efforts, very understandably, focus on
fuzzing the program in which bugs are to be found. However,
in this paper we propose that fuzzing programs “near” the
System Under Test (SUT) can in fact improve the effectivness
of fuzzing, even if it means less time is spent fuzzing the actual
target system. In particular, we claim that fault detection and
code coverage can be improved by splitting fuzzing resources
between the SUT and mutants of the SUT. Spending half of
a fuzzing budget fuzzing mutants, and then using the seeds
generated to fuzz the SUT can allow a fuzzer to explore more
behaviors than spending the entire fuzzing budget on the SUT.
The approach works because fuzzing most mutants is “almost”
fuzzing the SUT, but may change behavior in ways that allow
a fuzzer to reach deeper program behaviors. Our preliminary
results show that fuzzing mutants is trivial to implement, and
provides clear, statistically significant, benefits in terms of fault
detection for a non-trivial benchmark program; these benefits are
robust to a variety of detailed choices as to how to make use of
mutants in fuzzing. The proposed approach has two additional
important advantages: first, it is fuzzer-agnostic, applicable to
any corpus-based fuzzer without requiring modification of the
fuzzer; second, the fuzzing of mutants, in addition to aiding
fuzzing the SUT, also gives developers insight into the mutation
score of a fuzzing harness, which may help guide improvements
to a project’s fuzzing approach.

I. INTRODUCTION

Fuzzing is an essential tool for ensuring that software is
robust, secure, and as error-free as possible [?]. However,
even relatively simple program patterns can cause problems for
fuzzing, despite the vast effort devoted to improving fuzzing
techniques in both academic and industrial settings, recently.

For instance, consider the problem of fuzzing a program
whose structure is as follows:

if (!hard1(input)) {
return 0;

}
if (!hard2(input)) {

return 0;

}
crash();

Assume that conditions hard1 and hard2 are inde-
pendent constraints on an input, both of which are difficult

to achieve. A normal mutation-based fuzzer such as AFL
or libFuzzer attempting to reach the call to crash will
generally first have to construct an input satsifying hard1

and then, while preserving hard1, modify that input until it
also satisfies hard2. A key point to note is that if the fuzzer
accidentally produces an input that is a good start on satisfying
hard2, or even completely satisfies hard2, before “solving”
hard1, such an input will be discarded, because execution
never reaches the implementation of hard2 unless hard1

has already been “solved.” There is no reason for the fuzzer’s
interestingness function to consider such inputs for adding to
the fuzzing queue.

Even though the fuzzer must eventually satisfy both con-
ditions, it can only work on them in the execution order. By
analogy, consider the problem of rolling a pair of ordered
dice. If the goal is to roll two values above five, and you
are allowed to “save” a good roll of the first of the two dice
and use it in future attempts, the problem is easier than if the
dice have to be rolled from scratch each time (i.e., coverage-
driven mutation-based fuzzing is usually more effective than
pure random testing). However, it is not as easy as if good
rolls of the second die can also be saved, even if the first die
has never produced a five or six! In fact, if our die has 1,000
sides, and we want each die rolled to have a value of 998 or
above, allowing the second die to be saved reduces the number
of required trials by close to one third, and the improvement
increases with the difficulty of the second condition1.

If we fuzz a variant of our example program that is
modified to omit the first return statement:

if (!hard1(input)) {
/* return 0; */

}
if (!hard2(input)) {

return 0;

}
crash();

then progress towards both hard1 and hard2 can be made
at the same time, independently, in any order. If a generated
input progresses achievement of either hard1 or hard2 it
will be kept and used in further fuzzing. Of course, crashing
inputs for this modified program are seldom crashing inputs for
the original program. However, given a partial or total solution
to hard1 and a partial or total solution to hard2, it should
be much easier for a fuzzer to construct a crashing input for

1The basic power of coverage-guided fuzzing of course, is even more
critical: allowing saving the first die improves the number of rolls needed
by orders of magnitude, not a mere large percentage.

International Fuzzing Workshop (FUZZING) 2022
27 February 2022, Virtual
ISBN 1-891562-77-0
https://dx.doi.org/10.14722/fuzzing.2022.23xxx
www.ndss-symposium.org



the original program. This is a very simple example of a case
where fuzzing a similar program can produce inputs such that
1) they help fuzz the actual program under test and 2) those
inputs are much harder, or potentially almost impossible, to
generate by fuzzing the actual target program.

