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a b s t r a c t 

While a recent upsurge in the application of neuroimaging methods to creative cognition has yielded encouraging 
progress toward understanding the neural underpinnings of creativity, the neural basis of barriers to creativity 
are as yet unexplored. Here, we report the first investigation into the neural correlates of one such recently 
identified barrier to creativity: anxiety specific to creative thinking, or creativity anxiety (Daker et al., 2019). We 
employed a machine-learning technique for exploring relations between functional connectivity and behavior 
(connectome-based predictive modeling; CPM) to investigate the functional connections underlying creativity 
anxiety. Using whole-brain resting-state functional connectivity data, we identified a network of connections 
or “edges ” that predicted individual differences in creativity anxiety, largely comprising connections within and 
between regions of the executive and default networks and the limbic system. We then found that the edges related 
to creativity anxiety identified in one sample generalize to predict creativity anxiety in an independent sample. 
We additionally found evidence that the network of edges related to creativity anxiety were largely distinct from 

those found in previous work to be related to divergent creative ability (Beaty et al., 2018). In addition to being 
the first work on the neural correlates of creativity anxiety, this research also included the development of a new 

Chinese-language version of the Creativity Anxiety Scale, and demonstrated that key behavioral findings from 

the initial work on creativity anxiety are replicable across cultures and languages. 

1. Introduction 

The ability to think creatively is highly prized across a variety of 
fields ( World Economic, 2016 ), and an individual’s ability to maximize 
their creative potential only promises to become a more critical determi- 
nant of success as creativity emerges as the area of human cognition least 
replaceable by artificial intelligence ( Dartnall, 2013 ; Jennings, 2010 ). 
Research to identify potential barriers to creative achievement is thus 
a priority. While the timeliness of creativity as a research topic has 
motivated new and exciting brain-based inquiry into creative cognition 
( Beaty et al., 2018 ; Green, 2018 ; Green et al., 2016 ; Jung et al., 2013 ; 
Weinberger et al., 2017 ; Wu et al., 2015 ) the neural bases of factors that 
may impede creativity have thus far gone unexplored. 
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Recent research at the behavioral level has identified anxiety that is 
specific to creative thinking (i.e., creativity anxiety) as a likely barrier 
to creative achievement. Daker and colleagues (2019) recently devel- 
oped the Creativity Anxiety Scale (CAS) and, applying this measure, 
found that creativity anxiety generalized across a wide range of content 
domains, from areas traditionally viewed as “creative ” like music and 
visual art to areas often seen as less creative, like science and math. 
It was also found that people reported feeling greater anxiety in hypo- 
thetical situations that involved the need to be creative than in simi- 
lar situations that did not require creativity. This work further showed 
that individuals who were higher in creativity anxiety exhibited lower 
levels of real-world creative achievement (measured using the Creative 
Achievement Questionnaire; CAQ) ( Carson et al., 2005 ) even after con- 

https://doi.org/10.1016/j.neuroimage.2020.117469 
Received 29 July 2019; Received in revised form 4 August 2020; Accepted 12 October 2020 
Available online 21 October 2020 
1053-8119/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 



Z. Ren, R.J. Daker, L. Shi et al. NeuroImage 225 (2021) 117469 

trolling for general trait anxiety, suggesting that creativity anxiety may 
be an important barrier to creative achievement. 

No research to our knowledge has yet been conducted to explore the 
neural basis of creativity anxiety, but promising advances have been 
made in our understanding of the neural correlates of creative ability. 
The technique of connectome-based predictive modeling (CPM) has re- 
cently been applied to reveal data-driven associations between func- 
tional connections in the brain and meaningful psychological traits and 
clinical outcomes, including creativity ( Beaty et al., 2018 ; Shen et al., 
2017 ). As resting-state data is relatively straightforward to collect and 
share across acquisition sites and language and cultural barriers, a be- 
havioral index based on whole-brain regions measured at rest is well- 
suited for both research and clinical contexts. CPM seeks to identify 
functional connections throughout the brain for which individual dif- 
ferences in connectivity strength predict a given behavioral measure 
and uses the strength of those connections to predict behavior in novel 
individuals. An appealing aspect of CPM is that, once a set of connec- 
tions is identified as predictive of a behavioral variable in one sam- 
ple, functional connectivity within that same network can be assessed 
within other independent samples to test whether that set of connec- 
tions successfully generalizes to predict the same behavioral variable –
or other behavioral variables – in the independent samples. Using CPM, 
Beaty and colleagues (2018) recently identified a large scale network 
associated with creative thinking ability, which they termed the “cre- 
ative connectome. ” After using CPM to identify a set of edges that pre- 
dicted divergent thinking in the Alternative Uses of Objects task, these 
researchers found that the same set of edges – largely made up of con- 
nections between nodes in the default, executive, and salience networks 
– generalized to predict creative ability in multiple other samples. 

As a data-driven technique, CPM is an especially useful tool for 
hypothesis-free characterization of connectomic brain-behavior corre- 
lations. Just as CPM was used to identify a “creative connectome, ” it 
can be used to identify a “creativity anxiety connectome. ” A key initial 
question that can be asked is whether the connections that make up the 
“creativity anxiety connectome ” are largely similar those that make up 
the “creative connectome ” identified by Beaty et al. (2018) or whether 
the two sets of connections are primarily distinct. Testing the degree 
to which the “creativity anxiety connectome ” and the previously iden- 
tified “creative connectome ” are overlapping can indirectly inform the 
extent to which individual differences in creativity anxiety should be 
thought of as distinct from differences in creative ability. If the same set 
of functional connections give rise to both creative ability and creativity 
anxiety, this suggests that these two constructs may be inherently en- 
twined, and may suggest that our measure of creativity anxiety is merely 
a proxy for creative ability. If the set of functional connections underly- 
ing creativity anxiety is largely distinct from those underlying creative 
ability, however, this would provide neural evidence that they should 
be considered separate constructs. 

Extant evidence indicates that the neural correlates of anxieties re- 
lated to specific domains of cognition can differ from the neural cor- 
relates of ability in those domains. Task-related neuroimaging work on 
anxiety specific to math (i.e., math anxiety), for instance, has largely im- 
plicated areas associated with affective processing, including the amyg- 
dala ( Young et al., 2012 ) and the insula ( Lyons and Beilock, 2012 ), and 
emotion regulation, including inferior frontal junction, bilateral infe- 
rior parietal lobe, rather than areas traditionally associated with math- 
ematical or numerical processing, such as bilateral intraparietal sulcus 
( Dehaene et al., 2003 ). While this prior work was focused on task-based 
fMRI rather than on resting state fMRI, these neuroimaging findings on 
math anxiety – another anxiety linked to a specific type of cognition –
suggest that the neural correlates of anxiety toward a specific type of 
cognition may be largely distinct from the neural correlates of ability 
for that type of cognition. Thus, previous work suggests the possibility 
that a CPM-identified network of functional connections related to cre- 
ativity anxiety may be largely distinct from the functional connections 
found to be related to creative ability by Beaty et al., (2018) . 

In the current study, we aimed to apply connectome-based predictive 
modeling to identify a data-driven “creativity anxiety connectome ” – a 
whole-brain network that predicts individual differences in creativity- 
specific anxiety. We further aimed to test whether network edges asso- 
ciated with creativity anxiety in one sample could predict the creativity 
anxiety of individuals in another sample. Finally, we sought to assess 
whether the extent to which functional connections identified to be re- 
lated to creativity anxiety would be distinct from the set of functional 
connections identified by Beaty and colleagues (2018) to be related to 
divergent creative ability. While CPM is a data-driven technique and is 
therefore not well-suited for testing of specific ROI-based hypotheses, in- 
spection of the neuroanatomy of the networks it identifies can be useful 
for hypothesis generation for future studies. As such, we also inspected 
the neuroanatomy of the connections that make up the “creativity anxi- 
ety connectome ” to provide a framework for hypothesis testing in future 
research. Moreover, while the primary theoretical goal of this work was 
to conduct a first investigation into the neural basis of creativity anxi- 
ety, the present work also afforded the opportunity to develop a Chinese 
language version of the Creativity Anxiety Scale and to test the replica- 
bility of key behavioral findings from recent work identifying the new 

construct of creativity anxiety. 

2. Methods 

2.1. Participants 

Because CPM is particularly informative when the predictive value 
of findings from a discovery dataset can be tested on a separate dataset, 
two samples of participants were recruited for the present study. Both 
samples were recruited from Southwest University in Chongqing, China, 
and both completed the survey measures described below and under- 
went resting-state fMRI. All were right handed and healthy, with no 
history of mental illness. All participants gave written informed consent 
to participate. All participants received payment for participation. The 
study was approved by the Southwest University Brain Imaging Center 
Institutional Review Board. 

