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Abstract

We study the theoretical properties of the
fused lasso procedure originally proposed by
Tibshirani et al. (2005) in the context of a lin-
ear regression model in which the regression
coefficient are totally ordered and assumed to
be sparse and piecewise constant. Despite its
popularity, to the best of our knowledge, esti-
mation error bounds in high-dimensional set-
tings have only been obtained for the simple
case in which the design matrix is the iden-
tity matrix. We formulate a novel restricted
isometry condition on the design matrix that
is tailored to the fused lasso estimator and
derive estimation bounds for both the con-
strained version of the fused lasso assuming
dense coefficients and for its penalised ver-
sion. We observe that the estimation error
can be dominated by either the lasso or the
fused lasso rate, depending on whether the
number of non-zero coefficient is larger than
the number of piecewise constant segments.
Finally, we devise a post-processing proce-
dure to recover the piecewise-constant pat-
tern of the coefficients. Extensive numerical
experiments support our theoretical findings.

1 INTRODUCTION

High-dimensional linear regression models have been
at the centre of statistical research and applications
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for decades due to advances in the data collection and
storage technologies in numerous application areas, in-
cluding genetics (e.g. Guo et al., 2019), finance (e.g.
Pun, 2016), economics (e.g. Fan et al., 2011), cyberse-
curity (e.g. Peng et al., 2018) and climatology (e.g. Li
and Ding, 2020), among many others. To be specific,
in this paper, we consider the following model

yi = a>i x
∗ + εi, i = 1, . . . , n, (1)

where x∗ ∈ R
p is the unknown regression coeffi-

cient of interest, {εi}ni=1 is a sequence of independent
mean-zero random variables, {ai}ni=1 ⊂ R

p are the p-
dimensional covariates, {yi}ni=1 ⊂ R are the responses
and the dimensionality p is allowed to be a function of
the sample size n.

The model (1) has been extensively studied in a vast
body of methodological and theoretical work. To over-
come the high dimensionality, a stream of penalisation-
based methods have been developed based on the
entrywise sparsity assumption that only a few en-
tries of x∗ are non-zero. This line of attack includes
ridge estimators (e.g. Hoerl and Kennard, 1970), lasso
estimators (e.g. Tibshirani, 1996), bridge estimators
(e.g. Frank and Friedman, 1993), elastic net estima-
tors (e.g. Zou et al., 2006), to name a few, theoret-
ical properties of which have been extensively stud-
ied (e.g. Bühlmann and van de Geer, 2011). Beyond
the entrywise sparsity, different structural sparsity as-
sumptions have also been exploited in the literature,
e.g. known group structures (e.g. Yuan and Lin, 2006;
Simon et al., 2013), low-rank structures (e.g. Candès
and Recht, 2009), piecewise-polynomial patterns (e.g.
Kim et al., 2009; Tibshirani, 2014), among others. Sur-
rounding (1), various statistical tasks are of interest,
including testing, estimation, prediction and recovery
of specific sparsity patterns. We refer the readers to
Friedman et al. (2001) and Bühlmann and van de Geer
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(2011) as comprehensive textbooks.

In this paper, for the high-dimensional linear regres-
sion problem (1), we are concerned with estimating x∗

with piecewise-constant assumptions, that there exists
an unknown set of locations, namely change points,
S = {t1, . . . , ts} ⊂ {1, . . . , p − 1} such that x∗i 6= x∗i+1

if and only if i ∈ S. Let y = (y1, . . . , yn)
>, A =

(a1, . . . , an)
>, s = |S|, x̂ be an estimator of x∗ and

S(x̂) be the set of change points induced by x̂ (see
Section 1.1). We aim for both (i) ‖x̂ − x∗‖ and (ii)
dH(S(x̂), S) to be as small as possible, where ‖ · ‖ is
the `2-norm of a vector and dH(·, ·) is the Hausdorff
distance between two sets.

The piecewise-constant assumption enforces that x∗

lies in an unknown (s+1)-dimensional subspace of Rp.
This assumption can be seen as a relaxation of the en-
trywise sparsity assumption. Let ‖ · ‖0 be the `0-norm
of a vector and suppose that ‖x∗‖0 = s0. It then holds
that s ≤ 2s0. In practice, allowing for a very dense
regression coefficients, the piecewise-constant assump-
tion is more realistic than the entrywise sparsity as-
sumption, and some examples of this are given in Sec-
tion 4.2.

The statistical tasks (i) and (ii) above are referred to
as denoising and change point localisation, which are
closely-related but substantially different. For exam-
ple, when the design A is an identity matrix, the fused
lasso estimator is optimal in denoising (Guntuboyina
et al., 2020; Ortelli and van de Geer, 2019) but sub-
optimal in localising change points (Lin et al., 2017;
Zhang, 2019). As for the special case of the design A
being an identity matrix, (1) becomes the classical
univariate change point problem (e.g. Wang et al.,
2020a; Verzelen et al., 2020). Another related problem
is the high-dimensional linear regression change point
detection problem (e.g. Rinaldo et al., 2021), which
is however different, in the sense that each observa-
tion is associated with a regression vector x∗t such that
x∗t 6= x∗t+1 when t is a change point.

Xu and Fan (2019), arguably, is the closest-related pa-
per to ours. They assumed a known general graph
associated with nodes {1, . . . , p} and edges E ⊂
{1, . . . , p}⊗2. They studied an approximate estimator
of the `0-penalised optimisation problem

minx∈Rp



‖y −Ax‖2 + λ

∑

(i,j)∈E
1{xi 6= xj}



 . (2)

Our setup can be seen as a special case of theirs, with
the known graph being a chain graph, that is to say
E = {(i, i + 1), i = 1, . . . , p − 1}. Xu and Fan (2019)
derived denoising properties of an approximate estima-
tor, under a specific type of the restricted eigenvalue

condition, namely the cut-restricted isometry property
(c-RIP).

In terms of the theoretical performances, the `0-type
penalties and constraints are expected to be superior
than their `1 counterparts, but suffer computationally,
which is why Xu and Fan (2019) studied an approx-
imate solution to the NP-hard problem (2). In this
paper, we study the denoising and change point local-
isation properties of both penalised and constrained
least squares estimators, under a range of scenarios.
The theoretical and numerical performances are com-
parable to those in Xu and Fan (2019), with a notably
superior performance in real data analysis. The con-
tributions of this paper are summarised as follows.

• We provide an estimation error bound on an `1-
constrained least squares estimator in Theorem 1,
based on a novel version of restricted isometry con-
dition (RIC, Definition 1). To the best of our knowl-
edge, this type of result has only been shown before
for the case A = I (e.g. Ortelli and van de Geer,
2018). Proposition 2 is a sufficient condition for the
RIC, imposed directly on the design distribution.

• In addition to constrained estimators, in Theorem 4,
we also provide an estimation error bound on a pe-
nalised estimator, which is the estimator studied in
Tibshirani et al. (2005), with the presence of both
the fused lasso and lasso penalties. We also show
a phase transition phenomenon alternating between
the regimes dominated by the piecewise-constant
and entrywise sparsities. We accompany Theorem 4
with in-depth discussions involving other additive
types of penalties.

• In terms of recovering the piecewise-constant pat-
terns, knowing that `1-type estimators are sub-
optimal, in Section 3 we provide multiple post-
processing procedures to prompt the change point
localisation consistency. The post-processing pro-
cedures are of interest per se for general post-
processing change point estimators. Extensive nu-
merical results are provided to show the favourable
performances of our estimators.

1.1 Notation and Problem Setup

For any set M , we let |M | denote its cardinality. For
any vector v ∈ R

p, we let S(v) = {i : vi 6= vi+1} ⊂
{1, . . . , p − 1} be the set of change points induced by
v. For any matrix M , let σmin(M) and σmax(M) be
the smallest and largest singular values of M , respec-
tively; let ‖M‖op and ‖M‖∞ be the `2 → `2 opera-
tor norm and the entrywise supremum norm of M ,
respectively. For any vector v, let ‖v‖1 and ‖v‖∞
be the `1- and entrywise supremum norms of v, re-
spectively. Let D ∈ R

(p−1)×p be the difference op-
erator that satisfies Dij = 1{i = j} − 1{j − i =
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1}, i ∈ {1, . . . , p − 1}, j ∈ {1, . . . , p}. We re-
fer to the quantity ‖Dv‖1 as the total variation of
v ∈ R

p. For any two sets M1,M2 ⊂ {1, . . . , p},
let dH(M1,M2) = max{d(M1|M2), d(M2|M1))} be
the Hausdorff distance between M1 and M2, where
d(M1|M2) = maxm2∈M2

minm1∈M1
|m1 − m2| is the

one-sided Hausdorff distance.

We formalise below the model assumption which is
used throughout the paper.

Model 1. Given data {ai, yi}ni=1 ⊂ R
p × R satis-

fying (1), with S(x∗) = {t1, . . . , ts}, t0 = 0 and
ts+1 = p, let ∆p,n = mini=0,...,s(ti+1 − ti) and κp,n =
mini=1,...,s κi = mini=1,...,s |x∗ti+1−x∗ti | be the minimal
spacing and minimal jump size, respectively.

2 DENOISING

2.1 A Constrained Estimator

Under Model 1, we first consider a constrained estima-
tor

x̂ = x̂(V ) = argmin
x∈Rp

{
‖y −Ax‖2 : ‖Dx‖1 ≤ V

}
, (3)

where V ≥ 0 is a tuning parameter. The total vari-
ation constraint that ‖Dx‖1 ≤ V is imposed in re-
sponse to the piecewise-constant pattern of x∗ that
‖Dx∗‖0 = s. Although total variation constrained es-
timators are heavily exploited in the existing literature
(e.g. Rudin et al., 1992; Steidl et al., 2006; Guntuboy-
ina et al., 2020), to the best of our knowledge, this
is the first time total variation constrained estimators
are theoretically studied with a general design matrix.

Remark 1 (Constrained and penalised estimators).
An alternative to (3) is a penalised estimator, which
is a solution to the optimisation problem

minx∈Rp{‖y −Ax‖2 + λ‖Dx‖1},

where λ > 0 is a tuning parameter. When the design
matrix A = I, this penalised estimator is the fused
lasso estimator and has been studied extensively (e.g.
Ortelli and van de Geer, 2019; Lin et al., 2017). For
a general design matrix A, the computational aspects
of the penalised optimisation are studied in Tibshirani
and Taylor (2011), while its theoretical properties are
yet to be understood. We focus on the constrained esti-
mator (3) in this section, based on the knowledge that
constrained estimators can be strictly better in denois-
ing than their penalised counterparts, see Guntuboyina
et al. (2020) for a thorough discussion.

In order to ensure good theoretical performances
of (3), we assume the following condition.

Definition 1 (Restricted isometry condition, RIC).
Let η1, η2 > 0 and ρ1, ρ2 : [0,∞) → [0,∞) be in-
creasing functions. A matrix A ∈ R

n×p satisfies the
(η1, η2, ρ1, ρ2, t)-restricted isometry condition (RIC) if

1− η1 −
√
ρ1(t) ≤ ‖Ax‖ ≤ 1 + η2 +

√
ρ2(t), (4)

for all

x ∈ X (t) = {v ∈ R
p : ‖Dv‖1 ≤ t, ‖v‖ = 1}. (5)

Definition 1 can be seen as an `1-version of the c-RIP
condition proposed and justified in Xu and Fan (2019).
More discussions on Definition 1 are available in Sec-
tion 2.2. Before that, we present an upper bound on
the estimation error of x̂ based on Definition 1.

Theorem 1. Assume that the data are from Model 1,
the minimal spacing condition ∆p,n ≥ c0p/(s+1) holds
for some absolute constant c0 > 0, and the design ma-
trix A satisfies (η1, η2, ρ1, ρ2, V )-RIC, where

V ≥ V ∗ = ‖Dx∗‖1 and 1− η1 − ρ1(2V ) > c1,

for some absolute constant c1 > 0. Let ε = (ε1, . . . ,
εn)

> ∈ R
n be the noise vector. Let x̂ be the minimiser

defined in (3) with the tuning parameter V .

If ε ∼ N (0, σ2In), then there exists a positive constant
C > 0, such that it holds with probability at least 1 −
2(p ∨ n)−1,

‖x̂− x∗‖2 ≤ Cσ2s log(p ∨ n) log{p/(s+ 1)}
+ Cσ2(V − V ∗)2p/(s+ 1) log(p ∨ n). (6)

Theorem 1 is the first theoretical result on fused lasso
regularisation, under a piece-wise constant model,
with a general design matrix, while the only previ-
ously related results – Guntuboyina et al. (2020) and
Ortelli and van de Geer (2018) – merely concerned
with the identity design matrix. Although allowing for
more general design matrices, comparing our result to
theirs, we are only off by a logarithmic factor.

We remark that without the condition ∆p,n ≥ c0p/(s+
1), following from almost identical proofs, Theorem 1
still holds with the upper bound in (6) inflated by
∆max/∆p,n, where ∆max = maxi=0,...,s(ti+1 − ti).

As for the tuning parameter, we highlight the condi-
tion V ≥ V ∗ and acknowledge that we lack theoret-
ical controls when V < V ∗. This goes in line with
Guntuboyina et al. (2020), who also required V ≥ V ∗

for the constrained fused lasso estimator with iden-
tity design matrix. As in Guntuboyina et al. (2020),
the smaller (V − V ∗)2 the sharper the upper bound.
In practice, one can choose V using information-type
criteria (e.g. Tibshirani and Taylor, 2012).
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As for the `0-penalised counterparts, two sets of the-
oretical results are provided in Xu and Fan (2019):
One (Theorem 3.4 therein) relies on a version of the
restricted isometry condition on design matrices, but
the model is assumed to be noiseless besides the design
matrix; this setup is incomparable with the additive
noise setting (1) considered in this paper. The other
(Theorem 3.5 therein) is a noisy version result and the
upper bound thereof is at least of the order of ‖ε‖.
When ε ∼ N (0, σ2In), it holds that ‖ε‖ &

√
n with

high probability, which implies that the upper bound
(6) is sharper than that in Xu and Fan (2019).

