
Distributed Simulation on a Many-Core

Processor

Karthik Vadambacheri Manian and Philip A. Wilsey

Experimental Computing Laboratory,

School of Electronic and Computing Systems,

PO Box 210030, Cincinnati, OH 45221–0030

vadambkk@mail.uc.edu, and philip.wilsey@uc.edu

Abstract—Parallel Discrete Event Simulation (PDES) using
distributed synchronization supports the concurrent execution of
discrete event simulation models on parallel processing hardware
platforms. The multi-core/many-core era has provided a low
latency “cluster on a chip” architecture for high-performance
simulation and modeling of complex systems. A research many-
core processor named the Single-Chip Cloud Computer (SCC)
has been created by Intel Labs that contains some interesting
opportunities for PDES research and development. The features
of most interest in the SCC system are: low-latency messag-
ing hardware, software managed cache coherence, and (user
controllable) core independent dynamic frequency and voltage
regulation capability. Ideally, each of these features provide
interesting opportunities that can be exploited for improving
the performance of PDES. This paper reports some preliminary
efforts to migrate an optimistically synchronized parallel simu-
lation kernel called WARPED to an SCC emulation system called
Rock Creek Communication Environment (RCCE). The WARPED

simulation kernel has been ported to the RCCE environment
and several test simulation models have also been ported to the
RCCE environment. Based on initial efforts, some preliminary
insights on how to exploit some of the exotic features of SCC for
increasing the performance of PDES applications is noted.

Index Terms—Parallel and Distributed Simulation, Time Warp,
Many-core processors.

I. INTRODUCTION

Discrete Event Simulation (DES) is widely used for perfor-

mance evaluation across many disciplines, including: computer

systems, computer networks, wired and wireless networks,

emergency evacuation management, wargaming, and others

[1], [2]. Often the simulation models grow very large and

can easily exceed the capabilities of large single-processor

compute platform. Thus, many simulation analysis activities

are based on fairly small simulation models whose behavior

is projected into the larger reality that the simulation is

attempting to model. The results from these projections can be

highly inaccurate [1]. PDES propose to help solve this problem

by running the simulation on a cluster of computers, but it has

thus far failed to deliver a promise of reliable speedup across

many applications. This failure is largely due to the huge

mismatch in speeds of execution vs communication of classic

parallel platforms. The integrated solution and more uniform

performance between communication and computation on

Support for this work was provided in part by the National Science
Foundation under grant CNS–0915337. The Intel c++ compiler used for this
project is provided by Ohio Super Computing Center.

Intel’s SCC [3], [4] many-core solution will provide a key

opportunity for parallel simulation to begin having a dramatic

role in the cloud services community.

In PDES, the concurrently executed simulations commu-

nicate by exchanging time-stamped event messages. Unfor-

tunately, the event processing step in most simulation ap-

plications are fine-grained computations that generate one or

more (but only a few) new events per event execution. One of

the key problems in optimizing parallel simulation is finding

adequate event processing work during the higher latency

event communications. Intel’s SCC many-core processor chip

provides a low latency on-chip communication medium that

should substantially reduce the time disparity between event

processing costs and event communication costs.

The Intel SCC chip also has other features that present

exciting and unique opportunities for optimizing parallel soft-

ware codes. For example, the current SCC chip has cache

memory that does not enforce coherence; it also has program

controlled power and frequency islands allowing independent

frequency/voltage settings among subsets of the processor

cores. From the perspective of optimistically synchronized

parallel simulation (e.g., Time Warp [1], [5]), the ability

to use software to modulate power and frequency islands

provides an opportunity for the simulation kernel to slow the

processing that occur off the critical path and accelerate the

processing on the critical path (within the bounds of satisfying

the total processor thermal envelope). Thus, balancing the

load and potentially accelerating the critical path of the total

parallel simulation (similar to Intel’s dynamic overclocking).

The optimistic nature of Time Warp synchronized simulations

may also allow one to exploit the incoherent caches by

allowing continued execution for some time without forcing

unnecessary coherency checks. However, suitable algorithms

to successfully exploit this are not yet known to the authors.