Dataset 1 was used as the discovery dataset and was comprised of 
281 participants. Twenty-five participants were excluded from analysis 
because they did not complete the Creativity Anxiety Scale (CAS; see 
Materials immediately below), and an additional 19 were excluded due 
to excessive head motion during resting-state fMRI ( > 2 mm translation 
in any axis and > 2° angular rotation in any axis) resulting in a final 
sample of 237 participants (59 males; 21.45 ± 1.69 years old; range: 21.4- 
26 years). 

Dataset 2 was used as the external validation dataset and was com- 
prised of 245 participants. Twenty-three participants were excluded 
from analysis due to excessive head motion during resting state fMRI. Of 
the 245 participants, only 147 participants (44 males; 20.03 ± 1.72 years 
old; range: 18-27 years) completed the CAS. And of those 147 partici- 
pants who completed the CAS, 101 participants (30 males; 19.9 ± 1.57 
years old; range: 18-24 years) additionally completed the Creative 
Achievement Questionnaire (CAQ) and the State-Trait Anxiety Inven- 
tory (STAI; each described in Materials below). For Dataset 2 analyses 
that involved only the CAS, we used the full sample of 147, and for 
Dataset 2 analyses that involved the CAS in addition to the CAQ and the 
STAI, we used the subsample of 101 participants. 

2.2. Materials 

2.2.1. Creativity Anxiety Scale (CAS) 
Creativity anxiety was measured in both samples using a Chinese 

translation of the Creativity Anxiety Scale ( Daker et al., 2019 ). The CAS 
is a self-report questionnaire that consists of two types of items: Cre- 
ativity Anxiety (CA) items, which assess anxiety toward situations that 
require the involvement of creative thinking (ex. “Having to think in 
an open-ended and creative way ”), and Non-Creativity Anxiety Control 
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(NAC) items, which assess anxiety toward the noncreative demands of 
situations presented in CA items (ex. “Having to think in a precise and 
methodical way ”. Each CA item is paired with a NAC item devised to 
match the context presented in the CA item, but remove the need to be 
creative. The CAS contains 8 CA items and 8 NAC items (see Supplemen- 
tary material S1 ), and participants are asked to rate how anxious each 
situation would make them, on a 5-point intensity scale (None at all = 0, 
A little = 1, A fair amount = 2, Much = 3, Very much = 4). Consistent 
with the recommendations of Daker et al. (2019) , we treated NAC scores 
as a control measure and regressed out the effects of NAC items on CA 
items to ensure that the remaining variance in CA was specific to anxiety 
about thinking creatively (rather than about the noncreative demands 
of the presented situations). The resulting residualized CA scores (CA r ) 
were used for subsequent analysis. 

2.2.2. Trait Anxiety 
Trait anxiety was assessed in both samples using the trait subscale of 

the State-Trait Anxiety Inventory (TAI, Spielberger et al., 1970 ). Partici- 
pants respond to 20 items on a scale from 1 (Almost never) to 4 (Almost 
always) to indicate how anxious they generally feel (ex. “I worry too 
much over something that doesn’t really matter ”). Possible scores range 
from 20 to 80, where higher scores indicate greater levels of general 
anxiety. Trait anxiety was included as a control measure to ensure that 
any brain-behavior correlations involving creativity anxiety were not 
confounded by trait anxiety. 

2.2.3. Creative Achievement Questionnaire (CAQ) 
A measure of real-world creative achievement was obtained using 

the Creative Achievement Questionnaire (CAQ, Carson et al., 2005 ), 
which is made up of 80 total questions, 8 each from the following do- 
mains: Visual Arts, Music, Dance, Architecture, Creative Writing, Hu- 
mor, Invention, Science, Drama, and Culinary Arts. In each domain, 
participants are first asked if they have any “training or recognized tal- 
ent ” in the domain, and if the answer is yes, they respond to specific 
prompts that assess progressively higher levels of attainment. In the 
domain of Music, for example, item 2 is “I play one or more musical 
instruments proficiently ” (binary Yes/No), and item 8 is “My composi- 
tions have been critiqued in a national publication ” (enter number of 
times this applies). Note that while an intended used of the CAQ was to 
allow for the comparison of creative achievements across the lifespan 
among exceptionally talented individuals ( Carson et al., 2005 ), several 
studies have used the CAQ among “normal ” college-aged populations to 
measure engagement with and success in the creative domains included 
in the CAQ. For instance, previous work has found that measures of cre- 
ative cognition have predicted real-world creative achievement (as mea- 
sured by the CAQ) among university students, suggesting that (perhaps 
unsurprisingly) those who are more creative are more likely to have 
creative achievements ( Prabhakaran et al., 2014 ). Past work has also 
shown that creativity anxiety negatively predicts individual differences 
in CAQ scores among adult populations (mean age 34.56; Daker et al., 
2019 ). A total CAQ score was calculated by summing scores across each 
domain. As in previous work ( Prabhakaran et al., 2014 ; Daker et al., 
2019 ), these scores were log-transformed to more closely approximate 
a normal distribution (hereafter referred to as “CAQ_log ”). 

2.3. fMRI Data Acquisition and Analysis 

2.3.1. Image acquisition 
All participants completed 8 minutes of resting-state fMRI scanning 

conducted at the Southwest University Brain Imaging Center on a 3T 
Trio scanner (Siemens Medical Systems, Erlangen, Germany). During 
scanning, participants were required to close their eyes but remain 
awake. 242 volumes were acquired using a gradient echo planar imag- 
ing sequence: repetition time = 2000 ms; echo time = 30 ms; slices = 32; 
thickness = 3 mm; resolution matrix = 64 × 64; flip angle = 90°; field of 

view = 192 × 192 mm 2 ; slice gap = 1 mm; and voxel size = 3.4 × 3.4 × 4 
mm 3 . 

2.3.2. Image preprocessing 
The resting-state fMRI data were analyzed using the Data Pro- 

cessing Assistant for Resting-State fMRI (DPARSF, http: //resting- 
fmri.sourceforge.net/) ( Chao-Gan and Yu-Feng, 2010 ) on SPM8 (Well- 
come Department of Imaging Neuroscience, London, United Kingdom; 
www.fil.ion.ucl.ac.uk/spm ). The first 10 volumes were discarded to al- 
low the signal to reach equilibrium. The remaining 232 volumes were 
preprocessed by slice-timing, motion-correcting and normalizing to the 
standard MNI template with a resample voxel size of 3 × 3 × 3 mm. 
Next, spatial smoothing with 8 mm full-width at half maximum Gaus- 
sian kernel, linear detrend, band-pass temporal filtering (0.01-0.1 Hz), 
and nuisance covariates regression (24 Friston parameters, white mat- 
ter, cerebrospinal fluid and global signal) were also applied to the 232 
volumes. 

2.3.3. Functional network construction 
Whole-brain functional connectivity was analyzed for each subject 

using GRETNA ( Wang et al., 2015 ). Consistent with prior studies in- 
volving connectome-based predictive modeling (CPM), the 268-ROI at- 
las ( Shen et al., 2013 ), was applied to calculate FC in the present study. 
This atlas was transformed from MNI space to individual space, and 
the intensity-based registration algorithm was used in BioImage Suite 
for transformation calculation. Compared with atlases defined by auto- 
matic anatomic labels, the current atlas comprises nodes with more co- 
herent timecourses, which represents an improvement over anatomical 
segmentation schemes because anatomical boundaries do not necessar- 
ily match functional ones. This atlas covers the whole brain, including 
cortical, subcortical and brainstem structures ( Shen et al., 2013 ). Time 
courses from each ROI were extracted to compute Pearson correlation 
between each pair of ROIs, generating a 268 × 268 correlation matrix 
for each subject. Each element of the matrix represents the strength of 
connection between two individual nodes (sometimes referred to as an 
“edge ”). These correlation matrices were transformed to z-scores using 
Fisher’s transformation for further analysis. 

2.3.4. Connectome-based Predictive Modeling 
Connectome-based predictive modeling (CPM), a recently developed 

method introduced by Shen et al. ( Finn et al., 2015 ; Rosenberg et al., 
2016 ; Shen et al., 2017 ), was used to predict individuals’ CA r from 

whole-brain resting-state functional connectivity using a leave-one-out 
approach within the discovery dataset of 237 participants (Dataset 
1). CPM contains three broad steps: feature selection, model building, 
and model validation (see Fig. 1 ). Below, we briefly explain each of 
these steps. For a more in-depth explanation of the CPM technique, see 
Shen et al., (2017) . 

