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Abstract

Understanding how grid cells perform path integration calculations remains a
fundamental problem. In this paper, we conduct theoretical analysis of a general
representation model of path integration by grid cells, where the 2D self-position
is encoded as a higher dimensional vector, and the 2D self-motion is represented
by a general transformation of the vector. We identify two conditions on the
transformation. One is a group representation condition that is necessary for
path integration. The other is an isotropic scaling condition that ensures locally
conformal embedding, so that the error in the vector representation translates
conformally to the error in the 2D self-position. Then we investigate the simplest
transformation, i.e., the linear transformation, uncover its explicit algebraic and
geometric structure as matrix Lie group of rotation, and explore the connection
between the isotropic scaling condition and a special class of hexagon grid patterns.
Finally, with our optimization-based approach, we manage to learn hexagon grid
patterns that share similar properties of the grid cells in the rodent brain. The
learned model is capable of accurate long distance path integration. Code is
available at https://github.com/ruiqigao/grid-cell-path.

1 Introduction

Imagine walking in the darkness. Purely based on the sense of self-motion, one can gain a sense
of self-position by integrating the self motion - a process often referred to as path integration [10,
15, 22, 16, 28]. While the exact neural underpinning of path integration remains unclear, it has been
hypothesized that the grid cells [22, 18, 42, 25, 24, 12] in the mammalian medial entorhinal cortex
(mEC) may be involved in this process [21, 31, 23]. The grid cells are so named because individual
neurons exhibit striking firing patterns that form hexagonal grids when the agent (such as a rat)
navigates in a 2D open field [19, 22, 17, 6, 35, 5, 7, 11, 30, 1]. The grid cells also interact with the
place cells in the hippocampus [29]. Unlike a grid cell that fires at the vertices of a lattice, a place
cell often fires at a single (or a few) locations.

The purpose of this paper is to understand how the grid cells may perform path integration calculations.
We study a general optimization-based representational model in which the 2D self-position is
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represented by a higher dimensional vector and the 2D self-motion is represented by a transformation
of the vector. The vector representation can be considered position encoding or position embedding,
where the elements of the vector may be interpreted as activities of a population of grid cells. The
transformation can be realized by a recurrent network that acts on the vector. Our focus is to study
the properties of the transformation.

Specifically, we identify two conditions for the transformation: a group representation condition and
an isotropic scaling condition, under which we demonstrate that the local neighborhood around each
self-position in the 2D physical space is embedded conformally as a 2D neighborhood around the
vector representation of the self-position in the neural space.

We then investigate the simplest special case of the transformation, i.e., linear transformation, that
forms a matrix Lie group of rotation, under which case we show that the isotropic scaling condition
is connected to a special class of hexagonal grid patterns. Our numerical experiments demonstrate
that our model learns clear hexagon grid patterns of multiple scales which share observed properties
of the grid cells in the rodent brain, by optimizing a simple loss function. The learned model is also
capable of accurate long distance path integration.

Contributions. Our work contributes to understanding the grid cells from the perspective of represen-
tation learning. We conduct theoretical analysis of (1) general transformation for path integration by
identifying two key conditions and a local conformal embedding property, (2) linear transformation
by revealing the algebraic and geometric structure and connecting the isotropic scaling condition
and a special class of hexagon grid patterns, and (3) integration of linear transformation model and
linear basis expansion model via unitary group representation theory. Experimentally we learn clear
hexagon grid patterns that are consistent with biological observations, and the learned model is
capable of accurate path integration.

2 General transformation

2.1 Position embedding

(a) physical space (b) neural space

Figure 1: The local 2D polar system around self-
position x in the 2D physical space (a) is embedded
conformally as a 2D polar system around vector v(x) in
the d-dimensional neural space (b), with a scaling factor
s (so that δ r in the physical space becomes sδ r in the
neural space while the angle θ is preserved).

Consider an agent (e.g., a rat) navigating within
a 2D open field. Let x = (x1,x2) be the self-
position of the agent. We assume that the self-
position x in the 2D physical space is repre-
sented by the response activities of a popula-
tion of d neurons (e.g., d = 200), which form
a vector v(x) = (vi(x), i = 1, ...,d)> in the d-
dimensional “neural space”, with each element
vi(x) representing the firing rate of one neuron
when the animal is at location x.

v(x) can be called position encoding or posi-
tion embedding. Collectively, (v(x),∀x) forms
a codebook of x ∈ R2, and (v(x),∀x) is a 2D
manifold in the d-dimensional neural space, i.e.,
globally we embed R2 as a 2D manifold in the
neural space. Locally, we identify two condi-
tions under which the 2D local neighborhood around each x is embedded conformally as a 2D
neighborhood around v(x) with a scaling factor. See Fig. 1. As shown in Section 3.3, the conformal
embedding is connected to the hexagon grid patterns.

2.2 Transformation and path integration

At self-position x, if the agent makes a self-motion ∆x = (∆x1,∆x2), then it moves to x+∆x.
Correspondingly, the vector representation v(x) is transformed to v(x+∆x). The general form of
the transformation can be formulated as:

v(x+∆x) = F(v(x),∆x). (1)

The transformation F(·,∆x) can be considered a representation of ∆x, which forms a 2D additive
group. We call Eq. (1) the transformation model. It can be implemented by a recurrent network to
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derive a path integration model: if the agent starts from x0, and makes a sequence of moves (∆xt , t =
1, ...,T ), then the vector is updated by vt = F(vt−1,∆xt), where v0 = v(x0), and t = 1, ...,T .

2.3 Group representation condition

The solution to the transformation model (Eq. (1)) should satisfy the following condition.
Condition 1. (Group representation condition) (v(x),∀x) and (F(·,∆x),∀∆x) form a representa-
tion of the 2D additive Euclidean group R2 in the sense that

F(v(x),0) = v(x), ∀x; (2)
F(v(x),∆x1 +∆x2) = F(F(v(x),∆x1),∆x2), ∀x,∆x1,∆x2. (3)

(F(·,∆x),∀∆x) is a Lie group of transformations acting on the codebook manifold (v(x),∀x).
The reason for (2) is that if ∆x = 0, then F(·,0) should be the identity transformation. Thus the
codebook manifold (v(x),∀x) consists of fixed points of the transformation F(·,0). If F(·,0) is
furthermore a contraction around (v(x),∀x), then (v(x),∀x) are the attractor points.

The reason for (3) is that the agent can move in one step by ∆x1 +∆x2, or first move by ∆x1, and
then move by ∆x2. Both paths would end up at the same x+∆x1 +∆x2, which is represented by the
same v(x+∆x1 +∆x2).

The group representation condition is a necessary self-consistent condition for the transformation
model (Eq. (1)).

2.4 Egocentric self-motion

Self-motion ∆x can also be parametrized egocentrically as (∆r,θ), where ∆r is the displacement along
the direction θ ∈ [0,2π], so that ∆x= (∆x1 = ∆r cosθ ,∆x2 = ∆r sinθ). The egocentric self-motion
may be more biologically plausible where θ is encoded by head direction, and ∆r can be interpreted
as the speed along direction θ . The transformation model then becomes

v(x+∆x) = F(v(x),∆r,θ), (4)

where we continue to use F(·) for the transformation (with slight abuse of notation). (∆r,θ) form a
polar coordinate system around x.

2.5 Infinitesimal self-motion and directional derivative

In this subsection, we derive the transformation model for infinitesimal self-motion. While we use
∆x or ∆r to denote finite (non-infinitesimal) self-motion, we use δx or δ r to denote infinitesimal
self-motion. At self-position x, for an infinitesimal displacement δ r along direction θ , δx= (δx1 =
δ r cosθ ,δx2 = δ r sinθ). See Fig. 1 (a) for an illustration. Given that δ r is infinitesimal, for any
fixed θ , a first order Taylor expansion of F(v(x),δ r,θ) with respect to δ r gives us

v(x+δx) = F(v(x),δ r,θ) = F(v(x),0,θ)+F ′(v(x),0,θ)δ r+o(δ r)
= v(x)+ fθ (v(x))δ r+o(δ r), (5)

where F(v(x),0,θ) = v(x) according to Condition 1, and fθ (v(x)) := F ′(v(x),0,θ) is the first
derivative of F(v(x),∆r,θ) with respect to ∆r at ∆r = 0. fθ (v(x)) is the directional derivative of
F(·) at self-position x and direction θ .

For a fixed θ , (F(·,∆r,θ),∀∆r) forms a one-parameter Lie group of transformations, and fθ (·) is the
generator of its Lie algebra.

2.6 Isotropic scaling condition

With the directional derivative, we define the second condition as follows, which leads to locally
conformal embedding and is connected to hexagon grid pattern.
Condition 2. (Isotropic scaling condition) For any fixed x, ‖ fθ (v(x))‖ is constant over θ .

