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Abstract— Self-driving cars must detect other traffic partici-
pants like vehicles and pedestrians in 3D in order to plan safe
routes and avoid collisions. State-of-the-art 3D object detectors,
based on deep learning, have shown promising accuracy but
are prone to over-fit domain idiosyncrasies, making them fail
in new environments—a serious problem for the robustness of
self-driving cars. In this paper, we propose a novel learning
approach that reduces this gap by fine-tuning the detector
on high-quality pseudo-labels in the target domain – pseudo-
labels that are automatically generated after driving based
on replays of previously recorded driving sequences. In these
replays, object tracks are smoothed forward and backward
in time, and detections are interpolated and extrapolated—
crucially, leveraging future information to catch hard cases
such as missed detections due to occlusions or far ranges. We
show, across five autonomous driving datasets, that fine-tuning
the object detector on these pseudo-labels substantially reduces
the domain gap to new driving environments, yielding strong
improvements detection reliability and accuracy.

Index Terms— Object Detection, Segmentation and Catego-
rization; Computer Vision for Automation; Transfer Learning;
Deep Learning for Visual Perception

I. INTRODUCTION

Detecting traffic participants such as cars, cyclists, and
pedestrians in 3D is a fundamental learning problem for self-
driving cars. Typically, inputs consists of LiDAR point clouds
and/or images; outputs are sets of tight 3D bounding boxes
that envelop detected objects. The problem is challenging,
because the detection must be highly accurate and reliable.
The current state of the art in 3D object detection is based on
deep learning approaches [1], [2], [3], [4], trained on short
driving segments with labeled bounding boxes [5], [6], which
yield up to 80% average precision on held-out segments [4].

However, as with all machine learning approaches, these
techniques succeed when the training and test data distri-
butions match. One way to ensure this is to constrain self-
driving cars to a small geo-fenced area, such as with a fleet
of similar self-driving taxis collecting and sharing training
data about the same area. This approach, however, is not
generalizable to consumer self-driving cars which should be
able to drive freely anywhere, similar to a human-driven car.
This unconstrained scenario introduces an inherent adaptation
problem: the car producer cannot foresee where the owner
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will ultimately operate the car. For example, the perception
system might be trained on urban roads in Germany [5], [6],
but the car may be driven in the mountain roads in the USA,
where cars are larger and fewer, roads may be snowier, and
the environment (trees, roads, etc.) may look different. Past
work has shown that such differences can cause >35% drop
in detection accuracy [7]. Closing this adaptation gap is one
of the biggest challenges for consumer self-driving vehicles.

Formally, this challenge is a problem in unsupervised

domain adaptation (UDA) [8]: the detector, having been
previously trained on labeled data from a source domain,
must now adapt to a target domain where only unlabeled
data are available. While the UDA problem is easily cast with
training and testing datasets in different locations (Germany
vs USA, urban vs rural, etc.), similar problems exist in many
self-driving car scenarios. For example, consider the common
case of car owners who drive many of the same routes (e.g.,
commuting), and leave their cars parked (e.g., at night) for
extended periods of time. This raises an intriguing possibility:
the car can collect sensor data on these trips, and then retrain
itself autonomously offline to adapt to this new environment,
to improve subsequent online driving.

In this paper, we present a novel approach for UDA of
3D detectors for self-driving cars. Our approach uniquely
uses two key insights. First, data collected over time via a
video is not simply a bag of independent frames. Second,
the dynamics of our objects of interest (i.e., cars) can be
modeled effectively. We propose to use time correlations
between frames and object physics to enable more accurate
and efficient solutions to the UDA problem offline. More
specifically, our approach takes the ‘confident’ detections
of nearby objects, estimates their states (e.g., locations,
sizes and speeds), and then extrapolates the tracks forward
and backward in time, discovering challenging cases when
the detector made mistakes (e.g. missed detections due to
occlusions, detections at far ranges, etc.) The playback of the
data allows us to go back in time and annotate labels in frames
which were previously missed. Although this process cannot
be performed in real time (since it uses future information),
we can use it offline to generate a new training set with
pseudo-labels for the target environment. We can then adapt
the detector to the target domain using this newly created
dataset, thus allowing the detector to generalize to more
scenarios. We call our approach dreaming, as the car learns
by replaying past driving sequences backwards and forwards,
potentially while it is parked overnight.

We evaluate our approach on the most challenging of
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UDA problems, that of 3D object detection across multiple
autonomous driving datasets, including KITTI [5], [6], Ar-
goverse [9], Lyft [10], Waymo [11], and nuScenes [12]. We
show across all dataset combinations that discovering detector
mistakes and retraining the detector with our dreaming car
procedure strongly reduces the source/target domain gap
with high consistency. In fact, the resulting detector after
“dreaming” substantially exceeds the accuracy of the offline
system used to generate the pseudo-labels, which—although
able to look into the future—is limited to the extrapolation of
confident detections before adaption. Our dreaming procedure
can easily be implemented on-device and we believe that
it constitutes a significant step towards safely operating
autonomous vehicles without geo-restrictions.

II. RELATED WORK

3D object detection can be categorized based on the input:
using 3D sensors like LiDAR or 2D images from cameras [13],
[14], [15], [16]. We focus on the former due to its higher
accuracy. Examples of LiDAR-based detectors include F-
PointNet [1], PointRCNN [2], PIXOR [3] and VoxelNet [17].
While these methods have consistently improved the detection
accuracy, it has been recently revealed in [7] that they cannot
generalize well when trained and tested on different datasets,
especially on distant objects with sparse LiDAR points.

Unsupervised domain adaptation (UDA) has been
widely studied in machine learning and computer vision,
especially on image classification [8], [18], [19]. The common
setup is to adapt a model trained from one labeled source
domain (e.g., synthetic images) to another unlabeled target
domain (e.g., real images). Recent work has extended UDA to
driving scenes, but mainly for 2D object detection [20], [21],
[22], [23], [24] and semantic segmentation [25], [26], [27],
[28], [29]. The mainstream approach is to match the feature
distributions or image appearances between domains, e.g., via
adversarial learning [18], [25] or image translation [30]. The
approaches more similar to ours are [31], [32], [33], [34], [29],
[35], [36], [37], [38], which iteratively assign pseudo-labels to
(some of) the unlabeled data in the target domain and retrain
the models. This procedure, usually named self-training, is
proven to be effective in learning with unlabeled data, such
as semi-supervised and weakly-supervised learning [39], [40],
[41], [42]. For UDA, self-training enables the model to adapt
its features to the target domain in a supervised fashion.

UDA in 3D tackles the domain discrepancy in point clouds.
Qin et al. [43] were the first to match point cloud distributions
between domains, via adversarial learning. However, they
considered point clouds of isolated objects, which are very
different from the ones captured in driving scenes. Other
approaches project 3D points to the frontal or bird’s-eye view
and apply UDA methods in the resulting 2D images [44],
[45], [46], which can be sub-optimal in models’ accuracy.

Instead, we follow the self-training paradigm and show that

UDA in 3D object detection can be drastically improved by

our high-quality pseudo-labels. Concurrent work ST3D [47]
also tackles UDA in 3D via self-training, but it focuses on
addressing the object size discrepancy across domains [7].

It pre-trains a 3D detector with random object scaling and
uses pseudo-labels to train student detectors in a curriculum-
learning way. In contrast, our work makes use of consecutive
LiDAR scans in the target domain to improve pseudo-label
quality, especially for faraway or previously missed objects.
Our work is thus orthogonal and complementary to theirs.

Leveraging videos for object detection has been explored
in [48], [49], [50], [51] to ease the labeling efforts by mining
extra 2D bounding boxes from videos. The main idea is to
leverage the temporal information to extend weakly-labeled
instances or potential object proposals across frames, which
are then used as pseudo-labels to retrain the detectors. In the
context of UDA, [52], [31], [53] also incorporate object tracks
to discover high quality 2D pseudo-labels for self-training.

Our approach is different in two aspects. First, we not only
interpolate but also extrapolate tracks to infer object locations
when they are too far away to be detected accurately. Second,
we operate in 3D. We apply a physical-based motion model
and exploit the fact that objects in 3D are scale-invariant to
correct the detection along tracks. In contrast, the methods
above operate in 2D and may disregard faraway objects (that
appear too small in images) due to unreliable 2D tracks [53].