The first step of the CPM process is feature selection, the goal of 
which is to identify edges for which individual differences in connec- 
tion strength predict CA r . An optimal threshold is applied to the matrix 
to retain only edges that are significantly positively and negatively cor- 
related with CA r scores ( see ‘Optimal threshold exploration’ below ), 
resulting in the identification of positive and negative edges. Edges that 
are found to positively predict CA r – that is, edges for which increased 
connectivity is associated with increased CA r – will make up the posi- 
tive CA network, and edges that are found to negatively predict CA r will 
make up the negative CA network. In identifying the sets of edges that 
make up these networks, we used a leave-one-out approach in which a 
total of N (in this case, 237) different positive and negative networks 
are identified, in each case generated by repeating the edge identifica- 
tion process while leaving one participant out of the dataset. The final 
set of positive and negative edges that make up the positive and nega- 
tive CA networks are those edges that appear in every iteration of the 
leave-one-out process. We then calculated each participant’s positive 
and negative network connectivity strength by summing the strength of 
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Figure 1. Flowchart for prediction of individual CA r scores using whole-brain functional connectivity. CA r , CA score after regressing out the effects of NAC items. 
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connections within the positive network and the negative network sep- 
arately. In addition to positive and negative network strengths, we also 
computed combined network strengths by summing positive and nega- 
tive network strengths together. Summing the strength of connections 
within a given network for each participant provides a quantitative sum- 
mary of the overall strength of functional connectivity each participant 
has in the relevant connections that have been identified to either posi- 
tively or negatively predict the outcome measure of interest (in this case, 
CA r ). At this point in the process, a set of connections that positively 
and negatively relate to CA r have been identified, and each participant 
has been assigned positive, negative, and combined network strengths. 
These summed network strengths are used in subsequent steps to gauge 
how effectively the identified networks predict individual differences in 
CA r . 

The next step in the CPM process is to build linear regressions that 
model the association between the strength of the positive and negative 
networks and CA r . This step also uses a leave-one-out approach. For each 
iteration of the leave-one-out process, three different linear regression 
models are built: one in which the summed positive network strengths 
predict CA r , one in which the summed negative network strengths pre- 
dict CA r , and one in which the combined network strengths predict CAr. 
After each iteration of these regression models are completed, the re- 
sulting models are used to generate predicted CA r scores for the left-out 
participant. The left-out participant’s summed network strengths are fed 
into the regression models, and the regression models output predicted 
CA r scores. Note that for each participant, three different predicted CA r 
scores are generated by this process, one for each of the three regres- 
sion models: a predicted CA r score generated by the model using only 
the summed positive network strengths, a predicted CA r score gener- 
ated by the model using only the summed negative network strengths, 
and a predicted CA r score generated by the model using the combined 
summed network strengths. In this step, no significance testing is done; 
the sole goal is to generate predicted CA r values using the observed net- 
work strengths. 

The final step in the CPM process is to determine whether the pre- 
dicted CA r values generated by the previous step significantly predict 
the actual observed CA r values. The predictive efficacy of the network 
is reflected in the magnitude and statistical significance of the Pearson 
correlation between observed CA r scores and CA r scores predicted by 
the CPM model. If observed and predicted CA r scores are significantly 
positively related, this suggests that the CPM was successful in its pre- 
diction. Note that three different models assessments are made here, one 
that assess the efficacy of the prediction of the positive CA network, one 
that assesses the efficacy of the prediction of the negative CA network, 
and one that assesses the efficacy of the prediction of the combined net- 
work. We also performed control analyses to further examine whether 
the model significantly predicts observed CA r scores even when control- 
ling for covariates including head motion, age, gender, CAQ_log scores, 
and TAI scores (see section 2.3.6 ‘control analyses’ below). We next sim- 
ulated 1,000 permutations to test whether the obtained metrics were 
significantly better than expected by chance. In each permutation, we 
randomly shuffled behavioral scores across subjects and reran the above 
leave-one-out-cross-validation (LOOCV) prediction procedure, which re- 
sulted in a distribution of correlation coefficients (r) that would be likely 
to observe by chance. The number of times the permuted value was 
greater than the true value was then divided by 1,000, providing an es- 
timated p-value for the actual r-value we observed between observed 
and predicted CA r scores. 

2.3.5. Optimal threshold exploration 
Several studies using CPM have used a threshold of ( p < 0.01) 

at the feature selection step, the same as used in the original pa- 
per ( Jangraw et al., 2018 ; Rosenberg et al., 2016 ; Shen et al., 2017 ). 
Shen et al. (2017) suggested that the optimal threshold to use at the 
feature selection step should be explored within an initial dataset un- 
der the condition (which the present work satisfies) that a validation 

dataset is available to test the generalizability of the CPM findings. Op- 
timal threshold exploration involves testing different p -value cutoffs for 
determining whether an edge should be considered as part of a network 
by varying this cutoff and identifying the one that leads to the high- 
est predictive efficacy of the behavioral measure (in this case creativity 
anxiety) by the network. We set six thresholds (0.05, 0.01, 0.005, 0.001, 
0.0005, and 0.0001) to determine the set of edges and reran the LOOCV 
procedure at each threshold on the discovery dataset. Here we used the 
combined network’s predictive ability ( r -value) as the evaluation index. 

2.3.6. Control analyses 
In order to ensure that the observed relations between resting state 

functional connectivity and creativity anxiety were as specific as possi- 
ble, we controlled for several variables at the model evaluation stage on 
the discovery dataset (when assessing whether predicted CA r scores gen- 
erated by CPM significantly correlated with observed CA r scores). Given 
that in-scanner motion has been found to be a predominant factor im- 
pacting functional connectivity ( Horien et al., 2018 ; Waller et al., 2017 ; 
Power et al., 2014 ; Van Dijk et al., 2012 ), we controlled for a head mo- 
tion parameter (mean framewise displacement [FD]) at the model eval- 
uation step. We also controlled for gender and age in our predictions, as 
these factors have also been shown to relate to functional connectivity 
( Feng et al., 2018 ; Hsu et al., 2018 ). 

While controlling for head motion, gender, and age are standard in 
CPM work, there are other possible confounds that are important to con- 
trol for when predicting creativity anxiety (CA r ). Creativity anxiety is 
a type of anxiety, so if no other anxiety measures are controlled for, it 
is possible that relations between resting state functional connectivity 
and creativity anxiety could be simply be explained by individual differ- 
ences in anxiety (at the trait level or at the state level) more generally. 
We took multiple steps to address this. First, as noted above, in addi- 
tion to items that measure creativity anxiety (CA items), the Creativity 
Anxiety Scale has built-in control items (Non-creativity Anxiety Control; 
NAC items) devised to measure and control for anxiety toward similar 
situations that do not involve creative demands. The CA scores were 
residualized with respect to NAC scores (see Section 2.2.1 ), resulting in 
the CA r scores that were entered into the CPM analysis pipeline. By re- 
gressing out NAC scores, these CA r scores are quite specific to anxiety 
toward situations that require creative thinking. We took the additional 
step of controlling for general trait anxiety (TAI) as well, further en- 
suring that relations between CA r and functional connections are not 
explainable by general anxiety. Being in an fMRI scanner can of course 
be an anxiety-inducing situation for some, and there are likely to be 
individual differences in state anxiety, or anxiety experienced in-the- 
moment ( Spielberger et al., 1970 ), while in the scanner. However, by 
controlling for these other anxiety measures, possible associations be- 
tween creativity anxiety and state anxiety while in the scanner would 
likely be accounted for, as there is no reason to assume that anxiety spe- 
cific to creative thinking would predict unique variance in state anxiety 
while in an fMRI scanner that would not be captured by either general 
trait anxiety or by the built-in NAC items that capture anxiety toward 
similar situations to those presented in the creativity anxiety items but 
importantly remove the creative demands. By controlling for these mea- 
sures, we can be confident that any observed relations between creativ- 
ity anxiety and resting state functional connectivity are not driven by 
individual differences in anxiety more generally. 

Finally, to ensure that relations between creativity anxiety and rest- 
ing state functional connectivity were not explained by individual dif- 
ferences in creative achievement, we also controlled for CAQ_log at the 
model evaluation stage of CPM. The predictive networks used in the cur- 
rent work were therefore constructed by calculating the partial Pearson 
correlation between the CA r scores predicted by the CPM framework and 
the observed CA r scores after controlling for the effects of head motion, 
age, gender, TAI scores, and CAQ_log scores. 
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2.3.7. External generalizability 
We next evaluated the external predictive efficacy of the set of CA r - 

related edges identified in the discovery sample by testing whether these 
edges were significantly predictive of CA r in an independent external 
validation sample of 147 participants (Dataset 2). Assessing whether 
results found in one sample hold in another sample is an especially 
powerful method to assess the generalizability of CPM-based findings 
( Shen et al., 2017 ). To do this, we first calculated summed positive CA 
and negative CA network strengths for each participant in the exter- 
nal validation sample by summing the strengths of the relevant edges 
identified using the CPM process in the discovery sample. A measure 
of combined network strength was also computed by summing the posi- 
tive and negative network strengths together. We then fed those network 
strengths into regression models to generate predicted CA r values. As in 
the case of the discovery dataset, three different sets of predicted CA r 
values were generated: one in which the positive CA network strengths 
are used to predict CA r values, one in which the negative CA network 
strengths are used to predict CA r values, and one in which the combined 
CA network strengths are used to predict CA r values. The parameters of 
the regression models (i.e., the slopes and intercepts) used to generate 
predicted CA r values in Dataset 2 were derived from the regression mod- 
els from the leave-one-out process of generating predicted CA r values for 
Dataset 1. In Dataset 1, a total of 237 iterations of each model type was 
run to generate predicted CA r values for a different left-out subject in 
that sample. We took the average of those model parameters to build 
the regression models that would predict CA r values for Dataset 2. 