Let f0(v(x)) denote fθ (v(x)) for θ = 0, and fπ/2(v(x)) denote fθ (v(x)) for θ = π/2. Then we
have the following theorem:

3



Theorem 1. Assume group representation condition 1 and isotropic scaling condition 2. At any
fixed x, for the local motion δx= (δ r cosθ ,δ r sinθ) around x, let δv = v(x+δx)−v(x) be the
change of vector and s = ‖ fθ (v(x))‖, then we have ‖δv‖= s‖δx‖. Moreover,

δv = fθ (v(x))δ r+o(δ r) = f0(v(x))δ r cosθ + fπ/2(v(x))δ r sinθ +o(δ r), (6)

where f0(v(x)) and fπ/2(v(x)) are two orthogonal basis vectors of equal norm s.

See Supplementary for a proof and Fig. 1(b) for an illustration. Theorem 1 indicates that the local 2D
polar system around self-position x in the 2D physical space is embedded conformally as a 2D polar
system around vector v(x) in the d-dimensional neural space, with a scaling factor s (our analysis is
local for any fixed x, and s may depend on x). Conformal embedding is a generalization of isometric
embedding, where the metric can be changed by a scaling factor s. If s is globally constant for all x,
then the intrinsic geometry of the codebook manifold (v(x),∀x) remains Euclidean, i.e., flat.

Why isotropic scaling and conformal embedding? The neurons are intrinsically noisy. During
path integration, the errors may accumulate in v. Moreover, when inferring self-position from visual
image, it is possible that v is inferred first with error, and then x is decoded from the inferred v. Due
to isotropic scaling and conformal embedding, locally we have ‖δv‖= s‖δx‖, which guarantees
that the `2 error in v translates proportionally to the `2 error in x, so that there will not be adversarial
perturbations in v(x) that cause excessively big errors in x. Specifically, we have the following
theorem.
Theorem 2. Assume the general transformation model (Eq. (4)) and the isotropic scaling condition.
For any fixed x, let s = ‖ fθ (v(x))‖, which is independent of θ . Suppose the neurons are noisy:
v = v(x)+ ε , where ε ∼N (0,τ2Id) and d is the dimensionality of v. Suppose the agent infers its
2D position x̂ from v by x̂ = argminx′ ‖v−v(x′)‖2, i.e., v(x̂) is the projection of v onto the 2D
manifold formed by (v(x′),∀x′). Then we have

E‖x̂−x‖2 = 2τ
2/s2. (7)

See Supplementary for a proof.

Connection to continuous attractor neural network (CANN) defined on 2D torus. The group
representation condition and the isotropic scaling condition appear to be satisfied by the CANN
models [2, 6, 7, 30, 1] that are typically hand-designed on a 2D torus. See Supplementary for details.

3 Linear transformation

After studying the general transformation, we now investigate the linear transformation of v(x), for
the following reasons. (1) It is the simplest transformation for which we can derive explicit algebraic
and geometric results. (2) It enables us to connect the isotropic scaling condition to a special class of
hexagon grid patterns. (3) In Section 4, we integrate it with the basis expansion model, which is also
linear in v(x), via unitary group representation theory.

For finite (non-infinitesimal) self-motion, the linear transformation model is:
v(x+∆x) = F(v(x),∆x) =M(∆x)v(x), (8)

where M(∆x) is a matrix. The group representation condition becomes M(∆x1 +∆x2)v(x) =
M(∆x2)M(∆x1)v(x), i.e., M(∆x) is a matrix representation of self-motion ∆x, and M(∆x)
acts on the coding manifold (v(x),∀x)). For egocentric parametrization of self-motion (∆r,θ), we
can further write M(∆x) =Mθ (∆r) for ∆x = (∆r cosθ ,∆r sinθ), and the linear model becomes
v(x+∆x) = F(v(x),∆r,θ) =Mθ (∆r)v(x).

3.1 Algebraic structure: matrix Lie algebra and Lie group

For the linear model (Eq. (8)), the directional derivative is: fθ (v(x)) = F ′(v(x),0,θ) =
M ′

θ
(0)v(x) =B(θ)v(x), where B(θ) =M ′

θ
(0), which is the derivative of Mθ (∆r) with respect

to ∆r at 0. For infinitesimal self-motion, the transformation model in Eq. (5) becomes
v(x+δx) = (I+B(θ)δ r)v(x)+o(δ r), (9)

where I is the identity matrix. It can be considered a linear recurrent network where B(θ) is the
learnable weight matrix. We have the following theorem for the algebraic structure of the linear
transformation.
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Theorem 3. Assume the linear transformation model so that for infinitesimal self-motion (δ r,θ), the
model is in the form of Eq. (9), then for finite displacement ∆r,

v(x+∆x) =Mθ (∆r)v(x) = exp(B(θ)∆r)v(x). (10)

Proof. We can divide ∆r into N steps, so that δ r = ∆r/N→ 0 as N→ ∞, and

v(x+∆x) = (I+B(θ)(∆r/N)+o(1/N))Nv(x)→ exp(B(θ)∆r)v(x) (11)

as N→ ∞. The matrix exponential map is defined by exp(A) = ∑
∞
n=0 An/n!.

The above math underlies the relationship between matrix Lie algebra and matrix Lie group in
general [39]. For a fixed θ , the set of Mθ (∆r) = exp(B(θ)∆r) for ∆r ∈ R forms a matrix Lie group,
which is both a group and a manifold. The tangent space of Mθ (∆r) at identity I is called matrix Lie
algebra. B(θ) is the basis of this tangent space, and is often referred to as the generator matrix.

Path integration. If the agent starts from x0, and make a sequence of moves ((∆rt ,θt), t = 1, ...,T ),
then the vector representation of self-position is updated by

vt = exp(B(θt)∆rt)vt−1, (12)

where v0 = v(x0), and t = 1, ...,T .

Approximation to exponential map. For a finite but small ∆r, exp(B(θ)∆r) can be approximated
by a second-order (or higher-order) Taylor expansion

exp(B(θ)∆r) = I+B(θ)∆r+B(θ)2
∆r2/2+o(∆r2). (13)

3.2 Geometric structure: rotation, periodicity, metic and error correction

If we assume B(θ) = −B(θ)>, i.e., skew-symmetric, then I +B(θ)δ r in Eq. (9) is a rotation
matrix operating on v(x), due to the fact that (I+B(θ)δ r)(I+B(θ)δ r)> = I+O(δ r2). For finite
∆r, exp(B(θ)∆r) is also a rotation matrix, as it equals to the product of N matrices I+B(θ)(∆r/N)
(Eq. (11)). The geometric interpretation is that, if the agent moves along the direction θ in the
physical space, the vector v(x) is rotated by the matrix B(θ) in the neural space, while the `2 norm
‖v(x)‖2 remains fixed. We may interpret ‖v(x)‖2 = ∑

d
i=1 vi(x)

2 as the total energy of grid cells.
See Fig. 1(b).

The angle of rotation is given by ‖B(θ)v(x)‖δ r/‖v(x)‖, because ‖B(θ)v(x)‖δ r is the arc length
and ‖v(x)‖ is the radius. If we further assume the isotropic scaling condition, which becomes that
‖ fθ (v(x))‖= ‖B(θ)v(x)‖ is constant over θ for the linear model, then the angle of rotation can be
written as µδ r, where µ = ‖B(θ)v(x)‖/‖v(x)‖ is independent of θ . Geometrically, µ tells us how
fast the vector rotates in the neural space as the agent moves in the physical space. In practice, µ

can be much bigger than 1 for the learned model, thus the vector can rotate back to itself in a short
distance, causing the periodic patterns in the elements of v(x). µ captures the notion of metric.

For µ � 1, the conformal embedding in Fig. 1 (b) magnifies the local motion in Fig. 1 (a), and this
enables error correction [35]. More specifically, we have the following result, which is based on
Theorem 2.

Proposition 1. Assume the linear transformation model (Eq. (9)) and the isotropic scaling condition
2. For any fixed x, let µ = ‖B(θ)v(x)‖/‖v(x)‖. Suppose v= v(x)+ε , where ε ∼N (0,τ2Id) and
τ2 = α2(‖v(x)‖2/d), so that α2 measures the variance of noise relative to the average magnitude of
(vi(x)

2, i= 1, ...,d). Suppose the agent infers its 2D position x̂ from v by x̂= argminx′ ‖v−v(x′)‖2.
Then we have

E‖x̂−x‖2 = 2α
2/(µ2d). (14)

See Supplementary for a proof. By the above proposition, error correction of grid cells is due to
two factors: (1) higher dimensionality d of v(x) for encoding 2D positions x, and (2) a magnifying
µ � 1 (our analysis is local for any fixed x, and µ may depend on x).
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3.3 Hexagon grid patterns formed by mixing Fourier waves

In this subsection, we make connection between the isotropic scaling condition 2 and a special class
of hexagon grid patterns created by linearly mixing three Fourier plane waves whose directions are
2π/3 apart. We show such linear mixing satisfies the linear transformation model and the isotropic
scaling condition.
Theorem 4. Let e(x) = (exp(i〈a j,x〉), j = 1,2,3)>, where (a j, j = 1,2,3) are three 2D vectors of
equal norm, and the angle between every pair of them is 2π/3. Let v(x) =Ue(x), where U is an
arbitrary unitary matrix. Let B(θ) =U ∗D(θ)U , where D(θ) = diag(i〈a j,q(θ)〉, j = 1,2,3), with
q(θ) = (cosθ ,sinθ)>. Then (v(x),B(θ)) satisfies the linear transformation model (Eq. (9)) and
the isotropic scaling condition 2. Moreover, B(θ) is skew-symmetric.