Auto-labeling. Our work is also related to concurrent work
in 3D auto-labeling [54], [55], which improves the initial
detections of a 3D object detector in an offline manner by
aggregating them across the whole sequence with a standard
tracker [56]. Our work is different from theirs in two aspects.
First, our approach not only aggregates detections in a track,
but extrapolates them with a motion model, which is crucial
to recover the missing detections faraway (Table V). Second,
our end-goal is to improve the 3D object detector by fine-
tuning it with the improved pseudo-labels, while auto-labeling
solely focuses on improving pseudo-labels.

III. EXPLOITING PLAYBACKS FOR UDA

Similar to most published work on 3D object detection
for autonomous driving [1], [2], [3], [4], [57], we focus on
frame-wise 3D detectors. A detector is first trained on a source
domain and then applied to a target domain (e.g., a new city).
[7] revealed a drastic accuracy drop in such a scenario: many
of the target objects are either misdetected or mislocalized,
especially if they are far away. To aid adaptation, we assume
access to an unlabeled dataset of video sequences in the target
domain, which could simply be recordings of the vehicle’s
sensors while it was in operation. Our approach is to generate
pseudo-labels for these recordings that can be used to adapt
the detector to the new environment during periods when the
car is not in use. We assume no access to the source data
when performing adaptation—it is unlikely that car producers
share data with the customers after the detector is deployed.

A. Tracking for improved detection

One way to improve the test accuracy based on the frame-
wise detection outputs is online tracking by detection [58],
[59], [60]. Here, detected objects are associated across current
and past frames to derive trajectories, which are used to filter



out false positives, correct false negatives, and adjust the
initial detection boxes in the current frame.

Online 3D object tracking. We investigate this idea with a
Kalman filter based tracker [61], [62], [56], which has shown
promising results in benchmark tracking leader boards [12].
We opt to not use a learning-based tracker [63] since it

would also require adaptation before it can be applied in the

target domain. Specifically, we apply the tracker in [61]. The
algorithm estimates the joint probability p(ak,xk|zk) at time
k, where xk is the set of tracked object states (e.g., cars speeds
and locations), zk is the set of observed sensor measurements
(here each measurement is a frame-wise detection), and
ak is the assignment of measurements to tracks. The joint
probability can be decomposed into continuous estimation
p(xk|ak, zk) and discrete data assignment p(ak|zk). The
former is solved recursively via an Extended Kalman Filter
(EKF); the latter is solved via Global Nearest-Neighbor
(GNN), where the cost to be minimized is the negative BEV
IoU between the predicted box and the measurement. The
EKF parameterizes the state x of a single (ith) object as a
vehicle (position, velocity, shape) relative to the ego-vehicle

xi
k =

⇥
x y ✓ s l w

⇤T
, (1)

where x, y are the location of the tracked vehicle’s back axle
relative to a fixed point on the ego-vehicle, ✓ is the vehicle
orientation relative to the ego-vehicle, s is the absolute ground
speed, and l, w are the length and width. The EKF uses a
dynamics model of the evolution of the state over time. Here
we assume that the tracked vehicle is moving at a constant

speed and heading in the global coordinate frame, with added
noise to represent the uncertainty associated with vehicle
maneuvers. This tracker has been shown to work well on
tracking moving objects from a self-driving car [61], [64].
We initialize a new track when cmin�hits measurements of
the same tracked object are realized. We end a track when
it does not obtain any measurement updates over cmax�age

frames, or the tracked object exits the field of view (FOV).
As will be seen in subsection IV-B, applying this tracker can
indeed improve the detection accuracy online, via inputting
missed detections, correcting mislocalized detections, and
rejecting wrong detections in zk at current time k by xk.

Offline 3D object tracking. Online trackers only use past
information to improve current detections. By relaxing this
for offline tracking (e.g., to be able to look into the future
and come back to the current time), we can obtain more
accurate estimates of vehicle states. While such a relaxation
is not applicable during test time, higher accuracy tracking on
unlabeled driving sequences will be very valuable for adapting
the source detector to the target domain in a self-supervised
fashion, as we will explain in the following section.

B. Self-training for UDA

Self-training is a simple yet fairly effective way to improve
a model with unlabeled data [39], [40], [41], [65]. The basic
idea is to apply an existing model to an unlabeled dataset and
use the high confidence predictions (here detections), which
are likely to be correct, as “pseudo-labels” for fine-tuning.

One key to success for self-training is the quality of the
pseudo-labels. In particular, we desire two qualities out of
the detections we use as pseudo-labels. First, they should be
correct, i.e., they should not include false positives. Second,
they should have high coverage, i.e., they should cover all
cases of objects. Choosing high confidence detections as
pseudo-labels satisfies the first criterion but not the second.
For 3D object detection, we find that most of the high
confidence examples are easy cases: unoccluded objects near
the self-driving car. This is where offline tracking becomes a
crucial component to include the more challenging cases (far
away, or partially occluded objects) in the pseudo-label pool.

C. High quality pseudo-labels via 3D offline tracking

How do we obtain pseudo-labels for far-away, hard-to-
detect objects that the detector cannot reliably detect? We
propose to exploit tracking by leveraging two facts in the
autonomous driving scenario. First, the available unlabeled
data is in the form of sequences (akin to videos) of point
clouds over time. Second, the objects of interest and the self-
driving car move in fairly constrained ways. We will run the
object detector on logged data, so that we can easily analyze
both forwards and backwards in time. The object detector will
detect objects accurately only when they are close to the self-
driving car. Once detected over a few frames, we can estimate
the object’s motion either towards the self-driving car or away
from it, and then both interpolate the object’s positions in
frames where it was missed, or extrapolate the object into
frames where it is too far away for accurate detection. We
show an example of this procedure in Figure 1. Through
dynamic modeling, tracking, and smoothing over time we
can correct noisy detections. Further with extrapolation and
interpolation, we can recover far away and missed detections.

Concretely, we proposed to augment the following func-
tionalities that utilize the future information into the online
tracker introduced in subsection III-A, turning it into an
offline tracker specifically designed to improve detection, i.e.,
generating higher quality pseudo-labels for self-training.

State smoothing. Frame-wise 3D object detectors can
generate inconsistent, noisy detection across time (e.g., frame
4, 7 and 9 in Figure 1). The model-based tracking approach
in subsection III-A reduces this noise, but we can go further
by smoothing tracks back and forth over time, since our data is
offline. In this work, we use a fixed-point Rauch-Tung-Striebel
(RTS) smoother [66] to smooth the tracked state estimates.
Smoothing requires a backward iteration (k = N,N � 1, ...1)
that is performed after the forward filtering, where the a-
posteriori state and state error covariance estimates (x̄k|k
and Pk|k) and the a-priori state and state error covariance
estimates (x̄k+1|k and Pk+1|k) have been calculated. The
smoothed gain, Ck, is obtained from

Ck = Pk|kF
T
k P�1

k+1|k, (2)

where Fk is the Jacobian of the dynamics model evaluated
at x̄k|k. The smoothed state is then evaluated as

x̄k|N = x̄k|k + Ck[x̄k+1|N � x̄k|k] (3)



Fig. 1: An example tracked vehicle moves towards ego-vehicle (at the bottom), where pseudo-labels are recovered through extrapolation,
interpolation, and smoothing. The improvements of pseudo-labels via offline tracking are instances where estimated bounding boxes (blue)
are observed, while the frame-wise detections (orange) are missing or poorly aligned with ground truths (green). Better viewed in color.

while the covariance of the smoothed state is evaluated as

Pk|N = Pk|k + Ck[Pk+1|N � Pk+1|k]C
T
k . (4)

Adjusting object sizes. As shown in [7], the distribution
of car sizes in different domains (e.g. different cities) can
be different. As such, when tested on a novel domain,
detectors often predict incorrect object sizes. This is especially
true when the LiDAR signal is too sparse for correct size
information. We can also use our tracking to correct such
systematic error. Assuming that the most confident detections
are more likely to be accurate, we estimate the size of the
object by averaging the size of the three highest confidence
detections. We use this size for all objects in this track.

Interpolation and extrapolation. We use estimation (for-
ward in time) and smoothing (backward in time) to recover
missed detections, and in turn, to increase the recall rate
of pseudo-labels (e.g., frame 1–3 and 6 in Figure 1). If a
detection is missed in the middle of a track, we restore it by
taking the estimated state from smoothing. We also extrapolate
the tracks both backward and forward in time, so that tracks
that were prematurely terminated due to missing detections,
can be recovered. More concretely, we are able to recover
detections of vehicles that were lost as they moved away from
the ego-vehicle because the sensor signals became sparser
(or in turn, the vehicles started far away and were then only
detected when they got close enough). Extrapolations are
performed by first using dynamics model predictions of the
EKF to predict potential bounding boxes; measurements are
obtained by performing a search and detection in the vicinity
of the prediction. We apply the detector in a 3 m2 area around
the extrapolated prediction, yielding several 3D bounding box
candidates. After filtering out candidates with confidences
lower than some threshold, we select the candidate with the
highest BEV IoU with the prediction as the measurement.
If a track loses such a measurement for three consecutive

frames, extrapolations are stopped. With this targeted search,
we are able to recover objects that were missed due to low
confidence. After extrapolating and interpolating detections
for all tracks, we perform Non Maximum Suppression
(NMS) over bounding boxes in BEV, where more recent
extrapolations/interpolations are prioritized.