This work focuses on the potential opportunities between

Time Warp parallel simulation and the Intel SCC many-core

platform. The principle objective of this work is to develop

techniques to affect ultra-high performance parallel simulation

on many-core processors and ultimately on cloud services

provided by clusters of many-core processors. To pursue these

investigations, the WARPED simulation kernel [6] is used.

WARPED was developed at the University of Cincinnati for

supporting large scale simulations (millions of concurrently

32Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

executed simulation objects) on smaller (32-64 node) Beowulf

clusters. WARPED is an excellent starting point for this project

because it is a modular design setup with threaded objects

setup for execution on a heterogeneous Beowulf platform that

contains local (shared memory) and remote (Message Passing

Interface, MPI, based messaging) communication capabilities.

This paper reports on some preliminary explorations to

effectively utilize the SCC many-core processor for efficient

parallel simulation modeling and analysis. This work throws

light on further research for running PDES on many-core

Beowulf clusters. The rest of the paper is organized as follows:

Section II presents some background and related work. Section

III provides a brief introduction to parallel simulation and

WARPED. Section IV describes the challenges faced while

porting WARPED to the RCCE environment. Section V de-

scribes the experimental setup and presents some preliminary

performance results. Section VI presents some future research

directions that we hope to follow with SCC. Finally Section

VII concludes the paper.

II. BACKGROUND AND RELATED WORK

Cloud computing will play a significant role in the future for

providing general purpose and high performance computing

capabilities. Furthermore, the cloud computing platform will

almost certainly be composed primarily of multi-core and

many-core processing nodes. Hence the issues of efficiently

running PDES on multi-core and many-core processors in

cloud infrastructure is an important area of research worth

exploring. Fujimoto et al [7] has analyzed this area and studied

the different issues encountered while running PDES on cloud.

One of the issues is the processing delays of the PDES

simulation due to the load sharing of the node with other

tasks in the cloud. Malik et al [8] has analyzed this issue and

come up with a modified version of the Time Warp protocol

to mitigate this issue.

PDES researchers have also worked to enhance the per-

formance of PDES execution on multi-core processors [9],

[10]. When PDES runs in a cluster of multi-core nodes,

communications between the cores will have substantially

lower latencies than communications between nodes. Bahulkar

et al [9] has studied the behavior of communication between

the cores and between the nodes and their overall impact in

the performance of the simulation. They found that if the

frequently communicating cores are present in the same chip,

it greatly enhances the performance of the PDES. This has lead

them to focus their studies on partitioning and load balancing.

Intel’s SCC chip is an experimental many-core processor

created by Intel Labs mainly for the purpose of many-core

research efforts. SCC is the first Intel chip with x86 compliant

cores on a single die. The die has 48 cores organized into

24 Tiles with 2 x86 cores per Tile (Figure 1). The principle

features of the SCC platform are: (i) hardware support for

message passing between cores implemented by a 2-D on-chip

mesh interconnection network, (ii) an absence of hardware

cache coherency on the Tile caches, and (iii) a fine grained,

software controllable, dynamic power and frequency manage-

ment capability.

Each SCC Tile contains a hardware router, 256KB of L2

cache for each core (2) on the Tile, a 16KB shared Message

Passing Buffer (MPB), and 16KB of L1 caches in each core.

The MPB provides high-performance on-chip message passing

capabilities. The message bandwidth is around 1 GB/s and on-

die 2D mesh bisection bandwidth is 2 Tb/s. The MPB memory

is cached only in L1 cache of the core and hardware coherence

is not enforced. Hence care must be taken while accessing

the MPB memory. Typically the programmer will invalidate

the cache entry before accessing the MPB memory. Since the

caches are incoherent, a shared memory application running

across multiple cores must use software managed coherence

to ensure correct memory accesses.