Three points are important to note about this approach:
first, fuzzing an arbitrary program would be of no use here.
Inputs useful in exploring that program would likely be useless
in exploring the real target of fuzzing. Second, if a modification
has little semantic impact on the original program, then fuzzing
that variation is, to a large extent, the same as fuzzing the
original program, with the only cost being some additional
fuzzer logistics overhead. For instance, fuzzing this variation
of our example program:

if (!hard1(input)) {
return 1;

}
if (!hard2(input)) {

return 0;

}
crash();

is, for purposes of input generation, no different than fuzzing
the original target program. Only exit codes from the program
are affected, if the return statement appears in main.
Similarly, a version removing the call to crash will still
result in the fuzzer attempting to “push through” hard1, even
though the result of complete success will be less dramatic
until the input is applied to the actual target program, and
fuzzing

if (!hard1(input)) {
return 0;

}
if (hard2(input)) {

return 0;

}
crash();

is, until hard1 is covered, indistinguishable from fuzzing the
original target program. Of course, not all variants are helpful
or harmless. Fuzzing degenerate versions like this:

if (1) {
return 0;

}
if (!hard2(input)) {

return 0;

}
crash();

is obviously a waste of time.

Removing difficult checks is not the only potential win
when fuzzing variants. Consider the problem of fuzzing a
compiler that includes a very expensive optimization pass.
Transforming the code by removing a call to that pass may
not make it easier to hit a deep bug in another part of the
code, in terms of behavior of the inputs, but might improve
fuzzing throughput so much that paths through other parts of
the code are explored much sooner, and thus the bug is found
much more quickly. In particular, if an optimization pass is

very likely to have quadratic or worse behavior on fuzzer-
generated inputs, disabling it may be tremendously productive.

Predicting which program variants will aid fuzzing seems
inherently hard. In the example, removing a well-chosen
statement was extremely useful; in other cases breaking out
of a loop before it fails a check (by adding a break) or
skipping a check in loop (by adding a continue) might be
important, or turning a condition into a constant true — or
constant false! Analysis capable of detecting reliably “good”
changes seems likely to be fundamentally about as hard as
fuzzing itself, or symbolic execution. Recall however, that
many variants that are not useful will also be harmless, in that
they amount to simply fuzzing the target. What we need is a
source of similar programs that will include the (perhaps rare)
high-value variants (such as removing the return above), and
will not include too many programs so dis-similar in semantics
they provide no value.

Program mutants provide such variants, by design [?].
Mutants are designed to show weaknesses in a testing effort,
by showing the ability of a test suite to detect plausible bugs.
The majority of such hypothetical bugs must be semantically
similar enough to the original program that a test suite’s ef-
fectiveness is meaningful for the mutated program. Therefore,
most program mutants will satisfy the condition of being
close enough to the target of fuzzing. Mutants are roughly
evenly distributed over a program’s source code, and modify
only a single location. Therefore most uninteresting mutants
will generally be harmless, since fuzzing the mutant will be
essentially fuzzing the original program, except for a small
fraction of code paths. Finally, mutation operators are varied
enough to provide a good source of potentially useful mutants.
Most importantly, almost all mutation tools include at least
statement deletion (to remove checks that impede fuzzing) and
conditional changes (negation, and replacement with constant
false and constant true). These are the variants with the most
obvious potential for helping a fuzzer explore beyond a hard
input constraint, as in the example above. All of the versions
of the example program shown above, or mentioned in the list
of potential ways around hard1, are mutants generated by an
actual mutation testing tool [?].

Additionally, fuzzing program mutants is a useful activity in
itself. Mutation testing is increasingly being applied in the real-
world. A program worth fuzzing is probably a program worth
examining from the perspective of mutation testing. Examining
mutants not detected by fuzzing can reveal opportunities to
improve a fuzzing effort, either by helping it reach hard-
to-cover paths or, more frequently, by improving the oracle
(e.g., adding assertions about invariants a mutant causes to
be violated, or even creating a new end-to-end fuzzing har-
ness when a fault is not exposed by fuzzing only isolated
components of a program). Mutation testing of the Bitcoin
Core implementation (see the report (https://agroce.github.io/
bitcoin report.pdf) referenced in the Bitcoin Core fuzzing
documentation (https://github.com/bitcoin/bitcoin/blob/master/
doc/fuzzing.md) revealed just such limits to the fuzzing, de-
spite its extremely high coverage and overall quality. Mutation
testing is supported by widely used and well-supported tools,
and available for all commonly used (and many uncommonly
used) programming languages.