See Supplementary for a proof. We would like to emphasize that the above theorem analyzes a special
case solution to our linear transformation model, but our optimization-based learning method does
not assume any superposition of Fourier basis functions as in the theorem. Our experimental
results are learned purely by optimizing a loss function based on the simple assumptions of our model
with generic vectors and matrices.

We leave it to future work to theoretically prove that the isotropic scaling condition leads to hexagon
grid patterns in either the general transformation model or the linear transformation model. The
hexagon grid patterns are not limited to superpositions of three plane waves as in the above theorem.

3.4 Modules

Biologically, it is well established that grid cells are organized in discrete modules [4, 38] or blocks.
We thus partition the vector v(x) into K blocks, v(x) = (vk(x),k = 1, ...,K). Correspondingly the
generator matrices B(θ) = diag(Bk(θ),k = 1, ...,K) are block diagonal, so that each sub-vector
vk(x) is rotated by a sub-matrix Bk(θ). For the general transformation model, each sub-vector
is transformed by a separate sub-network. By the same argument as in Section 3.2, let µk =
‖Bkvk(x)‖/‖vk(x)‖, then µk is the metric of module k.

4 Interaction with place cells

4.1 Place cells

For each v(x), we need to uniquely decode x globally. This can be accomplished via interaction
with place cells. Specifically, each place cell fires when the agent is at a specific position. Let
A(x,x′) be the response map of the place cell associated with position x′. It measures the adjacency
between x and x′. A commonly used form of A(x,x′) is the Gaussian adjacency kernel A(x,x′) =
exp(−‖x−x′‖2/(2σ2)). The set of Gaussian adjacency kernels serve as inputs to our optimization-
based method to learn grid cells.

4.2 Basis expansion

Figure 2: Illustration of basis expansion
model A(x,x′) = ∑

d
i=1 ui,x′vi(x), where

vi(x) is the response map of i-th grid cell,
shown at the bottom, which shows 5 dif-
ferent i. A(x,x′) is the response map of
place cell associated with x′, shown at the
top, which shows 3 different x′. ui,x′ is
the connection weight.

A popular model that connects place cells and grid cells
is the following basis expansion model (or PCA-based
model) [13]:

A(x,x′) = 〈v(x),u(x′)〉=
d

∑
i=1

ui,x′vi(x), (15)

where v(x) = (vi(x), i = 1, ...,d)>, and u(x′) = (ui,x′ , i =
1, ...,d)>. Here (vi(x), i = 1, ...,d) forms a set of d basis
functions (which are functions of x) for expanding A(x,x′)
(which is a function of x for each place x′), while u(x′)
is the read-out weight vector for place cell at x′ and needs
to be learned. See Fig. 2 for an illustration. Experimental
results on biological brains have shown that the connections
from grid cells to place cells are excitatory [44, 32]. We thus
assume that ui,x′ ≥ 0 for all i and x′.
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4.3 From group representation to basis functions

The vector representation v(x) generated (or constrained) by the linear transformation model (Eq.
(8)) can serve as basis functions of the PCA-based basis expansion model (Eq. (15)), due to the
fundamental theorems of Schur [43] and Peter-Weyl [39], which reveal the deep root of Fourier
analysis and generalize it to general Lie groups. Specifically, if M(∆x) is an irreducible unitary
representation of ∆x that forms a compact Lie group, then the elements {Mi j(∆x)} form a set of
orthogonal basis functions of ∆x. Let v(x) = M(x)v(0) (where we choose the origin 0 as the
reference point). The elements of v(x), i.e., (vi(x), i = 1, ...,d), are linear mixings of the basis
functions {Mi j(x)}, so that they themselves form a new set of basis functions that serve to expand
(A(x,x′),∀x′) that parametrizes the place cells. Thus group representation in our path integration
model is a perfect match to the basis expansion model, in the sense that the basis functions are results
of group representation.

The basis expansion model (or PCA-based model) (Eq. (15)) assumes that the basis functions
are orthogonal, whereas in our work, we do not make the orthogonality assumption. Interest-
ingly, the learned transformation model generates basis functions that are close to being orthogonal
automatically. See Supplementary for more detailed explanation and experimental results.

4.4 Decoding and re-encoding

For a neural response vector v, such as vt in Eq. (12), the response of the place cell associated
with location x′ is 〈v,u(x′)〉. We can decode the position x̂ by examining which place cell has the
maximal response, i.e.,

x̂= argmax
x′
〈v,u(x′)〉. (16)

After decoding x̂, we can re-encode v← v(x̂) for error correction. Decoding and re-encoding can
also be done by directly projecting v onto the manifold (v(x),∀x), which gives similar results. See
Supplementary for more analysis and experimental results.

5 Learning

We learn the model by optimizing a loss function defined based on three model assumptions discussed
above: (1) the basis expansion model (Eq. (15)), (2) the linear transformation model (Eq. (10)) and
(3) the isotropic scaling condition 2. The input is the set of adjacency kernels A(x,x′),∀x,x′. The
unknown parameters to be learned are (1) (v(x) = (vk(x),k = 1, ...,K),∀x), (2) (u(x′),∀x′) and
(3) (B(θ),∀θ). We assume that there are K modules or blocks and B(θ) is skew-symmetric, so
that B(θ) are parametrized as block-diagonal matrices (Bk(θ),k = 1, ...,K),∀θ) and only the lower
triangle parts of the matrices need to be learned. The loss function is defined as a weighted sum of
simple `2 loss terms constraining the three model assumptions: L = L0 +λ1L1 +λ2L2, where

L0 = Ex,x′ [A(x,x
′)−〈v(x),u(x′)〉]2, (basis expansion) (17)

L1 =
K

∑
k=1

Ex,∆x‖vk(x+∆x)− exp(Bk(θ)∆r)vk(x)‖2, (transformation) (18)

L2 =
K

∑
k=1

Ex,θ ,∆θ [‖Bk(θ +∆θ)vk(x)‖−‖Bk(θ)vk(x)‖]2. (isotropic scaling) (19)

In L1, ∆x = (∆r cosθ ,∆r sinθ). λ1 and λ2 are chosen so that the three loss terms are of similar
magnitudes. A(x,x′) are given as Gaussian adjacency kernels. For regularization, we add a penalty
on ‖u(x′)‖2, and further assume u(x′)≥ 0 so that the connections from grid cells to place cells are
excitatory [44, 32]. However, note that u(x′)≥ 0 is not necessary for the emergence of hexagon grid
patterns as shown in the ablation studies.

Expectations in L0, L1 and L2 are approximated by Monte Carlo samples. L is minimized by
Adam [26] optimizer. See Supplementary for implementation details.

It is worth noting that, consistent with the experimental observations, we assume individual place
field A(x,x′) to exhibit a Gaussian shape, rather than a Mexican-hat pattern (with balanced excitatory
center and inhibitory surround) as assumed in previous basis expansion models [13, 34] of grid cells.
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ReLU non-linearity. We also experiment with a non-linear transformation model where a ReLU
activation is added. See Supplementary for details.

6 Experiments

Figure 3: Hexagonal grid firing patterns emerge in the learned network. Every response map shows the firing
pattern of one neuron (i.e, one element of v) in the 2D environment. Every row shows the firing patterns of the
neurons within the same block or module.

We conduct numerical experiments to learn the representations as described in Section 5. Specifically,
we use a square environment with size 1m × 1m, which is discretized into a 40× 40 lattice. For
direction, we discretize the circle [0,2π] into 144 directions and use nearest neighbor linear interpola-
tions for values in between. We use the second-order Taylor expansion (Eq. (13)) to approximate the
exponential map exp(B(θ)∆r). The displacement ∆r are sampled within a small range, i.e., ∆r is
smaller than 3 grids on the lattice. For A(x,x′), we use a Gaussian adjacency kernel with σ = 0.07.
v(x) is of d = 192 dimensions, which is partitioned into K = 16 modules, each of which has 12 cells.