One more interesting feature of SCC is that the software

control of the operating frequency and voltage of the process-

ing cores. Specifically the operating frequency of the cores

and the 2D communication network can be controlled by the

executing software. As illustrated in Figure 1, the frequency

and voltage adjustment occurs in groups of cores (called

islands) on the chip. Each Tile forms a frequency island and

2x2 groups of Tiles form voltage islands. Thus there are a total

of 28 frequency domains (24 for the processing cores; one each

for the system interface, the voltage regulator controller, and

the 2D communication network and memory controller) and 7

voltage domains (6 domains for the cores and 1 domain for the

2D communication network). All of the cores in a frequency

island will share the same frequency and all cores in a voltage

island will share the same voltage. Frequency changes take

only a few cycles whereas voltage changes occur on the

order of a million cycles. Hence in addition to voltage change

instructions, additional instructions are also provided to check

whether the voltage change is complete. The inter-core latency

within the SCC chip over a 2D-message network is directly

proportional to the number of hops taken by the packet. As

Figure 1 shows, by default 12 cores in each quadrant are

mapped to a specific memory controller. External memory

requests are serviced by these memory controllers.

III. PARALLEL SIMULATION AND WARPED

Research in parallel and distributed simulation focuses

primarily on distributed synchronization mechanisms and the

methods to optimize them [1]. A distributed simulation will

organize a sequential simulation into concurrently executing

parts that are called Logical Processes (LPs). The LP will

concurrently process events (following some synchronization

protocol) and exchange timestamped messages to communi-

cate event information designated for another LP.

There are two main categories of synchronization protocols

for distributed simulation, namely: (i) conservative [11], and

(ii) optimistic [5], [12]. Conservative techniques implement

a strict enforcement of the “happens-before” relationship be-

tween events [13] to synchronize the LP event processing

activities. In contrast, optimistic techniques do not strictly

enforce the event causality relations. Instead optimistically

33Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Fig. 1. Architecture of Intel’s SCC Processor

synchronized simulations will have some mechanism to de-

tect and recover from an event causality error. This permits

optimistic techniques to aggressively process the distributed

events and permit greater amounts of parallelism. Of course

this comes at the cost of also potentially triggering causality

violations that must be repaired.

This paper studies parallel simulation on many-core pro-

cessors using a simulation kernel called WARPED [6], [10],

[14]. WARPED is both a general purpose discrete event API

for building simulation models and an implementation of a

discrete event simulation kernel (implementing the aforemen-

tioned API). The WARPED simulation kernel is highly config-

urable and has optimized implementations of a sequential and

a parallel execution mode. The parallel version implements

the Time Warp protocol [1], [5] for synchronization. The

design goals of WARPED are to support exploratory research

in PDES and to simplify the construction of simulation

models for parallel execution. More precisely, the WARPED

API hides the implementation details from the simulation

model developer. The WARPED code also includes several test

simulation models, namely: (i) the classic PHOLD model used

by many parallel simulation researchers [1], (ii) a configurable

simulation model of a RAID-5 storage array, and (iii) a generic

shared memory multi-processor (SMMP). Parallel execution of

VHDL models using the WARPED kernel is also possible using

the SAVANT/TyVIS tools [15].

Originally WARPED was configured as a collection of highly

optimized heavy-weight processes designed to run on Beowulf

clusters containing (single or multiple) single-core processors

using primarily distributed memory and message passing for

communication [6]. More recently the kernel has been ex-

panded and tuned for multi-core processing [10]. While the

work to optimize WARPED for execution on multi-core pro-

cessors is underway, the architecture of many-core processors

contain exotic features such as on die network interconnect,

no hardware cache coherency, dynamic voltage and frequency

regulation, and so on that are not found on conventional multi-

core processors. Hence the results obtained for running PDES

on multi-core processors cannot necessarily be generalized to

many-core processors.

IV. PORTING ISSUES

The experiments with the SCC many-core platform were

performed in a software emulation environment that executes

on a conventional x86 platform. The emulation environment is

called RCCE. The RCCE environment provides a framework

for software development that closely emulates the SCC com-

munication environment. The WARPED kernel and simulation

models are written in C++ and must be migrated to the

constrained, shared memory environment and support libraries

available for the SCC platform.