Moreover, by operating at the level of source modifica-

2



tions to the program being fuzzed, the proposed technique
is agnostic as to the actual fuzzer used. There is no need to
implement fuzzing-of-mutants for each fuzzer of interest; the
method operates completely at the level of orchestration of
fuzzing results.

II. FUZZING THE MUTANTS, IN DETAIL

A. Mutation Testing

Mutation testing [?], [?], [?] is an approach to evaluating
and improving tests. Mutation testing introduces small syn-
tactic changes into a program, under the assumption that if
the original program was correct, then a program with slightly
different semantics will be incorrect, and should be detected by
effective tests. Mutation testing is used in software engineering
research, occasionally in industry at-scale, and in some critical
open-source work [?], [?], [?].

A mutation testing approach is defined by a set of mutation
operators. Such operators vary widely in the literature, though
a few, such as deleting a small portion of code (such as a
statement), negating a conditonal, or replacing arithmetic and
relational operations (e.g., changing + to - or == to <=), are
very widely used.

In principle, the ways in which mutants could be incorpo-
rated into a fuzzing process are almost unlimited. However, the
basic approach can be simplified by considering the fuzzing
of mutants as a preparatory stage for fuzzing the target, as
in the introductory example. The simplest such approach is to
split a given fixed time-budget for fuzzing into two equal parts.
First, fuzz the mutants. Then, collect an input corpus from that
fuzzing, and fuzz the target program as usual, but for half of
the desired overall time.

B. Fuzzing: Two Key Decisions

Given a set of all mutants of a target program, and a
decision to split a given fuzzing budget into a mutant-fuzzing
stage followed by a target-fuzzing stage, there are two major
decisions to be made: how to select a subset of mutants, and
how to carry out fuzzing the chosen mutants.

1) Choosing the Mutants: First, there needs to be some
source of mutants. For generating mutants, we use the regular-
expression-based Universal Mutator [?] (https://github.com/
agroce/universalmutator), which provides a wide variety of
source-level mutants for almost any widely used program-
ming language, and has been used extensively to mutate C,
C++, Java, Python, and Solidity code. The latest release of
the Universal Mutator is also able to use the Comby [?]
tool (https://github.com/comby-tools/comby) to generate some
mutants hard to express as regular expressions, and to prune
mutants that are certain to be invalid more efficiently. Any
mutation testing tool should work, in principle, although if the
fuzzer requires the program to be compiled with special in-
strumentation, then it is necessary to use source code mutants,
rather than bytecode or binary/LLVM bitcode mutants.

For most programs, reasonable (e.g., 24 hour) fuzzing
budgets, and approaches to fuzzing mutants discussed below,
it is not possible to fuzz all the mutants of the target program.
For instance, if a program has a mere 1,000 lines of code,
and 2,000 mutants (not an implausible number), a 12 hour

mutant fuzzing budget where each mutant is fuzzed for five
minutes only allows fuzzing of 144 mutants, less than 1% of
the total mutants. Two obvious options offer themselves: the
first of these is purely random selection of mutants, under the
assumption that we have no simple way to predict the good
mutants, and that good mutants will often be redundant. For
the second point, consider the example from the introduction.
While less effective than removing the return statement,
negating the condition, changing it to a constant false, or
modifying a constant return value inside hard1 may all
allow progress to be made on hard2 without first satisfying
hard1. Other changes might relax the most difficult aspects
of hard1 allowing progress on the easier aspects of the
condition, and thus progress on hard2. Alternatively, even
if we cannot predict the best mutants, it might be reasonable
to try to diversify the mutants selected using some kind
of prioritization. In particular recent work on using mutants
to evaluate static analysis tools [?] proposed a scheme for
ordering mutants for humans to examine, implemented in the
Universal Mutator.