2.2 The Restricted Isometry Condition

The estimation error bound in Theorem 1 holds under
Definition 1, which is a version of compatibility con-
ditions. In order to provide theoretical guarantees for
penalised/constrained estimators in high-dimensional
problems, compatibility conditions are often assumed.
In particular, van de Geer (2018) showed that such
conditions are necessary for analysing lasso estimators.

Definition 1 can be regarded as an `1 counterpart of
the c-RIP condition introduced in Xu and Fan (2019).
Instead of restricting in X (t) defined in (5), Xu and
Fan (2019) considered the constraint {v ∈ R

p : 1 ≤
‖Dv‖0 ≤ t}. For both our results and those in Xu and
Fan (2019), the RICs are most useful when assuming
ηj , ρ(s) = O(1), j = 1, 2. This in essence implies
that constraining to X (t), the restricted eigenvalues of
A>A are all around one, i.e. for any x ∈ X (t), it holds
that

η1 +
√
ρ1(t) ≤

√
x>(A>A− Ip)x ≤ η2 +

√
ρ2(t).

This is in stark contrast to most of the classical lasso
estimation literature with entrywise sparsity assump-
tion, where it is often assumed that σmin{E(A>A)}
is of order O(n). This difference in assumptions di-
rectly results in the difference in the final estimation
error rates. To be specific, with some abuse of nota-
tion, assuming ‖x∗‖0 = s, it holds with large prob-
ability that the lasso estimator x̂lasso satisfies that
‖x̂lasso − x∗‖2 . sσ2 log(p)/n (e.g. Bühlmann and
van de Geer, 2011). However, despite the fact that our
piecewise-constant assumption can be seen as a gen-
eralisation of the entrywise-sparsity assumption, (6)
reads as ‖x̂− x∗‖2 . sσ2 log(p). We remark that such
difference is merely due to different scalings on the
designs - this is more prominent in the statement in
Proposition 2 below. We opt for the same scaling as
that in Xu and Fan (2019) for an easier comparison.

In spite of the aforementioned similarity between Def-
inition 1 and the c-RIP in Xu and Fan (2019), replac-
ing the `0 constraint with its `1 counterpart leads to

two fundamental differences. Firstly, constraining the
`1-norm of Dx∗ is, generally speaking, weaker than
constraining its `0-norm, and therefore enriches the
flexibility. Secondly, since for any vector v, ‖Dv‖0 is
invariant with respect to scaling v, but ‖Dv‖1 is not,
involving an upper bound on ‖Dv‖1 in (4) makes it
more difficult in the proofs.

We provide a sufficient condition for Definition 1.

Proposition 2. Let A ∈ R
n×p be a matrix with rows

n−1/2ai, i ∈ {1, . . . , n}, where {ai}ni=1 are indepen-
dent and identically distributed sub-Gaussian vectors,
satisfying that ‖a1‖ψ2

≤ U and Cov(a1) = Σ, with
σmin(Σ) = (1− ζ)2, σmax(Σ) = (1+ ζ)2 and ζ ∈ (0, 1).
Assume that there exist absolute constants c1, c2 > 0
such that

c1
√
nφn ≤ {t√p+ log(p)}{√p+

√
log(n)} ≤ c2n

3/2,
(7)

for some diverging sequence φn, with φnU
−4 → ∞,

as n grows unbounded. For any x ∈ X (t) defined in
(5), it holds with probability at least

1− 2n−c3 − 2 exp(−c4U−4φn),

where c3, c4 > 0 are absolute constants, that

1− ζ − 2−1/2(1− ζ) ≤ ‖Ax‖ ≤ 1 + ζ + 2−1/2(1− ζ).

We readily see that with large probability, under the
conditions in Proposition 2, the design matrix A sat-
isfies the

(
ζ, ζ, 2−1(1− ζ)2, 2−1(1− ζ)2, t

)
-RIC. The

condition (7) implies that the dimensionality p can
at most grow polynomially with respect to the sample
size n, which is stronger than allowing for an exponen-
tial growth, as in Xu and Fan (2019). Condition (7) is
a direct consequence of the metric entropy of the con-
strain set X (t). Specifically, as shown in Guntuboyina
et al. (2020), for any δ > 0, the δ-metric entropy of
X (t) is upper bounded by δ−1{t√p + log(p)}, which
is polynomial in p. Due to this bottleneck, we conjec-
ture that the condition (7) cannot be improved, if one
trades `0-sparsity with the weaker version `1-sparsity.

An immediate consequence of combining Theorem 1
and Proposition 2 is as follows.

Corollary 3. Assume that the data are from Model 1,
the minimal spacing condition ∆p,n ≥ c0p/(s+1) holds
for some absolute constant c0 > 0, and the design ma-
trix A satisfies the conditions in Proposition 2. Under
all the assumptions in Proposition 2, let

V ≥ V ∗ = ‖Dx∗‖1 and 1− ζ − ρ1(2V ) > c,

for some absolute constant c > 0. Let ε =
(ε1, . . . , εn)

> ∈ R
n be the noise vector.



Wang, Madrid Padila, Yu, Rinaldo

If ε ∼ N (0, σ2In), then there exists a positive constant
C > 0, such that with probability at least

1− 2(p ∨ n)−1 − 2n−c3 − 2 exp(−c4U−4φn),

it holds

‖x̂− x∗‖2 ≤ Cσ2s log(p ∨ n) log{p/(s+ 1)}
+ Cσ2(V − V ∗)2p/(s+ 1) log(p ∨ n),

where c3, c4 > 0 are absolute constants.

2.3 A Penalised Estimator

Recall that in Tibshirani et al. (2005) the fused lasso
estimator was introduced as

x̃ = argmin
x∈Rp

{
‖y −Ax‖2 + λ1‖x‖1 + λ2‖Dx‖1

}
, (8)

where λ1, λ2 > 0 are tuning parameters. The estima-
tor x̃ is rooted in the belief that x∗ is both piecewise-
constant and entrywise-sparse. In this section, we are
to establish theoretical guarantees on the denoising
performance of x̃, which, to the best of our knowledge,
is not seen in the existing literature.

Theorem 4. Assume that the data are from Model 1.
Let H = {j : x∗j 6= 0} ⊂ {1, . . . , p}, with |H| = h. As-

sume that the design matrix A has rows {n−1/2ai}ni=1,
where {ai}ni=1 are independent and identically dis-
tributed as N (0,Σ), with σmin(Σ) ≥ l > 0 and ‖Σ‖∞ ≤
ρ, where l and ρ are absolute constants. Suppose that
ε ∼ N (0, σ2In) and (s+h) log(p) ≤ C1n, where C1 > 0
is a sufficiently large constant.

Let x̃ be defined in (8) with λ1 = Cλ1
σ
√
ρ log(p ∨ n)

and λ2 = Cλ2
σ
√
log(p ∨ n), where Cλ1

, Cλ2
> 0 are

sufficiently large absolute constants. It holds, with
probability at least 1 − c1(p ∨ n)−1 − p exp(−n) −
c2 exp(−c3n), that

‖x̃− x∗‖2 ≤ Cσ2 log(p ∨ n)(s ∨ h), (9)

where C > 0 is an absolute constant.

We remark that, Theorem 4 also relies on some form
of restricted eigenvalue conditions, although we do not
assume it explicitly as what we do in Theorem 1. Due
to the Gaussian design, we in fact show that a form
of RIC holds with large probability and leads to the
success of Theorem 4 (see e.g. Lemma 9 in Zhang et al.,
2015).

The result (9), in fact, reads as ‖x̃−x∗‖2 . hλ21+sλ
2
2,

with the two terms in the upper bound corresponding
to the optimal estimation error bounds in the cases
solely under the entrywise sparsity and piecewise-
constant assumptions, respectively. Theorem 4 unveils

a phase transition phenomenon that when h & s, the
lasso rate dominates and vice versa.

The estimator in (8) is within the category of doubly-
penalised estimators. The additive type upper bound
shown in Theorem 4 echos the general phenomenon
for doubly-penalised estimators. For instance, in high-
dimensional linear regression problems, Hebiri and
van de Geer (2011) studied an estimator penalised
by both `1- and `2-penalties, which is a generalisa-
tion of the elastic net estimator (e.g. Zou et al., 2006),
and derived an upper bound in the form of the sum
of that on lasso and ridge estimators. In the high-
dimensional functional data analysis literature, with
potentially many different functional covariates, Wang
et al. (2020b) showed that the prediction upper bound
is the sum of an upper bound related with the smooth-
ness penalty and an upper bound related with the
high-dimensionality.

3 CHANGE POINT

LOCALISATION AND

POST-PROCESSING

PROCEDURES

In high-dimensional linear regression problems, in ad-
dition to controlling the estimation error of estimators
as in Section 2.3, when it is believed that the regres-
sion coefficients are piecewise-constant, e.g. there exist
unknown group structures in the predictors, it is also
of particular interest to recover such structures by lo-
calising change points. For instance, in group lasso
estimation, such group structures are assumed known.
An accurate estimation of the group structures can be
a pre-processing step for a group lasso estimation.

In this section, the goal is to obtain a consistent change
point estimator Ŝ, such that

dH(Ŝ, S) ≤ εp,n and |Ŝ| = |S|, (10)

where εp,n/p → 0, with probability tending to one as
n → ∞. We refer to εp,n as the localization error. In
view of the two criteria detailed in (10), the following
two subsections focus on the guarantees on the local-
isation error and estimated number of change points,
respectively.

3.1 The Localisation Error

When the design matrix A is the identity, Theorem 4
of Lin et al. (2017) shows that an upper bound on
the estimation error ‖x̂− x∗‖ immediately guarantees
a control on the localisation error in terms of a one-
sided Hausdorff distance d (S (x̂) |S). Combining this
result with Theorem 1 (or Corollary 3), yields that,
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with probability at least 1− 2(p ∨ n)−1,

d (S (x̂) |S) . σ2s log(p ∨ n) log{p/(s+ 1)}κ−2
p,n

+ σ2(V − V ∗)2p/(s+ 1) log(p ∨ n)κ−2
p,n.

Furthermore, Lin et al. (2017) point out that the fused
lasso estimator x̂, lacks a two-sided Hausdorff distance
control because typically |S(x̂)| > s. This issue with
the over-estimation is partially tackled in Lin et al.
(2017). There, the authors showed that a mean filter-
ing post-processing procedure is effective at removing
spurious estimated change points that are far away
from the true change points. This post-processing
step, originally analysed by Lin et al. (2017) assum-
ing an identity design matrix, can in fact be used for
general design cases without modification. In detail,
let IF (x̂) ⊂ {bp,n, . . . , p− bp,n} such that

IF (x̂) = {i : i ∈ S(x̂) or i+ bp,n ∈ S(x̂)

or i− bp,n ∈ S(x̂)} ∪ {bp,n, p− bp,n}, (11)

with an integer bandwidth bp,n > 0. For each i ∈
{bp,n, . . . , p− bp,n}, set

Fi(x̂) =
1

bp,n

i+bp,n∑

j=i+1

x̂j −
1

bp,n

i∑

j=i−bp,n+1

x̂j . (12)

The set of estimates change point is defined as the

SI(x̂) = {i : |Fi(x̂)| ≥ τp,n} ⊂ IF (x̂), (13)

where τp,n > 0 is a pre-specified threshold. An adap-
tation to Theorem 5 in Lin et al. (2017) leads to the
following result.

Proposition 5. Assume all the conditions in Theo-
rem 1 hold. Let

Rp,n = Cσ2s log(p ∨ n) log{p/(s+ 1)}
+Cσ2(V − V ∗)2p/(s+ 1) log(p ∨ n)

and assume that there exists a sufficiently large ab-
solute constant CSNR > 0 such that κ2p,n∆p,n >
CSNRRp,n. For SI(x̂) defined through (11), (12), and
(13), with τp,n and bp,n satisfying that τp,n = cτκp,n,
for some constant cτ ∈ (0, 1) and

bp,n = cRp,n{cτ ∧ (1− cτ )}−2κ−2
p,n ≤ ∆p,n/4,

for a sufficiently large absolute constant c > 0, it holds
with probability at least 1 − 2(p ∨ n)−1 that, with a
sufficiently large absolute constant C1 > 0,

dH (SI(x̂), S) ≤ C1σ
2s log(p ∨ n) log{p/(s+ 1)}κ−2

p,n

+ C1σ
2(V − V ∗)2p/(s+ 1) log(p ∨ n)κ−2

p,n.

As we can see from Proposition 5, the mean filter
smooths the fused lasso estimator and delivers an es-
timator satisfying the first criterion in (10). When
V = V ∗, we see that the localisation rate is, aside
from a poly-logarithmic factor, of order σ2κ−2

p,ns. This
type of guarantee is consistent with analogous results
established in array of change point detection prob-
lems and implies the near-optimality of our results.
Indeed, in change point detection problems, minimax
lower bounds on the localisation errors are usually of
the form of σ2κ−2 and their upper bounds obtained
by polynomial-time algorithms are usually in the form
of σ2κ−2×a sparsity parameter×a logarithmic factor,
see Yu (2020).