Discussion. The tracker we apply is standard and simple.
We opt it to show the power of our dreaming approach for
UDA—exploiting offline, forward and backward information
to derive high-quality pseudo-labels for adapting detectors.
More sophisticated trackers will likely improve the results
further. While we focus on frame-wise 3D detectors, our
algorithm can be applied to adapt video-based 3D object
detectors [67] as well. One particular advantage of fine-tuning
on the pseudo-labeled target data is to allow the detector
adapting not only its predictions (e.g., the box regression)
but also its features (e.g., early layers in the neural networks)
to the target domain. The resulting detector thus can usually
lead to more accurate detections than the pseudo-labels it has
been trained on.

IV. EXPERIMENTS

Datasets. We experiment with five autonomous driving
data sets: KITTI [5], [6], Argoverse [9], nuScenes [12], Lyft
[10] and Waymo [11]. All datasets provide LiDAR data in
sequences and ground-truth bounding box labels for either all
or part of the data. We briefly summarize these five datasets in
the supplementary. We follow a setup similar to [7], but with
different splits on Lyft, nuScenes, and Waymo in order to
keep the training and test sets non-overlapping with sequences.
For nuScenes and Waymo, we only use data from a single
location (Boston for nuScenes and San Francisco for Waymo).

UDA settings. We train models in the source domain using
labeled frames. We split each dataset into two non-overlapping
parts, a training set and a test set. We use the train set (and



its pseudo-labels) of the target domain to adapt the source

detector, and evaluate the adapted detector on the test set.

Metric. We follow KITTI to evaluate object detection in
3D and BEV metrics. We focus on the Car category as it is
the main focus of existing work. We report average precision
(AP) with the intersection over union (IoU) thresholds at 0.5
or 0.7, i.e., a car is correctly detected if the IoU between it
and the detected box is larger than 0.5 or 0.7. We denote AP
in 3D and BEV by AP3D and APBEV, respectively. Because
on the other datasets there is no official separation on the
difficulty levels like in KITTI, we split AP by depth ranges.

3D object detection models. We use two LiDAR-based
models POINTRCNN [2] and PIXOR [3] to detect objects
in 3D. They represent two different but popular ways of pro-
cessing point cloud data. POINTRCNN uses PointNet++ [68]
to extract point-wise features, while PIXOR applies 2D
convolutions in BEV of voxelized point clouds. Neither
relies on images. We mainly report and discuss results of
POINTRCNN except for the last study in subsection IV-B.

Hyper-parameters. To train detectors on source domain,
we use the hyper-parameters provided by [2] for POINTR-
CNN. For PIXOR, we follow [7] to train it using RMSProp
with momentum 0.9 and learning rate 5⇥ 10�5 (decreased
by a factor of 10 after 50 and 80 epochs) for 90 epochs.
For self-training on the target domain, we initialize from the
pre-trained model on the source domain. For POINTRCNN,
we fine-tune it with learning rate 2⇥ 10�4 and 40 epochs in
RPN and 10 epochs in RCNN. For PIXOR, we use RMSProp
with momentum 0.9 and learning rate 5⇥ 106 (decreased by
a factor of 10 after 10 and 20 epochs) for 30 epochs.

We developed and tuned our dreaming method with
Argoverse as the source domain and KITTI as the target
domain (in the target domain, we only use the training set). We
then fixed all hyper-parameters for all subsequent experiments.

A. Baselines

We compare against two baselines under the UDA setting.
Self-Training (ST). We apply a self-training scheme

similar to that typically used in the 2D problems [40]. When
adapting the model from the source to the target, we apply
the source model to the target training set. We then keep the
detected cars of confidence scores > 0.8 (label-sharpening)
and use them as pseudo-labels to fine-tune the model. We
select the threshold following our hyper-parameter selection
procedure and apply it to all the experiments.

Statistical Normalization (SN). [7] showed that car sizes
vary between domains: popular cars at different areas can
be different. When the mean bounding box size in the target
domain is accessible, either from limited amount of labeled
data or statistical data, we can apply statistical normalization

(SN) [7] to mitigate such a systematic difference in car sizes.
SN adjusts the bounding box sizes and corresponding point
clouds in the source domain to match those in the target
domain, and fine-tunes the model on such “normalized” source
data, with no need to access target sensor data. We follow
the exact setting in [7] to apply SN.

TABLE I: Pseudo-label quality. We compare the quality of the
pseudo-labels on KITTI train set generated by a detector trained on
Argoverse (PL) and those after smoothing, resizing, interpolation,
and extrapolation (PL (AFTER)). We show the APBEV/ AP3D of the
car category at IoU = 0.7 and 0.5 across different depth range.

IoU 0.5 IoU 0.7Method 0-30 30-50 50-80 0-30 30-50 50-80
PL 80.5 / 80.0 63.7 / 60.7 23.9 / 18.6 63.9 / 36.6 33.0 / 12.1 10.0 / 0.9
PL (AFTER) 80.5 / 80.2 68.0 / 61.1 29.5 / 22.6 64.9 / 38.0 38.4 / 15.1 12.1 / 0.9

B. Empirical Results

Pseudo-label quality. In Table I we evaluate the quality
of pure pseudo-labels and pseudo-labels after smoothing,
resizing, interpolation, and extrapolation under the Argoverse
to KITTI setting. It can be seen that the dreaming process
significantly improves the pseudo-label quality across all
ranges, which leads to further improvement after self-training.

Adaptation from Argoverse to KITTI. We compare the
UDA methods under Argoverse to KITTI in Table III and
observe several trends: 1) models experience a smaller domain
gap when objects are closer (0-30 m vs 30-80 m); 2) though
directly applying online tracking can improve the detection
performance, models improve more after just self-training;
3) the offline tracking is used to provide extra pseudo-labels
for fine-tuning, and interestingly, models fine-tuned from
pseudo-labels can outperform pseudo-labels themselves; 4)
DREAMING improves over ST and SN by a large margin,
especially on IoU at 0.5; 5) DREAMING has a large gain in
AP for faraway objects, e.g., on range 50-80 m, compared to
ST, it boosts the APBEV on IoU at 0.5 from 28.2 to 30.1.

Adaptation among five datasets. We further applied
our methods to adaptation tasks among the five datasets.
Due to limited space, we show the results of APBEV and
AP3D on range 50-80 m and 0-80 m at IoU = 0.5 in
Table II. Our method consistently improves the adaptation
performance on faraway ranges, while having mostly equal
or better performance over the full range. We include detailed
evaluation results across all ranges, at IoU = 0.7, and with
SN in the supplementary material. We observe a consistent
and clear trend as in Table II.

Adaptation between different locations inside the same
dataset. Different datasets not only come from different loca-
tions but also use different sensor configurations. To isolate
the effects of the former (which is our motivating application),
in Table IV we evaluate our method’s performance for domain
adaptation within the KITTI dataset. In this case, the source
and target domain are all scenes from KITTI, while the
source is composed of city and campus scenes (38 sequences,
9,556 frames, 3,420 labeled frames) and the target consists
of residential and road scenes (23 sequences, 10,448 frames,
3619 labeled frames). Our method consistently outperforms
no fine-tuning and ST, especially on 30-80 m range.

Ablation Study. We show ablation results in Table V.
Here we fine-tune models using ST and adding smoothing
(S), resizing (R), interpolation (I) and extrapolation (E) to
the pseudo-label generation. It can be observed that ST alone
already boosts performance considerably. Through selecting
high confidence detections, smoothing and adjusting the object
size we ensure that the pseudo-labels provided are mostly



TABLE II: Dreaming results on UDA among five auto-driving datasets. We report APBEV and AP3D of the Car category on far-away
range (50-80m) and full range (0-80m) at IoU= 0.5. On each entry (row, column), we report AP of UDA from row to column in the order
of No Re-training / Self-Training / Dreaming. At the diagonal entries is the AP of in-domain model. Our method is marked in blue.