The mutant prioritization uses Gonzalez’ Furthest-Point-
First [?] (FPF) algorithm to rank mutants, as earlier work had
used it to rank test cases for identifying faults [?]. An FPF
ranking requires a distance metric d, and ranks items so that
dissimilar ones appear earlier. FPF is a greedy algorithm that
proceeds by repeatedly adding the item with the maximum min-
imum distance to all previously ranked items. Given an initial
seed item r0, a set S of items to rank, and a distance metric
d, FPF computes ri as s ∈ S : ∀s′ ∈ S : minj<i(d(s, rj)) ≥
minj<i(d(s

′, rj)). The condition on s is obviously true when
s = s′, or when s′ = rj for some j < i; the other cases for s′

force selection of some max-min-distance s.

The Universal Mutator [?] tool’s FPF metric d is the
sum of a set of measurements. First, it adds a similarity
ratio based on Levenshtein distance [?] for (1) the changes
(Levenshtein edits) from the original source code elements to
the two mutants, (2) the two original source code elements
changed (in general, lines), and (3) the actual output mutant
code. These are weighted with multipliers of 5.0, 0.1, and 0.1,
respectively; the type of change (mutation operator, roughly)
dominates this part of the distance, because it best describes
“what the mutant did”; however, because many mutants will
have the same change (e.g., changing + to -, the other values
decide many cases. The metric also incorporates the distance
in the source code between the locations of two mutants. If the
mutants are to different files, this adds 0.5; it also adds 0.25
times the number of source lines separating the two mutants if
they are in the same file, divided by 10, but caps the amount
added at 0.25. The full metric, therefore is:

5.0× r(edit1, edit2) + 0.1× r(source1, source2)+

0.1× r(mutant1,mutant2) + 0.5× not same file+

max(0.25,
line dist(mutant1,mutant2)

10
)

Where r is a Levenshtein-based string similarity ratio,
line dist is the distance in a source file between two locations,
in lines (zero if the locations are in different files), and
not same file is 0/1.

3



The effectiveness of prioritization is an open question; for
the problem of determining mutation score, it is known that
mutation selection strategies can sometimes be actively harm-
ful, less effective than purely random selection [?]. However,
the statistical properties that make purely random selection
attractive in predicting mutation score are not as important for
using mutants to aid fuzzing.

a) Alternative Prioritizations.: The above prioritization
scheme has the appeal that it is computable given only the
source code and mutants, and requires no deeper program
analysis, dynamic information, or integration with a particular
fuzzer. However, an obvious alternative is to prioritize mutants
according to their proximity to the coverage frontier of an
ongoing fuzzing effort. That is, mutants that change code near
(in the program-dependence-graph or some other structural
representation) executed branches where both sides have not
been taken would be given higher priority. Mutants of code that
is well-covered, on the other hand, or, alternatively, mutants
of code that is deep within completely-uncovered code, would
be lowered in priority. If we imagine the example proposed in
the introduction to include a large amount of additional code,
it is easy to see that this would likely prioritize the mutation
of the return statement after hard1.

There are some drawbacks to this approach, however. First,
the prioritization may not be as obviously good as it seems
at first. Imagine that the hard1 condition is indeed on the
coverage frontier, but that a large amount of additional easy-to-
cover but branch-heavy code is present after the hard1 branch
is taken but before the return 0 statement. The return

statement will be a low-priority mutant, since it is not at all
close to the coverage frontier! Negating the hard1 condition,
of course, may also be helpful, but will not have the very
useful feature of allowing progress on hard1 and hard2 at
the same time. Furthermore, this approach requires previous
fuzzing data, and in particular the computation of the coverage
frontier.

Other prioritizations are also possible; for example, if we
have existing mutation testing results, it may be that mutants
that have been killed are more useful in fuzzing, since they
clearly produce a semantic change. Equivalent mutants are
harmless, but also useless.

b) Full Mutant Analysis, Continuous Mutant Analysis::
Finally, for especially critical fuzzing targets, especially those
that are continuously fuzzed in systems such as Google’s OSS-
Fuzz (https://github.com/google/oss-fuzz), it may be feasible
to spend the resources to fuzz all program mutants, both in
order to identify undetected mutants and to collect the full
corpus of inputs generated using mutants. In fact, a CI-style
continuous fuzzing effort could in principle alternative fuzzing
the target program with a rolling sequence of mutants (ro
at least those that ever generated useful inputs), in practice
elminating the clear demarction between fuzzing mutants and
fuzzing the target.

Finally, while we do not consider the problem here, in
repeated efforts it might be useful to reject some mutants as
useless based on past results. E.g., if a mutant causes the
program to always crash almost immediately, and so a fuzzer
generates many crashes (with only one signature) but few or
no differing program paths, then the mutant is almost certainly

not worth fuzzing again.