3.2 The Number of Change Points

The output SI(x̂) is, as pointed out in Lin et al. (2017),
still an over-estimator of S, due to the lack of control
on the estimated change points around the true change
points. To obtain a consistent change point estimator,
we further prune the estimator with an additional time
filter, detailed below.

Provided that SI(x̂) 6= ∅, we sort it as {t̂1, . . . , t̂M},
with t̂i < t̂j , i < j. If M = 1, we let ST (x̂) = SI(x̂).
If M ≥ 2, we let Dm = t̂m+1 − t̂m, m ∈ {1, . . . ,M −
1}. With a pre-specified tuning parameter tp,n > 0,

let S̃ = {m : Dm > tp,n} = {s1, . . . , s|S̃|}, which

partitions SI(x̂) into |S̃|+ 1 segments, that is

SI(x̂) = {t̂1, . . . , t̂s1} ∪ · · · ∪ {t̂s|S̃|+1, . . . , t̂M}

= ∪|S̃|+1
u=1 S̃u.

If |S̃| = 0, then we have that SI(x̂) = S̃1. Finally,
denote that

ST (x̂) = {median(S̃u), u = 1, . . . , |S̃|+ 1}, (14)

where we take the convention that the median of a set
is a member in this set and when there are two different
medians, we take the smaller one for uniqueness. In
the following we show that ST (x̂) provides a consistent
estimation on the number of change points.

Proposition 6. Assume all the conditions in Propo-
sition 5 hold. Let ST (x̂) be defined in (14) with the
tuning parameter tp,n = 2bp,n. It holds with probabil-
ity at least 1− 2(p ∨ n)−1 that |ST (x̂)| = |S|.

With a further post-processing step based upon the
mean filter proposed in Lin et al. (2017) and with prop-
erly chosen tuning parameters, we have now met the
second criterion in (10). Note that ST (x̂) ⊂ SI(x̂).
We further have that ST (x̂) is consistent in terms of
(10). The theoretical tuning parameters are functions
of unknown parameters. We discuss how to choose the
tuning parameters in practice in Section 4.
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4 NUMERICAL EXPERIMENTS

Our focus for now is to study the piecewise-constant
and potentially very dense regression coefficients. We
have shown that a fused lasso (FL) estimator is enough
for the denoising purpose, which implies good predic-
tion ability. To learn the piecewise-constant pattern, a
mean filtering post-processing based on the fused lasso
(FLMF) achieves a nearly-optimal localisation error;
to accurately partition the coefficients into groups, a
further step based on a time filter (FLMTF) is neces-
sary. In this section, we study the numerical perfor-
mances of the aforementioned three estimators.

The FL used to obtain our numerical results, is a pe-
nalised estimator, not the constrained estimator we
focus on in Section 2.1. This choice was made out of
convenience, due to the availability of the well-written
R package genlasso (Arnold and Tibshirani, 2014). We
acknowledge this inconsistency of the paper. The FL
estimators are solved with tuning parameter chosen
from a 5-fold cross-validation.

As instructed in Lin et al. (2017), the tuning param-
eter bp,n in FLMF is chosen to be b0.25 log2(p)c and
τp,n is chosen via a permutation-based algorithm. For
FLMTF, the additional tuning parameter is chosen to
be tp,n = 2 × b0.25 log2(p)c. The main competitor is
an `0-penalised estimator via the ITerative Alpha Ex-
pansion (ITALE) algorithm (Xu and Fan, 2019), the
tuning parameter therein is chosen through a 5-fold
cross-validation.

4.1 Simulation Studies

Four types of design matrices are considered: (1) Iden-
tity matrices. (2) Band matrices. Let A be Aij = 0, if

|i− j| > h, and Aij
i.i.d.∼ N (0, 1), if |i− j| ≤ h, where

h ∈ N. (3) Gaussian random matrices with iden-
tity covariance matrices. Each row of A is i.i.d. from
N (0, Ip). (4)Gaussian random matrices with band co-
variance matrices. Each row of A is i.i.d. fromN (0,Σ),
where Σ is a band matrix with bandwidth h. Each type
of design matrices includes three scenarios: (1) one
change point; (2) nine equally-spaced change points;
and (3) nine unequally-spaced change points. All de-
tails are deferred to the supplementary materials.

For each setting, we fix p = 1000 and let the noise
be from N (0, σ2In). Each combination of parameters
is repeated 100 times. Each reported result is in the
form of mean and standard deviation. We vary the
jump size (denoted as a constant multiplied by γ in
this section), sample size, variance σ2 and other model
specific parameters to demonstrate a wide range of sit-
uations. All results can be found in the supplementary
materials.

In Figure 1, we only present a few examples to convey
the key messages. Representative results of cases on
four different types of design matrices are shown in the
four rows of Figure 1. From left to right, the columns
are the results on the mean squared errors reflecting
the denoising performances, the Hausdorff distances
and |ST (x̂)−S| reflecting the change point estimation
performances. Generally speaking, although the `0 es-
timators outperform `1 estimators theoretically, across
the board, our three estimators concerned have com-
parable numerical performances to ITALE. We would
like to highlight two observations. Firstly, in terms
of the change point estimation performances, we see a
clear improvement from the two filters. Secondly, in
the second and fourth rows, which correspond to band
matrices in the designs, our estimators uniformly out-
perform the competitor ITALE. This suggests a pos-
sible regime where our RIC is more flexible than the
c-RIP.

4.2 Real Data Analysis

We consider two real data sets in this subsection, fo-
cusing on the denoising and change point localisation
purposes, respectively.

The cookie dough data set (Osborne et al., 1984;
Brown et al., 2001; Hans, 2011) contains n = 72 cookie
dough samples, with the sucrose content as the re-
sponse and the quantitative near-infrared (NIR) spec-
troscopy results corresponding to p = 700 equally-
spaced wavelengths as the predictors. Because of the
finely-partitioned wavelengths predictors, we expect a
piecewise-constant but non-sparse pattern of the re-
gression coefficients.

We use this data set to demonstrate the denoising per-
formances of FL. As for the competitors, we include
the classical lasso, the elastic net (Zou et al., 2006) and
ITALE. The lasso and elastic net estimators are ob-
tained by applying the R (R Core Team, 2021) package
glmnet (Friedman et al., 2010), with tuning parame-
ters selected via a 5-fold cross-validation.

We randomly split the original data set 100 times, each
with a training data set of 39 observations and a test
data set with 31 observations, after removing the 23rd
and 61st observations as outliers (Hans, 2011). Data
are all centred to eliminate the intercepts, as required
in the model assumption, and standardised before esti-
mation to follow suit (see e.g. Lemma 9 in Hans, 2011).
The training data sets are used to obtain estimators
and the test data sets are used to calculate the mean
squared errors.

We collect the results in Table 1, including MSE
- mean squared errors, |Ŝ| - numbers of estimated
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change points and |Ĥ| - numbers of non-zero estimated
coefficients. We do not include the results of ITALE,
which returns an average MSE of 52840. It can be seen
from Table 1 that fused lasso allows for very dense
regression coefficients, but encourages recovering the
piecewise-constant pattern, and most importantly, has
the best prediction performances.

Table 1: The results of different methods on the cookie
dough data set. MSE: mean squared errors; |Ŝ|: num-

bers of estimated change points; and |Ĥ|: number of
non-zero estimated coefficients. Each cell is in the form
of mean(std.dev).

FL Lasso Elastic net
MSE 0.122(0.091) 0.136(0.097) 0.138(0.097)

|Ŝ| 10.8(2.40) 35.2(7.21) 330(204)

|Ĥ| 697(15.5) 23.1(5.03) 285(188)

The air quality data set (The World Air Qual-
ity Index project, 2021) consists of daily average air
quality measurements from different cites around the
world. We choose n = 30 cities (Amsterdam, Bangkok,
Beijing, Changsha, Chongqing, Dalian, Frankfurt,
Guangzhou, Harbin, Hefei, Hong Kong, Kunming, Ky-
oto, Lhasa, London, Los Angeles, Manchester, Nan-
jing, Osaka, Paris, Sanya, Seoul, Shanghai, Singa-
pore, Hamburg, Suzhou, Tianjin, Xiamen, Xi’an and
Tokyo). Let their Particulate Matter 2.5 (PM2.5) val-
ues on 2021-07-30 be the responses and let their weekly
averaged PM2.5 data from the previous p = 52 weeks
as their own covariates. Data are all centred and stan-
dardised. Our goal is to detect potential change points
in the coefficients consisting of 52 weeks.

We focus on the behaviours of FLMTF studied in
Section 3.2 and the ITALE studied in Xu and Fan
(2019). Similar observations of extremely large MSEs
of ITALE lead us to discard discussing their results.
The FLMTF detects 4 change points corresponding
to the 6th, 21st, 33rd and 48th weeks, which are in-
line with the season changes, as depicted in Figure 2.
Note that seasons are commonly defined in two ways
(Trenberth, 1983): astronomical and meteorological
seasons. The start dates of astronomical seasons are
20th March, 20th July, 22nd September and 21st De-
cember; and those of the meteorological seasons are
1st March, 1st July, 1st September and 1st December.
In this specific data set, the astronomical seasons start
in the 6th, 19th, 31st and 45th weeks, and the meteo-
rological seasons start in the 9th, 22nd, 35th and 48th
weeks.

5 Conclusions

For a high-dimensional linear regression problem with
piecewise-constant patterned coefficients, we derived
the denoising performances of fused lasso estimators,
in the form of both a constrained and penalised esti-
mators. A novel restricted isometry condition is pro-
posed, with a sufficient condition. The main results in
this paper are only based on the fused lasso penalty,
which encourages to recover the piecewise-constant
pattern, but allows for a very dense regression coef-
ficient in a high-dimensional setup. We, however, also
derived the denoising performances of the estimator
originally proposed in Tibshirani et al. (2005), which
assumes both fused lasso and lasso penalties. This set
of results unveils a phase transition phenomenon and
echos the general results of doubly-penalised estima-
tors. The denoising performance is a guarantee for
predictability. To understand the piecewise-constant
pattern and to consistently estimate the change points,
we built upon Lin et al. (2017) and studied a doubly-
filtered estimator, with the fused lasso estimator as
the input. Despite that the `0-penalised estimators
are theoretically superior than the `1-type estimators
studied in this paper, we show in some theoretical as-
pects, we derive sharper theoretical results than those
in Xu and Fan (2019) under some RICs, with a notably
improvement in real data analysis.
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Supplementary Material:
Denoising and Change Point Localisation in Piecewise-Constant

High-Dimensional Regression Coefficients

A ADDITIONAL NOTATION

For any vector v ∈ R
p and any set M ⊂ {1, . . . , p}, let vM = (vi, i ∈ M)> ∈ R

|M | and v−M = (vi, i /∈ M)> ∈
R
p−|M | be sub-vectors of v. For any matrix Q ∈ R

p×q and any set M ⊂ {1, . . . , p}, let QM and Q−M be the
submatrices of Q only containing rows indexed byM and {1, . . . , p}\M , respectively. For any subspaceW ⊂ R

p,
let PW be the orthogonal projection onto W and let W⊥ be its orthogonal complement.

Let S′ ⊂ {1, . . . , p − 1} be any set. Let N−S′ = {v ∈ R
p : (Dv)−S′ = 0} and rS′ = dim(N−S′). Let

Ψ−S′

= (D−S′)>{D−S′(D−S′)>}−1. The jth column of Ψ−S′

is denoted as ψ−S′

j . For any vector w−S′ with
wj ∈ [0, 1], j ∈ {1, . . . , p−1}\S′ and any vector v ∈ R

p, let (1−w−S′)(Dv)−S′ = {(1−wj)(Dv)j}{j∈{1,...,p−1}\S′}.

Definition 2 (Ortelli and van de Geer (2019)). For any vector qS′ ∈ {−1, 1}s′ , where S′ ⊂ {1, . . . , p− 1} is any
set and s′ = |S′|, the noiseless effective sparsity is defined as

Γ2(qS′) =
(
max

{
q>S′(Dθ)S′ − ‖(Dθ)−S′‖1 : ‖θ‖ = p1/2, θ ∈ R

p
})2

.

The noisy effective sparsity is defined as

Γ2(qS′ , w−S′) =
(
max

{
q>S′(Dθ)S′ − ‖(1− w−S′)(Dθ)−S′‖1 : ‖θ‖ = p1/2, θ ∈ R

p
})2

,

with

wj =
c0

∥∥∥ψ−S′

j

∥∥∥
maxl∈{1,...,p−1}\S′

∥∥ψ−S′

l

∥∥

for j ∈ {1, . . . , p− 1}\S′, and for a small enough constant c0.

B PROOFS OF THE RESULTS IN SECTION 2

B.1 Proof of Theorem 1

Lemma 7. Suppose that S satisfies the minimal spacing condition ∆p,n ≥ c0p/(s + 1) for some large enough
constant c0 > 0. There exists a set S′ = {u1, . . . , um} with 0 = u0 < u1 < . . . < um < um+1 = p, satisfying

(1) m � s+ 1,
(2) umin = mint=0,...,m(ut+1 − ut) ≥ c1p/(s+ 1),
(3) umax = maxt=0,...,m(ut+1 − ut) ≤ c2p/(s+ 1),
(4) S ⊂ S′,

where c1, c2 > 0 are constants that only depend on c0.

Proof. Let δ = cp/(s + 1) for some small enough constant c > 0, and suppose that G = {v1, . . . , vm′} is grid of
evenly space points in [1, p] ∩ N with spacing δ. Let us set

S′ = S ∪
{
v ∈ G : |v − a| ≥ cp

2(s+ 1)
, ∀a ∈ S

}
.