To assess the efficacy of these predictions, just as in the discovery 
dataset, we related the predicted CA r scores to actual observed CA r 
scores (generated by residualizing out the effects of NAC scores on CA 
scores, consistent with Dataset 1). If the predicted CA r scores generated 
using only information from the discovery dataset significantly relate 
to observed CA r scores in the external validation dataset, this provides 
strong evidence for the generalizability of the findings. 

2.3.8. Comparing the sets of functional connections related to creativity 
anxiety to those related to divergent creative ability 

Finally, we assessed the extent to which the set of functional connec- 
tions found to relate to creativity anxiety in the present work overlapped 
with the set of functional connections found by Beaty et al. (2018) to 
be related to divergent creative ability. To do this, we obtained the 
set of functional connections related to divergent creative ability from 

Beaty et al. (2018) and assessed how many of the precise functional 
connections the sets of networks had in common. If the sets of networks 
have relatively few connections in common, this would suggest that the 
two sets of networks are largely distinct from one another. 

3. RESULTS 

3.1. Behavioral Results 

3.1.1. Factor Analysis Results of the Chinese Translation of the Creativity 
Anxiety Scale 

To ensure appropriate translation of the CAS into Chinese, we con- 
ducted an exploratory factor analysis with the translated CAS data from 

both datasets to determine whether CA items and NAC items loaded 
strongly on separate factors as predicted. Exploratory factor analysis 
using maximum likelihood extraction yielded two factors with eigen- 
values above 1, suggesting that two factors are appropriate to retain. 
The rotated solution showed that all CA items loaded on one factor, 
and all NAC items loaded on the other factor, suggesting that this trans- 
lated version of the CAS successfully separated CA and NAC scores as 
separate measures. After examining the rotated factor loadings, two CA 
items were found to have factor loadings that were substantially lower 
than factor loadings from the original scale ( Daker et al., 2019 ), and 
as such two CA items and their paired NAC items were dropped from 

analysis. For further factor analysis details, see Supplementary Materials 

Tables S1 and S2 . The resulting Chinese translation of the CAS con- 
sisted of 6 CA items and 6 paired NAC items. Scores for each item type 
are summed, resulting in a possible range of CA scores from 0-24 and 
a possible range of NAC scores from 0-24 where higher scores indicate 
higher levels of anxiety. Reliability of both scores using Cronbach’s al- 
pha was high (CA: 𝛼 = .91; NAC: 𝛼 = .86). Together, these results show 

that anxiety toward situations that involve the need to be creative and 
anxiety toward similar situations that do not were measured separately, 
as expected. 

3.1.2. Replication of Key Creativity Anxiety Behavioral Findings 
Descriptive statistics for CAS scores and all other behavioral mea- 

sures are reported in Table 1 . To test whether anxiety responses were 
higher for situations that involved the need to be creative than for sim- 
ilar situations that did not involve creative demands (as was found in 
Daker et al., 2019 ), we ran paired-samples t tests for each sample. In 
both Datasets 1 and 2, CA scores were on average significantly greater 
than NAC scores (Dataset 1: t (236) = 8.33, p < .001, Cohen’s d = .71; 
Dataset 2: t (100) = 7.09, p < .001, Cohen’s d = .90). These results show 

that the finding that adding creative demands to a hypothetical situa- 
tion increases the extent to which participants anticipate experiencing 
anxiety in that situation replicates in the present samples. 

Daker et al. (2019) also assessed whether there were gender differ- 
ences in responding on the CAS. They found that CA scores were higher 
than NAC scores among both men and women, but that this difference 
was especially pronounced among women. To assess whether these gen- 
der differences replicated in the present samples, we ran a 2 (Gender: 
male, female) x 2 (Item Type: CA, NAC) mixed-factorial ANOVA within 
each sample. In Dataset 1, we found a significant main effect of Gender 
[ F (1, 236) = 6.348, p = .012] and a significant main effect of Item Type 
[ F (1, 236) = 69.210, p < .001], but no significant Gender x Item Type 
interaction [ F (1, 236) = .374, p = .541]. In Dataset 2, we found a sig- 
nificant main effect of Item Type [ F (1, 146) = 52.748, p < .001], but no 
significant main effect of Gender [ F (1, 146) = 1.858, p = .175] or Gen- 
der x Item Type interaction [ F (1, 146) = 2.54, p = .113]. Together, these 
results show that the gender differences in CAS responding observed in 
the American samples from Daker et al., (2019) were not found in the 
Chinese samples collected in the present research. 

We next tested whether CA scores negatively predicted creative 
achievement (CAQ_log) as Daker et al., (2019) found. In Dataset 1, CA 
scores did not predict individual differences in CAQ_log scores (when 
controlling for NAC scores and general trait anxiety scores, 𝛽 = -.009, 
t (233) = -.139, p = .889). However, in Dataset 2, CA scores nega- 
tively predicted individual differences in CAQ_log even controlling for 
NAC scores and general trait anxiety scores ( 𝛽 = -.240, t (93) = -2.32, 
p = .022). 

While some effects from Daker et al., (2019) were either not found 
or only inconsistently found in the present samples (gender differences 
in the extent to which CA scores were greater than NAC scores were not 
observed, and CA predicted creative achievement in one sample but not 
the other), the behavioral results show that the Chinese translation of the 
Creativity Anxiety Scale measures anxiety about situations that involve 
the need to think creatively (CA items) as separate from anxiety toward 
similar situations that do not involve creative demands (NAC items). 
Moreover, in both samples, it was found that situations that involve 
creative demands are on average more anxiety-inducing than similar 
situations that do not. Both of these findings closely replicate those from 

the initial creativity anxiety work in Daker et al., (2019) , and taken 
together, suggest that the Chinese translation of the Creativity Anxiety 
Scale appropriately measures the construct of interest. 

3.2. CPM Results 

3.2.1. Determining the optimal threshold for edge detection 
Following the recommendation of Shen et al. (2017) , in the discovery 

dataset, we assessed which p -value threshold for selecting edges led to 
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Table 1 
CA, creativity anxiety. NAC, non-creativity anxiety control; CAQ_log, log transferred CAQ scores. 

Measure N Mean SD Range CA NAC TAI 

Dataset 1 

CA 237 12.43 4.49 0-24 

NAC 237 9.29 4.35 0-20 0.13 (p = 0.03) a 

TAI 237 41.1 8.68 0-66 0.15 (p = 0.02) a 0.12 (p = 0.06) a 

CAQ_log 237 0.68 0.42 0-1.97 -0.03 (p = 0.67) a -0.10 (p = 0.11) a -0.05 (p = 0.41) a 

Dateset 2 

CA 147 11.76 4.42 0-23 

NAC 147 8.50 3.55 0-18 0.19 (p = 0.05) a 

TAI 101 40 9.81 23-65 0.21 (p = 0.03) a 0.33 (p < 0.001) a 

CAQ_log 171 0.86 0.36 0-1.76 -0.20 (p = 0.05) a 0.09 (p = 0.35) a -0.04 (p = 0.73) a 

a Correlation analysis. In dataset 1, correlation analysis was conducted in a sample of 237 participants; in 
dataset 2, correlation analysis was conducted in a sample of 101 participants. 

Figure 2. Optimal threshold for predictive model. r value = correlation between 
observed and predicted CA r scores in combined network. CA r , CA score after 
ruling out the effects of NAC items. 

the greatest overall brain-behavioral predictive efficacy from six thresh- 
olds: 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001. Among these six 
thresholds for determining edge selection, the correlation between the 
combined network’s predicted CA r scores and observed CA r scores in- 
creased until threshold = 0.005 and then declined (see Fig. 2 ). This 
indicates the additional connections may provide redundant or unreli- 
able information and do not benefit for the models’ predictive power. 
Consequently, we applied the threshold = 0.005 as the feature selection 
threshold in the main analysis above. We note that a threshold of 0.005 
has recently been used in other recent CPM studies ( Feng et al., 2018 ; 
Rosenberg et al., 2016 ). 