(a) 50 – 80 m

APBEV KITTI Argoverse Lyft nuScenes Waymo
KITTI 40.4 20.1/26.9/28.4 49.6/56.3/56.4 1.4/ 9.1 / 4.5 42.8/48.5/50.2

Argoverse 18.0/28.2/30.1 37.8 46.3/48.8/54.5 0.6/ 9.1 / 3.0 50.4/50.9/56.0
Lyft 26.1/30.8/33.9 29.3/30.7/35.2 67.2 4.5/ 9.1 / 6.0 51.6/51.9/56.9

nuScenes 9.6/16.4/21.7 3.0/12.4/17.7 22.9/39.1/46.4 3.5 24.9/42.5/50.1
Waymo 14.3/25.6/27.8 24.7/23.4/28.3 45.3/54.0/55.5 0.2/ 3.0/ 9.1 58.2

AP3D KITTI Argoverse Lyft nuScenes Waymo
KITTI 36.3 15.4/19.5/20.8 40.0/46.3/47.7 0.9 / 0.4/ 0.4 33.4/39.3/41.0

Argoverse 13.9/22.5/25.6 30.0 42.9/46.0/47.6 0.1/ 0.2/ 3.0 47.8/48.2/49.1
Lyft 20.4/24.0/26.4 25.3/26.7/27.3 65.5 0.4/ 9.1 / 1.1 49.6/50.6/50.8

nuScenes 5.5/ 8.7/13.4 3.0/ 9.1/13.0 15.1/30.2/37.8 2.8 22.5/39.6/45.5
Waymo 8.5/18.1/19.7 19.6/21.3/22.3 43.0/48.1/49.6 0.0/ 0.3/ 9.1 50.8

(b) 0 – 80 m

APBEV KITTI Argoverse Lyft nuScenes Waymo
KITTI 87.1 56.8/58.8/59.4 68.2/68.3/68.6 27.7/27.8/28.9 62.5/68.8/69.0

Argoverse 82.3/83.2/83.3 68.5 66.7/67.0/67.6 26.9 /25.2/25.4 69.8/69.6/70.0
Lyft 82.6/84.9/85.3 60.2/65.7/66.0 79.2 28.8/28.2/29.1 70.6/70.9/71.1

nuScenes 61.7/76.5/79.5 22.4/38.0/46.6 41.1/59.0/65.5 37.7 51.5/62.2/68.7
Waymo 81.2/82.2/83.1 56.9/58.3/59.2 67.3/68.9/69.4 23.1/27.2/29.1 71.9

AP3D KITTI Argoverse Lyft nuScenes Waymo
KITTI 86.7 49.0/55.0/55.9 60.7/65.2/66.4 20.9/22.3/23.1 59.4/60.5/61.4

Argoverse 77.4/81.1 /81.1 65.9 64.9/65.5/66.4 22.8 /22.1/21.7 62.1/62.4/67.7
Lyft 77.5/82.2/82.3 56.7/58.6/58.9 78.3 24.1/23.6/26.3 63.0/69.1 /68.7

nuScenes 45.5/67.5/70.3 19.5/36.1/42.7 32.4/56.7/58.6 36.8 42.6/60.2/61.1
Waymo 74.1/76.6/77.3 54.1/55.9/56.2 66.0/68.1/68.7 21.6/23.5/24.3 71.3

TABLE III: UDA from Argoverse to KITTI. We report APBEV/
AP3D of the car category at IoU = 0.7 and IoU = 0.5 across
different depth range on the test set. NR stands for No-Retrain
baseline, ST stands for Self-Training [40], SN stands for Statistical
Normalization [7]. Our method Dream is marked in blue. We show
the performance of in-domain model, i.e., the model trained and
evaluated on KITTI, at the first row in gray. We also show results
by directly applying online and offline (not feasible in real-time)
tracking. Best viewed in color.

IoU 0.5 IoU 0.7Method 0-30 30-50 50-80 0-30 30-50 50-80
in-domain 90.0 / 89.9 81.0 / 79.9 40.4 / 36.3 89.0 / 78.0 70.3 / 51.5 26.6 / 9.8
NR 89.4 / 88.8 71.0 / 65.2 18.0 / 13.9 72.6 / 47.8 35.8 / 14.6 4.9 / 3.0
NR + online 89.3 / 88.5 71.9 / 66.1 18.3 / 14.0 72.3 / 47.5 38.2 / 14.9 5.5 / 1.2
NR + offline 89.3 / 88.8 72.7 / 67.7 18.9 / 15.0 74.5 / 49.6 43.5 / 18.1 7.3 / 1.8
ST 89.5 / 89.2 73.2 / 68.5 28.2 / 22.5 76.8 / 52.9 44.2 / 20.6 13.1 / 2.1
Dream 89.3 / 89.2 74.6 / 72.4 30.1 / 25.6 77.6 / 54.7 49.9 / 24.3 14.5 / 3.4
SN 89.3 / 88.2 69.6 / 65.4 14.6 / 13.3 83.8 / 59.1 53.5 / 27.2 9.3 / 3.6
SN + online 89.4 / 88.2 68.8 / 65.4 19.4 / 16.2 83.5 / 60.1 50.7 / 27.0 13.4 / 9.5
SN + offline 89.4 / 88.2 68.9 / 66.1 21.8 / 19.3 83.3 / 59.2 50.9 / 26.9 13.8 / 9.8
SN + ST 89.8 / 89.3 74.4 / 72.8 22.3 / 21.3 87.0 / 70.4 62.2 / 37.7 16.4 / 7.1
SN + Dream 89.8 / 89.4 75.4 / 73.8 29.4 / 25.4 87.0 / 73.5 62.8 / 41.9 17.2 / 10.3

TABLE IV: UDA from KITTI (city, campus) to KITTI (road,
residential). Naming is as in Table III.

IoU 0.5 IoU 0.7Method 0-30 30-50 50-80 0-30 30-50 50-80
NR 89.4 / 89.4 79.7 / 77.9 36.2 / 30.9 88.3 / 77.9 66.0 / 47.5 19.2 / 6.2
ST 89.4 / 89.4 78.0 / 76.7 35.9 / 31.2 88.2 / 77.8 66.3 / 48.3 19.0 / 7.7
Dream 89.6 / 89.6 80.1 / 78.9 41.4 / 35.3 88.5 / 78.2 68.0 / 49.6 23.2 / 12.7

TABLE V: Ablation study of UDA from Argoverse to KITTI.
We report APBEV/ AP3D of the car category at IoU = 0.5 and
IoU = 0.7 across different depth range, using POINTRCNN model.
Naming is as in Table III. S stands for smoothing, R for resizing, I
for interpolation and E for extrapolation.

IoU 0.5 IoU 0.7Method
0-30 30-50 50-80 0-30 30-50 50-80

NR 89.4 / 88.8 71.0 / 65.2 18.0 / 13.9 72.6 / 47.8 35.8 / 14.6 4.9 / 3.0
ST 89.5 / 89.2 73.2 / 68.5 28.2 / 22.5 76.8 / 52.9 44.2 / 20.6 13.1 / 2.1
ST + S 89.5 / 89.3 73.7 / 68.7 28.3 / 22.3 76.8 / 53.4 45.2 / 21.5 12.9 / 4.7
ST + S + R 89.5 / 89.3 74.0 / 71.6 28.3 / 23.9 78.0 / 55.2 50.8 / 23.9 10.3 / 2.7
ST + S + R + I 89.3 / 89.1 73.9 / 71.6 28.1 / 23.3 77.6 / 54.5 50.4 / 24.0 11.2 / 3.4
ST + S + R + I + E 89.4 / 89.2 74.9 / 72.5 31.0 / 25.7 77.8 / 55.1 50.4 / 24.1 14.3 / 3.3

correct. But just these do not address the second criteria for
desired pseudo-labels: high coverage. We observe noticeable
boosts when interpolation and extrapolations are added,
specially for far away objects. This is due to extrapolations
and interpolations recovering pseudo-labels for low confidence
or missed detections for distant vehicles.

Adaptation results using PIXOR. To show the generality
of our approach, we further apply it to another detector
PIXOR [3] from Argoverse to KITTI in Table VI. Dreaming
improves the accuracy at farther ranges (30-80 m) while
maintaining the accuracy at close range (0-30 m). Interestingly,

TABLE VI: UDA from Argoverse to KITTI using PIXOR. We
report APBEV of the car category at IoU = 0.5 and 0.7. Naming is
as in Table III.