The primary language environment for SCC is C and the

message passing environment is primarily designed to support

a SPMD/synchronous communication application program-

34Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

ming environment. Fortunately interfacing the WARPED C++

code with the RCCE API is fairly straightforward. However,

there were several challenges to be overcome before the

WARPED simulation models could be successfully executed

in the RCCE emulator, namely: (i) the use of complex static

variables in WARPED, (ii) the asynchronous communication

patterns used in the WARPED simulation models, (iii) WARPED

has variable length messages sent between LPs, and (iv) issues

with the RCCE emulator while executing PDES on more than

30 cores (While this is not a problem that is overcome in

these experiments, this section explains why experiments were

limited to 30 cores in the emulator). Each of these issues is

discussed more fully in the sections below.

A. Static variables issue

The RCCE emulator uses OpenMP to emulate the SCC

message passing environment. If the program running in

RCCE emulator contains static variables, then they will be

initialized only once and shared between all threads. Un-

fortunately WARPED code contains a significant amount of

static variables that are designed to be static to a specific

thread, not to all threads. To overcome this issue the RCCE

manual recommends the usage of the #pragma openmp

threadprivate directive on static variables whenever they

are encountered and the code is compiled. However, in the

current versions of g++, the threadprivate directive only

works for Plaid Old Data-types (POD) such as int, float,

etc and do not work for non POD types such as class objects.

Fortunately Intel’s icpc C++ compiler can process complex

data types in the threadprivate directive. Thus, a licensed

version of the Intel compiler had to be obtained from the Ohio

Supercomputing Center and the WARPED code was modified

to build correctly with the icpc compiler.

B. Asynchronous Communication Pattern

The RCCE communication system is designed to support

synchronous communication, where a message send request

must wait for the corresponding message receive request. This

is not a good match for the asynchronous message passing

scenario programmed into WARPED. That is, a WARPED LP

sends the message asynchronously and continues with other

work. It then periodically polls back to check whether new

messages incoming have arrived. Fortunately there exists an

asynchronous communication library for the RCCE platform

called immediate RCCE (iRCCE) [16]. Unfortunately, the

ping-ping example pattern in the iRCCE manual and other

sample codes in the Many-core Applications Research Com-

munity (MARC) [17] forums have all used both non-blocking

send or receive in the same function of the application and

then they use a blocking call to poll and check whether the

requests have completed. Even this communication pattern is

not useful for WARPED. WARPED completely decouples the

send and receive primitives into separate functions and no

blocking call can be used after the send or receive.

The solution that was ultimately successful is to put the

asynchronous send and receive requests in a per thread global

wait-list. Whenever the application needs to check for mes-

sages, it simply checks this global wait-list for completed

tasks. This test can be achieved in a non-blocking manner. This

method was programmed into the WARPED code for execution

with RCCE.

C. Arbitrary length messages

The LPs in a WARPED simulation can exchange multiple

message types of varying lengths. Examples of these message

types are: initialization, event message, Global Virtual Time

(GVT) estimation messages, tests for termination, and so

on. As explained in the previous subsection, when messages

are obtained from the global waitlist, any type of message

can be received from LPs on any other core. Therefore, the

message type and size for the next message cannot be known.

Unfortunately, the RCCE/iRCCE platform requires that the

message size in the send and receive operations match. Thus,

the ported WARPED messaging subsystem was modified to

send each message in two parts, the first part is a message

header containing the length of the actual message and the

second part is the actual message. The receive operation

is likewise broken into two receives: the first receive reads

the message length information and uses that information to

trigger the specific command to receive the actual message.

Since the order of the messages is guaranteed, this is a

workable solution.

D. #pragma omp flush issue

The ported version of WARPED runs in parallel on the RCCE

emulator up to 30 cores. However when core count is in-

creased beyond 30, the message headers become polluted, with

payload data from the previous message. Problems similar to

this are reported in the MARC forums. This may be due to a

#pragma omp flush issue reported in the MARC forum

where the MPB does not reflect the latest content after being

written by a thread. As a result, no experimental results are

shown in this paper with SCC node counts above 30.

V. EXPERIMENTAL SETUP AND RESULTS

The simulation experiments were run on two machines.