3.2.2. Predictive efficacy of the model 
In the CPM pipeline, the positive and negative network strengths 

were calculated by summing the edges in the positive or negative tail for 
each training subject, separately. A set of combined network strengths 
was also calculated by summing the edges from both the positive and 
negative networks. After LOOCV, there were 237 positive, negative and 
combined networks (where one set of networks was created after leav- 
ing out each subject). We defined the positive CA network as the set 
of edges that appeared in the positive network of every iteration of the 
LOOCV. There were 240 edges in the positive CA network. The negative 
CA network was defined by the set of edges that appeared in the nega- 
tive network of every iteration of the LOOCV. There were 197 edges in 
the negative CA network. The sum of the edges of these two networks 
represents less than 1.5 percent of the sum of whole-brain’s 35778 edges 
defined by the atlas used in this work ( Shen et al., 2013 ). 

The correlation between the observed CA r scores and predicted CA r 
scores represents the predictive efficacy of each network. Results indi- 
cated that the positive, negative, and combined CA networks all signifi- 
cantly predicted individual differences in CA r , as evidenced by positive 
correlations between the predicted CA r scores each model generated and 
actual observed CA r scores (positive CA network: r = 0.20, p = 0.002, 
p perm = 0.03; negative CA network: r = 0.21, p = 0.001, p perm = 0.02; 
combined CA network: r = 0.21, p = 0.001, p perm = 0.01; see Fig. 3 ). 
p perm values were based on permutation testing (1000 permutations; 
see Methods for additional detail). After controlling for head motion, 
age, gender, CAQ_log scores, and TAI scores, all three networks still 
significantly predicted CA r scores (positive CA network: r partial = 0.18, 
p = 0.005; negative CA network: r partial = 0.20, p = 0.0003; combined 
CA network: r partial = 0.19, p = 0.003). Notably, this shows that the 
relations between the set of functional connections and CA r cannot be 
explained by creative achievement or general trait anxiety. 

3.3. Network neuroanatomy in the prediction of CA 

We next investigated the neuroanatomy of the identified positive and 
negative CA networks. Figure 4 A shows a circle plot visualization of the 
edges that make up the positive and negative CA networks. This figure 
is intended to convey the general neuro-cognitive composition of the 
positive and negative CA networks based on high-level descriptions of 
the involved brain regions. Figure 4 B shows glass brain plots that display 
these same connections localized in 3D brain space. These figures show 

that connections that predicted individual differences in CA r were not 
highly localized to specific brain regions but were instead distributed 
throughout the brain. 

Tables 2A and 2B show the nodes that were most well-represented 
in the positive and negative CA networks, respectively. Each table dis- 
plays the ten nodes that were involved in the greatest number of con- 
nections within each network. Locations of key nodes of the positive 
CA network included the “default mode network ” (DMN; e.g., left supe- 
rior frontal gyrus (LSFG); BA 10; k = 12; right posterior cingulate gyrus 
(rPCG); BA 23; k = 7; see Table 2A ) and in subcortical regions (e.g., 
right caudate; k = 9; see Table 2A ). Key nodes of the negative CA net- 
work were located in, among other areas, the Fronto-Parietal executive 
control network [FPN; e.g., right middle frontal gyrus (rMFG); BA 10; 
k = 8; right superior temporal gyrus (rSTG); k = 5], the salience network 
(e.g., Supramarginal gyrus; BA 40; k = 9), and the DMN (e.g., left angu- 
lar gyrus (l); BA 39; k = 5; left precuneus; BA 31; k = 5; see Table 2B and 
Fig. 4 b ). 

3.4. External generalizability 

We next assessed whether the networks that predicted CA r in the dis- 
covery dataset of 237 participants (Dataset 1) generalized to a separate 
dataset of 147 participants (Dataset 2). Models were run on the external 
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Figure 3. The predictive ability of model. (a) Correlation between observed and predicted CA r scores in positive, negative, and combined CA networks. Observed 
and predicted CA r scores are standardized to z-scores. (b) The distribution of correlation by a permutation test of 1000 times. CA r , CA score after regressing out the 
effects of NAC items. CA, creativity anxiety. ∗∗ p < 0.01. 

Figure 4. Functional connections predicting individual CA. (a) The functional connections in positive and negative CA networks, plotted as the number of connections 
within each lobe. (b)The brain network patterns in positive and negative CA networks. CA, creativity anxiety. R = right hemisphere; L = left hemisphere. PFC, 
prefrontal cortex; Mot, motor; Ins, insula; Par, parietal; Tem, temporal; Occ, occipital; Lim, limbic; Cer, cerebellum; Sub, subcortical; Bsm, brainstem. 
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Table 2A 
Positive CA network neuroanatomy (key nodes). BA, Brodmann area; K , degree; L, left hemisphere; R, right 
hemisphere; n/a, not available. MNI = Montreal Neurological Institute. CA, creativity anxiety. Note that 
these key nodes were defined as those highest in degree - the number of connections (edges) the node was 
involved in. 

No. K Node name Network L/R Lobe BA MNI coordinates 

1 14 Putamen Subcortical R Subcortical n/a 14, 8.3, -9.5 

2 12 Superior frontal gyrus Default Mode L Prefrontal 10 -6, 48.1, 11.7 

3 11 Caudate Subcortical R Subcortical n/a 12.6, 20.2, -0.7 

4 10 Calcarine fissure Visual L Occipital n/a -22.1, -66.7, 7.4 

5 9 Caudate Subcortical R Subcortical n/a 13.7, -4.2, 20.9 

6 8 Superior frontal gyrus Default Mode R Prefrontal 8 23.9, 30.7, 36.4 

7 8 Calcarine fissure Visual R Limbic 23 28.4, -53.8, 7.1 

8 7 Posterior cingulate gyrus Default Mode L Limbic 23 -5, -36, 32 

9 7 Posterior cingulate gyrus Default Mode R Limbic 23 5.1, -38.9, 27 

10 7 Superior frontal gyrus Default Mode L Prefrontal 9 -27.3, 34.1, 36.4 

Table 2B 
Negative CA network neuroanatomy (key nodes). BA, Brodmann area; K , degree; L, left hemisphere; R, right 
hemisphere; n/a, not available. MNI = Montreal Neurological Institute. CA, creativity anxiety. Note that 
these key nodes were defined as those highest in degree - the number of connections (edges) the node was 
involved in. 

No. K Node name Network L/R Lobe BA MNI coordinates 

1 12 Calcarine fissure Visual R Limbic 23 28.4, -53.8, 7.1 

2 9 Supramarginal gyrus Salience R Parietal 40 54.2, -45.2, 36.9 

3 8 Middle frontal gyrus Frontal-Parietal R Prefrontal 10 30.5, 54.9, -3.5 

4 8 Calcarine fissure Visual L Occipital n/a -22.1, -66.7, 7.4 

5 5 Superior temporal gyrus Frontal-Parietal R Temporal n/a 60.8, -43.3, -17.6 

6 5 Angular gyrus Default Mode L Parietal 39 -42, -65.6, 41.7 

7 5 Fusiform gyrus Visual L Temporal n/a -30, -5.8, -40.9 

8 5 Gyrus rectus Default Mode R Prefrontal 11 9.6, 17.8, -19.5 

9 5 Precuneus Default Mode L Limbic 31 -6.5, -53.9, 37.4 

10 4 Inferior temporal gyrus Default Mode L Temporal 20 -49.3, -4.7, -37.4 

Figure 5. Scatterplots for external validation. (a) Correlation between observed and predicted CA r scores in positive CA network. (b) Correlation between observed 
and predicted CA r scores in negative CA network. (c) Correlation between observed and predicted CA r scores in combined CA network. Observed and predicted CA r 
scores are standardized to z-scores. CA, creativity anxiety. ∗ p < 0.05, ∗∗ p < 0.01. 

generalizability dataset to assess whether predicted CAr scores gener- 
ated by models using the set of edges identified in the discovery dataset 
significantly related to observed CA scores of those in the generaliz- 
ability dataset. Results revealed a significant prediction of CA r for the 
negative network [r (147) = 0.22, p = 0.006, see Fig. 5 a ] and combined 
network [r (147) = 0.22, p = 0.006, see Fig. 5 b ], but not the positive 
network [r (147) = -0.20, p = 0.01]. Note that while p < 0.05 for the 
positive network, the direction of the result suggests that the predicted 
CA r scores are negatively related to observed CA r scores in the external 
generalizability dataset, which is not meaningful. These results suggest 

that the set of edges identified in the negative network are especially 
robust in predicting individual differences in creativity anxiety. 