IoU 0.5 IoU 0.7Method 0-30 30-50 50-80 0-30 30-50 50-80
in-domain 88.7 62.6 21.4 79.6 49.9 10.0
NR 85.7 57.2 12.9 54.2 23.6 4.7
ST 86.0 56.3 12.2 55.3 24.6 2.5
Dream 87.1 61.1 20.2 58.0 28.1 4.8
SN 86.7 58.7 15.1 76.2 38.7 5.1
SN + ST 87.4 58.9 12.4 78.0 42.4 3.8
SN + Dream 87.4 64.2 22.2 77.9 42.5 4.5

at IoU 0.5 in the 30-80 m ranges, we are able to surpass the
in-domain performance, which uses models trained only in
the target domain with the ground-truth labels. This results
showcases the power of unsupervised domain adaptation
(UDA): with a suitably designed algorithm, UDA that
leverages both the source and target domain could outperform
models trained only in a single domain.

Others. We show more results and qualitative visualiza-
tions in the supplementary material.

V. CONCLUSION AND DISCUSSION

In this paper, we have introduced a novel method towards
closing the gap between source and target in unsupervised
domain adaptation for LiDAR-based 3D object detection.
Our approach is based on self-training, while leveraging
vehicle dynamics and offline analysis to generate pseudo-
labels. Importantly, we can generate high quality pseudo-
labels even for difficult cases (i.e. far-away objects), which the
detector tends to miss before adaptation. Fine-tuning on these
pseudo-labels improves detection performance drastically in
the target domain. It is hard to conceive an autonomous
vehicle manufacturer that could collect, label, and update data
for every consumer environment, meeting the requirements
to allow self-driving cars to operate everywhere freely and
safely. By significantly reducing the adaptation gap between
domains, our approach takes a significant step towards making
this vision a reality nevertheless.
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APPENDIX

A. Hyper-parameters

In performing the forward pass of the Extended Kalman
Filter (EKF) to calculate the a-posteriori state and state error
covariance estimates (i.e., x̄k|k Pk|k) and the a-priori state and
state error covariance (i.e., x̄k+1|k Pk+1|k) in subsection III-
C, a process noise covariance matrix (Q), measurement
noise covariance matrix (R), initial state estimate (x̄0), and
initial state error covariance matrix (P0) are necessary. The
measurement noise matrix is established through measurement
variance, and was obtained by observing the variance of
position (x, y), orientation (✓), length (l) and width (w) errors
from testing detector in Argoverse to KITTI setting. A larger
measurement noise matrix is used in the EKF for extrapolation
as larger variance was observed with far-away detections.
The process noise matrix should represent the magnitudes
of dynamical noise that the system might experience. In the
model in [61], which is constant velocity and heading, there
are seven noise parameters: e✓, es, evx

, evy
, e!z

, el, ew which
correspond to the diagonal of the Q matrix. The variables
e✓, es, el, ew are modeled as zero mean, mutually uncorrelated,
Gaussian, and white process noise. Intuitively, e✓, es represent
the uncertainty associated with the orientation and speed of
vehicles, especially given that the model assumes constant
speed straight line motion. The noise associated with the

orientation and speed of the target vehicles are the largest
and of most importance. The time derivative of the objects
length and width are zero, where el, ew are small tuning
parameters which control the response of the filter. While evx

,
evy

, e!z
are noises associated with the pose of ego-vehicle

and small values were chosen given that a high accuracy in
ego-vehicle pose is expected across the datasets. Finally, the
EKF necessitates an initialization for the state and state error
covariance estimates. The initial detection was used for state
initialization, and relatively large conservative uncertainties
were used for state error covariance.

• Extended Kalman Filter (EKF) and Global Nearest
Neighbor (GNN) parameters for tracking and data
association (cf. subsection III-C):

1) Measurement noise covariance matrix:
R = diag(0.1m2, 0.1m2, 0.015rad2, 0.07m2, 0.04m2)

2) Process noise covariance matrix:
Q = diag(0.1218 rad

s
2
, 1m

s2

2, 0.00545 rad
s

2
, 0.00545m

s
2,

0.00307 rad
s

2
, 0.01m

s
2, 0.01m

s
2)

3) State error covariance matrix initialization:
P0 = diag(2m2, 2m2, 0.1rad2, 5m

s
2, 0.5m2, 0.32m2)

4) The initial state estimate, x̄0, is set to be the first
detection values.

5) The data association threshold (in BEV IoU) in
GNN is set to be 0.3.

6) The fraction of distance between the vehicle center
and back-axle is 1

4 l, as in [61].
• EKF parameters for extrapolation:

1) Measurement noise covariance matrix:
R = diag(0.5m2, 0.5m2, 0.06rad2, 0.07m2, 0.04m2)

We set cmin�hits = 3 and cmax�age = 3. When doing
extrapolation, we use �25 and �3 as thresholds for POINTR-
CNN and PIXOR models respectively.

B. Details on Datasets

We split each dataset into two parts, a training set and
a test set. When a dataset is used as the source, we train
the detector using its (ground truth) training labeled frames.
When a dataset is used as the target, we adapt the detector
using its training sequences without revealing the ground
truth labels. We evaluate the adapted models on the test set.
We provide detailed properties of the five autonomous driving
datasets and the way we split the data as follows.

KITTI. The KITTI object detection benchmark [6], [5]
contains 7,481 scenes for training and 7,518 scenes for testing.
All the scenes are pictured around Karlsruhe, Germany in
clear weather and day time. For each scene, KITTI provides
64-beam Velodyne LiDAR point cloud and stereo images. The
training set is further separated into 3,712 training and 3,769
validation scenes as suggested by [69]. The training scenes are
sampled from 96 data sequences, which have no overlap with
the sequences where validation scenes are sampled. These
training sequences are collected in 10 Hz, resulting in 13,596
frames. We extract the sequences from the raw KITTI data as
our adaptation data. We use such data splits in all experiments
related to KITTI, except for adaptation between different



locations inside the same dataset (cf. Table IV of the main
paper). For adaptation between different locations inside the
KITTI dataset, we split the sequences in training set by their
categories: city/campus as the source (38 sequences, 9,556
frames, 3,420 labeled frames) and residential/road as the
target (23 sequences, 10,448 frames, 3619 labeled frames).
In Table IV, all models are pre-trained in city/campus data.
Due to limited data, different from what we do UDA among
five autonomous driving datasets, we perform adaptation and

final evaluation on the full target data. Note that in this case,
the detectors still do not have access to ground truth labels
during UDA.

Argoverse. The Argoverse dataset [9] is collected around
Miami and Pittsburgh, USA in multiple weathers and during
different times of the day. For each scene (timestamp),
Argoverse provides a 64-beam LiDAR point cloud captured
by stacking two 32-beam Velodyne LiDAR vertically. We
extracted synchronized images (from front camera) and cor-
responding point clouds from the original Argoverse dataset.
We follow the official split on training and validation sets,
which contain 13,122 scenes and 5,014 scenes respectively.
We use sequences in the training set (without using the ground
truth labels) as our adaptation data.

Lyft. The Lyft Level 5 dataset collects 18,634 scenes
around Palo Auto, USA in clear weather and during day time.
For each scene, Lyft provides the ground-truth bounding box
labels and point cloud captured by a 40 (or 64)-beam roof
LiDAR and two 40-beam bumper LiDAR sensors. We follow
[7] and separate the dataset by sequences, resulting in 12,599
frames for training (100 sequences), 3,024 validation frames
(24 sequences) and 3,011 frames for testing (24 sequences).
The sequences in 5 Hz and we use training sequences without
labels as adaptation data.

nuScenes. The nuScenes dataset [12] collects scenes
around Boston, USA and Singapore in multiple weather
conditions and during different times of the day. For each
scene, nuScenes provides a point cloud captured by a 32-beam
roof LiDAR. We use the data collected in Boston, and sampled
312 sequences for training and 78 sequences for validation.
We use 10 Hz sensor data without labels as our adaptation
data (61,121 frames in total), and evaluate the model on 2
Hz labeled data in validation set (3,133 frames). Note that
after generating pseudo-labels, we sub-sample adaptation data
using 2 Hz into 12,562 frames.

Waymo. The Waymo open dataset [11] is mostly collected
around San Francisco, Phoenix, and Mountain View in
multiple weather conditions and at multiple times of the day.
It provides point clouds captured in 10 Hz by five LiDAR
sensors (one on roof, four on side) and images from five
cameras. We randomly sample 60 tracks (11,886 frames)
captured in San Francisco as our adaptation data, and another
100 tracks (19,828 frames) in San Francisco as our validation
data.