The first is an Intel Core i7-920 with 4 hyper-threaded cores

supporting 8 threads and operating at 2.67 GHz. The second is

a dual core Intel Core2Duo supporting 2 threads operating at

2.00GHz. Both machines have 3 Gb of RAM and are running

Linux (version 2.6.x).

Four simulation models are packaged with the WARPED

simulation kernel, namely: PHOLD, RAID, SMMP, PING-

PONG. PHOLD is a synthetic simulation widely used by

the parallel simulation community for showing performance

results. The PHOLD configuration used in these experiments

contains 4 LPs with an event density of 4 and with an expo-

nential distribution and a seed of 1.0. The RAID simulation

simulates a RAID 5 disk array composed of 4 disks and with

total of 100 I/O requests issued by two LPs. SMMP is a

simulation model that simulates a symmetric multiprocessing

environment containing 8 processors, with cache speed 10

35Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Model Runtime (secs)

PHOLD 835.50

RAID 72.40

SMMP 229.50

PINGPONG 49.50

TABLE I
SIMULATION ON 30 CORES WITH THE INTEL I7

MPB Size i7 Runtime (secs)
(bytes) PHOLD RAID SMMP PINGPONG

100 1.03 0.16 5.32 4.08

150 1.01 0.15 5.32 2.10

200 1.00 0.15 5.27 2.53

8K 0.98 0.14 5.27 1.93

TABLE II
MPB ANALYSIS WITH 8 EMULATED SCC CORES ON THE I7

times that of main memory and with cache hit ratio of 0.85.

During the simulation 1,000 memory requests are made to the

memory space by each of the 8 simulated processors. Finally,

the PINGPONG simulation contains a fixed set of balls that

are circulated among a fixed set of players (LPs). A subset of

players start the simulation by circulating the balls to other

players. The simulation ends when all the balls are received

back at the originating LP.

A summary of the simulation runtimes for the emulated 30

core SCC platform is shown in Table I. These results were run

on the Intel i7 platform and they simply show the completion

of all of the simulation models on an emulated configuration

of 30 cores for the SCC platform. In the next two sections,

studies to evaluate the impact of message size and to show the

potential impact that voltage and frequency adjustments might

have are described.

A. Analysis of MPB size

To show the impact of the message passing buffer size on

simulation performance, the above simulation models were run

in the SCC emulator for varying sizes of the MPB (Table

II). By default, the MPB for each core is 8K. However, the

maximum message size used by the simulation models is 235

bytes. Hence the default 8K is more than sufficient for these

simulation models. The simulations were run on the Intel i7

and results are presented in Table II. The Table clearly shows

that the MPB size affects mainly the PINGPONG simulation

and other simulations are not significantly affected. Thus the

performance impacts depends not only on computation load

of the processors but may also be due to their communication

pattern. This is because, of the 4 simulations, SMMP and

PINGPONG have simulation objects executing on all the 8

cores and even SMMP have more simulation objects than

PINGPONG. But interestingly PINGPONG is more affected

by MPB variation than SMMP. This may be due to more inter-

core communications in PINGPONG than in SMMP. But this

needs to be verified further by a detailed investigation on this

subject.

Model # SCC cores Core id Time (sec) Rollbacks

PHOLD 4 0 346.87 2462
1 352.06 3794
2 352.57 2911
3 352.76 2640

RAID 4 0 26.36 381
1 26.53 175
2 26.52 1344
3 26.54 836

SMMP 4 0 71.92 20052
1 71.91 2359
2 71.94 1201
3 71.92 4531

TABLE III
SIMULATION RESULTS FROM CORE2DUO

VI. PDES RESEARCH DIRECTIONS WITH SCC

With the changes outlined in Section IV, all of the WARPED

example simulation models (except VHDL, which was not yet

attempted) were run on the RCCE simulator. The work is still

embryonic and just barely scratched the surface of possibilities

and opportunities with the SCC platform. However, even in

this preliminary state, one can draw some interesting insights.

These are described below.