2) Using the Mutants: The second key choice is how to
use the chosen mutants. Assuming a fixed fuzzing budget
per mutant, the most basic choice is whether to fuzz each
mutant “from scratch” (possibly using any existing corpus
for fuzzing the target), which we call non-cumulative/parallel
fuzzing, or to use each mutant’s output corpus to seed the
next mutant, which we call cumulative/sequential fuzzing. The
cumulative/sequential approach has two potential advantages:

1) Many mutants that are fuzzed will potentially benefit
from the already-fuzzed mutants, so hitting a key
location that has been mutated may be more likely;
this is based on the same argument as used to support
the approach in general.

2) The final corpus from the last-fuzzed mutant will
contain few redundancies, reducing processing or
fuzzer startup time for the actual target.

On the other hand, cumulative fuzzing forces processing
of the corpus after each mutant to remove inputs causing the
next mutant to crash, and, more importantly, prevents fuzzing
mutants in parallel. The processing cost is due to the fact
that before fuzzing a mutant or the target, any input corpus
needs, for the AFL fuzzer at least, to be pruned, removing
any crashing inputs that did not crash the previous mutant2

Removing these sequentially, rather than in a single batch after
all mutants, may remove inputs that could have been useful for
some mutant they do not crash in the future, but re-trying all
inputs for each mutant is expensive.

When only one CPU is available for fuzzing, the sequential
vs. parallel nature of the approaches does not matter, but if
many CPUs are available, then fuzzing many mutants at once is
an obviously attractive proposition. While the total computing
resources required to fuzz the same number of mutants are
constant, that one approach is (embarrassingly) parallel is a
significant advantage in modern multicore contexts. In fact,
fuzzing mutants to some extent offers a simple solution to the
problems of work division and communication overhead that
trouble parallel fuzzing in general [?].

There are other minor variations. For instance, if the
program under test has changed since the generation of any
existing corpus, it may be useful to run a fuzzing stage on the
target program to help seed the mutant fuzzing efforts, for the
non-cumulative case. In the cumulative case, this is unlikely to
be helpful, as early mutants will likely include near-equivalent
programs, yielding the same effect with the added advantage
of the opportunity offered by mutants.

III. RELATED WORK

Given that getting past verification checks is one of
the most common problems in fuzzing, (manually disabling
verification checks is one of the most common proposals
in practical [?] suggestions on improve the effectiveness of
fuzzing) numerous previous researchers have tried to bypass
such checks by patching the program itself. An early attempt
to do this was Flayer [?] which provides a mechanism for

2These pruned inputs should be preserved and run against the actual target
program, as they may represent uniquely detected faults.

4



instrumenting the program, altering the control flow, and
stepping over function calls. The research also introduces a
complementary fuzzer that makes use of Flayer for more
effective fuzzing.

A similar approach was taken in TaintScope [?], which
claims to be the first checksum-aware fuzzer. It detects check-
sum based integrity verification using branch profiling, and
once found, it can bypass such checks by altering the control
flow.

CAFA [?] is another fuzzer that uses taint analysis to
detect the parts of the program that are involved in checksum
based verification of input integrity. Once detected, it statically
patches the program to bypass checksum verification of the
input.

The most closely related work is the T-Fuzz approach [?],
which focused specifically on removing sanity checks in
programs in order to fuzz more deeply. Our approach is
motivated in part by the desire to remove sanity checks, but
uses a more general and lightweight approach. T-Fuzz used
dynamic analysis to identify sanity checks, while we simply
trust that program mutants will include many (or most) sanity
checks. Moreover, when a sanity check is hard to identify, but
implemented by a function call, statement deletion mutants
may in effect remove it where T-Fuzz will not. Our approach
also introduces changes that are not within the domain of
T-Fuzz or the other fuzzers discussed above, e.g., changing
conditions to include one-off values. Finally, T-Fuzz worked
around the fact that inputs for the modified program are
not inputs for the real program under test using a symbolic
execution step, while we simply hand the inputs generated for
mutants to a fuzzer and trust a good fuzzer to make use of
these “hints” to find inputs for the real program, if they are
close enough to be useful.

Mutation analysis has been used previously to detect
anomalies in programs statically [?]. As in our approach, the
program variants are produced using mutation analysis, but
the idea here is to look for variants that are semantically
equivalent, but better in some specific sense than the original.