C. Qualitative Results

In Figure 2, Figure 3 and Figure 4, we compare qualitatively
the detection results from models trained with different adap-

tation strategies. We select (Argoverse, KITTI), (nuScenes,
KITTI) and (nuScenes, Argoverse) as (source, target) example
pairs in qualitative visualization. It can be seen that models
without retraining tend to miss faraway objects. Models with
self-training are able to detect some of these objects. Models
with dreaming can detect more faraway objects. Self-training
and dreaming both exhibit some more false positive detection.

D. Adaptation among Five Datasets

In Table VII, we present UDA results on all possible
(source, target) pairs among the five autonomous driving
datasets (20 pairs in total). On each pair, we show results with
and without statistical normalization [7]. As in Table III, we
report APBEV/ AP3D of the car category at IoU = 0.7 and IoU
= 0.5 across different depth range, using the POINTRCNN
detector. It can be seen that under these 20 UDA scenarios,
our method consistently improves the adaptation performance
on faraway ranges, while having mostly equal or better
performance on close-by ranges.



No Re-training Self Training Dreaming

No Re-training Self Training Dreaming

No Re-training Self Training Dreaming

Fig. 2: Qualitative Results. We compare the detection results on several scenes from the KITTI validation set by the POINTRCNN
detectors that are trained on 1) Argoverse dataset (No Re-training), 2) Argoverse dataset and fine-tuned using self-training on KITTI (Self
Training), and 3) Argoverse dataset and fine-tuned using dreaming on KITTI (Dreaming). We visualize them from both frontal-view images
and bird’s-eye view point maps. Ground-truth boxes are in green and detected bounding boxes are in blue. The ego vehicle is on the left
side of the BEV map and looking to the right. One floor square is 10m⇥10m. Best viewed in color. Zoom in for details.



No Re-training Self Training Dreaming

No Re-training Self Training Dreaming

No Re-training Self Training Dreaming

Fig. 3: Qualitative Results. The setups are the same as those in Figure 2, but the models are pre-trained in nuScenes dataset and tested
on KITTI dataset.



No Re-training Self Training Dreaming

No Re-training Self Training Dreaming

No Re-training Self Training Dreaming

Fig. 4: Qualitative Results. The setups are the same as those in Figure 2, but the models are pre-trained in nuScenes dataset and tested
on Argoverse dataset.



TABLE VII: Unsupervised domain adaptation among five autonomous driving datasets. Naming is as that in Table III of the main
paper.

(a) KITTI to Argoverse

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 88.6 / 85.7 68.5 / 66.4 37.8 / 30.0 76.5 / 53.2 56.6 / 30.4 20.2 / 10.1
no retraining 79.4 / 76.5 51.9 / 44.6 20.1 / 15.4 53.1 / 32.9 29.3 / 12.3 5.9 / 3.0
ST 85.2 / 77.6 56.2 / 52.2 26.9 / 19.5 61.3 / 38.8 34.9 / 17.4 10.9 / 9.1
Dreaming 85.6 / 77.8 61.3 / 54.1 28.4 / 20.8 63.3 / 38.6 41.6 / 20.2 12.4 / 4.5
SN only 79.3 / 77.6 54.7 / 52.0 27.5 / 21.2 66.2 / 48.5 43.8 / 21.2 16.7 / 9.1
SN + ST 84.9 / 78.0 56.7 / 54.7 29.0 / 22.5 73.0 / 50.8 46.4 / 22.3 17.6 / 9.1
SN + Dreaming 85.1 / 78.2 62.3 / 55.7 33.6 / 26.5 73.1 / 50.3 50.6 / 20.6 18.5 / 9.9

(b) KITTI to Lyft

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 89.2 / 88.9 78.4 / 77.9 67.2 / 65.5 88.4 / 79.0 74.8 / 54.6 54.7 / 27.3
no retraining 81.0 / 80.8 73.6 / 66.8 49.6 / 40.0 69.7 / 50.4 48.0 / 24.5 25.4 / 5.7
ST 85.9 / 80.7 74.1 / 67.9 56.3 / 46.3 75.2 / 53.7 53.8 / 25.3 28.9 / 7.6
Dreaming 85.9 / 80.7 74.8 / 68.6 56.4 / 47.7 76.6 / 54.2 56.3 / 31.3 34.4 / 10.2
SN only 81.0 / 80.9 72.6 / 67.2 55.0 / 47.5 78.7 / 67.3 64.9 / 45.1 43.4 / 18.0
SN + ST 80.6 / 80.5 73.5 / 72.5 56.0 / 48.8 78.1 / 65.9 66.6 / 45.5 45.9 / 18.7
SN + Dreaming 80.5 / 80.3 74.3 / 72.9 56.6 / 49.7 78.1 / 65.9 67.0 / 48.5 46.7 / 22.0

(c) KITTI to nuScenes

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 65.6 / 64.5 18.4 / 17.2 3.5 / 2.8 57.8 / 37.0 15.8 / 5.3 2.6 / 0.8
no retraining 48.6 / 40.7 11.0 / 4.5 1.4 / 0.9 33.3 / 13.4 4.5 / 0.7 0.3 / 0.0
ST 52.2 / 43.9 11.8 / 9.1 9.1 / 0.4 33.2 / 8.6 9.1 / 4.5 3.0 / 0.0
Dreaming 53.6 / 45.8 13.8 / 9.7 4.5 / 0.4 39.1 / 14.2 9.8 / 3.0 4.5 / 0.0
SN only 52.9 / 47.0 11.1 / 10.0 1.0 / 0.4 44.7 / 22.0 10.2 / 4.5 0.6 / 0.1
SN + ST 51.9 / 47.3 11.5 / 10.1 1.4 / 0.6 45.6 / 26.3 10.6 / 9.1 0.9 / 0.1
SN + Dreaming 53.4 / 51.4 13.7 / 10.5 10.1 / 9.1 50.0 / 24.3 11.3 / 9.1 9.1 / 0.1

(d) KITTI to Waymo

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 81.6 / 81.5 71.7 / 71.2 58.2 / 50.8 80.8 / 68.8 69.1 / 54.9 47.0 / 27.2
no retraining 80.5 / 71.5 69.0 / 60.3 42.8 / 33.4 43.5 / 16.6 34.6 / 11.0 20.6 / 10.8
ST 81.0 / 78.4 69.5 / 61.4 48.5 / 39.3 48.2 / 18.6 36.8 / 16.0 23.6 / 7.0
Dreaming 81.1 / 78.5 69.9 / 61.8 50.2 / 41.0 51.4 / 13.8 44.5 / 16.7 25.6 / 7.8
SN only 81.0 / 80.4 70.0 / 62.4 42.7 / 40.7 71.4 / 53.4 60.9 / 39.8 38.0 / 19.4
SN + ST 81.1 / 80.6 70.5 / 68.5 49.7 / 42.5 78.1 / 53.1 61.7 / 45.1 40.2 / 20.6
SN + Dreaming 81.2 / 80.8 70.9 / 68.3 51.1 / 48.3 78.1 / 51.6 67.4 / 45.5 41.1 / 20.8



(e) Argoverse to KITTI

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 90.0 / 89.9 81.0 / 79.9 40.4 / 36.3 89.0 / 78.0 70.3 / 51.5 26.6 / 9.8
no retraining 89.4 / 88.8 71.0 / 65.2 18.0 / 13.9 72.6 / 47.8 35.8 / 14.6 4.9 / 3.0
ST 89.5 / 89.2 73.2 / 68.5 28.2 / 22.5 76.8 / 52.9 44.2 / 20.6 13.1 / 2.1
Dreaming 89.3 / 89.2 74.6 / 72.4 30.1 / 25.6 77.6 / 54.7 49.9 / 24.3 14.5 / 3.4
SN only 89.3 / 88.2 69.6 / 65.4 14.6 / 13.3 83.8 / 59.1 53.5 / 27.2 9.3 / 3.6
SN + ST 89.8 / 89.3 74.4 / 72.8 22.3 / 21.3 87.0 / 70.4 62.2 / 37.7 16.4 / 7.1
SN + Dreaming 89.8 / 89.4 75.4 / 73.8 29.4 / 25.4 87.0 / 73.5 62.8 / 41.9 17.2 / 10.3