6.1 Hexagon grid patterns

Fig. 22 shows the learned firing patterns of v(x) = (vi(x), i = 1, ...,d) over the 40×40 lattice of x.
Every row shows the learned units belonging to the same block or module. Regular hexagon grid
patterns emerge. Within each block or module, the scales and orientations are roughly the same, but
with different phases or spatial shifts. For the learned B(θ), each element shows regular sine/cosine
tuning over θ . See Supplementary for more learned patterns.

Figure 4: Multi-modal distribution of grid
scales of the learned model grid cells. The
scale ratios closely match the real data [38].

Table 1: Summary of gridness scores of the patterns learned
from different models. To determine valid grid cells, we
apply the same threshold of gridness score as in [3], i.e.,
gridness score > 0.37. For our model, we run 5 trials and
report the average and standard deviation.

Model Gridness score (↑) % of grid cells

[3] (LSTM) 0.18 25.20
[34] (RNN) 0.48 56.10
Ours 0.90 ± 0.044 73.10 ± 1.33

We further investigate the characteristics of the learned firing patterns of v(x) using measures
adopted from the literature of grid cells. Specifically, the hexagonal regularity, scale and orientation
of grid-like patterns are quantified using the gridness score, grid scale and grid orientation [27, 33],
which are determined by taking a circular sample of the autocorrelogram of the response map.
Table 1 summarizes the results of gridness scores and comparisons with other optimization-based
approaches [3, 34]. We apply the same threshold to determine whether a learned neuron can be
considered a grid cell as in [3] (i.e., gridness score > 0.37). For our model, 73.10% of the learned
neurons exhibit significant hexagonal periodicity in terms of the gridness score. Fig. 4 shows the
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histogram of grid scales of the learned grid cell neurons (mean 0.33, range 0.21 to 0.49), which
follows a multi-modal distribution. The ratio between neighboring modes are roughly 1.52 and 1.51,
which closely matches the theoretical predictions [40, 37] and also the empirical results from rodent
grid cells [38]. Collectively, these results reveal striking, quantitative correspondence between the
properties of our model neurons and those of the grid cells in the brain.

Connection to continuous attractor neural network (CANN) defined on 2D torus. The fact that
the learned response maps of each module are shifted versions of a common hexagon periodic pattern
implies that the learned codebook manifold forms a 2D torus, and as the agent moves, the responses
of the grid cells undergo a cyclic permutation. This is consistent with the CANN models hand-crafted
on 2D torus. See Supplementary for a detailed discussion.

Ablation studies. We conduct ablation studies to examine whether certain model assumptions are
empirically important for the emergence of hexagon grid patterns. The conclusions are highlighted as
follows: (1) The loss term L2 (Eq. (19)) constraining the isotropic scaling condition is necessary for
learning hexagon grid patterns. (2) The constraint u(x′)≥ 0 is not necessary for learning hexagon
patterns, but the activations can be either excitatory or inhibitory without the constraint. (3) The
skew-symmetric assumption on B(θ) is not important for learning hexagon grid pattern. (4) Hexagon
patterns always emerge regardless of the choice of block size and number of blocks. (5) Multiple
blocks or modules are necessary for the emergence of hexagon grid patterns of multiple scales. See
Fig. 5 for several learned patterns and Supplementary for the full studies.

(a) without L2 (b) without u(x′)≥ 0 (c) without skew-symmetry

Figure 5: Learned response maps in ablation studies where a certain model assumption is removed. (a) Remove
the loss term L2. (b) Remove the assumption u(x′)≥ 0. (c) Remove the skew-symmetric assumption on B(θ).

6.2 Path integration

We then examine the ability of the learned model on performing multi-step path integration, which
can be accomplished by recurrently updating vt (Eq. (12)) and decoding vt to xt for t = 1, ...,T (Eq.
(16)). Re-encoding vt ← v(xt) after decoding is adopted. Fig. 6(a) shows an example trajectory of
accurate path integration for number of time steps T = 30. As shown in Fig. 6(b), with re-encoding,
the path integration error remains close to zero over a duration of 500 time steps (< 0.01 cm, averaged
over 1,000 episodes), even if the model is trained with the single-time-step transformation model
(Eq. (18)). Without re-encoding, the error goes slight higher but still remains small (ranging from 0.0
to 4.2 cm, mean 1.9 cm in the 1m × 1m environment). Fig. 6(c) summarizes the path integration
performance by fixing the number of blocks and altering the block size. The performance of path
integration would be improved as the block size becomes larger, i.e., with more neurons in each
module. When block size is larger than 16, path integration is very accurate for the time steps tested.

Error correction. See Supplementary for numerical experiments on error correction, which show
that the learn model is still capable of path integration when we apply Gaussian white noise errors or
Bernoulli drop-out errors to vt .

6.3 Additional experiments on path planning and egocentric vision

We also conduct additional experiments on path planning and egocentric vision with our model.
Path planning can be accomplished by steepest ascent on the adjacency to the target position. For
egocentric vision, we learn an extra generator network that generates the visual image given the
position encoding formed by the grid cells. See Supplementary for details.
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Figure 6: The learned model can perform accurate path integration. (a) Black: example trajectory. Red: inferred
trajectory. (b) Path integration error over number of time steps, for procedures with re-encoding and without
re-encoding. (c) Path integration error with fixed number of blocks and different block sizes, for 50 and 100 time
steps. The error band in (b) and error bar in (c) are standard deviations computed over 1,000 episodes.

7 Related work

Our work is related to several lines of previous research on modeling grid cells. First, RNN
models have been used to model grid cells and path integration. The traditional approach uses
simulation-based models with hand-crafted connectivity, known as continuous attractor neural
network (CANN) [2, 6, 7, 30, 1]. On the other hand, more recently two pioneering papers [9, 3]
developed optimization-based RNN approaches to learn the path integration model and discovered
that grid-like response patterns can emerge in the optimized networks. These results are further
substantiated in [34, 8]. Our work analyzes the properties of the general recurrent model for path
integration, and these properties seem to be satisfied by the hand-crafted CANN models. Our method
belongs to the scheme of optimization-based approaches, and the learned response maps share similar
properties as assumed by the CANN models.

Second, our work differs from the PCA-based basis expansion models [13, 34, 36] in that, unlike PCA,
we make no assumption about the orthogonality between the basis functions, and the basis functions
are generated by the transformation model. Furthermore, in previous basis expansion models [13, 34],
place fields with Mexican-hat patterns (with balanced excitatory center and inhibitory surround) had
to be assumed in order to obtain hexagonal grid firing patterns. However, experimentally measured
place fields in biological brains were instead well characterized by Gaussian functions. Crucially, in
our model, hexagonal grids emerge from learning with Gaussian place fields, and there is no need to
assume any additional surround mechanisms or difference of Gaussians kernels.

In another related paper, [20] proposed matrix representation of 2D self-motion, while our work
analyzes general transformations. Our investigation of the special case of linear transformation model
reveals the matrix Lie group and the matrix Lie algebra of rotation group. Our work also connects the
linear transformation model to the basis expansion model via unitary group representation theory.

8 Conclusion

This paper analyzes the recurrent model for path integration calculations by grid cells. We identify a
group representation condition and an isotropic scaling condition that give rise to locally conformal
embedding of the self-motion. We study a linear prototype model that reveals the matrix Lie group
of rotation, and explore the connection between the isotropic scaling condition and hexagon grid
patterns. In addition to these theoretical investigations, our numerical experiments demonstrate that
our model can learn hexagon grid patterns for the response maps of grid cells, and the learned model
is capable of accurate long distance path integration.

In this work, the numerical experiments are mostly limited to the linear transformation model, with
the exception of an experiment with ReLU non-linearity. We will conduct experiments on the other
non-linear transformation models, especially the forms assumed by the hand-crafted continuous
attractor neural networks. Moreover, we assume that the agent navigates within a square open-field
environment without obstacles or rewards. It is worthwhile to explore more complicated environments,
including 3D environment.
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Supplementary Materials

A Theoretical analysis

A.1 Graphical illustrations of key equations

Fig. 7 illustrates key equations in the main text as well as in the supplementary materials.

(a) physical space (b) neural space

(c) linear transformation (d) as rotation

Figure 7: Color-coded illustration. (a) In the 2D physical space, the agent moves from x to x+δx, where
δx = (δ r cosθ ,δ r sinθ), i.e., the agent moves by δ r along the direction θ . We also show a displacement of
δ r in a different direction. (b) In the d-dimensional neural space, the vector v(x) is changed to v(x+δx) =
F(v(x),δ r,θ) = v(x)+ fθ (v(x))δ r+ o(δ r), where the displacement is fθ (v(x))δ r = f0(v(x))δ r cosθ +
fπ/2(v(x))δ r sinθ . Under the isotropic condition that ‖ fθ (v(x))‖ is constant over θ , the local 2D self-motion
δx at x in the 2D physical space is embedded conformally into the neural space as a 2D subspace around v(x).
(c) Linear transformation, where fθ (v(x)) =B(θ)v(x). (d) 3D perspective view of linear transformation as a
rotation: v(x+δx) is a rotation of v(x), and the angle of rotation is µδ r, where µ = ‖B(θ)v(x)‖/‖v(x))‖
(µ may depend on x).