Arguably, UBSAN is a program transformer that explicitly
doesn’t preserve all the program semantics (only the explicitly
defined language semantics are preserved), and can improve
fuzzing effectiveness. It detects undefined behavior by insert-
ing crashes when such behavior is invoked.

Finally, mutants may prove to be effective against anti-
fuzzing [?] techniques such as speed-bumps (a mutant could
either remove the bump or simply decrease delay/wait loop
parameters).

IV. PROPOSED EVALUATION

In a full experimental evaluation, we will undertake to
answer the following core research questions:

• RQ1: Does replacing time spent fuzzing a target
program with time spent fuzzing mutants of the target
program improve the effectiveness of fuzzing?

• RQ2: Does using prioritization improve the effective-
ness of fuzzing with mutants? If so, which prioritiza-
tions perform best?

• RQ3: How do non-cumulative (parallel) and cumula-
tive (sequential) mutant fuzzing compare?

• RQ4: For non-cumulative mutant fuzzing, is improv-
ing the corpus by first fuzzing the target program when
it has changed worthwhile?

RQ1 is the overall question of whether any variant of
fuzzing using mutants increases standard fuzzing evaluation
metrics (unique faults detected and code coverage). RQ2-
RQ4 consider some of the primary choices to be made in
implementing fuzzing mutants.

The experiments will be based on widely-used benchmarks,
and conform to the standards proposed by Klees et. al [?],
e.g., using 10 or more runs of 24 hours each in experimental
trials. We will make every effort to identify and protect against
the usual threats to validity in fuzzing experiments, by using
a range of benchmark subjects and avoiding pitfalls such as
measuring only crash counts bucketed crashes, rather than
making an effort to identify actual distinct faults [?] (or using
only crashes, not crashes and code coverage results).

One simplifying factor in experiments on this question is
that, since the approach concerns only the choice of fuzzing
targets and seeds, a single widely-used fuzzer, such as the latest
version of AFL, is justified. It seems clear that the advantages
provided by fuzzing mutants should be orthogonal to the
varying features of AFL, AFLPlusPlus, libFuzzer, and other
commonly used fuzzers. Even fuzzers that solve constraints to
try to cover new branches (e.g., Eclipser [?]) do not attempt
to solve branches not on the coverage frontier, such as hard2
in our running example.

However, in order to check our assumption, we plan to
perform a limited set of experiments on at least one fuzzer
that is very different than the primary fuzzer used, e.g., using
libFuzzer as a check on an AFL-based evaluation.

In addition to the primary research questions above, we
plan to examine other practically important aspects of mutant
fuzzing. For instance, while we expect most gains to be derived
from using corpus inputs to help fuzz the target itself, we
also believe, based on our preliminary experiments discussed
below, that some bugs may be found only by fuzzing a
mutant. How often does this happen on real programs, and why
does it happen? One possibility of interest is that the coarse
heuristics many fuzzers use to avoid storing duplicate crashes
[?], [?] may sometimes discard non-redundant bugs, and that
program mutants interact with AFL’s heuristics to prevent this
in some cases. We also plan to identify particular mutants that
contributed to hitting hard-to-reach program paths, in order to
better understand if there are patterns in useful mutants that
can be predicted.

V. PRELIMINARY EXPERIMENTS

Table ?? shows results of fuzzing the fuzzgoat

(https://github.com/fuzzstati0n/fuzzgoat) benchmark program
for fuzzers, with and without using mutants to aid the fuzzing.
We applied our basic technique, using both random and prior-
itized (by Universal Mutator) mutant selection, and using non-
cumulative and cumulative mutant fuzzing. For non-cumulative
mutant fuzzing, we did not perform an initial stage of fuzzing

5



TABLE I. RESULTS FOR PRELIMINARY EXPERIMENTS

Distinct Faults Statement Coverage Branch Coverage

Method Min Max Avg Min Max Avg Min Max Avg

AFL on program only 3 5 4.2 79.86% 84.37% 81.73% 78.36% 81.35% 80.40%

AFL on random mutants, non-cumulative 6 7 6.4 80.04% 84.90% 81.70% 79.85% 82.58% 80.70%

AFL on random mutants, cumulative/sequential 6 7 6.2 80.21% 84.90% 81.77% 80.10% 82.34% 80.90%

AFL on prioritized mutants, non-cumulative 6 7 6.2 81.25% 84.37% 82.39% 80.60% 81.84% 81.20%

AFL on prioritized mutants, cumulative/sequential 6 7 6.2 81.25% 84.90% 83.16% 80.10% 82.58% 81.39%

on the target program. The best value(s) for each evaluation
measure are highlighted in bold.