3.5. Degree of overlap between the ‘creativity anxiety connectome’ and the 
‘creative connectome’ 

Finally, we set out to assess the extent to which the set of functional 
connections related to creativity anxiety identified in the present re- 
search overlapped with the set of functional connections related to di- 
vergent creative ability identified in previous work by Beaty and col- 
leagues (2018) . Both the ‘creativity anxiety connectome’ and the ‘cre- 
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Figure 6. The common edges between the ‘creativity anxiety connectome’ and the ‘creative connectome’. (a) The red edges correspond to the common edges between 
the positive CA network and the positive creative ability network; the yellow edges correspond to the common edges between the negative CA network and the 
negative creative ability network. (b) The red edges correspond to the common edges between the positive CA network and the negative creative ability network; 
the yellow edges correspond to the common edges between the negative CA network and the positive creative ability network. 

ative ability’ connectome are comprised of two networks each: a pos- 
itive and negative network. It should be noted that only the negative 
creativity anxiety network generalized to predict CAr scores in an ex- 
ternal sample in the present work, and only the positive creative ability 
network generalized to predict creative ability in Beaty et al. (2018) . 

To compare these networks, we obtained the set of func- 
tional connections related to divergent creative ability identified by 
Beaty et al. (2018) . While purely descriptive, the results show a very 
small degree of overlap between the networks. For full details on the ex- 
act functional connections that the various networks have in common, 
see Supplementary Material Table S2. Out of a total of 240 connections 
in the positive CA network, only 3 (or 1.25%) are shared with the pos- 
itive creative ability network (see Fig. 6 a), and only 4 (or 1.67%) are 
shared with the negative creative ability network ( Fig. 6 b). Likewise, 
out of a total of 197 connections in the negative CA network, only 1 (or 
0.51%) is shared with the positive creative ability network ( Fig. 6 b), and 
only 4 (or 1.67%) are shared with the negative creative ability network 
( Fig. 6 a). This demonstrates that the set of functional connections that 
predict creativity anxiety are largely distinct from the set of functional 
connections that predict divergent creative ability. 

4. Discussion 

While a considerable amount of progress has been made in identi- 
fying neural bases of creativity, no research to date has examined the 
neural basis of creativity anxiety, a recently identified potential barrier 
to creative achievement. In the present study, a connectome-based pre- 
dictive modeling approach identified a “creativity anxiety connectome ”
– a set of functional connections throughout the brain that predict indi- 
vidual differences in creativity-specific anxiety. Importantly, the asso- 
ciations between creativity anxiety and the sum of edge strengths that 
made up the “creativity anxiety connectome ” were not explainable by 
individual differences in trait anxiety, creative achievement, and other 
relevant variables, demonstrating the specificity of the links between 
creativity anxiety and the summed network scores of the creativity anx- 
iety networks. CPM further indicated that the set of connections in the 
negative network related to creativity anxiety identified in one sam- 
ple generalized to predict creativity anxiety in an independent sample, 
demonstrating the replicability of this effect. Finally, we found that the 
identified set of functional connections related to creativity anxiety was 
largely distinct from those identified to be related to divergent creative 
ability ( Beaty et al., 2018 ), further demonstrating the specificity of the 
creativity anxiety connectome. 

The finding that the “creativity anxiety connectome ” was largely 
distinct from the “creative connectome ” identified by Beaty et al., 
(2018) suggests that the neural basis of creativity anxiety differs from 

that of creative ability. This finding provides indirect evidence that cre- 
ativity anxiety should be considered distinct from creative ability, and 
that self-reported anxiety toward creativity, as measured using the Cre- 
ativity Anxiety Scale, is not merely a proxy for creative ability. More 
broadly, this finding was consistent with the idea that anxiety toward a 
given domain and ability in that domain can have largely distinct neural 
bases as also indicated by previous task-based fMRI work in the domain 
of math ( Young et al., 2012 ; Lyons & Beilock, 2012 ). 

It should be noted that, while a strength of CPM lies in its ability to 
condense complex sets of functional connections into a manageable set 
of values, CPM results are not intended to support strong claims about 
specific functional connections ( Shen et al., 2017 ) – in other words, CPM 

is more concerned with using neural data to make predictions than with 
hypothesis testing. As such, any interpretation of the neuroanatomy of 
the networks CPM identifies rests on reverse inference and should be 
considered speculative pending further research. Examining the neu- 
roanatomy of the networks identified by CPM can provide opportuni- 
ties to develop hypotheses for future research on creativity anxiety, so 
this speculation can be useful. It is important to note, however, that 
the present methods did not afford direct comparisons between highly 
localized areas that made up the creativity anxiety network and those 
that have been implicated in other cognitive constructs, so the spatial 
resolution of the comparisons we can make to previous fMRI work is 
limited. 

The negative CA network identified in the present study, which gen- 
eralized across samples and also predicted individual differences in cre- 
ative achievement, was comprised of connections within and between 
areas throughout the brain, including the following networks: execu- 
tive, default mode, salience, visual, and limbic networks. In the nega- 
tive CA network, the stronger connections predict lower CAr. That con- 
nections between regions within executive and default mode networks 
were part of the CPM-identified network that predicted higher levels 
of creativity anxiety is broadly consistent with work by Beaty and col- 
leagues (2018) showing that greater connectivity between areas in these 
networks predicted greater levels of divergent creative ability. It is im- 
portant to note, however, that the exact edges identified in the creativity 
anxiety connectome are largely distinct from the set of edges associated 
with creative ability. Interrogation of the negative CA network addi- 
tionally revealed that connections within and between prefrontal con- 
trol areas and limbic and subcortical areas were also part of the set of 
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connections that, when summed, predicted individual differences in cre- 
ativity anxiety. These nodes were centered in brain regions that are of- 
ten implicated in affective processing ( Hariri et al., 2000 ; Herman et al., 
2005 ; Ochsner and Gross, 2005 ; Wager et al., 2008 ). Speculatively, these 
tighter connections of prefrontal areas that have been shown to be in- 
volved in emotion regulation to limbic and subcortical areas implicated 
in emotional responses themselves may suggest that individuals with 
greater emotion regulation abilities are less likely to develop creativ- 
ity anxiety ( Ochsner and Gross, 2005 ; Wager et al., 2008 ). Overall, the 
neuroanatomy of the negative CA network seems to implicate both ar- 
eas that are classically involved in creative cognition and areas that are 
involved in affective responding and regulation, suggesting that both 
domain-specific and domain-general factors are likely to underlie dif- 
ferences in the neural profiles of those with high and low creativity 
anxiety. Additionally, we found that areas within the visual network 
also made up part of the negative CA network. While speculative, it 
is possible this reflects individual differences in the tendency to focus 
attention externally (i.e., on visual information) versus internally (i.e., 
on one’s thoughts), consistent with prior interpretations of creativity- 
related activity within occipital areas ( Boccia et al., 2015 ). This same 
interpretation – internal attention – is often made to explain the in- 
volvement of the default mode network activity during creative cog- 
nition as well ( Andrews-Hanna, 2012 ; Beaty et al., 2016 ; Adnan et al., 
2019 ; Beaty et al., 2015 ; Yeh, Hsu, & Rega, 2019 ). Given that both visual 
and default mode network areas were implicated as related to creativ- 
ity anxiety, future work could address whether individual differences 
in creativity anxiety are associated with differences in the tendency to 
focus attention internally or externally. 

Although the positive network – which was comprised of nodes in- 
cluding the default mode network and subcortical regions – showed sig- 
nificant predictive performance in the discovery dataset, the external 
generalizability analyses revealed that this network failed to predict CA r 
scores in the expected direction in an independent external validation 
sample. In fact, we observed a negative association between predicted 
CA r scores and observed CA r scores in the external validation sample. 
Finding that only one of the identified networks successfully general- 
izes to predict the behavioral variable of interest in an external sample 
is not uncommon in work using connectome-based predictive modeling 
(see, for example, Beaty et al., 2018 ; Feng et al., 2019 ; and Wang et al., 
2020 ), nor is finding a negative association between predicted and ob- 
served variable of interest (see, for example, Feng et al., 2018 ). The con- 
sensus from these prior studies has been that these null results or results 
in the unexpected direction are not particularly meaningful (aside from 

providing evidence against the generalizability of the original finding) 
and may arise as a result of overfitting the data in the original dataset, a 
common pitfall of machine learning-based techniques ( Dietterich, 1995 ; 
Belkin, Hsu, & Mitra, 2018 ). It should be noted, however, that finding 
that one network does not generalize does not suggest that the network 
that does generalize is any less meaningful. In Beaty et al., (2018) , for 
instance, the positive network was found to generalize to predict diver- 
gent creative ability in a separate sample, but the negative network was 
not. That same positive network was then applied to two additional ex- 
ternal samples and in each case showed robust prediction of divergent 
creative ability. Together, this work provides additional support for as- 
sessing external validation in addition to leave-one-out cross validation 
as an important step to determine the generalizability of CPM findings 
( Shen et al., 2017 ). 