A. Harnessing voltage and frequency control of SCC

The dynamic voltage and frequency control features of

SCC could be highly useful for balancing and optimizing

the performance of Time Warp synchronized PDES simu-

lations. In particular, the concurrent LPs of a Time Warp

simulation process events aggressively without regard for all

event causalities. Thus, some LPs may have frequent rollbacks

while others (on the critical path) may have minimal rollbacks.

For example, the above simulation models were run for a

configuration of 4 emulated SCC cores and detailed run-

time and rollback numbers were collected. These results are

shown in Table III. The Table shows that the simulation

results for RAID show that the LP on core #1 has only 175

rollbacks while the LP on core #2 has 1344 rollback. Likewise

SMMP shows widely varying rollback performance among the

various cores. By decreasing the frequency of the cores having

excessive rollbacks and increasing the frequency of cores

having minimal rollbacks, the simulation may actually be able

to accelerate the critical path of execution for faster overall

simulation throughput. Thus, on many-core processors with

suitable thermal monitoring and frequency control capabilities,

application specific dynamic overclocking can function to

maximally increase overall throughput. Unfortunately there is

no way known to test this hypothesis with the RCCE software

emulator.

B. Impact of communication on simulation performance

Another interesting area would be to study the communi-

cation between the cores of SCC within a single chip and

communication between cores of SCC on different nodes and

their impact on the overall performance of PDES. This is

36Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

similar to the study of Bahulkar et al [9] but now on many-

core processors.

C. Combining shared memory and distributed memory Time

Warp protocols

In addition to the per-core private memory and message

passing buffer, SCC has a significant amount of off die mem-

ory shared between the cores. The amount of shared memory

is configurable. Time Warp protocol is conventionally used

on either shared memory or distributed memory architectures

and the design of each system varies significantly [6], [18].

The SCC provides a unique opportunity to take the best

of both worlds and to come up with an efficient combined

solution. A similar work is done by Sharma et al [19] on

clusters of multiprocessors. The emphasis of their work is

on exploiting the parallelism of Symmetric MultiProcessing

(SMP) node rather than integrating both shared and distributed

memory time warp designs. One important hurdle to cross in

this direction is maintaining the cache coherency. In SCC no

hardware cache coherency is present for want of scalability of

the cores. Hence cache coherency in SCC has to be maintained

in software which by itself is an interesting research direction.

D. Multilevel Time Warp

Traditional Time Warp optimizations are designed to hide

the high network latency by performing useful work during

the network communications. However, the high speed on

chip network on the SCC processors supports a relatively low

network latency. Hence it may be time to revisit the classical

Time Warp optimizations such as lazy cancellation to see

whether their overhead outweighs their merit in many-core

chips. Finding optimizations for PDES on many-core chips is

a new avenue for research. Further, in the cluster of many-

core processors, the events can be obtained from a local or

remote cores. Hence classical Time Warp optimizations can

applied to remote events and switch to many-core specific

optimizations for events from local core. Hence multilevel

Time Warp protocol can be used to efficiently handle both

the local events and remote events. More study needs to be

done in this area to see the extent of practical usefulness.

VII. CONCLUSION

This initial work with parallel simulation on the RCCE

emulator has provided a few insights on programming needs

for future many-core processors. This is a first step in analyz-

ing the potential perform of the many-core SCC platform for

efficiently supporting Time Warp synchronized parallel simu-

lation. The possibility to adjust frequency and voltage settings

to optimize critical path performance (while maintaining safety

under the processor’s thermal limits) is an interesting prospect

for study. Likewise, the incoherent caches on the SCC plat-

form present opportunities. The dynamic state saving in Time

Warp and the opportunity to repair damage from incorrect or

premature computations may allow for the development of

algorithms to exploit the incoherent caches in interesting ways

to increase performance. In any event, the features of many-

core processors present numerous interesting opportunities and

challenges for the parallel simulation community.

REFERENCES

[1] R. M. Fujimoto, “Parallel discrete event simulation,” Commun. ACM,
vol. 33, pp. 30–53, October 1990.

[2] A. M. Law and W. Kelton, Simulation Modeling and Analysis, 3rd ed.
Mc Graw Hill, 2001.