Each technique evaluated was used in 5 fuzzing attempts
of 10 hours each. The baseline for comparison is the latest
Google release of AFL (2.57b) on the fuzzgoat program for
10 hours, with no time spent in any effort other than fuzzing
fuzzgoat. The other approaches apply the basic methods for
using mutants described above, for five hours, then fuzz using
the resulting corpus for another five hours. These approaches
all spend a small fraction of the fuzzing budget restarting AFL
and processing already-generated inputs (e.g., to make sure
they don’t crash the original program, even if they did not crash
a mutant), rather than fuzzing either fuzzgoat or a mutant.
The budget for fuzzing each mutant is fixed at five minutes, so
only about 60 of the nearly 3,800 mutants of fuzzgoat.c
can be fuzzed. For the first two mutant runs, these mutants
were chosen randomly each time; the second two runs used a
fixed set of mutants, based on the default mutant prioritization
scheme provided by the Universal Mutator, with the option
to prioritze all statement deletions above other mutants set to
false. Coverage was measured using gcov and faults were
determined by using address sanitizer to determine locations
of memory access violations, and examining the traces to
determine the distinct faults.

Fault detection was uniformly better for all mutant-based
approaches than for fuzzing without mutants; the minimum
number of detected faults was better than the maximum
number of faults found without using mutants. Fault detection
partly benefitted from crashes detected only during fuzzing of
mutants. However, even ignoring these crashes, three of the
mutant-baed efforts detected six distinct faults, while fuzzing
without mutants never detected six faults. Means for the
techniques without using crashes discovered during mutant
fuzzing were, respectively (in the same order as the table):
4.8, 4.6, 5.0, and 5.0, still all higher than for fuzzing without
mutants. Using the crashes from mutant fuzzing, every mutant-
based effort detected all vulnerabilities in fuzzgoat of which
we are aware.

Code coverage results were more ambigious, but the lim-
ited data suggests the prioritized mutant approaches may be
more consistent in hitting hard-to-teach code than the other
methods. In particular, the highest branch coverage numbers
were all reached by prioritized mutant fuzzing, and the worst
statement and branch coverage values were from fuzzing
without mutants.

Coverage differences were not statistically significant by
Mann Whitney U test, but bug count differences between
all mutant-based methods and AFL without mutants were
significant with p-value < 0.006. Differences in unique faults

detected were not significant, when faults detected only during
mutant fuzzing were discarded (though this is likely only due
to the small sample size and range of values; p-values were
around 0.2).

While it is clear that for this benchmark program, fuzzing
mutants provides an advantage, it is also clear that distinguish-
ing between variations of the basic approach is not possible
without considerably more experimental data across more
subjects.

Finally, we note that our experiments support our claim that
the proposed technique is almost trivial to apply. We were able
to implement mutant fuzzing in less than 30 lines of Python,
and replacing AFL with another fuzzer would be trivial.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we propose that by fuzzing variations of a
target program generated by a mutation testing tool, it may
be possible to work around some fundamental limitations of
coverage-driven fuzzing. For the most part, even when not
effective, the technique proposed should be low-cost and at
worst equivalent to fuzzing the target program itself for a
somewhat smaller time. Our preliminary experiments show
that fuzzing mutants is trivial to implement (and applies to any
fuzzer of which we are aware) and effective for improving fault
detection, at least for a non-trivial benchmark target program.

Future work, in addition to the performance of full ex-
periments to evaluate the technique, would include exploring
the effectiveness of using mutation selection methods and
prioritization techniques in addition to those proposed here,
and applying directed greybox fuzzing [?] to specifically target
mutated code. Another possibility is to use Higher Order
Mutants [?] to fuzz multiple mutants at once; however, this
increases the chance that a critical mutant will be combined
with a mutant that essentially destroys the program semantics,
making it impossible to exploit.

ACKNOWLEDGEMENTS

A portion of this work was supported by the National
Science Foundation under CCF-2129446. The authors would
also like to thank our anonymous reviewers.

6