A.2 Proof of Theorem 1 on conformal embedding

Proof: See Fig. 7(a) and (b) for an illustration. Consider the self-motion δx= (δ r cosθ ,δ r sinθ),

v(x+δx) = F(v(x),δ r,θ) = v(x)+ fθ (v(x))δ r+o(δ r). (20)

We can decompose the self-motion δx into two steps. First move along the direction 0 by δ r cosθ ,
and then move along the direction π/2 by δ r sinθ . Then under the group representation condition:

v(x+δx) = F [F(v(x),δ r cosθ ,0),δ r sinθ ,π/2)]
= F [v(x)+ f0(v(x))δ r cosθ +o(δ r),δ r sinθ ,π/2]
= [v(x)+ f0(v(x))δ r cosθ ]+ fπ/2[v(x)+ f0(v(x))δ r cosθ +o(δ r)]δ r sinθ +o(δ r)

= v(x)+ f0(v(x))δ r cosθ + fπ/2(v(x))δ r sinθ +o(δ r), (21)

The last equation holds because assuming the derivative f ′
π/2(v(x)) exists, then by first-order Taylor

expansion,

fπ/2[v(x)+ f0(v(x))δ r cosθ +o(δ r)]δ r sinθ (22)

=[ fπ/2(v(x))+ f ′
π/2(v(x)) f0(v(x))δ r cosθ +o(δ r)]δ r sinθ (23)

= fπ/2(v(x))δ r sinθ +o(δ r). (24)
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Since v(x+δx) = v(x)+ fθ (v(x))δ r+o(δ r), by Eq. (21) we have fθ (v(x)) = f0(v(x))cosθ +
fπ/2(v(x))sinθ , which is a 2D basis expansion. We are yet to prove that the two basis vectors
f0(v(x)) and fπ/2(v(x)) are orthogonal with equal norm.

For notational simplicity, let v1 = f0(v(x)) and v2 = fπ/2(v(x)). Then under the isotropic scaling
condition, ‖v1‖= ‖v2‖= ‖ fθ (v(x))‖= s, and fθ (v(x)) = v1 cosθ +v2 sinθ for any θ . Then we
have that for any θ ,

s2 = ‖ fθ (v(x))‖2 = ‖v1 cosθ +v2 sinθ‖2 = s2 +2〈v1,v2〉cosθ sinθ . (25)
Thus 〈v1,v2〉= 0, i.e., f0(v(x))⊥ fπ/2(v(x)). This leads to the conformal embedding of the local
2D polar system in the physical space as a 2D polar system in the d-dimensional neural space, with a
scaling factor s (which may depend on x). �

A.3 Proofs of Theorem 2 and Proposition 1 on error correction

Proof of Theorem 2: By Theorem 1, for a fixed self-position x, we embed the 2D local neighborhood
around x as a local 2D plane around v(x) in the d-dimensional neural space. A local perturbation in
self-position, δx, is translated into a local perturbation in v(v+δx), so that

‖δv‖2 = ‖ fθ (v(x))δ r+o(δ r)‖2 = s2‖δx‖2, (26)
where δv = v(x+δx)−v(x).

Suppose the agent infers its 2D position x̂ by x̂ = argminx′ ‖v−v(x′)‖2, which amounts to pro-
jecting v onto the local 2D plane around v(x). The projected vector v(x̂) on the local 2D plane is
v(x)+δv, where δv is the projection of ε onto the 2D plane. More specifically, let (v1,v2) be an
orthonormal basis of the local 2D plane centered at v(x). Then δv can be written as e1v1 + e2v2,
where

e= (e1,e2)
> = (v1,v2)

>
ε ∼N (0,τ2I2). (27)

Let δx= x̂−x. Due to isotropic scaling and conformal embedding, the `2 squared error translate
according to

‖δx‖2 = ‖δv‖2/s2 = (e2
1 + e2

2)/s2, (28)

whose expectation is 2τ2/s2. Thus E‖x̂−x‖2 = 2τ2/s2.�

Proof of Proposition 1: It is reasonable to assume τ2 = α2(‖v(x)‖2/d), where α2 measures the
variance of noise relative to ‖v(x)‖2/d, which is the average of (vi(x)

2, i = 1, ...,d). In other words,
α2 measures the noise level.

In the linear case, the metric is
µ = ‖ fθ (v(x))‖/‖v(x)‖= ‖B(θ)v(x))‖/‖v(x)‖= s/‖v(x)‖, (29)

which measures how fast v(x) rotates in the neural space as x changes. Then

E‖δx‖2 = 2α
2/(µ2d). (30)

The above scaling shows that error correction depends on two factors. One is the metric µ , and the
other is the dimensionality d, i.e., the number of neurons. These correspond to two phases of error
correction. One is to project the d-dimensional ε to the 2-dimensional δv. The bigger d is, the better
the error correction. The other is to translate ‖δv‖2 to ‖δx‖2. The bigger µ is, the better the error
correction. �

A.4 Proof of Theorem 4 on hexagon grid patterns

Proof: Let e(x) = (exp(i〈a j,x〉), j = 1,2,3)>, where (a j, j = 1,2,3) are three 2D vectors of equal
norm, and the angle between every pair of them is 2π/3. Let v(x) = Ue(x), where U is an
arbitrary unitary matrix, i.e., U ∗U = I . Then ‖v(x)‖2 = ‖e(x)‖2 = 3, ∀x, and e(x) = U ∗v(x).
For self-motion δx= (δ r cosθ ,δ r sinθ) = q(θ)δ r, let

Λ(δx,θ) = diag(exp(〈a j,δx〉), j = 1,2,3)
= diag(exp(〈a j,q(θ)〉δ r), j = 1,2,3)
= I+diag(i〈a j,q(θ)〉), j = 1,2,3)δ r+o(δ r)
= I+D(θ)δ r+o(δ r). (31)
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Then

v(x+δx) =Ue(x+δx)
=UΛ(δx,θ)e(x)

=UΛ(δx,θ)U ∗v(x)

= (I+UD(θ)U ∗v(x)δ r)v(x)+o(δ r)
= (I+B(θ)δ r)v(x)+o(δ r), (32)

where B(θ) =UD(θ)U ∗, and B(θ) =−B(θ)∗. For isotropic condition,

‖B(θ)v(x)‖2 = ‖D(θ)e(x)‖2

=
3

∑
j=1
〈a j,q(θ)〉2

= const‖a j‖2‖q(θ)‖2 = const‖a j‖2, (33)

which is independent of θ , because (a j, j = 1,2,3) forms a tight frame in 2D.

One example of U is the following matrix:

1√
3

(1 1 1
1 exp(i2π/3) exp(−i2π/3)
1 exp(−i2π/3) exp(i2π/3)

)
(34)

The resulting (vi(x), i = 1,2,3) have the same orientation but different phases, i.e., they are spatially
shifted versions of each other. �

The limitation of Theorem 4 is that we only show v(x) =Ue(x) satisfies the linear model and the
isotropic scaling condition, but we did not show that linear model with isotropic condition only has
solutions that are hexagon grid patterns.

A.5 From group representation to orthogonal basis functions

Group representation is a central theme in modern mathematics and physics. In particular, it leads to
a deep understanding and generalization of Fourier analysis or harmonic analysis.

For the set of (∆x) that form a group, a matrix representation M(∆x) is equivalent to another
representation M̃(∆x) if there exists an invertible matrix P such that M̃(∆x) = PM(∆x)P−1

for each x. A matrix representation is reducible if it is equivalent to a block diagonal matrix
representation, i.e., we can find a matrix P , such that PM(∆x)P−1 is block diagonal for every
∆x. Suppose the group is a finite group or a compact Lie group, and M is a unitary representation,
i.e., M(∆x) is a unitary matrix. If M is block-diagonal, M = diag(Mk,k = 1, ...,K), with non-
equivalent blocks, and each block Mk cannot be further reduced, then the matrix elements (Mki j(∆x))
are orthogonal basis functions of ∆x. Such orthogonality relations are proved by Schur [43] for
finite group, and by Peter-Weyl for compact Lie group [39]. For our case, theoretically the group
of displacements ∆x in the 2D domain is R2, but we learn our model within a finite range, and we
further discretize the range into a lattice. Thus the above orthogonal relations hold.

In our model, we also assume block diagonal M , and we call each block a module. However, we do
not assume each module is irreducible, i.e., each module itself may be further diagonalized into a
block diagonal matrix of irreducible sub-blocks. Thus the elements within the same module vk(x)
may be linear mixings of orthogonal basis functions of the irreducible sub-blocks, and the linear
mixings themselves are not necessarily orthogonal.