Then the set S′ satisfies the required. Indeed, notice that by definition of G and S′, |S| ≤ |S′| ≤ |S|+ |G| . s+1.
Also, S ⊂ S′.
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Next, let us verify (2). To see this notice that if u, v ∈ S and u 6= v, then

|u− v| ≥ c0p

s+ 1
.

If u, v ∈ S′\S and u 6= v, then by construction of G,

|u− v| ≥ cp

s+ 1
.

If u ∈ S and v ∈ S′\S, then by definition of S′ it holds that

|u− v| ≥ cp

2(s+ 1)
.

Therefore,

umin ≥ min{c0, c/2}
p

s+ 1
.

Finally, let us verify (3). To see this, we proceed in cases.

(a) Notice that uj , uj+1 ∈ S′ cannot happen if c ≤ c0 with c small enough. Otherwise any a ∈ G ∩ [uj , uj+1]
would need to satisfy min{|a− uj |, |a− uj+1|} ≤ cp/(2(s+ 1)). But this is not possible for small enough c.

(b) Suppose that uj , uj+1 ∈ G. Then by construction

|uj+1 − uj | =
cp

s+ 1
.

(c) Suppose that uj ∈ S and uj+1 ∈ S′\S. If |uj+1 − uj | > 3cp/(2(s + 1)), then there must exists a ∈ G such
that uj < a < uj+1 and a − uj > cp/(2(s + 1)). Therefore, it must be the case that a ∈ S′. But that it is
not possible because it would mean that uj < a < uj+1 and a ∈ S′. Hence,

|uj+1 − uj | ≤ 3cp/(2(s+ 1)).

(d) Suppose that uj+1 ∈ S and uj ∈ S′\S. With the same argument as in (B.1), we can conclude that

|uj − uj+1| ≤ 3cp/(2(s+ 1)).

The proof concludes.

Proof of Theorem 1. Let S′ the set constructed in Lemma 7. Notice that ‖D−S′x∗‖1 = 0 and |S′| � s+ 1.

It directly follows from the definition of x̂ that

‖Ax̂−Ax∗‖2 ≤ 2ε>A(x̂− x∗) ≤ |2ε>APN−S′ (x̂− x∗)|+ |2ε>APN⊥
−S′

(x̂− x∗)| = |(I)|+ |(II)|. (15)

The rest of the proof will be conducted on the two terms (I) and (II) in the right-hand side of (15).

Term (I). Let
{
v1, . . . , vrS′

}
⊂ R

p be an orthonormal basis of N−S′ , such that for the partition I1, . . . , IrS′ of
{1, . . . , p} induced by the change point set S, it holds that

vl,i =

{
|Il|−1/2 i ∈ Il,

0 otherwise.

Based on this basis, we have that

(I)2 ≤4‖PN−S′A
>ε‖2‖x̂− x∗‖2 = 4

∥∥∥∥∥∥

rS′∑

j=1

v>j A
>εvj

∥∥∥∥∥∥

2

‖x̂− x∗‖2
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≤4‖x̂− x∗‖2rS′

(
max

j=1,...,rS′

|ε>Avj |2
‖Avj‖2

)(
max

j=1,...,rS′

‖Avj‖2
)
. (16)

Define the event

Ω1 =

{
max

j=1,...,rS′

|ε>Avj |2
‖Avj‖2

≤ 2σ2 {log(2rS′) + log (p ∨ n)}
}
.

Due to a concentration inequality on the maximum of rS′ standard Gaussian random variables (e.g. Lemma 17.5

in van de Geer, 2016), we have that P{Ω1} ≥ 1− (p ∨ n)−1
. On the event Ω1, due to (16), we have that

|(I)| ≤ 2
√
2σ
√
rS′ {log(2rS′) + log (p ∨ n)}‖x̂− x∗‖ max

j=1,...,rS′

‖Avj‖

≤ 2
√
2σ
(
1 + η2 +

√
ρ2(1)

)√
rS′ {log(2rS′) + log (p ∨ n)}‖x̂− x∗‖, (17)

where the second inequality is due to the RIC condition in Definition 1 and ‖Dvj‖1 ≤ 1 for any j = 1, . . . , rS′ .

Term (II). Due to the choice of V , for any λ > 0, it holds that

(II) ≤ 2ε>APN⊥
−S′

(x̂− x∗) + λ(‖Dx∗‖1 − ‖Dx̂‖1) + λ(V − V ∗)

= 2ε>AΨ−S′{D(x̂− x∗)}−S′ + λ(‖Dx∗‖1 − ‖Dx̂‖1) + λ(V − V ∗)

≤ 2

c0

(
max

j∈{1,...,p−1}\S′

|ε>Aψ−S′

j |
‖Aψ−S′

j ‖

)(
max

j∈{1,...,p−1}\S′

‖Aψ−S′

j ‖
‖ψ−S′

j ‖

)(
max

j∈{1,...,p−1}\S′
‖ψ−S′

j ‖
)

‖w−S′{D(x̂− x∗)}−S′‖1 + λ(‖Dx∗‖1 − ‖Dx̂‖1) + λ(V − V ∗), (18)

where c0 > 0 is an absolute constant.

Define the event

Ω2 =



 max
j∈{1,...,p−1}\S′

∣∣∣ε>Aψ−S′

j

∣∣∣
∥∥Aψ−S′

j

∥∥ ≤ 2σ
√
log (p ∨ n)



 .

It again follows from a concentration inequality on the maximum of rS′ standard Gaussian random variables
(e.g. Lemma 17.5 in van de Geer, 2016) that P{Ω2} ≥ 1− (p ∨ n)−1.

Recall that S′ = {u1, . . . , um}, u0 = 0, and um+1 = p . For any i ∈ {1, . . . ,m+ 1}, let pi = ui − ui−1. For any
i ∈ {0, . . . ,m} and j ∈ {1, . . . , pi−1− 1}, by the derivation on Page 12 of Ortelli and van de Geer (2019), it holds

that ‖Dψ−S′

ui−1+j
‖1 =

∑pi
l=1 |al+1 − al|, where for l = 1, . . . , pi,

al =
l − 1

pi
1{l ≤ ui−1 + j} − pi − l + 1

pi
1{l > ui−1 + j}.

It then holds that ‖Dψ−S′

ui−1+j
‖1 ≤ 2. It again follows from the RIC that

max
j∈{1,...,p−1}\S′

‖Aψ−S′

j ‖
‖ψ−S′

j ‖
≤ 1 + η2 +

√
ρ2(4), (19)

since ‖ψ−S′

j ‖ ≥ 1/2 (see Page 12 in Ortelli and van de Geer, 2019).

Moreover, it follows from the arguments on Page 12 in Ortelli and van de Geer (2019) that, there exists an
absolute constant C1 > 0 such that

max
j∈{1,...,p−1}\S′

∥∥∥ψ−S′

j

∥∥∥ ≤ C1

√
p

s+ 1
. (20)

Combining (18), (19) and (20), we have that, on the event Ω1 ∩ Ω2, there exists an absolute constant C2 > 0
such that

(II) ≤ C2σ
√
log(p ∨ n)(1 + η2 +

√
ρ2(4))

√
p

s+ 1
‖w−S′{D(x̂− x∗)}−S′‖1
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+ λ(‖Dx∗‖1 − ‖Dx̂‖1) + λ(V − V ∗). (21)

Choosing λ = C2σ
√
log(p ∨ n)(1 + η2 +

√
ρ2(4))

√
p/(s+ 1), due to (21), we have that

(II) ≤ λ(‖w−S′{D(x̂− x∗)}−S′‖1 + ‖Dx∗‖1 − ‖Dx̂‖1 + V − V ∗)

≤ 2λΓ(qS′ , w−S′)p−1/2‖x̂− x∗‖+ λ(V − V ∗)

≤ C3λ
√
log{p/(s+ 1)}(s+ 1)p−1/2‖x̂− x∗‖+ λ(V − V ∗)

≤ C4σ
√
(s+ 1) log{p/(s+ 1)} log(p ∨ n)(1 + η +

√
ρ2(4))‖x̂− x∗‖

+ C4σ
√
p/(s+ 1) log(p ∨ n)(1 + η2 +

√
ρ2(4))(V − V ∗), (22)

where C3, C4 > 0 are absolute constants, qS′ = sign{(Dx∗)S′}, the second inequality follows from the proof of
Theorem 2.2 (Page 25) in Ortelli and van de Geer (2019), the third inequality follows from Section 3.3 in Ortelli
and van de Geer (2019), and the last is due to the choice of λ.

We now have two cases.

Case 1. If ‖x̂− x∗‖ ≤ 1, then the final claim follows.

Case 2. If ‖x̂− x∗‖ > 1, then we have that
∥∥∥∥D
(

x̂− x∗

‖x̂− x∗‖

)∥∥∥∥
1

≤ ‖Dx̂‖1 + ‖Dx∗‖1
‖x̂− x∗‖ ≤ 2V,

which, combining with the RIC as in Definition 1, leads to that

‖Ax∗ −Ax̂‖2 ≥ (1− η1 −
√
ρ1(2V ))2‖x̂− x∗‖2. (23)

Letting γ = {1− η1 −
√
ρ1(2V )}−2, combining (15), (17), (22) and (23), we thus have that

‖x̂− x∗‖2 ≤ 2
√
2σγ(1 + η2 +

√
ρ2(1))

√
rS′{log(2rS′) + log(p ∨ n)}‖x̂− x∗‖

+ 2C4σγ
√
(s+ 1) log{p/(s+ 1)} log(p ∨ n)(1 + η +

√
ρ2(4))‖x̂− x∗‖

+ 2C4σγ
√
p/(s+ 1) log(p ∨ n)(1 + η2 +

√
ρ2(4))(V − V ∗). (24)

Case 2.1. If
‖x̂− x∗‖ ≤ 2C4σγ

√
p/(s+ 1) log(p ∨ n)(1 + η2 +

√
ρ2(4))(V − V ∗),

then we have that

‖x̂− x∗‖2 ≤ 4C2
4σ

2γ2 log(p ∨ n)(1 + η2 +
√
ρ2(4))

2p/(s+ 1)(V − V ∗)2

and conclude the proof.

Case 2.2. If
‖x̂− x∗‖ > 2C4σγ

√
p/(s+ 1) log(p ∨ n)(1 + η2 +

√
ρ2(4))(V − V ∗),

then (24) implies that

‖x̂− x∗‖2 ≤ C5σ
2γ2s log{p/(s+ 1)} log(p ∨ n) + 2

where C5 > 0 is a constant, and conclude the proof.

B.2 Proof of Proposition 2

Lemma 8. Let A ∈ R
p×p,

S = {x ∈ R
m : ‖x‖ = 1, ‖Dx‖ ≤ t}

and N be an ε-net of S for some ε > 0. Then

sup
y∈N

∣∣y>Ay
∣∣ ≥ sup

x∈S

∣∣x>Ax
∣∣− 2‖A‖opε.
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Proof. Let x0 ∈ S such that
x0 ∈ argmax

x∈S

∣∣xTAx
∣∣ .

Also, let y ∈ N such that ‖x0 − y‖ ≤ ε. Then,
∣∣xT0 Ax0 − yTAy

∣∣ =
∣∣x>0 A(x0 − y) + (x0 − y)>Ay

∣∣
≤ ‖x0‖‖A‖op‖x0 − y‖+ ‖x0 − y‖‖A‖op‖y‖
≤ ‖A‖op · ε+ ε · ‖A‖op
= 2ε‖A‖op.

Hence,
sup
y∈N

|y>Ay| ≥ sup
x∈S

∣∣x>Ax
∣∣− 2ε‖A‖op,

and the lemma follows.

Proof of Proposition 2. First notice that by Equation. (5.25) in Vershynin (2018), there exist absolute constants
C1, c3 > 0 such that the event

Ω :=

{
∥∥A>A− Σ

∥∥
op

≤ C1

√
p

n
+

√
log n

n

}

happens with probability at least 1− 2n−c3 . From now on we assume that the event Ω holds. Next let

r :=
(1− ζ)2

8

(
C1

√
p
n +

√
logn
n

) ,

and N be an r-net of S, where S was defined in Lemma 8. Notice that if

sup
x∈S

∣∣x>
(
Σ−A>A

)
x
∣∣ ≤ (1− ζ)2

2

then

1− ζ − 1− ζ√
2

≤ ‖Ax‖ ≤ 1 + ζ +
1− ζ√

2

for all x. Suppose now that

sup
x∈S

∣∣x>
(
Σ−A>A

)
x
∣∣ > (1− ζ)2

2
.

Then from Lemma 8 it follows that

2 sup
x∈N

∣∣x>
(
Σ−A>A

)
x
∣∣ ≥ 2 sup

x∈S

∣∣x>
(
Σ−A>A

)
x
∣∣− 4r

∥∥A>A− Σ
∥∥
op
>

(1− ζ)2

2
. (25)

However, as we will see next the latter happens with small probability. Towards that end, let y ∈ R
p with

‖y‖ = 1. Let z = Σ1/2y and Ã = AΣ−1/2. Then ‖z‖2 = y>Σy ≤ (1 + ζ)2 and so for any ε > 0 we have that

P

(∣∣y>
(
A>A− Σ

)
y
∣∣ ≥ (ζ + 1)2ε

2

)
≤ P

(∣∣y>
(
A>A− Σ

)
y
∣∣ ≥ ‖z‖2ε

2

)

= P

(∣∣∣∣
z>

‖z‖ Ã
>Ã

z

‖z‖ − 1

∣∣∣∣ ≥
ε

2

)

≤ 2 exp
(
−c4U−4 min{ε, ε2}n

)
,

where c4 > 0 is a sufficiently large absolute constant, and the last inequality follows by the argument on Page
24 of Vershynin (2018). Therefore, by union bound, we have that

P

(
sup
y∈N

∣∣y>
(
A>A− Σ

)
y
∣∣ ≥ (ζ + 1)2ε

4

)
≤ 2 exp

(
−c4U−4 min{ε, ε2}n+ log |N |

)
.
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Furthermore, by the argument in the proof of Lemma B.1 in Guntuboyina et al. (2020), for an absolute constant
C2 > 0, we have that

log |N | ≤ C2 [t
√
p+ log p]

(√
p

n
+

√
log n

n

)
1

(1− ζ)
2 .