Future work using the connectome-based predictive modeling tech- 
nique could be done to assess whether, for instance, the same pattern 
of functional connections we observed here using resting state data 
could predict creativity anxiety more strongly if measured in a situa- 
tion in which participants are anticipating an upcoming creative task, 
for instance. Creating a situation where participants either have to be 
creative or anticipate being creative may lead to more robust correla- 
tions between observed creativity anxiety scores and those predicted by 
the connectome-based predictive modeling approach. Indeed, previous 

work has found that predictive models built from task fMRI data often 
outperform models built from resting-state fMRI data, likely due to the 
unconstrained nature of collecting resting state fMRI data ( Greene et al., 
2018 ). Moreover, while in this and past work ( Daker et al., 2019 ) cre- 
ativity anxiety negatively predicted individual differences in real-world 
creative achievement, no work has yet assessed whether creativity anx- 
iety predicts task-based creative performance. Future behavioral work 
can be done to establish whether such a relationship exists, and if so, 
CPM-based work could be completed to assess the extent to which the 
functional connections we observed in this research are specific to cre- 
ativity anxiety or whether they could be explained by creative ability. 
Note, however, that in this work we did control for creative achieve- 
ment when establishing the set of functional connections that relate to 
creativity anxiety. Moreover, our analysis shows that the exact set of 
connections found in our ‘creativity anxiety connectome’ shows very 
little direct overlap with the set of connections found in the ‘creative 
connectome’ found in Beaty et al., (2018) . Together, this suggests that 
the connections observed here appear to be fairly specific to creativity 
anxiety, but work in the future could be done to rule out other pos- 
sible confounds. One of the key benefits of the CPM approach is the 
ability to easily apply profiles of connectivity identified in one context 
to test predictions in new contexts and datasets, facilitating clear tests 
of replicability and generalizability across studies. We have made the 
set of connections related to creativity anxiety that we identified in the 
present research available for other researchers (see Supplementary ma- 
terial Dataset S1 and S2 ). We additionally note that while CPM is a very 
useful data-driven technique, by design it does not directly assess the 
relative importance of specific connections within the networks that it 
identifies or the theoretical implications thereof. It is our hope that the 
present work will inform future hypothesis-driven research that employs 
other methods to better understand the neural correlates of creativity 
anxiety. 

In addition to exploring for the first time the neural correlates of 
creativity anxiety, the present work also represents the development of 
a Chinese language version of the Creativity Anxiety Scale. Results of 
exploratory factor analysis showed that the Chinese translation of the 
Creativity Anxiety Scale produces separable responses to items meant to 
measure anxiety toward situations that require creativity (CA items) and 
control items meant to measure anxiety toward similar, but non-creative 
situations (NAC items). Moreover, in both of the samples involved in the 
present research, anxiety ratings were higher for hypothetical situations 
that involved creativity than those that did not. Taken together, these 
results show that the Chinese translation of the CAS measures the con- 
struct of creativity anxiety well, opening the door for research on cre- 
ativity anxiety in Chinese-speaking samples (the largest native-speaking 
population on Earth). Interestingly, while gender differences in the ex- 
tent to which CA scores were higher than NAC scores were observed 
in American samples in Daker et al., (2019) , no such differences were 
found in the present Chinese samples. Additionally, only one of the two 
Chinese samples collected for the present research showed that creativ- 
ity anxiety predicted individual differences in creative achievement. Fu- 
ture cross-cultural work can be done to better understand how and why 
creativity anxiety may operate differently in American and Chinese cul- 
tural contexts. 

5. Conclusion 

After developing a Chinese language version of the Creativity Anxi- 
ety Scale and replicating key behavioral findings on creativity anxiety, 
we conducted the first investigation into the neural correlates of cre- 
ativity anxiety by performing connectome-based predictive modeling 
of resting state fMRI data to predict individual differences in creativity 
anxiety. A network of whole-brain functional connections that predicted 
individual differences in creativity anxiety – comprised largely of areas 
within executive, salience, and default mode networks and in limbic and 
subcortical regions – was identified. The profile of functional connec- 
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tions related to creativity anxiety in one sample was found to predict 
individual differences in creativity in an independent sample, demon- 
strating the replicability of these findings. Moreover, the functional con- 
nections relating to creativity anxiety were found to be largely distinct 
from those that previous research identified as relating to divergent cre- 
ative ability ( Beaty et al., 2018 ), demonstrating the specificity of our 
results and providing initial neural indication that creativity anxiety is 
a distinct construct from creative ability. 

Declaration of Competing Interest 

The authors declare that the research was conducted in the absence 
of any commercial or financial relationships that could be construed as 
a potential conflict of interest. 

Acknowledgements 

This research was supported by the National Natural Science 
Foundation of China ( 31771231 ), Natural Science Foundation of 
Chongqing ( cstc2019jcyj-msxmX0520 ), Social Science Planning Project 
of Chongqing (2018PY80) and Fundamental Research Funds for the Cen- 
tral Universities ( SWU119007 , SWU1909568 ), Chang Jiang Scholars 
Program, National Outstanding Young People Plan, Chongqing Talent 
Program, and by a National Science Foundation grant (EHR-1661065) 
to A.E.G. R.E.B. and A.E.G. were also supported by a National Science 
Foundation grant (DRL-1920653). 

Statement of author contributions 

Zhiting Ren, Richard J. Daker and Liang Shi made the same contri- 
bution. Zhiting Ren, Richard J. Daker and Liang Shi analyzed the data 
and wrote the paper. Adam E. Green and Jiang Qiu proposed the idea 
of the study and drafted the outline of the manuscript. Xinran Wu and 
Jiangzhou Sun proposed the original idea of data analysis. Zhiting Ren 
and Richard J. Daker completed revisions to the manuscript, with guid- 
ance from Adam E. Green, Roger E. Beaty and Ian M. Lyons. Roger E. 
Beaty, Qunlin Chen, Wenjing Yang and Ian M. Lyons offered technical 
assistance in analyzing data, suggested additional analyses and helped 
with their interpretation. All co-authors contributed to data acquisition. 
We also extend our gratitude to all participants. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.neuroimage.2020.117469 . 

References 

Adnan, A. , Beaty, R. , Lam, J. , Spreng, R.N. , Turner, G.R. , 2019. Intrinsic de- 
fault —executive coupling of the creative aging brain. Social cognitive and affective 
neuroscience 14 (3), 291–303 . 

Andrews-Hanna, J.R. , 2012. The brain’s default network and its adaptive role in internal 
mentation. The Neuroscientist 18 (3), 251–270 . 

Beaty, R.E. , Benedek, M. , Kaufman, S.B. , Silvia, P.J. , 2015. Default and executive network 
coupling supports creative idea production. Scientific reports 5, 10964 . 

Beaty, R.E. , Benedek, M. , Silvia, P.J. , Schacter, D.L. , 2016. Creative cognition and brain 
network dynamics. Trends in cognitive sciences 20, 87–95 . 

Beaty, R.E. , Kenett, Y.N. , Christensen, A.P. , Rosenberg, M.D. , Benedek, M. , Chen, Q. , 
Fink, A. , Qiu, J. , Kwapil, T.R. , Kane, M.J. , 2018. Robust prediction of individual cre- 
ative ability from brain functional connectivity. Proceedings of the National Academy 
of Sciences 115, 1087–1092 . 

Belkin, M. , Hsu, D.J. , Mitra, P. , 2018. Overfitting or perfect fitting? risk bounds for clas- 
sification and regression rules that interpolate. Advances in neural information pro- 
cessing systems 2300–2311 . 

Boccia, M. , Piccardi, L. , Palermo, L. , Nori, R. , Palmiero, M. , 2015. Where do bright ideas 
occur in our brain? Meta-analytic evidence from neuroimaging studies of domain-spe- 
cific creativity. Frontiers in psychology 6, 1195 . 

Carson, S.H. , Peterson, J.B. , Higgins, D.M. , 2005. Reliability, validity, and factor structure 
of the creative achievement questionnaire. Creativity Research Journal 17, 37–50 . 

Chao-Gan, Y. , Yu-Feng, Z.D. , 2010. A MATLAB Toolbox for" Pipeline" Data Analysis of 
Resting-State fMRI. Front Syst Neurosci 4 . 

Daker, R.J. , Cortes, R.A. , Lyons, I.M. , Green, A.E. , 2019. Creativity anxiety: Evidence for 
anxiety that is specific to creative thinking, from STEM to the arts. Journal of experi- 
mental psychology. General . 

Dartnall, T. , 2013. Artificial intelligence and creativity: An interdisciplinary approach. 
Springer Science & Business Media . 

Dehaene, S. , Piazza, M. , Pinel, P. , Cohen, L. , 2003. Three parietal circuits for number 
processing. Cognitive neuropsychology 20, 487–506 . 

Dietterich, T. , 1995. Overfitting and undercomputing in machine learning. ACM comput- 
ing surveys (CSUR) 27 (3), 326–327 . 

Feng, C. , Wang, L. , Li, T. , Xu, P. , 2019. Connectome-based individualized prediction of 
loneliness. Social cognitive and affective neuroscience 14 (4), 353–365 . 