Fig. 8 visualizes the correlation between pairs of the learned vi(x) and v j(x), i, j = 1, ...,d. For
different i and j, the correlations between different vi(x) and v j(x) are close to zero; i.e., they
are nearly orthogonal to each other. The average absolute value of correlation is 0.09, and the
within-block average value is about the same as the between-block average value.

Unlike previous work on learning basis expansion model (or PCA-based model [13]), we do not
constrain the basis functions v(x) = (vi(x), i = 1, ...,d) to be orthogonal to each other. Instead,
we constrain them by our path integration model via the loss term L1. Nonetheless, the learned vi(x)
are close to being orthogonal in our experiments.
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Figure 8: Correlation heatmap for each pair of the learned vi(x) and v j(x). The correlations are computed over
40×40 lattice of x.

A.6 Decoding and re-encoding

In the above analysis, the projection of v onto the local 2D plane around v(x) is x̂= argminx′ ‖v−
v(x′)‖2, which, for the linear model, amounts to decoding v to x̂ via

x̂= argmax
x′
〈v,v(x′)〉, (35)

because ‖v(x′)‖2 is constant. We project v to v(x̂), which is an re-encoding of v.

We can also perform decoding via the learned u(x′):

x̂= argmax
x′
〈v,u(x′)〉, (36)

and re-encoding v← v(x̂). For the above decoding, the heat map

h(x′) = 〈v,u(x′)〉= 〈v(x),u(x′)〉+ 〈ε,u(x′)〉= A(x,x′)+e(x′), (37)

where e(x′) = 〈ε,u(x′)〉 ∼ N (0,α2‖v(x)‖2‖u(x′)‖2/d). For A(x,x′) = exp(−‖x −
x′‖2/(2σ2)) = 〈v(x),u(x′)〉, if σ2 is small, A(x,x′) decreases to 0 quickly, i.e., if ‖x′−x‖ > c,
then A(x,x′) < exp(−c2/(2σ2)), and the chance for the maximum of h(x′) to be achieved at an
x′ so that ‖x′−x‖ > c can be very small. The above analysis also provides a justification for
regularizing ‖u(x′)‖2 in learning.

For error correction, we want to use small σ2. However, for path planning, we need large σ2 so that
we can assess the adjacency as well as the change of the adjacency between the position on the path
and the target position even if they are far apart.

In the experiments in the main text, we use Eq. (36) for decoding. In Fig. 9, we also show the results
of path integration using Eq. (35) for decoding, whose performance is even better than Eq. (36).
Especially the error would remain 0 over 300 time steps and 1,000 episodes using Eq. (35) with
re-encoding. The advantage of (35) is that error correction is achieved within the grid cells system
itself without interacting with the place cells.

A.7 Connection to continuous attractor neural network (CANN) defined on 2D torus

The CANN models [2, 6, 7, 30, 1] assume that the grid cells v(x) = (vi(x), i = 1, ...,d) are placed
on a finite 2D square lattice with periodic boundary condition, i.e., a 2D torus T. If the lattice is
N×N, then d = N2. Let z ∈ T be the 2D coordinate of a pixel in T, then each grid cell vi is placed
on a unique zi ∈ T.

A CANN model hand-crafts the non-linear recurrent transformation v(x+∆x) = F(v(x),∆x) for
some parametric form of F , and the coding manifold (v(x),∀x) consists of the attracting fixed
points of F(·,0). In CANN, the recurrent connection weights between a pair of grid cells (vi,v j) only
depend on the relative positions of the two cells on the 2D torus, zi−z j, i.e., the connection weights
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Figure 9: Path integration error over number of time steps. The mean and standard deviation band is computed
over 1,000 episodes. “v” means decoding by Eq. (35), and “u” means decoding by Eq. (36). The squared
domain is 1m × 1m.

are convolutional. Such a topographical arrangement may be physically realized on the 2D surface
of the cortex in the brain, but it may also be the conceptual interpretation of the connection weights
between the grid cells that are not necessarily placed on a physical 2D torus in the brain.

If we place the grid cells v = (vi, i = 1, ...,d) on the d = N ×N lattice of the 2D torus, either
physically or conceptually, then their activities v(x) = (vi(x), i = 1, ...,d) form an N×N “image”
defined on the 2D torus. The pattern of the “image” may be a localized “bump”, i.e., only a local
subset of the pixels of the N×N lattice have non-zero activities. Suppose each self-position x of
the agent can be mapped to a “bump” on the 2D torus centered at a corresponding z ∈ T. When
the agent moves in the 2D physical space, i.e., when x changes to x+∆x, then the “bump” formed
by v(x) = (vi(x), i = 1, ...,d = N2) moves on the 2D torus from z to z+∆z, while the shape of
the “bump” remains the same. The connection weights of the CANN are hand-crafted so that the
recurrent transformation of CANN realizes such a “mirroring” movement of the “bump”.

If each displacement ∆x of the agent in the 2D physical space can be mapped to a displacement ∆z of
the “bump” on the 2D torus T, then the recurrent transformation of the CANN forms a representation
of the 2D Euclidean group R2. If the local movement of the “bump” δz on the 2D torus is furthermore
conformal to the local movement δx of the agent in the 2D physical space, then the local movement
of the d = N2 dimensional vector v(x) = (vi(x), i = 1, ...,d = N2) formed by the grid cells in the
d-dimensional neural space, i.e., v(x+δx)−v(x), is also conformal to the movement δx of the
agent in the 2D physical space, and the isotropic scaling condition also holds.

In the above understanding, there are three types of movements. (1) The movement ∆x of the agent
in the 2D physical space R2. (2) The movement ∆z of the “bump” on the N×N lattice of 2D torus T.
(3) The movement v(x+∆x)−v(x) in the d = N2-dimensional neural space.

Our model on either the general transformation or the linear transformation does not assume a 2D
torus topography. In fact, no 2D topographical structure whatsoever is assumed in our model. The
topographical arrangement is not part of our model. Instead, it may be treated as an implementation
issue after the model is learned, i.e., how to arrange the grid cells physically on a 2D surface of cortex
so that a pair of grid cells with strong connection weights are placed close to each other. It may
also be treated as an interpretation issue after the model is learned, i.e., how to interpret the learned
connection weights.

Even though our model does not make topographical assumptions, our linear transformation model
appears to learn the torus topography automatically. Specifically, in our learned model, the response
maps of the grid cells within each module are spatially shifted versions of the same hexagon periodic
pattern. Therefore we can identify two directions in the 2D physical space that are 2π/3 apart, so that
v(x) rotates back to itself as x moves along these two directions for a certain distance. This implies
that the codebook manifold (v(x),∀x) forms a 2D torus as assumed by CANN models. Moreover,
the fact that the learned response maps of the grid cells within each module are spatially shifted
versions of the same hexagon periodic pattern also agrees with the CANN model that moves the
“bump” on the 2D torus by “mirroring” the motion in the 2D physical space. The learned hexagon
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periodic patterns and the spatial shifts of the response maps may be related to the optimality of the
hexagon grid in terms of sampling, interpolation and packing.

Even though the CANN model realizes the movement of the “bump” on the 2D torus by a non-linear
recurrent model, such movement is a cyclic permutation of the activities of the grid cells, and the
permutation can be realized by a permutation matrix, which is an orthogonal matrix. Thus the v(x)
that satisfies the non-linear CANN model also satisfies our linear transformation model, where the
linear rotation matrix is a cyclic permutation matrix.

The torus topology is hardly surprising, even for the general transformation model. The Lie group
formed by (F(·,∆x),∀∆x) is abelian as it is a representation of the 2D additive Euclidean group R2.
If a connected abelian Lie group is compact, then the group is automatically a torus. See [14].

Furthermore, if the scaling factor s is globally a constant for all x, then the position embedding
(v(x),∀x) is an isometric embedding up to a global scaling factor, and its intrinsic geometry remains
Euclidean. It thus is a flat torus.

B Experiments

B.1 Implementation details

Monte Carlo samples. The expectations in loss terms are approximated by Monte Carlo samples.
Here we detail the generation of Monte Carlo samples. For (x,x′) used in L0 = Ex,x′ [A(x,x′)−
〈v(x),u(x′)〉]2, x is first sampled uniformly within the entire domain, and then the displacement
dx between x and x′ is sampled from a normal distribution N (0,σ2I2), where σ = 0.48. This
is to ensure that nearby samples are given more emphasis. We let x′ = x+ dx, and those pairs
(x,x′) within the range of domain (i.e., 1m × 1m, 40×40 lattice) are kept as valid data. For (x,∆x)
used in L1 = Ex,∆x|v(x+∆x)− exp(B(θ)∆r)v(x)|2, ∆x is sampled uniformly within a circular
domain with radius equal to 3 grids and (0,0) as the center. Specifically, ∆r2, the squared length of
∆x, is sampled uniformly from [0,3] grids, and θ is sampled uniformly from [0,2π]. We take the
square root of the sampled ∆r2 as ∆r and let ∆x= (∆r cosθ ,∆r sinθ). Then x is uniformly sampled
from the region such that both x and x+∆x are within the range of domain. For (θ ,∆θ) used
in L2 = ∑

K
k=1Ex,θ ,∆θ [‖Bk(θ +∆θ)vk(x)‖−‖Bk(θ)vk(x)‖]2, we uniformly sample θ and θ +∆θ

from discretized angles, i.e., 144 directions discretized for circle [0,2π]. We will study sampling only
small ∆θ in the future.