[3] Intel Press Release, Intel Corporation, “Futuristic intel chip could
reshape how computers are built, consumers interact with their pcs
and personal devices,” Intel Press Release, Intel Corporation, Tech.
Rep., Dec. 2009. [Online]. Available: http://www.intel.com/pressroom/
archive/releases/20091202comp sm.htm

[4] J. Howard et al., “A 48-core IA-32 message-passing processor with
DVFS in 45nm CMOS,” in Solid-State Circuits Conference Digest of

Technical Papers (ISSCC), 2010 IEEE International, 7-11 2010, pp. 108
–109.

[5] D. Jefferson, “Virtual time,” ACM Transactions on Programming Lan-

guages and Systems, vol. 7, no. 3, pp. 405–425, Jul. 1985.
[6] D. E. Martin, P. A. Wilsey, R. J. Hoekstra, E. R. Keiter, S. A. Hutchinson,

T. V. Russo, and L. J. Waters, “Redesigning the warped simulation kernel
for analysis and application development,” in Proceedings of the 36th

annual symposium on Simulation, ser. ANSS ’03, 2003, pp. 216–223.
[7] R. Fujimoto, A. Malik, and A. Park, “Parallel and distributed simulation

in the cloud,” SCS M&S Magazine, 2010.
[8] A. Malik, A. Park, and R. Fujimoto, “Optimistic synchronization of

parallel simulations in cloud computing environments,” in Proceedings

of the 2009 IEEE International Conference on Cloud Computing, ser.
CLOUD ’09, 2009, pp. 49–56.

[9] K. Bahulkar, N. Hofmann, D. Jagtap, N. Abu-Ghazaleh, and D. Pono-
marev, “Performance evaluation of pdes on multi-core clusters,” in
Proceedings of the 2010 IEEE/ACM 14th International Symposium on

Distributed Simulation and Real Time Applications, ser. DS-RT ’10,
2010, pp. 131–140.

[10] R. Miller, “Optimistic parallel discrete event simulation on a beowulf
cluster of multi-core machines,” Master’s thesis, University of Cincin-
nati, Cincinnati, OH, 2010.

[11] J. Misra, “Distributed discrete-event simulation,” Computing Surveys,
vol. 18, no. 1, pp. 39–65, Mar. 1986.

[12] K. M. Chandy and R. Sherman, “Space-time and simulation,” in Dis-

tributed Simulation. Society for Computer Simulation, 1989, pp. 53–57.
[13] L. Lamport, “Time, clocks, and the ordering of events in a distributed

system,” Communications of ACM, vol. 21, no. 7, pp. 558–565, Jul.
1978.

[14] R. King, “WARPED redesigned: An api and implementation for discrete
event simulation analysis and application development,” Master’s thesis,
University of Cincinnati, Cincinnati, OH, 2011.

[15] P. A. Wilsey, D. E. Martin, and K. Subramani, “SA-
VANT/TyVIS/WARPED: Components for the analysis and simulation
of VHDL,” in VHDL Users’ Group Spring 1998 Conference, Mar.
1998, pp. 195–201.

[16] C. Clauss, S. Lankes, J. Galowicz, and T. Bemmerl, “ircce: A non-
blocking communication extension to the rcce communication library
for the intel single-chip cloud computer,” RWTH Aachen University,
Tech. Rep., Feb. 2011. [Online]. Available: http://communities.intel.
com/message/110482#110482

[17] “Marc - manycore application research community.” [Online]. Available:
http://communities.intel.com/community/marc

[18] S. Das, R. Fujimoto, K. Panesar, D. Allison, and M. Hybinette, “Gtw: a
time warp system for shared memory multiprocessors,” in Proceedings

of the 26th conference on Winter simulation, ser. WSC ’94, 1994, pp.
1332–1339.

[19] G. D. Sharma, R. Radhakrishnan, U. K. V. Rajasekaran, N. Abu-
Ghazaleh, and P. A. Wilsey, “Time warp simulation on clumps,” in
Proceedings of the thirteenth workshop on Parallel and distributed

simulation, ser. PADS ’99, 1999, pp. 174–181.

37Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