Therefore choosing

ε =
(1− ζ)2

4c2(1 + ζ)2

√√√√
(
t
√
p+ log p

n

)(√
p

n
+

√
log n

n

)
,

by Equation (7), we obtain that

sup
y∈N

∣∣y>
(
A>A− Σ

)
y
∣∣ ≤ (1− ζ)2

4
,

with probability at least 1− 2 exp
(
−c5U−4nε2

)
, where c5 > 0 is an absolute constant. Thus, we have arrived at

a contradiction to (25) and the claim follows. By Equation (7), the proposition follows with probability at least
1− 2n−c3 − 2 exp

(
−c6U−4φn

)
, where c3, c6 > 0 are absolute constants.

B.3 Proof of Theorem 4

Lemma 9. Let {n−1/2ai}ni=1 be the rows of matrix A ∈ R
n×p. Assume {ai}ni=1 are independent and identically

distributed from N (0,Σ), satisfying that

0 < l ≤ σmin(Σ) and ‖Σ‖∞ ≤ ρ,

where l and ρ are absolute constants. Suppose that ε ∼ N (0, σ2In). If λ1 = Cλ1
σ
√
ρ log(p ∨ n), then we have

P

(
2‖A>ε‖∞ ≤ λ1

2

)
≥ 1− c1(p ∨ n)−1 − p exp(−n).

where c1 > 0 is an absolute constant.

Proof. Let A,j be the jth column of A for j = 1, . . . , p. For any constant C, we have

P
(∣∣A>

,jε
∣∣ ≥ C

)
= P(

∣∣A>
,jε
∣∣ ≥ C, ‖A,j‖ ≤

√
5Σj,j) + P

(
|A>
,jε| ≥ C, ‖A,j‖ >

√
5Σj,j

)
.

Noticing that each element in A,j is a realization, we have

P

(∣∣A>
,jε
∣∣ ≥ C, ‖A,j‖ ≤

√
5Σj,j

)
≤ 2 exp

( −C2

10σ2Σj,j

)
,

where we get the last step by sub-Gaussian tails, and A and the errors ε are independent.

P
(∣∣A>

,jε
∣∣ ≥ C, ‖A,j‖

)
>
√

5Σj,j) ≤ P

(
‖A,j‖ >

√
5Σj,j

)

= P

(
‖A,j‖2
Σj,j

> 5

)

≤ exp(−n),

where we get the last step by Lemma 1 in Laurent and Massart (2000). Then we have

P
(∣∣A>

,jε
∣∣ ≥ C

)
≤ 2 exp

( −C2

10σ2Σj,j

)
+ exp (−n) .

Using the union bound, we have

P
(
2
∥∥A>ε

∥∥
∞ ≥ C

)
≤ 2 exp

( −C2

40σ2ρ
+ log p

)
+ exp (−n+ log p)
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Let C = λ1/2, we have

P(2‖A>ε‖∞ ≤ λ1
2
) ≥ 1− c1(p ∨ n)−1 − p exp(−n),

where c1 > 0 is an absolute constant, completing the proof.

Proof of Theorem 4. First, by the basic inequality

‖y −Ax̃‖2 + λ1 ‖x̃‖1 + λ2 ‖Dx̃‖1 ≤ ‖y −Ax∗‖2 + λ1 ‖x∗‖1 + λ2 ‖Dx∗‖1 .

By rearranging, we have

‖A(x̃− x∗)‖2 ≤ 2ε>A(x̃− x∗) + λ1 (‖x∗‖1 − ‖x̃‖1) + λ2 (‖Dx∗‖1 − ‖Dx̃‖1) .

Now
∣∣ε>A (x̃− x∗)

∣∣ ≤
∥∥A>ε

∥∥
∞ ‖x̃− x∗‖1. Let Ω1 :=

{
2
∥∥A>ε

∥∥
∞ ≤ λ1

2

}
. Lemma 9 shows that P (Ω1) ≥

1− c1 (p ∨ n)−1 − p exp(−n), where c1 > 0 is an absolute constant. Working on the event Ω1, we obtain

‖A (x̃− x∗)‖2 ≤ λ1/2 ‖x̃− x∗‖1 + λ1 (‖x∗‖1 − ‖x̃‖1) + λ2 (‖Dx∗‖1 − ‖Dx̃‖1) . (26)

Then for the first two terms in the right hand side of the above inequality, we have

λ1/2 ‖x̃− x∗‖1 + λ1 (‖x∗‖1 − ‖x̃‖1) = λ1/2 (‖x̃H − x∗H‖1 + ‖x̃−H‖1) + λ1 (‖x∗H‖1 − ‖x̃H‖1 − ‖x̃−H‖1)
≤ 3λ1/2 ‖x̃H − x∗H‖1
≤ 3λ1/2

√
h ‖x̃− x∗‖ , (27)

where we get the first inequality by the triangle inequality and the second inequality by Cauchy-Schwarz in-
equality. Similarly,

‖Dx∗‖1 − ‖Dx̃‖1 = ‖DSx
∗‖1 − ‖DS x̃‖1 − ‖D−S x̃‖1

≤ ‖DS (x
∗ − x̃)‖1

≤ 2
√
s+ 1 ‖x̃− x∗‖ . (28)

Let Ω2 :=
{
‖A (x̃− x∗)‖2 ≥ l

32 ‖x̃− x∗‖2 − 81ρ2 log p
n ‖x̃− x∗‖21

}
. Lemma 9 in Zhang et al. (2015) shows that

P (Ω2) ≥ 1−c2 exp(−c3n), where c2, c3 > 0 are absolute constants. Working on the event Ω1∩Ω2 and combining
(26), (27), and (28) we have

l

32
‖x̃− x∗‖2 ≤ 81ρ2

log p

n
‖x̃− x∗‖21 + 3λ1/2

√
h ‖x̃− x∗‖+ 2λ2

√
s+ 1 ‖x̃− x∗‖ .

Multiplying both sides by 64
l , and using the simple inequality ab ≤ a2/2 + b2/2 twice, we get

2 ‖x̃− x∗‖2 ≤ 64× 81ρ2

l

log p

n
‖x̃− x∗‖21 +

962λ21
2l2

h+
‖x̃− x∗‖2

2
+

1282λ22
2l2

(s+ 1) +
‖x̃− x∗‖2

2
.

Then we have

‖x̃− x∗‖2 ≤ 64× 81ρ2

l

log(p)

n
‖x̃− x∗‖21 +

962λ21
2l2

h+
1282λ22
2l2

(s+ 1) . (29)

Next, we need to give an upper bound of ‖x̃ − x∗‖21. By rearranging (26), we have

λ1 ‖x̃‖1 ≤ ‖x̃− x∗‖1 /2 + λ1 ‖x∗‖+ λ2 (‖Dx∗‖1 − ‖Dx̃‖1) .

Then by the triangle inequality, we have

‖x̃−H‖1 /2 ≤ 3λ1 ‖x̃H − x∗H‖1 /2 + λ2 (‖Dx∗‖1 − ‖Dx̃‖1) .

Add ‖x̃H − x∗H‖1 to both sides, and since λ2/λ1 =
Cλ2

Cλ1

√
ρ we have

‖x̃− x∗‖1 ≤ 4 ‖x̃H − x∗H‖1 +
Cλ2

Cλ1

√
ρ
(‖Dx∗‖1 − ‖Dx̃‖1) . (30)
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Substitute inequalities (27) and (28) into (30), we have

‖x̃− x∗‖1 ≤ 4
√
h ‖x̃− x∗‖+ 2Cλ2

Cλ1

√
ρ

√
s+ 1 ‖x̃− x∗‖ .

Using the simple inequality (a+ b)2 ≤ 2a2 + 2b2, we have

‖x̃− x∗‖21 ≤
[
32h+

8C2
λ2

C2
λ1
ρ
(s+ 1)

]
‖x̃− x∗‖2 . (31)

Substitute (31) into (29), we have

‖x̃− x∗‖2 ≤ 64× 81ρ2

l

log(p)

n

[
32h+

8C2
λ2

C2
λ1
ρ
(s+ 1)

]
‖x̃− x∗‖2 + 962λ21

2l2
h+

1282λ22
2l2

(s+ 1) .

Since we assume (s + h) log p ≤ C1n, where C1 is a sufficiently large constant, then there exists a absolute
constant 0 < C2 < 1 depending on ρ such that

64× 81ρ2

l

log(p)

n

[
32h+

8C2
λ2

C2
λ1
ρ
(s+ 1)

]
≤ C2.

Thus, we have

‖x̃− x∗‖2 ≤ 1

1− C2

[
962λ21
2l2

h+
1282λ22
2l2

(s+ 1)

]
,

which is equivalent to
‖x̃− x∗‖2 ≤ Cσ2 log(p ∨ n)(s ∨ h),

where C is a absolute constant depending on l and ρ, completing the proof.

C PROOFS OF THE RESULTS IN SECTION 3

Proof of Proposition 6. Let Ω = {dH (SI (x̂) , S) ≤ bp,n}. By Proposition 5, we have P(Ω) ≥ 1 − 2(p ∨ n)−1.
Working on the event Ω, by the definition of Hausdorff distance, we have that for any true change point, there
must exist at least one estimated change point in SI (x̂) such that the distance between them less than or equal
to bp,n, i.e, the set

Eti =
{
t̂j : t̂j ∈ SI(x̂) and

∣∣t̂j − ti
∣∣ ≤ bp,n

}
,

for any ti ∈ S is not empty. We also have for any estimated change points there also exist at least one true
change point such that the distance between them less that or equal to bp,n, i.e, SI(x̂) = ∪

ti∈S
Eti . We have ST (x̂)

is a subset of SI(x̂) by construction. Thus, we have ST (x̂) = ∪
ti∈S

Tti , where

Tti =
{
t̂j : t̂j ∈ ST (x̂) and

∣∣t̂j − ti
∣∣ ≤ bp,n

}
,

for any ti ∈ S. Also, by construction of ST (x̂) and tp,n = 2bp,n, we have |Tti | ≤ 1, for any ti ∈ S. Since we
assume ∆p,n > 4bp,n, we have |Tti | = 1, and sets Tti for ti ∈ S are disjoint. Finally, we have |ST (x̂)| = |S|,
completing the proof.

D ADDITIONAL DETAILS AND RESULTS IN SECTION 4

D.1 Details of the Three Scenarios Considered for Each of the Four Types of Design Matrices

Recall that the three scenarios are only one change point, nine equally-space change points and nine unequally-
spaced change points. The details are presented below.

• Only one change point: ∆p,n = 500 and κp,n = γ.
• Nine equally-spaced change points: ∆p,n = 100 and {x∗t1 , . . . , x∗t10} = {0, γ, 0, 1.5γ, 0, 2γ, 0, 1.75γ, 0, 0.75γ}.
• Nine unequally-spaced change points: {t1, . . . , t9} = {200, 310, 360, 390, 450, 490, 570, 640, 770, 970} with
∆p,n = 30 and {x∗t1 , . . . , x∗t10} = {0, γ, 0, 1.5γ, 0, 2γ, 0, 1.75γ, 0, 0.75γ}.
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D.2 The Identity Design Matrix Case

Let n = p = 1000 and design matrix A = In. Table 2 displays the results of the first scenario: only one change
point for γ = 1 and noise levels σ ∈ {1, 2, 4}. Table 3 displays the results of the second scenario of the identity
matrix: |S| = 9 and changes points are equally spaced for γ = 1 and noise levels σ ∈ {1, 2, 4}. Table 4 displays
the results of the third scenario of the identity matrix : |S| = 9 and changes points are unequally spaced for
γ = 1 and noise levels σ ∈ {0.5, 1, 2}.