Training details. The model is trained for 14,000 iterations. At each iteration, the samples are
generated online. For the first 8,000 iterations, we update all learnable parameters, while for the
following iterations, we fix the learned v(x) and update the other learnable parameters. The initial
learning rate is set as 0.003 and is decreased by a factor of 0.5 every 500 iterations after 8,000
iterations. We use Adam [26] optimizer. The model is trained on a single Titan XP GPU. We apply
the maximum batch size that can fit into the single GPU, which is 90,000. It takes about 3.5 hours to
train the model on a single Titan XP GPU.

Baseline methods. In Table 1 of the main text, we compare the learned neurons with the ones from
other two optimization-based learning methods [3, 34]. For [3], we run the code released by the
authors (https://github.com/deepmind/grid-cells) to learn the model and compute gridness
scores for the learned neurons. For [34], we use the pre-trained weights released by the authors
(https://github.com/ganguli-lab/grid-pattern-formation) to get the learned neurons
and compute the gridness scores. Both the code of [3] and pre-trained weights of [34] use Apache
License V2.

Usage of data. In this paper, we mainly use simulated trajectories as training data, and thus we do
not think that the data contain any personally identifiable information or offensive content. The only
existing data we use is the pre-trained weights of the baseline method [34]. Under Apache License
V2, we believe it is fully approved by the authors to use the pre-trained weights.
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B.2 Learned patterns

Fig. 10 displays the autocorrelograms of learned patterns of v(x).

Figure 10: Autocorrelograms of the learned patterns of v(x).

Fig. 11 shows the learned patterns of u(x) with 16 blocks of 12 cells in each block. Regular hexagon
patterns also emerge.

Figure 11: Learned patterns of u(x) with 16 blocks of size 12 cells in each block. Every row shows the learned
patterns within the same block.

For learned firing patterns of v(x), we also display the histogram of grid orientations in Fig. 12,
where we do not observe clear clusters.

Figure 12: Histogram of grid orientations of the learned firing patterns of v(x).

In Fig. 13, we show the learned patterns of a block of B(θ). Each element shows significant
sine/cosine tuning over θ . For the other blocks, the patterns are all similar.

Gaussian kernel. Because A(x,x′) is a sharp Gaussian kernel, it contains a whole range of
frequencies in the 2D Fourier domain. The learned response maps of the grid cells span a range
of frequencies or scales too. Each module or block focuses on a certain frequency band, which
corresponds to the metric of the module. We assume individual place field A(x,x′) to exhibit a
Gaussian shape, rather than a Mexican-hat pattern (with balanced excitatory center and inhibitory
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Figure 13: Learned patterns of a block of B(θ). Each subfigure shows the value of an element in B(θ)
(vertical axis) over θ (horizontal axis).

surround) as assumed in previous basis expansion models [13, 34] of grid cells. The Mexican-hat or
difference of Gaussians pattern occupies a ring in the 2D Fourier domain. It corresponds to a module
in our model. But we use isotropic condition to enforce each module to be within a ring in the Fourier
domain, and we use different modules to pave the whole Fourier domain.

B.3 Error correction

We begin by assessing the ability of error correction of the learned system following the setting in
Proposition 1. Specifically, for a given location x, suppose the neurons are perturbed by Gaussian
noise: v = v(x)+ ε , where ε ∼N (0,τ2Id) and τ2 = α2(‖v(x)‖2/d), so that α2 measures the
variance of noise relative to the average magnitude of (vi(x)

2, i = 1, ...,d) and α measures the
relative standard deviation. We infer the 2D position x̂ from v by x̂= argminx′ ‖v−v(x′)‖2. Fig.
14 displays the inference error over the relative standard deviation α of the added Gaussian noise. We
also show the results using the learned u(x′) for inference (Eq. (36)). The system works remarkably
well even if α = 2.

We further assess the ability of error correction in long distance path integration. Specifically, along
the way of path integration, at every time step t, two types of errors are introduced to vt : (1) Gaussian
noise or (2) dropout masks, i.e., certain percentage of units are randomly set to zero. Fig. 15
summarizes the path integration performance with different levels of injected errors for T = 100,
using v(x′) (Eq. (35)) or u(x′) (Eq. (36)) for decoding. The results show that re-encoding at each
step helps error correction, especially for dropout masks. For Gaussian noise, even without decoding
and re-encoding at each step, decoding at the final step alone is capable of removing much of the
noise. Notably, with re-encoding, the path integration works well even if Gaussian noise with α = 1
is added or 50% units are randomly dropped out at each step, indicating that the learned system is
robust to different sources of errors.

20



Figure 14: Error correction results following the setting in Proposition 1. The error bar stands for the standard
deviation over 1,000 trials. “v” means decoding by Eq. (35), and “u” means decoding by Eq. (36). The squared
domain is 1m × 1m.

Figure 15: Path integration results with different levels of injected errors. Left: Gaussian noise. The magnitude
of noise is measured using the average of the squared magnitudes of the units in v(x) as the reference. Right:
dropout masks. Certain percentage of units are randomly set to zero at each step. “v” means decoding by Eq.
(35), and “u” means decoding by Eq. (36). The squared domain is 1m × 1m.

B.4 Non-linear transformation model

We test our method with a non-linear transformation model:

F(v(x),∆r,θ) = ReLU(exp(B(θ)∆r)v(x)), (38)

where we insert ReLU(a) = max(0,a) into the linear transformation model.

We use numerical differentiation to define directional derivative

fθ (v(x)) = [v(x+δx)−v(x)]/δ r, (39)

where δx = (δ r cosθ ,δ r sinθ), with pre-defined δ r. The reason for numerical differentiation is
because the derivative of ReLU is an indicator function, which is not differentiable. fθ (v(x)) needs
to be differentiable for minimizing the loss function (an alternative to numerical differentiation is to
use sigmoid function to approximate the indicator function).

We continue to use the same loss function except with the above two changes. Interestingly, regular
hexagon patterns continue to emerge (average gridness score 0.83, percentage of grid cells 70.21%).
See Fig. 16 for the learned patterns of v(x).

B.5 Path planning

Our grid cells model can be applied to path planning. Specifically, according to [36], the adjacency
kernel can be modeled by

Aγ(x,x
′) = E

[
∞

∑
t=0

γ
t1(xt = x′)|x0 = x)

]
= 〈v(x),uγ(x

′)〉, (40)
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Figure 16: Learned patterns of v(x) with the non-linear transformation model (Eq. (38)). Every row shows the
learned patterns within the same block.

where γ is the discount factor that controls the temporal and spatial scales, E is with respect to a
random walk exploration policy, and 1(·) is the indicator function. For random walk in open field,
Aγ(x,x

′) ∝ exp(−‖x−x′‖2/2σ2
γ ), where σ2

γ depends on γ .

To enable path planning, we need kernels of both big and small spatial scales to account for long and
short distance planning respectively. To this end, we discretize γ into a finite list of scales, and learn a
list of corresponding uγ(x

′) together with v(x) and B(θ) using the loss function in Section 5 of the
main text.

With the learned model, path planning can be accomplished by steepest ascent on the adjacency to
the target position. Specifically, let x̂ be the target or destination. Let x(t) be the current position in
the path planning process, encoded by v(x(t)). The agent plans the next displacement by steepest
ascent on

Aγ(x
(t)+∆x, x̂) = 〈v(x(t)+∆x),uγ(x̂)〉= 〈M(∆x)v(x(t)),uγ(x̂)〉, (41)

over allowed ∆x within a single step, where M(∆x) = exp(B(θ)∆r), with ∆x= (∆r cosθ ,∆r sinθ).
We plan

∆x(t+1) = argmax
∆x

Aγ(x
(t)+∆x, x̂), (42)

and let x(t+1) = x(t)+∆x(t+1).

The scale γ is selected as the smallest one that satisfies max∆x〈M(∆x)v(x(t)),uγ(x̂)〉> .2. We can
also use maxγ max∆x〈M(∆x)v(x(t)),uγ(x̂)〉 for scale selection.