Feng, C. , Yuan, J. , Geng, H. , Gu, R. , Zhou, H. , Wu, X. , Luo, Y. , 2018. Individualized predic- 
tion of trait narcissism from whole ‐brain resting ‐state functional connectivity. Human 
brain mapping 39, 3701–3712 . 

Finn, E.S. , Shen, X. , Scheinost, D. , Rosenberg, M.D. , Huang, J. , Chun, M.M. , Pa- 
pademetris, X. , Constable, R.T. , 2015. Functional connectome fingerprinting: identi- 
fying individuals using patterns of brain connectivity. Nature neuroscience 18, 1664 . 

Greene, A.S. , Gao, S. , Scheinost, D. , Constable, R.T. , 2018. Task-induced brain state manip- 
ulation improves prediction of individual traits. Nature communications 9 (1), 1–13 . 

Green, A. , 2018. Creativity in the distance: The neurocognition of semantically distant 
relational thinking and reasoning. The Cambridge handbook of the neuroscience of 
creativity 363–381 . 

Green, A.E. , Spiegel, K.A. , Giangrande, E.J. , Weinberger, A.B. , Gallagher, N.M. , 
Turkeltaub, P.E. , 2016. Thinking cap plus thinking zap: tDCS of frontopolar cortex im- 
proves creative analogical reasoning and facilitates conscious augmentation of state 
creativity in verb generation. Cerebral Cortex 27, 2628–2639 . 

Hariri, A.R. , Bookheimer, S.Y. , Mazziotta, J.C. , 2000. Modulating emotional responses: 
effects of a neocortical network on the limbic system. Neuroreport 11, 43–48 . 

Herman, J.P. , Ostrander, M.M. , Mueller, N.K. , Figueiredo, H. , 2005. Limbic system mech- 
anisms of stress regulation: hypothalamo-pituitary-adrenocortical axis. Progress in 
Neuro-Psychopharmacology and Biological Psychiatry 29, 1201–1213 . 

Horien, C. , Noble, S. , Finn, E.S. , Shen, X. , Scheinost, D. , Constable, R.T. , 2018. Considering 
factors affecting the connectome-based identification process: Comment on Waller 
et al. Neuroimage 169, 172–175 . 

Hsu, W.-T. , Rosenberg, M.D. , Scheinost, D. , Constable, R.T. , Chun, M.M. , 2018. Resting-s- 
tate functional connectivity predicts neuroticism and extraversion in novel individu- 
als. Social cognitive and affective neuroscience 13, 224–232 . 

Jangraw, D.C. , Gonzalez-Castillo, J. , Handwerker, D.A. , Ghane, M. , Rosenberg, M.D. , Pan- 
war, P. , Bandettini, P.A. , 2018. A functional connectivity-based neuromarker of sus- 
tained attention generalizes to predict recall in a reading task. Neuroimage 166, 
99–109 . 

Jennings, K.E. , 2010. Developing creativity: Artificial barriers in artificial intelligence. 
Minds and Machines 20, 489–501 . 

Jung, R.E. , Mead, B.S. , Carrasco, J. , Flores, R.A. , 2013. The structure of creative cognition 
in the human brain. Frontiers in human neuroscience 7, 330 . 

Lyons, I.M. , Beilock, S.L. , 2012. When math hurts: math anxiety predicts pain network 
activation in anticipation of doing math. PloS one 7, e48076 . 

Ochsner, K.N. , Gross, J.J. , 2005. The cognitive control of emotion. Trends in cognitive 
sciences 9, 242–249 . 

Power, J.D. , Mitra, A. , Laumann, T.O. , Snyder, A.Z. , Schlaggar, B.L. , Petersen, S.E. , 2014. 
Methods to detect, characterize, and remove motion artifact in resting state fMRI. 
Neuroimage 84, 320–341 . 

Prabhakaran, R. , Green, A.E. , Gray, J.R. , 2014. Thin slices of creativity: Using single-word 
utterances to assess creative cognition. Behavior research methods 46, 641–659 . 

Rosenberg, M.D. , Finn, E.S. , Scheinost, D. , Papademetris, X. , Shen, X. , Constable, R.T. , 
Chun, M.M. , 2016. A neuromarker of sustained attention from whole-brain functional 
connectivity. Nature neuroscience 19, 165 . 

Shen, X. , Finn, E.S. , Scheinost, D. , Rosenberg, M.D. , Chun, M.M. , Papademetris, X. , Con- 
stable, R.T. , 2017. Using connectome-based predictive modeling to predict individual 
behavior from brain connectivity. nature protocols 12, 506 . 

Shen, X. , Tokoglu, F. , Papademetris, X. , Constable, R.T. , 2013. Groupwise whole-brain 
parcellation from resting-state fMRI data for network node identification. Neuroimage 
82, 403–415 . 

Spielberger, C.D. , Gorsuch, R.L. , Lushene, R.E. , 1970. Stai. Manual for the State-Trait Anx- 
iety Inventory (Self Evaluation Questionnaire). Palo Alto California: Consulting Psy- 
chologist 22, 1–24 . 

Van Dijk, K.R.A. , Sabuncu, M.R. , Buckner, R.L. , 2012. The influence of head motion on 
intrinsic functional connectivity MRI. Neuroimage 59, 431–438 . 

Wager, T.D. , Davidson, M.L. , Hughes, B.L. , Lindquist, M.A. , Ochsner, K.N. , 2008. Pre- 
frontal-subcortical pathways mediating successful emotion regulation. Neuron 59, 
1037–1050 . 

Waller, L. , Walter, H. , Kruschwitz, J.D. , Reuter, L. , Müller, S. , Erk, S. , Veer, I.M. , 2017. 
Evaluating the replicability, specificity, and generalizability of connectome finger- 
prints. Neuroimage 158, 371–377 . 

Wang, Z. , Goerlich, K.S. , Ai, H. , Aleman, A. , Luo, Y. , Xu, P. , 2020. Connectome-based 
predictive modeling of individual anxiety. bioRxiv . 

Wang, J. , Wang, X. , Xia, M. , Liao, X. , Evans, A. , He, Y. , 2015. GRETNA: a graph theoretical 
network analysis toolbox for imaging connectomics. Frontiers in human neuroscience 
9, 386 . 

Weinberger, A.B. , Green, A.E. , Chrysikou, E.G. , 2017. Using transcranial direct current 



Z. Ren, R.J. Daker, L. Shi et al. NeuroImage 225 (2021) 117469 

stimulation to enhance creative cognition: interactions between task, polarity, and 
stimulation site. Frontiers in human neuroscience 11, 246 . 

World Economic, F., 2016. The future of jobs: Employment, skills and workforce strategy 
for the fourth industrial revolution. 

Wu, X. , Yang, W. , Tong, D. , Sun, J. , Chen, Q. , Wei, D. , Zhang, Q. , Zhang, M. , Qiu, J. , 
2015. A meta ‐analysis of neuroimaging studies on divergent thinking using activation 
likelihood estimation. Human brain mapping 36, 2703–2718 . 

Yeh, Y.C. , Hsu, W.C. , Rega, E.M. , 2019. The Dynamic Relationship of Brain Networks 
Across Time Windows During Product-Based Creative Thinking. Psychology 9 (10), 
401–419 . 

Young, C.B. , Wu, S.S. , Menon, V. , 2012. The neurodevelopmental basis of math anxiety. 
Psychological Science 23, 492–501 . 


	Connectome-Based Predictive Modeling of Creativity Anxiety
	1 Introduction
	2 Methods
	2.1 Participants
	2.2 Materials
	2.2.1 Creativity Anxiety Scale (CAS)
	2.2.2 Trait Anxiety
	2.2.3 Creative Achievement Questionnaire (CAQ)

	2.3 fMRI Data Acquisition and Analysis
	2.3.1 Image acquisition
	2.3.2 Image preprocessing
	2.3.3 Functional network construction
	2.3.4 Connectome-based Predictive Modeling
	2.3.5 Optimal threshold exploration
	2.3.6 Control analyses
	2.3.7 External generalizability
	2.3.8 Comparing the sets of functional connections related to creativity anxiety to those related to divergent creative ability


	3 RESULTS
	3.1 Behavioral Results
	3.1.1 Factor Analysis Results of the Chinese Translation of the Creativity Anxiety Scale
	3.1.2 Replication of Key Creativity Anxiety Behavioral Findings

	3.2 CPM Results
	3.2.1 Determining the optimal threshold for edge detection
	3.2.2 Predictive efficacy of the model

	3.3 Network neuroanatomy in the prediction of CA
	3.4 External generalizability
	3.5 Degree of overlap between the ‘creativity anxiety connectome’ and the ‘creative connectome’

	4 Discussion
	5 Conclusion
	Declaration of Competing Interest
	Acknowledgements
	Statement of author contributions
	Supplementary materials
	References