Table 2: Change point analysis results: Identity matrix and only one change point, for γ = 1 and noise levels σ =
{1, 2, 4}. The reported values are in the form of mean (standard deviation) across 100 independent simulations.
The bold-faced entries indicate the best method in different measures, with the convention that if S(x̂) = ∅, then
d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

σ = 1
d(S(x̂)|S0) 1.13(1.62) 42.61(196.74) 44.08(196.47) 2.85(5.53)
d(S0|S(x̂)) 268.43(148.60) 71.71(213.47) 68.64(214.36) 34.17(113.35)
|S(x̂)− S| 7.70(6.87) 2.24(2.14) 0.15(0.44) 0.20(0.77)

σ = 2
d(S(x̂)|S0) 2.80(3.78) 154.82(356.98) 155.65(356.63) 6.40(8.76)
d(S0|S(x̂)) 247.95(146.89) 165.58(354.58) 163.81(355.35) 27.53(77.67)
|S(x̂)− S| 7.05(6.34) 1.36(1.36) 0.26(0.50) 0.25(0.86)

σ = 4
d(S(x̂)|S0) 5.58(6.01) 408.93(479.58) 409.26(479.30) 14.31(18.97)
d(S0|S(x̂)) 292.22(151.84) 428.27(470.39) 428.61(470.63) 42.67(99.16)
|S(x̂)− S| 7.60(7.23) 0.78(0.73) 0.47(0.50) 0.24(0.75)

Table 3: Change point analysis results: Identity matrix and nine change points with equal spacing, for γ = 1 and
noise levels σ = {1, 2, 4}. The reported values are in the form of mean (standard deviation) across 100 independent
simulations. The bold-faced entries indicate the best method in different measures, with the convention that if
S(x̂) = ∅, then d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

σ = 1
d(S(x̂)|S0) 2.98(2.60) 90.55(54.25) 92.96(54.64) 17.05(26.47)
d(S0|S(x̂)) 75.17(13.91) 12.50(10.81) 8.62(11.93) 12.36(14.68)
|S(x̂)− S| 39.24(9.25) 17.21(6.52) 1.34(0.95) 0.34(0.68)

σ = 2
d(S(x̂)|S0) 6.74(5.88) 162.57(93.95) 164.22(93.90) 69.39(67.41)
d(S0|S(x̂)) 71.98(13.35) 14.17(13.84) 11.07(14.29) 20.16(16.96)
|S(x̂)− S| 35.48(8.36) 9.20(6.59) 2.62(1.41) 1.32(2.25)

σ = 4
d(S(x̂)|S0) 12.14(8.43) 256.40(121.36) 257.18(121.28) 150.82(96.14)
d(S0|S(x̂)) 71.17(16.04) 14.83(15.76) 13.59(16.08) 31.68(22.11)
|S(x̂)− S| 29.19(7.84) 3.55(2.86) 4.41(1.60) 2.24(1.86)

D.3 The Band Design Matrix Case

Table 5 displays the results of the first scenario of band matrix: only one change point, with bandwidth h ∈
{1, 5, 10, 50}, noise level σ ∈ {1, 2, 4, 8} and γ ∈ {0.25, 0.5, 1, 2}. Table 6 displays the results of the second
scenario of band matrix: |S| = 9 and change points are equally spaced, with bandwidth h ∈ {1, 5, 10, 50}, noise
level σ ∈ {1, 2, 4, 8} and γ ∈ {0.25, 0.5, 1, 2}. Table 7 displays the results of the third scenario of band matrix:
|S| = 9 and change points are unequally spaced, with bandwidth h ∈ {1, 5, 10, 50}, noise level σ ∈ {0.5, 1, 2, 4}
and γ ∈ {0.25, 0.5, 1, 2}.

D.4 Gaussian Random Matrix with Identity Covariance Matrix

Table 8 displays the results of the first scenario of Gaussian random matrix with identity covariance matrix:
only one change point with ratio n/p ∈ {0.25, 0.5, 0.75, 1}, noise level σ ∈ {1, 2, 4, 8} and γ ∈ {0.25, 0.5, 1, 2}.
Table 9 displays the results of the second scenario of Gaussian random matrix with identity covariance matrix:
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Table 4: Change point analysis results: Identity matrix and nine change points with unequal spacing, for γ = 1
and noise levels σ = {0.5, 1, 2}. The reported values are in the form of mean (standard deviation) across
100 independent simulations. The bold-faced entries indicate the best method in different measures, with the
convention that if S(x̂) = ∅, then d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

σ = 0.5
d(S(x̂)|S0) 1.49(1.33) 33.97(69.92) 43.12(68.58) 10.98(34.03)
d(S0|S(x̂)) 275.59(26.11) 31.85(59.19) 27.68(59.94) 26.41(63.86)
|S(x̂)− S| 46.87(9.52) 29.17(7.65) 0.65(0.70) 0.62(1.38)

σ = 1
d(S(x̂)|S0) 8.83(8.96) 178.60(74.31) 181.26(73.92) 124.98(82.86)
d(S0|S(x̂)) 275.53(24.91) 28.36(58.49) 25.07(58.78) 25.28(51.14)
|S(x̂)− S| 38.28(13.73) 9.55(8.52) 2.74(1.38) 1.80(1.29)

σ = 2
d(S(x̂)|S0) 3.65(3.22) 124.54(86.36) 128.70(86.66) 62.47(82.11)
d(S0|S(x̂)) 278.66(25.02) 21.59(40.03) 17.72(41.07) 27.45(58.93)
|S(x̂)− S| 42.08(8.66) 17.43(6.94) 1.40(1.02) 0.91(1.30)

|S| = 9 and change points are equally spaced, with ratio n/p ∈ {0.25, 0.5, 0.75, 1}, noise level σ ∈ {1, 2, 4, 8} and
γ ∈ {0.25, 0.5, 1, 2}. Table 10 displays the results of the third scenario of Gaussian random matrix with identity
covariance matrix: |S| = 9 and change points are unequally spaced, with ratio n/p ∈ {0.25, 0.5, 0.75, 1}, noise
level σ ∈ {0.5, 1, 2, 4} and γ ∈ {0.25, 0.5, 1, 2}.

D.5 Gaussian Random Matrix with Band Covariance Matrix

Table 11 displays the results of the first scenario of Gaussian random matrix with band covariance matrix:
only one change point, with bandwidth h ∈ {1, 10, 50, 999}, ratio n/p ∈ {0.25, 0.5, 0.75, 1} and noise level
σ ∈ {1, 2, 4, 8}. Table 12 displays the result of the second scenario of Gaussian random matrix with band
covariance matrix: |S| = 9 and change points are equally spaced for bandwidth h ∈ {1, 10, 50, 999}, ratio
n/p ∈ {0.25, 0.5, 0.75, 1} and noise level σ ∈ {1, 2, 4, 8}. Table 13 displays the result of the third scenario of
Gaussian random matrix with band covariance matrix: |S| = 9 and change points are unequally spaced for
bandwidth h ∈ {1, 10, 50, 999}, ratio n/p ∈ {0.25, 0.5, 0.75, 1} and noise level σ ∈ {0.5, 2, 4}.
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Table 5: Change point analysis results: band matrix and only one change point, with bandwidth h ∈ {1, 5, 10, 50},
noise level σ ∈ {1, 2, 4, 8} and γ ∈ {0.25, 0.5, 1, 2}. The reported values are in the form of mean (standard
deviation) across 100 independent simulations. The bold-faced entries indicate the best method in different
measures, with the convention that if S(x̂) = ∅, then d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

h = 1, σ = 2, γ = 1
d(S(x̂)|S0) 0.82(1.14) 1.10(3.42) 2.76(4.01) 4.91(7.02)
d(S0|S(x̂)) 293.78(148.88) 20.70(55.78) 16.66(56.57) 148.02(194.35)
|S(x̂)− S| 7.67(6.71) 2.89(2.42) 0.15(0.41) 2.15(3.30)

h = 5, σ = 2, γ = 1
d(S(x̂)|S0) 0.13(0.44) 0.11(0.40) 2.02(2.07) 2.07(3.02)
d(S0|S(x̂)) 277.38(41.19) 19.25(52.05) 12.85(53.12) 41.04(105.91)
|S(x̂)− S| 8.19(5.09) 4.97(3.38) 0.07(0.26) 0.58(1.37)

h = 10, σ = 2, γ = 1
d(S(x̂)|S0) 0.08(0.31) 0.08(0.31) 1.71(1.55) 0.95(1.47)
d(S0|S(x̂)) 276.97(137.46) 22.85(61.57) 15.88(62.97) 11.86(52.02)
|S(x̂)− S| 8.70(6.10) 4.93(2.83) 0.09(0.32) 0.40(1.27)

h = 50, σ = 2, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.71(1.77) 0.01(0.10)
d(S0|S(x̂)) 253.69(152.57) 32.79(87.30) 24.94(89.13) 20.75(76.29)
|S(x̂)− S| 8.80(7.82) 5.51(3.29) 0.11(0.47) 0.19(0.63)

h = 10, σ = 1, γ = 1
d(S(x̂)|S0) 0.01(0.10) 0.01(0.10) 2.00(1.95) 0.31(0.63)
d(S0|S(x̂)) 263.99(162.93) 43.15(111.040 35.88(113.09) 40.53(101.97)
|S(x̂)− S| 9.35(6.82) 5.36(3.15) 0.12(0.38) 0.77(1.48)

h = 10, σ = 4, γ = 1
d(S(x̂)|S0) 0.17(0.40) 0.14(0.35) 2.23(2.21) 1.34(2.28)
d(S0|S(x̂)) 271.85(147.15) 29.90(89.45) 23.88(90.75) 27.48(91.32)
|S(x̂)− S| 8.35(6.00) 4.37(3.26) 0.12(0.46) 0.29(0.76)

h = 10, σ = 8, γ = 1
d(S(x̂)|S0) 0.42(0.94) 0.38(1.19) 1.89(2.36) 2.47(4.99)
d(S0|S(x̂)) 257.18(146.17) 22.67(71.03) 17.41(71.92) 22.22(83.53)
|S(x̂)− S| 7.62(6.41) 3.32(2.32) 0.13(0.42) 0.22(0.96)

h = 10, σ = 2, γ = 0.25
d(S(x̂)|S0) 1.89(2.49) 3.70(10.76) 5.00(10.67) 5.96(8.49)
d(S0|S(x̂)) 237.72(157.50) 21.56(65.00) 19.27(65.41) 38.32(104.74)
|S(x̂)− S| 7.17(7.41) 1.35(1.22) 0.13(0.34) 0.23(0.72)

h = 10, σ = 2, γ = 0.5
d(S(x̂)|S0) 0.55(0.95) 0.41(0.75) 2.04(2.06) 2.57(4.18)
d(S0|S(x̂)) 284.98(151.33) 16.73(46.16) 12.34(46.93) 42.24(120.00)
|S(x̂)− S| 8.63(6.43) 3.68(2.92) 0.11(0.31) 0.45(1.40)

h = 10, σ = 2, γ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.68(1.80) 0.25(0.76)
d(S0|S(x̂)) 288.39(147.41) 22.01(71.90) 14.40(73.14) 16.76(73.52)
|S(x̂)− S| 9.32(6.76) 5.01(2.85) 0.04(0.24) 0.37(0.97)
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Table 6: Change point analysis results: band matrix and nine equally spaced change points, with bandwidth
h ∈ {1, 5, 10, 50}, noise level σ ∈ {1, 2, 4, 8} and γ ∈ {0.25, 0.5, 1, 2}. The reported values are in the form of mean
(standard deviation) across 100 independent simulations. The bold-faced entries indicate the best method in
different measures, with the convention that if S(x̂) = ∅, then d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

h = 1, σ = 2, γ = 1
d(S(x̂)|S0) 2.71(1.86) 53.19(56.22) 56.09(56.68) 9.80(8.76)
d(S0|S(x̂)) 73.91(15.48) 16.15(14.92) 11.39(16.49) 62.04(23.93)
|S(x̂)− S| 41.26(8.83) 23.58(8.37) 0.75(0.86) 20.96(17.94)

h = 5, σ = 2, γ = 1
d(S(x̂)|S0) 0.61(0.79) 1.52(9.18) 4.65(9.74) 3.38(2.32)
d(S0|S(x̂)) 73.63(14.59) 14.04(10.25) 6.00(11.02) 34.83(29.15)
|S(x̂)− S| 43.55(9.09) 34.59(7.87) 0.06(0.24) 6.74(6.18)

h = 10, σ = 2, γ = 1
d(S(x̂)|S0) 0.27(0.60) 0.21(0.43) 3.30(1.34) 1.95(1.54)
d(S0|S(x̂)) 71.06(14.26) 13.44(7.96) 4.92(8.37) 20.36(20.83)
|S(x̂)| 44.21(7.39) 40.55(7.57) 0.04(0.20) 3.46(2.97)

h = 50, σ = 2, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.82(1.74) 0.09(0.32)
d(S0|S(x̂)) 67.10(15.22) 15.44(12.46) 7.73(14.10) 1.56(6.92)
|S(x̂)− S| 44.93(8.72) 45.60(8.70) 0.11(0.40) 0.17(0.49)

h = 10, σ = 1, γ = 1
d(S(x̂)|S0) 0.07(0.26) 0.07(0.26) 3.80(1.72) 1.22(1.10)
d(S0|S(x̂)) 71.53(14.67) 14.44(8.33) 6.88(10.13) 21.53(23.27)
|S(x̂)− S| 45.24(9.92) 44.75(8.78) 0.12(0.38) 4.22(3.45)

h = 10, σ = 4, γ = 1
d(S(x̂)|S0) 0.60(0.77) 0.49(0.70) 3.79(1.46) 3.48(2.77)
d(S0|S(x̂)) 70.73(15.05) 14.80(9.74) 6.76(10.97) 20.25(21.21)
|S(x̂)− S| 43.52(7.80) 34.89(7.34) 0.10(0.33) 2.95(2.72)

h = 10, σ = 8, γ = 1
d(S(x̂)|S0) 1.46(1.28) 16.74(34.27) 19.92(35.13) 4.94(3.39)
d(S0|S(x̂)) 75.44(13.69) 17.27(16.89) 11.07(17.42) 19.95(18.65)
|S(x̂)− S| 44.37(8.48) 32.02(7.54) 0.31(0.61) 2.43(2.40)

h = 10, σ = 2, γ = 0.25
d(S(x̂)|S0) 5.84(4.23) 126.76(72.29) 128.71(72.11) 62.03(62.73)
d(S0|S(x̂)) 74.39(15.97) 16.95(16.89) 13.82(17.78) 34.22(22.65)
|S(x̂)− S| 39.20(10.32) 11.68(5.94) 2.14(1.16) 2.81(3.01)