We test path planning in the open field environment. The model is first learned using a single-scale
kernel function Aγ(x,x

′) = exp(−‖x−x′‖2/2σ2
γ ) where σγ = 0.07. Then we assume a list of

three scales: σγ = [0.07,0.14,0.28] and learn the corresponding list of uγ(x
′). The pool of allowed

displacements for a single step is defined as: dr can be 1 or 2 grids, while θ can be chosen from 200
discretized angles over [0,2π]. Fig. 17 demonstrates several examples of path planning in the open
field environment, where the agent is able to plan straight path to the target. When x(t) is far from the
target, kernel with large σγ is chosen, and as x(t) approaches the target, the chosen kernel gradually
switches to the one with small σγ . A planning episode is treated as a success if the distance between
x(t) and target is smaller than 0.5 grid within 40 time steps. The agent achieves a success rate of
100% (tested for 10,000 episodes).

For a field with obstacles or rewards, we can learn the deformed Aγ(x,x
′) and (v(x),uγ(x

′)) by
temporal difference learning with a random walk exploration policy as suggested in [36]. After
learning Aγ(x,x

′) and (v(x),uγ(x
′)), we can continue to use Eq. (42) for path planning. We shall

further study it in future work.
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Figure 17: Examples of path planning results in an open field environment. The target is shown as a red star.

B.6 Integrating egocentric vision

When the agent moves in darkness, it can infer its self-position by integrating self-motion, as
illustrated by our experiments on path integration. If there is visual input, the agent can infer its
self-position (as well as head direction) from the visual image alone. We extend our grid cells model
to study this problem of egocentric vision, which is important in computer vision.

Specifically, suppose the agent navigates in a 3D scene such as a room, and the height of the eye
(or camera) remains fixed. Suppose at 2D self-position x and with head direction θ , the agent sees
an image I , which is called a posed image. We use the vector representation v(x) in our original
grid cells model to represent the 2D self-position x, and use another vector representation h(θ) to
represent the head direction θ . If the agent changes its head direction from θ to θ +∆θ , h(θ) is
transformed to

h(θ +∆θ) = exp(C∆θ)h(θ). (43)

We assume that there are K modules or blocks in h(θ) and C is skew-symmetric. This is similar to
the transformation of v(x) in our grid cells model.

(x,θ) is called the pose of the camera (or eye), and we call (v(x),h(θ)) the pose embedding.

To associate the pose embedding (v(x),h(θ)) with the posed image I , we use a vector representation
or scene embedding s to represent the 3D scene which is shared across different posed images of the
same scene, and we learn a generator network Gβ that maps the embeddings s and (v(x),h(θ)) to
the posed image I:

I = Gβ (s,v(x),h(θ))+ ε, (44)

where the generator Gβ is parametrized by a multi-layer deconvolutional neural network with
parameters β , and ε is the residual error.

Given the above assumptions, we introduce two extra loss terms in addition to the loss function
described in Section 5 of the main text.

L3 =
K

∑
k=1

Eθ ,∆θ‖hk(θ +∆θ)− exp(Ck∆θ)hk(θ)‖2, (45)

L4 = E‖I−Gβ (s,v(x),h(θ))‖2. (46)

L3 is to model the head rotation, and L4 is to model the generation of the posed image.

During training, we alternatively update (Gβ ,s) and (v(x),B(θ),u(x′),h(θ),C) by gradient
descent on the overall loss function that is a linear combination of L0, L1 and L2 in the main text, as
well as L3 and L4 introduced above.

The learned model enables two useful applications:

(a) Novel view synthesis. Given an unseen pose (x,θ), the model can predict the corresponding
posed image by Gβ (s,v(x),h(θ)).

(b) Inference of pose, i.e., self-position x and head direction θ , from posed image I alone. Specifi-
cally, after training the model, we can learn an additional inference network Fξ that maps an observed
posed image I to its pose embedding v(x) and h(θ). The inference network is learned by minimizing
the `2 distance between the predicted and true pose embeddings: E‖(v(x),h(θ))−Fξ (I)‖2. Then
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Table 2: Average error of pose inference.

x1 x2 θ

Error .0225m .0230m 1.37o

given an unseen posed image I , we can infer the pose by argminx,θ ‖(v(x),h(θ))−Fξ (I)‖2. In this
task, Fξ (I) is the estimate of (v(x),h(θ)), and it is likely that this estimate contains error. This error
will translate to the error in the estimated (x,θ). Thus our theoretical analysis of error translation in
the main text is highly relevant, and the isotropic scaling condition is motivated by the analysis of
error translation.

We conduct experiments on a dataset generated by the Gibson Environment [41], which provides
tools for rendering images of different poses in 3D rooms. Specifically, we select 20 areas of size 2m
× 2m from different rooms and render about 28k 64 × 64 RGB posed images for each area. The
camera height is fixed and the camera can only rotate horizontally. The scene embedding vector s is
of 512 dimensions. Both v(x) and h(θ) are of 192 dimensions, partitioned into K = 16 modules.

Hexagon patterns still emerge in the learned v(x) (average gridness score 0.71). For novel view
synthesis, we evaluate the performance on 374k testing posed images. The resulting peak signal-to-
noise ratio (PSNR) between synthesized images and ground truth images is 25.17, indicating that the
model can generate reasonable unseen posed images. Fig. 18 demonstrates several examples of the
novel view synthesis results.

Figure 18: Examples of synthesizing novel views. Left: Ground truth unseen posed images. Right: synthesized
unseen posed images.

For inference of pose (self-position x= (x1,x2) and head direction θ ), we evaluate the performance
on the same 374k testing posed images and report the average inference error in Table 2. The
estimates are reasonably accurate.

B.7 Ablation studies

Isotropic scaling condition is necessary for hexagon grid patterns. A natural question is whether
the isotropic scaling condition (condition 2) is important for learning hexagon grid patterns. To
verify this, we learn the model by removing the loss term L2 (Eq. (19) in the main text) from the
loss function, which constrains the model to meet condition 2. As shown in Fig. 19, more strip-like
patterns emerge without L2, indicating that condition 2 is important for hexagon grid patterns to
emerge.

Assumption of u(x′)≥ 0 is not necessary for hexagon grid patterns. During training, we make
an assumption of u(x′)≥ 0 to make sure the connections from grid cells to place cells are excitatory
[44, 32]. However, we want to emphasize this is not a key assumption in our model. Fig. 20
demonstrates the learned neurons in the network without assuming u(x′) ≥ 0, where hexagonal
grid firing patterns also emerge. The average gridness score is 0.82 and the percentage of grid
cells is 87.50%. However, the grid activations can be either positive/excitatory (in red color) or
negative/inhibitory (in blue color).
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Figure 19: Learned neurons without loss term L2, which is the constraint on isotropic scaling condition. More
strip-like firing patterns emerge.

Figure 20: Learned neurons without the assumption of u(x′)≥ 0. Hexagonal grid firing patterns also emerge,
with the grid activations being either positive/excitatory (in red color) or negative/inhibitory (in blue color).

Skew-symmetric assumption of B(θ) is not important for hexagon grid patterns. To make
the linear transformation a rotation, we have assumed that B(θ) is skew-symmetric, i.e., B(θ) =
−B(θ)>. Nonetheless, this assumption is not important for the emergence of hexagon grid patterns.
Fig. 21 demonstrates the learned neurons without assuming that B(θ) is skew-symmetric. Hexagon
grid firing patterns emerge in most of the neurons, with only one block of square grid firing patterns.

Figure 21: Learned neurons without skew-symmetric assumption of B(θ). Hexagonal grid firing patterns
emerge in most of the neurons, with a block of square grid firing patterns.

Number and sizes of blocks do not matter. It is worthwhile to mention that the emergence of
hexagonal grid firing patterns in the learned neurons are not due to specific design of the block size
or the number of blocks. Fig. 22 visualizes the learned neurons by fixing the total number of neurons
at 192 and altering the block size and number of blocks. Hexagon patterns emerge in all the settings.
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Multiple blocks or modules are necessary for learning grid patterns of multiple scales. We
further try to fully remove the assumption of blocks or modules; i.e., we learn a single block of B(θ).
Fig. 23 shows the learned neurons and the corresponding autocorrelograms. All the learned neurons
share similar large scales, which indicates that the high frequency part of A(x,x′) may not be fitted
very well.

26



(a) Block size = 16

(b) Block size = 24

(c) Block size = 32

(d) Block size = 64

Figure 22: Learned patterns of v(x) with different block sizes. The total number of units is fixed at 192. Every
row shows the learned patterns within the same block.
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Figure 23: Left: learned neurons with a single block of B(θ). The firing patterns has a single large scale,
meaning that the high frequency part of A(x,x′) is not fitted very well. Right: autocorrelograms of the learned
neurons. Some exhibit clear hexagon grid patterns, while the other do not, probably because the scale of those
grid patterns are beyond the scope of the whole area.
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