(f) Argoverse to Lyft

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 89.2 / 88.9 78.4 / 77.9 67.2 / 65.5 88.4 / 79.0 74.8 / 54.6 54.7 / 27.3
no retraining 79.9 / 79.8 68.5 / 67.4 46.3 / 42.9 77.2 / 54.8 57.6 / 32.0 31.8 / 12.4
ST 80.2 / 80.1 72.7 / 67.9 48.8 / 46.0 78.3 / 55.4 63.3 / 35.8 35.0 / 11.3
Dreaming 80.3 / 80.1 73.8 / 72.4 54.5 / 47.6 78.9 / 57.3 64.2 / 37.1 35.6 / 12.8
SN only 79.6 / 79.2 67.1 / 66.0 44.8 / 41.8 75.7 / 54.7 55.3 / 30.4 32.4 / 14.2
SN + ST 80.1 / 79.9 72.2 / 67.4 47.4 / 45.3 78.3 / 56.0 63.6 / 38.0 36.4 / 13.5
SN + Dreaming 80.2 / 80.0 73.5 / 68.2 54.0 / 47.5 78.5 / 56.8 64.1 / 39.3 41.9 / 14.1

(g) Argoverse to nuScenes

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 65.6 / 64.5 18.4 / 17.2 3.5 / 2.8 57.8 / 37.0 15.8 / 5.3 2.6 / 0.8
no retraining 51.6 / 45.3 10.3 / 9.1 0.6 / 0.1 43.3 / 17.9 9.1 / 0.3 0.2 / 0.1
ST 47.7 / 43.4 6.3 / 5.4 9.1 / 0.2 41.5 / 18.4 5.6 / 4.5 0.3 / 0.1
Dreaming 48.1 / 43.5 8.0 / 4.5 3.0 / 3.0 41.4 / 18.4 5.3 / 2.3 3.0 / 0.0
SN only 47.6 / 45.6 5.7 / 4.5 0.5 / 0.2 43.1 / 18.2 4.5 / 0.7 0.1 / 0.0
SN + ST 49.1 / 44.5 11.0 / 4.2 9.1 / 9.1 42.7 / 22.4 10.4 / 1.8 9.1 / 9.1
SN + Dreaming 50.7 / 45.9 12.8 / 10.1 9.1 / 9.1 44.1 / 24.7 10.7 / 9.1 9.1 / 4.5

(h) Argoverse to Waymo

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 81.6 / 81.5 71.7 / 71.2 58.2 / 50.8 80.8 / 68.8 69.1 / 54.9 47.0 / 27.2
no retraining 81.2 / 80.4 69.3 / 61.7 50.4 / 47.8 70.8 / 43.7 59.6 / 35.0 39.1 / 18.8
ST 81.3 / 80.7 69.9 / 67.1 50.9 / 48.2 78.0 / 50.0 60.8 / 36.0 40.7 / 20.2
Dreaming 81.3 / 80.6 70.0 / 67.0 56.0 / 49.1 77.3 / 43.4 60.5 / 36.2 40.9 / 20.2
SN only 81.3 / 80.7 69.3 / 61.6 49.7 / 47.4 71.0 / 51.8 59.1 / 34.3 38.3 / 15.0
SN + ST 81.4 / 81.0 70.1 / 67.7 50.7 / 48.0 78.4 / 55.5 61.1 / 41.1 40.4 / 20.0
SN + Dreaming 81.4 / 81.0 70.4 / 67.5 56.1 / 49.5 77.9 / 53.6 61.1 / 41.8 44.9 / 20.0



(i) Lyft to KITTI

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 90.0 / 89.9 81.0 / 79.9 40.4 / 36.3 89.0 / 78.0 70.3 / 51.5 26.6 / 9.8
no retraining 88.9 / 88.6 67.7 / 64.9 26.1 / 20.4 65.2 / 38.7 36.1 / 12.9 8.5 / 2.2
ST 89.9 / 89.6 73.5 / 68.8 30.8 / 24.0 71.7 / 40.8 42.2 / 20.5 10.8 / 2.9
Dreaming 90.0 / 89.7 74.7 / 72.8 33.9 / 26.4 74.2 / 42.8 46.2 / 18.7 12.1 / 3.6
SN only 89.5 / 89.5 67.4 / 66.5 28.7 / 24.9 88.0 / 76.0 57.2 / 33.8 20.1 / 6.4
SN + ST 90.0 / 90.0 73.2 / 72.3 31.9 / 28.4 88.4 / 77.2 63.1 / 42.3 22.1 / 10.0
SN + Dreaming 90.1 / 90.1 76.2 / 74.8 36.1 / 32.1 88.6 / 78.0 64.6 / 42.5 23.6 / 10.7

(j) Lyft to Argoverse

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 88.6 / 85.7 68.5 / 66.4 37.8 / 30.0 76.5 / 53.2 56.6 / 30.4 20.2 / 10.1
no retraining 86.4 / 78.6 58.2 / 55.3 29.3 / 25.3 72.5 / 40.1 44.6 / 17.3 17.0 / 9.1
ST 86.7 / 84.2 63.6 / 57.0 30.7 / 26.7 74.8 / 42.3 50.4 / 19.2 18.1 / 4.5
Dreaming 87.3 / 84.1 64.9 / 61.3 35.2 / 27.3 75.1 / 41.9 49.7 / 18.7 18.6 / 9.1
SN only 86.5 / 78.4 58.1 / 55.0 29.2 / 22.2 72.3 / 46.5 44.3 / 13.0 17.7 / 9.1
SN + ST 86.4 / 78.6 63.8 / 56.9 30.6 / 26.9 74.8 / 48.6 50.8 / 21.4 18.9 / 10.1
SN + Dreaming 87.4 / 84.1 64.8 / 61.5 34.9 / 27.9 74.9 / 45.6 50.4 / 20.6 19.0 / 9.9

(k) Lyft to nuScenes

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 65.6 / 64.5 18.4 / 17.2 3.5 / 2.8 57.8 / 37.0 15.8 / 5.3 2.6 / 0.8
no retraining 53.2 / 47.1 9.4 / 3.8 4.5 / 0.4 45.9 / 24.0 7.3 / 0.9 4.5 / 0.3
ST 51.6 / 46.2 13.0 / 10.4 9.1 / 9.1 45.2 / 25.8 11.6 / 9.1 9.1 / 0.1
Dreaming 52.8 / 50.4 14.9 / 10.2 6.0 / 1.1 49.6 / 26.7 11.8 / 9.1 4.5 / 0.1
SN only 53.5 / 47.0 9.0 / 3.6 3.0 / 0.4 45.7 / 24.1 6.4 / 2.3 1.0 / 0.0
SN + ST 52.0 / 46.6 12.9 / 10.5 4.5 / 4.5 45.6 / 25.4 11.4 / 9.1 4.5 / 0.1
SN + Dreaming 52.3 / 49.8 15.1 / 10.2 5.0 / 1.5 48.8 / 23.3 12.1 / 9.1 3.0 / 0.0

(l) Lyft to Waymo

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 81.6 / 81.5 71.7 / 71.2 58.2 / 50.8 80.8 / 68.8 69.1 / 54.9 47.0 / 27.2
no retraining 81.5 / 81.2 70.9 / 69.8 51.6 / 49.6 79.5 / 55.8 61.6 / 44.5 40.5 / 18.6
ST 81.5 / 81.3 71.1 / 69.8 51.9 / 50.6 79.3 / 56.1 67.5 / 46.0 46.3 / 23.8
Dreaming 81.5 / 81.2 71.2 / 70.2 56.9 / 50.8 79.1 / 55.7 67.2 / 45.5 46.0 / 21.2
SN only 81.4 / 81.3 71.0 / 70.1 51.1 / 49.5 79.8 / 65.5 61.1 / 46.1 39.0 / 21.3
SN + ST 81.4 / 81.3 71.2 / 70.2 51.9 / 50.5 80.3 / 65.0 67.5 / 47.5 45.5 / 25.1
SN + Dreaming 81.4 / 81.3 71.3 / 70.4 56.9 / 50.9 80.1 / 64.9 67.1 / 47.5 44.6 / 22.8



(m) nuScenes to KITTI

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 90.0 / 89.9 81.0 / 79.9 40.4 / 36.3 89.0 / 78.0 70.3 / 51.5 26.6 / 9.8
no retraining 68.5 / 57.2 46.1 / 33.5 9.6 / 5.5 35.7 / 5.3 12.7 / 1.4 2.8 / 1.8
ST 87.8 / 78.9 64.8 / 51.0 16.4 / 8.7 45.9 / 10.9 21.4 / 2.5 3.4 / 0.6
Dreaming 87.6 / 78.8 69.3 / 56.3 21.7 / 13.4 46.4 / 14.5 25.7 / 10.2 5.4 / 0.5
SN only 78.8 / 78.3 48.9 / 46.6 6.0 / 5.5 74.9 / 40.9 37.7 / 11.4 4.7 / 1.1
SN + ST 88.7 / 88.5 65.6 / 63.5 16.6 / 13.0 84.3 / 61.2 53.3 / 22.3 10.6 / 1.8
SN + Dreaming 88.5 / 88.2 69.9 / 65.8 23.9 / 20.9 84.0 / 60.8 53.9 / 24.5 8.9 / 1.5