h = 10, σ = 2, γ = 0.5
d(S(x̂)|S0) 1.51(1.34) 17.36(34.82) 20.31(35.51) 6.29(6.71)
d(S0|S(x̂)) 70.93(13.86) 15.47(14.01) 9.39(15.57) 19.52(19.52)
|S(x̂)− S| 42.06(10.29) 29.73(9.87) 0.36(0.75) 2.34(2.95)

h = 10, σ = 2, γ = 2
d(S(x̂)|S0) 0.01(0.10) 0.01(0.10) 4.35(6.44) 0.46(0.77)
d(S0|S(x̂)) 74.42(14.35) 17.96(17.60) 9.69(19.38) 22.01(25.52)
|S(x̂)− S| 46.63(10.19) 46.42(8.88) 0.12(0.48) 3.76(3.41)
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Table 7: Change point analysis results: band matrix and nine unequally spaced change points, with bandwidth
h ∈ {1, 5, 10, 50}, noise level σ ∈ {0.5, 1, 2, 4} and γ ∈ {0.25, 0.5, 1, 2}. The reported values are in the form of
mean (standard deviation) across 100 independent simulations. The bold-faced entries indicate the best method
in different measures, with the convention that if S(x̂) = ∅, then d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

h = 1, σ = 1, γ = 1
d(S(x̂)|S0) 2.13(1.46) 31.01(66.40) 40.68(65.24) 6.95(6.72)
d(S0|S(x̂)) 274.44(32.13) 21.77(35.27) 17.88(34.28) 189.09(97.11)
|S(x̂)− S| 48.37(11.52) 30.73(10.08) 0.73(0.75) 20.27(18.31)

h = 5, σ = 1, γ = 1
d(S(x̂)|S0) 0.30(0.58) 0.26(0.51) 19.13(8.54) 3.03(2.33)
d(S0|S(x̂)) 278.84(26.00) 26.91(50.28) 25.95(50.48) 96.28(103.83)
|S(x̂)− S| 50.71(8.83) 40.76(7.55) 1.02(0.67) 9.48(9.08)

h = 10, σ = 1, γ = 1
d(S(x̂)|S0) 0.09(0.29) 0.07(0.26) 19.72(10.15) 1.12(1.30)
d(S0|S(x̂)) 280.38(22.33) 31.59(57.10) 30.52(57.50) 66.34(92.42)
|S(x̂)− S| 51.81(10.03) 44.08(9.25) 1.06(0.76) 4.70(4.28)

h = 50, σ = 1, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 21.42(4.89) 0.03(0.17)
d(S0|S(x̂)) 267.51(28.78) 31.34(59.91) 32.07(59.27) 2.62(9.38)
|S(x̂)− S| 49.10(9.47) 45.97(8.95) 1.31(0.65) 0.26(0.63)

h = 10, σ = 0.5, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.33(7.61) 0.63(1.05)
d(S0|S(x̂)) 274.40(26.76) 38.37(69.44) 37.60(69.58) 50.47(78.13)
|S(x̂)− S| 50.92(10.23) 44.56(9.77) 1.14(0.64) 4.21(3.90)

h = 10, σ = 2, γ = 1
d(S(x̂)|S0) 0.29(0.57) 0.25(0.50) 17.90(7.84) 2.03(1.58)
d(S0|S(x̂)) 274.66(26.76) 27.48(55.40) 25.99(55.62) 51.11(82.25)
|S(x̂)− S| 49.79(11.00) 39.88(9.51) 0.93(0.62) 3.83(3.87)

h = 10, σ = 4, γ = 1
d(S(x̂)|S0) 0.76(0.84) 0.65(0.82) 14.59(9.27) 4.10(3.21)
d(S0|S(x̂)) 274.32(25.61) 37.71(73.00) 35.15(73.93) 39.33(67.42)
|S(x̂)− S| 49.82(9.54) 35.92(8.63) 0.80(0.78) 3.29(4.06)

h = 10, σ = 1, γ = 0.25
d(S(x̂)|S0) 3.21(2.39) 92.24(89.96) 97.05(89.28) 50.65(77.25)
d(S0|S(x̂)) 274.59(29.15) 23.60(37.97) 19.17(38.65) 53.25(78.20)
|S(x̂)− S| 44.51(10.67) 21.18(7.91) 1.12(0.99) 2.26(2.60)

h = 10, σ = 1, γ = 0.5
d(S(x̂)|S0) 0.78(1.05) 4.79(28.05) 19.25(27.72) 3.76(2.99)
d(S0|S(x̂)) 278.48(21.94) 27.10(45.32) 23.66(46.00) 33.96(60.77)
|S(x̂)− S| 50.98(10.33) 38.07(9.60) 0.66(0.62) 2.85(2.26)

h = 10, σ = 1, γ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 22.10(7.59) 0.32(0.60)
d(S0|S(x̂)) 276.78(26.56) 28.49(50.48) 28.50(50.22) 60.63(88.71)
|S(x̂)− S| 51.43(9.15) 46.91(9.08) 1.28(0.62) 4.54(5.66)
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Table 8: Change point analysis results: Gaussian random matrix with identity covariance matrix and only
one change point, with ratio n/p ∈ {0.25, 0.5, 0.75, 1}, noise level σ ∈ {1, 2, 4, 8} and γ ∈ {0.25, 0.5, 1, 2}.
The reported values are in the form of mean (standard deviation) across 100 independent simulations. The
bold-faced entries indicate the best method in different measures, with the convention that if S(x̂) = ∅, then
d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

n/p = 0.25, σ = 2, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 2.08(1.68) 0.00(0.00)
d(S0|S(x̂)) 263.81(166.49) 39.78(104.58) 32.85(106.43) 6.48(49.56)
|S(x̂)− S| 8.40(6.98) 5.25(3.92) 0.13(0.42) 0.04(0.24)

n/p = 0.5, σ = 2, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.95(1.90) 0.00(0.00)
d(S0|S(x̂)) 254.03(165.72) 14.32(16.68) 6.59(17.81) 5.27(49.95)
|S(x̂)− S| 8.35(5.97) 5.10(3.15) 0.08(0.27) 0.09(0.81)

n/p = 0.75, σ = 2, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 2.03(1.96) 0.00(0.00)
d(S0|S(x̂)) 261.30(145.50) 22.27(67.39) 13.98(67.19) 19.12(87.54)
|S(x̂)− S| 8.27(6.03) 5.36(2.85) 0.05(0.26) 0.14(0.62)

n/p = 1, σ = 2, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 2.00(2.07) 0.00(0.00)
d(S0|S(x̂)) 253.71(146.34) 32.40(84.83) 25.07(85.93) 14.01(77.05)
|S(x̂)− S| 9.11(7.97) 5.02(3.15) 0.13(0.44) 0.08(0.39)

n/p = 0.5, σ = 1, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.90(2.23) 0.00(0.00)
d(S0|S(x̂)) 176.00(153.44) 11.20(8.65) 4.50(10.38) 0.00(0.00)
|S(x̂)− S| 5.50(3.24) 3.90(2.56) 0.10(0.32) 0.00(0.00)

n/p = 0.5, σ = 4, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.78(1.69) 0.00(0.00)
d(S0|S(x̂)) 275.21(155.44) 25.82(77.88) 17.92(78.88) 11.50(67.64)
|S(x̂)− S| 8.79(5.75) 5.64(3.54) 0.09(0.38) 0.07(0.33)

n/p = 0.5, σ = 8, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.90(1.83) 0.00(0.00)
d(S0|S(x̂)) 253.01(143.88) 19.94(61.84) 11.74(62.91) 15.73(66.81)
|S(x̂)− S| 8.24(5.16) 5.35(3.35) 0.04(0.24) 0.18(0.66)

n/p = 0.5, σ = 2, γ = 0.25
d(S(x̂)|S0) 0.02(0.14) 0.02(0.14) 1.86(1.69) 0.12(0.38)
d(S0|S(x̂)) 250.39(150.71) 29.20(75.24) 22.19(76.37) 22.47(98.39)
|S(x̂)− S| 8.72(8.43 5.66(3.64) 0.18(0.73) 0.17(0.88)

n/p = 0.5, σ = 2, γ = 0.5
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.97(1.81) 0.00(0.00)
d(S0|S(x̂)) 239.17(149.06) 28.60(82.00) 21.42(83.60) 10.83(62.24)
|S(x̂)− S| 7.97(5.74) 5.08(2.59) 0.15(0.58 0.14(0.83)

n/p = 0.5, σ = 2, γ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 2.07(1.80) 0.00(0.00)
d(S0|S(x̂)) 244.05(157.22) 28.08(78.77) 20.01(80.40) 14.31(81.83)
|S(x̂)− S| 7.98(5.06) 5.44(3.36) 0.11(0.42) 0.05(0.33)
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Table 9: Change point analysis results: Gaussian random matrix with identity covariance matrix and nine equally
spaced change points, with ratio n/p ∈ {0.25, 0.5, 0.75, 1}, noise level σ ∈ {1, 2, 4, 8} and γ ∈ {0.25, 0.5, 1, 2}.
The reported values are in the form of mean (standard deviation) across 100 independent simulations. The
bold-faced entries indicate the best method in different measures, with the convention that if S(x̂) = ∅, then
d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

n/p = 0.25, σ = 2, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 4.21(2.24) 0.00(0.00)
d(S0|S(x̂)) 71.47(15.35) 19.79(16.59) 12.33(19.35) 1.99(10.32)
|S(x̂)− S| 41.18(6.25) 46.32(8.54) 0.25(0.59) 0.16(0.71)

n/p = 0.5, σ = 2, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.84(1.59) 0.00(0.00)
d(S0|S(x̂)) 73.67(15.57) 14.30(8.56) 6.08(9.40) 1.94(10.60)
|S(x̂)− S| 42.69(7.41) 44.08(8.63) 0.06(0.24) 0.13(0.51)

n/p = 0.75, σ = 2, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.81(1.33) 0.00(0.00)
d(S0|S(x̂)) 74.99(15.22) 16.23(12.83) 8.16(14.38) 0.66(4.90)
|S(x̂)− S| 43.53(8.71) 45.65(9.90) 0.13(0.39) 0.08(0.46

n/p = 1, σ = 2, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.84(1.61) 0.00(0.00)
d(S0|S(x̂)) 74.77(14.65) 16.55(13.95) 8.61(15.55) 1.51(10.49)
|S(x̂)− S| 43.66(9.36) 44.78(8.60) 0.11(0.35) 0.05(0.26)

n/p = 0.5, σ = 1, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 4.22(2.05) 0.00(0.00)
d(S0|S(x̂)) 75.45(13.21) 15.52(9.26) 6.75(9.45) 1.90(11.35)
|S(x̂)− S| 42.99(8.33) 44.77(9.37) 0.09(0.32) 0.07(0.38)

n/p = 0.5, σ = 4, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 4.01(1.98) 0.00(0.00)
d(S0|S(x̂)) 74.61(13.87) 14.12(7.91) 6.35(9.12) 1.62(10.22)
|S(x̂)− S| 43.56(7.82) 43.91(8.64) 0.08(0.31) 0.11(0.37)

n/p = 0.5, σ = 8, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 4.16(2.09) 0.03(0.17)
d(S0|S(x̂)) 72.57(13.31) 14.75(11.13) 6.98(12.05) 0.51(2.67)
|S(x̂)− S| 43.70(8.00) 45.01(9.08) 0.07(0.26) 0.08(0.31

n/p = 0.5, σ = 2, γ = 0.25
d(S(x̂)|S0) 0.06(0.24) 0.06(0.24) 3.61(1.45) 0.40(0.59)
d(S0|S(x̂)) 72.22(15.97) 14.32(10.37) 6.24(11.34) 1.62(8.82)
|S(x̂)− S| 43.37(8.56) 41.42(9.38) 0.09(0.40) 0.06(0.24)

n/p = 0.5, σ = 2, γ = 0.5
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 4.16(2.09) 0.01(0.10)
d(S0|S(x̂)) 77.67(13.34) 18.39(15.92) 10.24(18.04) 1.09(8.75)
|S(x̂)− S| 43.50(7.98) 44.37(8.46) 0.16(0.49) 0.08(0.44)

n/p = 0.5, σ = 2, γ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.72(1.53) 0.00(0.00)
d(S0|S(x̂)) 72.50(15.31) 16.59(14.30) 8.83(16.19) 2.10(13.14)
|S(x̂)− S| 42.62(7.46) 45.37(9.15) 0.11(0.31) 0.07(0.29)
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Table 10: Change point analysis results: Gaussian random matrix with identity covariance matrix and nine
unequally spaced change points, with ratio n/p ∈ {0.25, 0.5, 0.75, 1}, noise level σ ∈ {0.5, 1, 2, 4} and γ ∈
{0.25, 0.5, 1, 2}. The reported values are in the form of mean (standard deviation) across 100 independent
simulations. The bold-faced entries indicate the best method in different measures, with the convention that if
S(x̂) = ∅, then d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

n/p = 0.25, σ = 1, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.34(6.20) 0.00(0.00)
d(S0|S(x̂)) 257.33(48.40) 20.36(29.78) 19.44(29.31) 4.46(29.08)
|S(x̂)− S| 38.81(6.05) 43.96(8.52) 1.19(0.63) 0.18(0.78)

n/p = 0.5, σ = 1, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.40(6.09) 0.00(0.00)
d(S0|S(x̂)) 268.07(36.07) 20.54(29.75) 19.81(30.04) 3.25(24.96)
|S(x̂)− S| 43.56(7.09) 44.47(8.75) 1.14(0.64) 0.06(0.28)

