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Abstract: We present a physical neural network (PNN) approach towards multiplane light 
conversion (MPLC) design. PNN performs a full parameter search with flexible optimization 
pathways and can tune various design attributes as hyperparameters. © 2022 The Author(s) 

 
1. Introduction 
Multi-plane light converter (MPLC) designs supporting hundreds of modes are attractive in high-throughput optical 
communications[1]–[3]. These MPLC devices typically comprise >10 phase plates in free space, with millions of 
independent parameters to be optimized. Conventional MPLC design with wavefront matching (WFM)[4] updates 
one phase plate at a time via matching the forward and backward propagated wave fronts. Despite being an intuitive 
method, WFM lacks the flexibility to search the entire parameter space thoroughly and simultaneously, including the 
2D phase profiles on each mask, the inter-mask distances, the number of phase masks, etc. As a result, WFM solution 
may not be optimal on a global scale, and the results cannot be tailored to specific design preferences. 
From the perspective of optimization, MPLC design aims to maximize the coupling efficiency by varying the 
independent phase and distance parameters. The optical backward propagation and phase update in WFM is an exact 
solution to this optimization problem, if only one mask is adjustable[2], [5]. Here we present a physical neural network 
(PNN) that models the MPLC process. PNN training approach toward MPLC design enables a more flexible 
optimization sequence than WFM, and provides access to the entire parameter space for performance tuning. 

2.  Physical neural network for MPLC 
An MPLC that converts 𝑀 input fields 𝐸0 into target output fields 𝐸𝑡 using 𝑁 phase plates 𝜙1, 𝜙2,…,𝜙𝑁 is equivalent 
to an 𝑁-layer PNN model. The distance between adjacent phase plates, 𝜙𝑖 and 𝜙𝑖+1, is 𝑧𝑖. After discretizing and 
serializing the fields and phase profiles into vectors, the output field, 𝐸𝑁, can be calculated from successive free-space 
propagations and phase modulations as in Eq. (1). 

𝐸𝑁 = ℱ−1diag(exp(𝑖𝑘𝑧𝑧𝑁))ℱ [∏ (diag(exp(𝑖𝜙𝑖))ℱ
−1diag(exp(𝑖𝑘𝑧𝑧𝑖−1))ℱ)

𝑁

𝑖=1
] 𝐸0 (1) 

Here ℱ and ℱ−1 denote the 2D Fourier transform matrix and its inverse, respectively. diag(𝐱) creates a diagonal 
matrix from the vector 𝐱. 𝑘𝑧 = (𝑘0

2 − 𝑘𝑥
2 − 𝑘𝑦

2)
1/2

 is the longitudinal wave vector. Based on Eq. (1), we constructed 
a PNN model, shown in Figure 1, with the weights 𝑊𝑖 = 𝚽𝐅𝑇𝐙𝐅 , in which parameters 𝜙𝑖 and 𝑧𝑖 are trainable. The 
loss function is derived from the coupling efficiency 𝐿 = −∑ ∫ |𝐸𝑁

(𝑗)∗
𝐸𝑡
(𝑗)
|d𝑥d𝑦𝑗  between output and target fields, 

assuming all fields are normalized. The PNN is built and trained in TensorFlow with ADAM optimizer. 

 
Figure 1. MPLC-equivalent physical neural network (PNN) model. Each phase mask along with the subsequent free-space 
propagation can be represented by a network layer, 𝑊𝑖. MPLC design can then be treated as PNN training. 
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3.  Results and discussions 
We have compared PNN and WFM results with a 10-mode MPLC using 5 masks, shown in Figure 2(a). In addition 
to coupling efficiency, we have also examined the sharpness, 𝛿𝐿, defined as the relative change in coupling efficiency 
under 0.05rad random phase perturbations (equivalent to 2 grayscale levels on an 8-bit SLM). Figure 2(b) illustrates 
the optimization pathways undertaken by WFM and PNN on the coupling efficiency contour. WFM jumps directly to 
a series of critical points along one of the mask dimensions with the rest of the masks fixed. In contrast, PNN follows 
the global gradient towards the nearest local maximum, which converges to a different solution than WFM. Though 
PNN takes more iterations to converge, the use of GPU in PNN training resulted in slightly shorter execution times 
(933s) than WFM (961s). The PNN and WFM solutions (Figure 2(c)) have coupling efficiencies of 0.764 and 0.763, 
and sharpness of 0.8% and 0.65% respectively, suggesting similar performance. We can also engineer a sequential 
optimization pathway in PNN to mimic the WFM solution, which iteratively sets one mask as trainable and freezes 
the rests. Figure 2(d) shows that the sequential PNN pathway closely follows that of WFM, and the masks from WFM 
and PNN in each iteration share a similarity (overlap integral) of >99%. These results show that WFM is a subset of 
the numerous optimization pathways available in PNN. 

 
Figure 2. (a) 10-mode MPLC for comparison. (b) Illustration of the optimization pathway for WFM (red) and PNN (blue). (c) 
Masks from WFM and PNN fall into two different solutions but with similar performance. (d) Customized sequential optimization 
in PNN produces identical results as WFM. 

PNN is not limited to the pathways presented in these examples. We can design better optimization sequences that 
adaptively select the subset of the parameters and learning rate in each iteration, thus accelerating the PNN 
convergence. In addition, WFM cannot efficiently optimize 𝑧𝑖 alongside the masks unless a brute-force search is 
performed. PNN considers both masks 𝜙𝑖 and inter-mask distances 𝑧𝑖 as trainable parameters, which can be updated 
simultaneously in ADAM optimizer. Finally, the hyperparameters in PNN, including the batch size, learning rate, can 
be tuned to balance the convergence speed and computing resources in large-scale MPLC design. We will also present 
results on inter-mask distance optimization and large number mode-conversion in our presentation. 
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