(n) nuScenes to Argoverse

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 88.6 / 85.7 68.5 / 66.4 37.8 / 30.0 76.5 / 53.2 56.6 / 30.4 20.2 / 10.1
no retraining 39.5 / 37.0 21.6 / 17.4 3.0 / 3.0 28.6 / 5.1 17.6 / 9.1 3.0 / 0.1
ST 65.2 / 59.5 32.6 / 25.9 12.4 / 9.1 51.9 / 15.7 24.3 / 9.1 9.1 / 0.6
Dreaming 65.9 / 63.2 50.0 / 40.3 17.7 / 13.0 50.7 / 10.6 32.3 / 2.9 9.6 / 0.6
SN only 49.6 / 47.8 20.8 / 16.4 4.5 / 4.5 38.2 / 8.2 16.6 / 2.3 4.5 / 1.8
SN + ST 56.7 / 55.5 23.3 / 18.0 4.7 / 3.4 50.3 / 13.3 17.4 / 9.1 3.3 / 0.5
SN + Dreaming 64.3 / 61.8 45.7 / 40.9 19.4 / 14.1 50.8 / 11.0 33.4 / 3.0 12.8 / 0.8

(o) nuScenes to Lyft

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 89.2 / 88.9 78.4 / 77.9 67.2 / 65.5 88.4 / 79.0 74.8 / 54.6 54.7 / 27.3
no retraining 52.3 / 51.0 41.1 / 37.9 22.9 / 15.1 49.5 / 17.9 36.8 / 10.5 15.1 / 9.1
ST 79.7 / 78.0 65.9 / 58.0 39.1 / 30.2 77.0 / 20.2 57.0 / 13.0 30.0 / 10.4
Dreaming 79.6 / 78.1 66.8 / 63.2 46.4 / 37.8 77.0 / 20.7 62.1 / 10.4 36.4 / 5.2
SN only 62.3 / 61.7 41.6 / 39.9 16.7 / 15.4 60.1 / 26.8 32.1 / 5.7 15.6 / 9.1
SN + ST 78.6 / 77.9 56.1 / 53.7 23.1 / 13.9 77.3 / 32.4 53.0 / 13.8 20.4 / 3.0
SN + Dreaming 78.7 / 78.0 64.7 / 57.5 39.7 / 36.1 77.3 / 31.6 56.0 / 16.0 29.6 / 11.0

(p) nuScenes to Waymo

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 81.6 / 81.5 71.7 / 71.2 58.2 / 50.8 80.8 / 68.8 69.1 / 54.9 47.0 / 27.2
no retraining 62.2 / 61.2 50.7 / 42.1 24.9 / 22.5 60.5 / 25.3 41.7 / 13.8 21.3 / 4.5
ST 80.7 / 71.9 68.7 / 60.9 42.5 / 39.6 71.6 / 34.5 60.7 / 24.6 37.0 / 8.8
Dreaming 80.7 / 71.9 69.4 / 61.3 50.1 / 45.5 71.7 / 33.5 61.2 / 24.3 39.3 / 10.7
SN only 71.1 / 70.3 50.6 / 41.8 25.1 / 16.6 61.1 / 34.8 40.5 / 14.4 16.1 / 2.8
SN + ST 80.7 / 79.1 67.4 / 59.2 41.3 / 32.1 71.4 / 44.0 58.2 / 27.3 29.7 / 7.4
SN + Dreaming 81.1 / 79.2 69.5 / 61.5 50.1 / 41.3 71.7 / 42.2 60.7 / 27.6 38.5 / 14.4



(q) Waymo to KITTI

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 90.0 / 89.9 81.0 / 79.9 40.4 / 36.3 89.0 / 78.0 70.3 / 51.5 26.6 / 9.8
no retraining 88.4 / 87.0 64.7 / 55.2 14.3 / 8.5 45.8 / 10.4 22.9 / 3.1 2.5 / 0.8
ST 89.3 / 88.3 70.5 / 62.8 25.6 / 18.1 50.7 / 10.1 28.6 / 11.9 4.3 / 2.3
Dreaming 89.5 / 88.7 72.6 / 65.8 27.8 / 19.7 49.8 / 16.3 31.9 / 12.3 5.0 / 3.0
SN only 88.6 / 88.5 63.0 / 61.9 11.6 / 10.7 84.1 / 53.8 51.7 / 28.3 8.4 / 5.1
SN + ST 89.7 / 89.7 72.5 / 69.0 19.8 / 18.6 87.1 / 60.6 60.8 / 38.6 13.8 / 6.2
SN + Dreaming 89.6 / 89.6 73.5 / 72.3 22.1 / 19.6 86.3 / 63.1 58.0 / 36.4 14.0 / 4.0

(r) Waymo to Argoverse

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 88.6 / 85.7 68.5 / 66.4 37.8 / 30.0 76.5 / 53.2 56.6 / 30.4 20.2 / 10.1
no retraining 84.0 / 76.3 54.4 / 51.3 24.7 / 19.6 69.6 / 28.4 40.6 / 13.8 15.9 / 1.6
ST 85.7 / 78.6 55.5 / 52.9 23.4 / 21.3 70.7 / 29.8 44.3 / 14.0 14.9 / 2.1
Dreaming 85.8 / 78.3 56.7 / 54.6 28.3 / 22.3 64.8 / 28.8 44.1 / 13.5 17.3 / 3.0
SN only 83.3 / 74.9 54.3 / 47.2 19.2 / 16.3 69.3 / 29.2 43.2 / 16.9 10.3 / 3.0
SN + ST 85.2 / 78.0 55.4 / 52.8 22.8 / 20.4 73.9 / 37.6 45.8 / 19.8 14.8 / 9.1
SN + Dreaming 85.4 / 78.1 56.0 / 53.6 27.7 / 22.1 71.8 / 35.2 45.5 / 16.8 17.6 / 9.1

(s) Waymo to Lyft

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 89.2 / 88.9 78.4 / 77.9 67.2 / 65.5 88.4 / 79.0 74.8 / 54.6 54.7 / 27.3
no retraining 80.8 / 80.8 67.8 / 66.8 45.3 / 43.0 78.3 / 55.3 56.7 / 31.2 34.4 / 10.5
ST 80.7 / 80.6 74.6 / 73.4 54.0 / 48.1 78.9 / 54.9 65.4 / 32.8 42.9 / 17.2
Dreaming 86.8 / 80.8 75.4 / 74.0 55.5 / 49.6 79.2 / 55.5 65.4 / 32.6 44.6 / 17.3
SN only 80.5 / 80.2 66.4 / 65.1 38.4 / 37.1 78.0 / 55.9 55.8 / 31.4 33.5 / 15.4
SN + ST 86.8 / 80.7 74.2 / 73.3 45.5 / 44.7 79.8 / 63.9 65.4 / 38.1 36.1 / 14.5
SN + Dreaming 87.3 / 81.1 75.3 / 73.8 48.0 / 47.0 80.3 / 64.6 66.3 / 38.1 38.4 / 18.4

(t) Waymo to nuScenes

IoU 0.5 IoU 0.7
Method

Range(m)
0-30 30-50 50-80 0-30 30-50 50-80

in-domain 65.6 / 64.5 18.4 / 17.2 3.5 / 2.8 57.8 / 37.0 15.8 / 5.3 2.6 / 0.8
no retraining 46.4 / 43.2 3.0 / 3.0 0.2 / 0.0 42.6 / 23.9 3.0 / 0.2 0.1 / 0.0
ST 51.4 / 46.5 10.7 / 9.1 3.0 / 0.3 45.8 / 26.4 9.1 / 3.0 3.0 / 0.0
Dreaming 53.8 / 48.0 12.4 / 10.0 9.1 / 9.1 47.4 / 23.7 11.1 / 3.0 9.1 / 0.8
SN only 45.8 / 43.5 9.1 / 9.1 0.1 / 0.0 42.9 / 23.5 9.1 / 0.2 0.0 / 0.0
SN + ST 51.0 / 45.8 9.1 / 9.1 1.0 / 0.3 44.7 / 25.6 9.1 / 9.1 1.0 / 0.0
SN + Dreaming 53.7 / 47.6 12.4 / 10.2 2.8 / 0.8 46.8 / 26.5 11.2 / 2.3 2.3 / 0.0