n/p = 0.75, σ = 1, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.76(5.74) 0.00(0.00)
d(S0|S(x̂)) 276.55(23.80) 28.37(55.20) 28.56(54.91) 1.80(11.86)
|S(x̂)− S| 45.39(7.32) 43.66(8.95) 1.19(0.63) 0.08(0.34)

n/p = 1, σ = 1, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.32(6.22) 0.00(0.00)
d(S0|S(x̂)) 272.71(27.03) 21.45(41.23) 21.16(41.22) 1.70(9.60
|S(x̂)− S| 46.37(8.06) 44.05(7.30) 1.24(0.59) 0.10(0.48)

n/p = 0.5, σ = 0.5, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.88(7.66) 0.00(0.00)
d(S0|S(x̂)) 271.82(29.89) 18.21(29.21) 18.68(28.96) 0.97(6.08)
|S(x̂)− S| 43.88(7.36) 43.33(9.04) 1.24(0.64) 0.11(0.65)

n/p = 0.5, σ = 2, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.72(5.28) 0.00(0.00)
d(S0|S(x̂)) 275.41(26.15) 20.03(30.01) 19.85(29.78) 1.13(4.89)
|S(x̂)− S| 44.61(7.08) 42.85(7.98) 1.21(0.62) 0.10(0.44)

n/p = 0.5, σ = 4, γ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.33(5.74) 0.00(0.00)
d(S0|S(x̂)) 272.91(29.13) 29.29(54.87) 28.87(54.94) 3.57(28.91)
|S(x̂)− S| 45.27(6.87) 44.15(7.91) 1.12(0.62) 0.09(0.35)

n/p = 0.5, σ = 1, γ = 0.25
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 21.40(6.22) 0.09(0.32)
d(S0|S(x̂)) 274.74(25.66) 30.19(43.54) 29.66(43.45) 1.02(4.77)
|S(x̂)− S| 44.92(6.46) 43.97(8.92) 1.08(0.68) 0.13(0.39)

n/p = 0.5, σ = 1, γ = 0.5
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 21.51(7.52) 0.00(0.00)
d(S0|S(x̂)) 271.97(27.29) 34.19(62.37) 33.86(61.92) 0.23(1.68)
|S(x̂)− S| 44.80(8.18) 43.52(8.68) 1.13(0.65) 0.03(0.17)

n/p = 0.5, σ = 1, γ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.55(7.28) 0.00(0.00)
d(S0|S(x̂)) 270.47(29.05) 25.82(48.23) 25.23(48.06) 1.82(13.22)
|S(x̂)− S| 43.20(7.54) 43.08(8.03) 1.15(0.63) 0.07(0.36)
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Table 11: Change point analysis results: Gaussian random matrix with band covariance matrix and only one
change point, with bandwidth h ∈ {1, 10, 50, 999}, ratio n/p ∈ {0.25, 0.5, 0.75, 1} and noise level σ ∈ {1, 2, 4, 8}.
The reported values are in the form of mean (standard deviation) across 100 independent simulations. The
bold-faced entries indicate the best method in different measures, with the convention that if S(x̂) = ∅, then
d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

h = 1, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.82(1.62) 0.00(0.00)
d(S0|S(x̂)) 236.56(162.54) 26.38(82.93) 18.75(84.41) 67.21(154.40)
|S(x̂)− S| 6.55(5.01) 4.54(2.86) 0.05(0.26) 0.35(0.96)

h = 10, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.82(1.90) 0.00(0.00)
d(S0|S(x̂)) 231.10(154.62) 25.20(76.62) 17.27(77.78) 62.97(144.90)
|S(x̂)− S| 6.80(4.64) 5.24(2.66) 0.09(0.35) 0.52(1.30)

h = 50, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 2.23(1.87) 0.00(0.00)
d(S0|S(x̂)) 228.29(168.52) 39.60(102.42) 31.67(104.58) 59.36(138.74)
|S(x̂)− S| 7.38(7.37) 5.71(3.14) 0.18(0.66) 0.39(1.00)

h = 999, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.74(1.50) 0.00(0.00)
d(S0|S(x̂)) 249.63(166.74) 22.67(59.67) 15.35(60.78) 53.54(134.19)
|S(x̂)− S| 6.93(5.35) 4.85(3.39) 0.12(0.46) 0.43(1.18)

h = 10, n/p = 0.25, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 2.60(2.82) 0.00(0.00)
d(S0|S(x̂)) 277.87(150.62) 24.28(68.39) 16.79(69.51) 51.66(129.12)
|S(x̂)− S| 7.71(5.92) 4.75(2.96) 0.12(0.54) 0.44(1.21)

h = 10, n/p = 0.75, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.90(1.91) 0.00(0.00)
d(S0|S(x̂)) 199.22(156.85) 17.14(48.55) 8.73(48.72) 51.54(133.34)
|S(x̂)− S| 5.64(4.75) 5.25(3.12) 0.04(0.24) 0.38(0.91)

h = 10, n/p = 1, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.80(1.82) 0.00(0.00)
d(S0|S(x̂)) 263.41(164.20) 17.66(57.97) 10.26(58.90) 65.98(138.94)
|S(x̂)− S| 6.60(5.37) 4.61(2.88) 0.04(0.24) 0.50(1.14)

h = 10, n/p = 0.5, σ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.89(1.75) 0.00(0.00)
d(S0|S(x̂)) 221.62(160.88) 21.51(68.94) 14.16(69.94) 82.38(162.18)
|S(x̂)− S| 5.43(3.33) 4.59(2.72) 0.06(0.34) 0.68(1.56)

h = 10, n/p = 0.5, σ = 4
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.98(2.19) 0.00(0.00)
d(S0|S(x̂)) 247.59(162.44) 16.20(38.83) 8.00(39.33) 32.49(104.56)
|S(x̂)− S| 7.37(5.86) 4.83(2.76) 0.06(0.34) 0.26(0.91)

h = 10, n/p = 0.5, σ = 8
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 1.99(1.55) 0.00(0.00)
d(S0|S(x̂)) 248.91(148.06) 20.73(53.63) 13.37(54.97) 20.13(85.08)
|S(x̂)− S| 6.55(3.71) 4.61(2.69) 0.07(0.29) 0.11(0.42)
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Table 12: Change point analysis results: Gaussian random matrix with band covariance matrix and nine equally
spaced change points, with bandwidth h ∈ {1, 10, 50, 999}, ratio n/p ∈ {0.25, 0.5, 0.75, 1} and noise level σ ∈
{1, 2, 4, 8}. The reported values are in the form of mean (standard deviation) across 100 independent simulations.
The bold-faced entries indicate the best method in different measures, with the convention that if S(x̂) = ∅, then
d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

h = 1, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 4.37(2.73) 0.00(0.00)
d(S0|S(x̂)) 73.82(16.05) 18.50(16.45) 10.39(18.19) 30.24(33.39)
|S(x̂)− S| 38.94(7.64) 43.91(9.55) 0.12(0.36) 3.18(4.91)

h = 10, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.91(1.90) 0.00(0.00)
d(S0|S(x̂)) 73.17(14.27) 15.37(11.06) 6.40(11.37) 20.68(26.00)
|S(x̂)− S| 37.97(6.73) 42.02(8.08) 0.05(0.22) 2.30(4.74)

h = 50, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.83(1.81) 0.00(0.00)
d(S0|S(x̂)) 72.12(16.77) 16.01(12.28) 7.81(13.40) 30.75(29.63)
|S(x̂)− S| 38.13(6.73) 42.89(8.05) 0.12(0.38) 2.94(3.88)

h = 999, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.70(1.56) 0.00(0.00)
d(S0|S(x̂)) 69.41(16.69) 13.20(9.66) 5.29(10.14) 28.28(30.02)
|S(x̂)− S| 37.83(7.28) 42.42(10.27) 0.04(0.24) 2.76(3.91)

h = 10, n/p = 0.25, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 4.15(1.86) 0.00(0.00)
d(S0|S(x̂)) 71.77(15.53) 17.20(12.35) 8.82(14.01) 17.29(27.19)
|S(x̂)− S| 37.19(5.66) 41.72(8.76) 0.16(0.48) 1.17(2.67)

h = 10, n/p = 0.75, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.65(1.31) 0.00(0.00)
d(S0|S(x̂)) 71.85(15.90) 17.37(16.16) 9.98(18.09) 27.00(29.24)
|S(x̂)− S| 36.53(7.55) 41.20(7.43) 0.13(0.34) 2.70(3.83)

h = 10, n/p = 1, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.95(1.71) 0.00(0.00)
d(S0|S(x̂)) 73.78(15.50) 16.63(14.67) 8.93(16.32) 25.51(35.16)
|S(x̂)− S| 37.64(8.48) 41.44(8.62) 0.11(0.35) 2.04(3.22)

h = 10, n/p = 0.5, σ = 1
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.70(1.18) 0.12(0.38)
d(S0|S(x̂)) 71.25(17.26) 15.28(10.57) 7.85(12.68) 43.38(32.25)
|S(x̂)− S| 35.43(7.33) 39.45(7.98) 0.12(0.36) 5.66(6.30)

h = 10, n/p = 0.5, σ = 4
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 4.14(2.07) 0.00(0.00)
d(S0|S(x̂)) 73.90(14.90) 18.76(17.83) 10.67(19.76) 13.74(25.15)
|S(x̂)− S| 41.53(7.68) 44.69(7.82) 0.15(0.46) 0.82(1.62)

h = 10, n/p = 0.5, σ = 8
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 3.89(1.80) 0.00(0.00)
d(S0|S(x̂)) 75.88(15.43) 19.07(17.77) 11.76(20.12) 8.49(18.94)
|S(x̂)− S| 42.38(7.56) 44.95(8.43) 0.19(0.49) 0.45(0.98)
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Table 13: Change point analysis results: Gaussian random matrix with band covariance matrix and nine un-
equally spaced change points, with bandwidth h ∈ {1, 10, 50, 999}, ratio n/p ∈ {0.25, 0.5, 0.75, 1} and noise
level σ ∈ {0.5, 2, 4}. The reported values are in the form of mean (standard deviation) across 100 independent
simulations. The bold-faced entries indicate the best method in different measures, with the convention that if
S(x̂) = ∅, then d(S0|S(x̂)) = d(S0|S(x̂)) = p.

FL FLMF FLMTF ITALE

h = 1, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.44(7.57) 0.00(0.00)
d(S0|S(x̂)) 260.78(43.80) 25.68(45.75) 25.58(45.45) 36.99(73.95)
|S(x̂)− S| 39.67(6.99) 43.27(8.89 1.15(0.66) 1.83(3.15)

h = 10, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.27(5.01) 0.00(0.00)
d(S0|S(x̂)) 264.26(39.21) 30.17(57.87) 29.66(57.77) 43.60(86.91)
|S(x̂)− S| 37.39(5.59) 39.99(7.79) 1.09(0.59) 1.61(3.29)

h = 50, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.07(7.08) 0.00(0.00)
d(S0|S(x̂)) 264.38(38.43) 20.20(36.47) 19.91(36.29) 37.70(80.75)
|S(x̂)− S| 37.45(6.28) 40.92(7.88) 1.13(0.66) 1.52(2.61)

h = 999, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 19.49(6.45) 0.00(0.00)
d(S0|S(x̂)) 246.50(55.18) 21.87(42.64) 21.43(42.80) 40.96(78.84)
|S(x̂)− S| 32.57(6.19) 39.90(8.06) 1.13(0.65) 1.85(3.53)

h = 10, n/p = 0.25, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.22(7.82) 0.00(0.00)
d(S0|S(x̂)) 244.04(55.81) 38.07(71.53) 36.84(71.74) 36.05(73.09)
|S(x̂)− S| 35.08(6.43) 40.46(8.58) 1.09(0.65) 1.37(2.27)

h = 10, n/p = 0.75, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.87(6.29) 0.00(0.00)
d(S0|S(x̂)) 266.44(35.89) 21.95(43.96) 21.31(44.07) 35.51(72.03)
|S(x̂)− S| 38.93(7.09) 39.84(7.92) 1.21(0.59) 2.09(4.11)

h = 10, n/p = 1, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 19.52(6.13) 0.00(0.00)
d(S0|S(x̂)) 262.17(39.43) 28.42(54.78) 28.63(54.81) 31.62(69.25)
|S(x̂)− S| 37.69(7.69) 40.40(7.57) 1.11(0.65) 1.38(2.30)

h = 10, n/p = 0.5, σ = 0.5
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 19.75(5.95) 0.09(0.32)
d(S0|S(x̂)) 252.26(46.95) 19.17(33.98) 19.99(33.71) 62.16(91.68)
|S(x̂)− S| 36.47(5.99) 40.36(8.11) 1.21(0.62) 3.46(5.08)

h = 10, n/p = 0.5, σ = 2
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 20.88(6.45) 0.00(0.00)
d(S0|S(x̂)) 260.71(41.38) 25.16(45.30) 24.92(45.04) 14.56(44.48)
|S(x̂)− S| 39.69(6.60) 41.17(7.75) 1.12(0.61) 0.56(1.36)

h = 10, n/p = 0.5, σ = 4
d(S(x̂)|S0) 0.00(0.00) 0.00(0.00) 19.79(7.05) 0.00(0.00)
d(S0|S(x̂)) 272.77(29.71) 24.01(49.14) 23.01(48.83) 7.47(37.18)
|S(x̂)− S| 41.35(7.59) 40.97(9.21) 1.15(0.67) 0.26(1.06)
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