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Abstract: We propose a novel methodology based on a Bayesian Gaussian condi-
tional random field model for elegantly learning the conditional dependence struc-
tures among multiple outcomes, and between the outcomes and a set of covariates
simultaneously. Our approach is based on a Bayesian hierarchical model using a
spike and slab Lasso prior. We investigate the corresponding maximum a posteriori
(MAP) estimator that requires dealing with a nonconvex optimization problem. In
spite of the nonconvexity, we establish the statistical accuracy for all points in the
high posterior region, including the MAP estimator, and propose an efficient EM
algorithm for the computation. Using simulation studies and a real application, we
demonstrate the competitive performance of our method for the purpose of learning
the dependence structure.
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1. Introduction

Graphical models are widely used in applications where the key interest
is to identify the conditional dependence structure among a set of variables
Y = (YO,...,Y®) € RP. A special class of graphical models is the Gaus-
sian graphical model (GGM), under which Y follows a multivariate Gaussian
distribution with mean zero and precision matrix ©. Estimating the underly-
ing dependence structure of a GGM is equivalent to estimating O, because it is
well known that the (7, j)th element of © being zero is equivalent to the condi-
tional independence of Y and Y, given the other variables. Owing to this
connection, sparse precision matrix estimation is an important and well-studied
research problem (Meinshausen and Bithlmann (2006); Banerjee, El Ghaoui and
d’Aspremont (2008); Friedman, Hastie and Tibshirani (2008); Rothman, Levina
and Zhu (2010); Ravikumar et al. (2011); Gan, Narisetty and Liang (2019)).

In many application contexts, a marginal Gaussian graphical model for the

outcomes alone is not sufficient, and it is important to consider covariate infor-
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mation. For example, in the analysis of gene expression data, it is of interest
to model genetic outcomes, given biomarker information, and in the context of
portfolio analysis, it is of interest to model asset prices, given historical pricing
information. In such applications, along with understanding the dependence re-
lationship among the many outcome variables Y, it is also important to study the
relationship between Y and the covariates X = (X, ..., X(@) € R4. Although
one can model (Y, X) jointly using a GGM to obtain the conditional relationship
between the Y’s, and between the X’s and the Y’s as a partial product of the
model, it is redundant to model the dependence structure among the X'’s, which
leads to inefficiency when ¢ > p. We discuss this issue in Section 2.

To learn the conditional dependence structures between the outcomes, and
between the outcomes and the covariates, Gaussian conditional random field
(GCRF) model has been recently considered (Sohn and Kim (2012); Yuan and
Zhang (2014); Wytock and Kolter (2013)). The GCRF model provides a more
suitable and precise description of the desired conditional dependence structure
compared to modeling the entire Gaussian graphical model on both X and Y, or
modeling only the dependence structure among Y by eliminating the effects of X
using a multivariate regression model (Cai et al. (2012); Rothman, Levina and
Zhu (2010); Yin and Li (2011); Deshpande, Rockovd and George (2017)). Esti-
mation methods based on an ¢1-penalization for the GCRF model have been pro-
posed, and their theoretical properties for estimation accuracy have been studied
by Wytock and Kolter (2013) and Yuan and Zhang (2014). A GCRF estimation
using an {i-penalization for latent X is studied by Frot, Jostins and McVean
(2019). Although an ¢;-penalty encourages sparsity, while being convex, it has
some well-known limitations, such as the bias it induces for large parameter values
(Fan and Li (2001); Lam and Fan (2009); Zhang (2010); Zhang and Zhang (2012);
Loh and Wainwright (2017)). Moreover, the theoretical results for the structure
recovery of an ¢1-penalization-based GCRF require restrictive mutual incoherence
conditions (Wytock and Kolter (2013)). In this paper, we provide an alternative
framework for estimating the Gaussian conditional random field model using a
Bayesian framework with spike and slab Lasso priors (Roc¢kova (2018); Rockova
and George (2018)). The maximum a posteriori (MAP) estimator can be viewed
as a penalized likelihood estimator with a nonconvex penalty function induced
by the spike and slab Lasso prior. This has been found to have good regular-
ization properties in the contexts of linear regression (Rockova (2018); Rockova
and George (2018)) and Gaussian graphical models (Gan, Narisetty and Liang
(2019)).

We address novel theoretical and computational challenges posed by the
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GCRF model under the Bayesian setting. The likelihood corresponding to the
GCRF model need not satisfy the restricted strong convexity property (Loh and
Wainwright (2017)). Furthermore, the Bayesian penalty function corresponding
to the spike and slab Lasso prior need not have a bounded second derivative for
all the parameter values. These are new challenges related to studying the prop-
erties of our MAP estimator. For example, without such properties, local optima
may not be unique, and general results from existing works (Loh and Wainwright
(2017)) on support recovery for nonconvex optimization are not applicable. De-
spite the challenges imposed by both the likelihood and the nonconvexity, we
show that all points from the high posterior density (HPD) region, including the
MAP estimator, have an optimal convergence rate in the Frobenius norm. In
addition, we show that there exists at least one local optimum that converges in
the /o -norm and achieves support-recovery consistency, without the incoherence
condition required by Wytock and Kolter (2013). We also show that the opti-
mal convergence rate in the /-norm holds for all local modes of the fractional
posterior, that is, the posterior defined with respect to a fractional likelihood.
Our theoretical results (presented in Section 3) are stronger than those on the
Gaussian conditional random field models with an ¢;-penalty of Yuan and Zhang
(2014) and Wytock and Kolter (2013). More generally, our results provide novel
contributions to the theoretical properties of nonconvex penalization, in the spirit
of Fan and Li (2001), Lam and Fan (2009), Negahban et al. (2009), Zhang (2010),
Zhang and Zhang (2012), Loh and Wainwright (2015), and Loh and Wainwright
(2017).

We propose an efficient EM algorithm for the computation (described in
the Supplementary Material) that has the same computational complexity as
the state-of-the-art optimization algorithm for the Gaussian conditional random
field with an ¢;-penalty (Wytock and Kolter (2013); Yuan and Zhang (2014)).
Our empirical studies in Section 4 demonstrate that the proposed Bayesian reg-
ularization approach provides competitive performance compared with that of
alternative methods, both for estimation and structure recovery.

2. Bayesian Regularization for Gaussian Conditional Random Fields
2.1. Model formulation

Consider a p-dimensional outcome Y and a g-dimensional covariate X. As
an analog to the conditional random field for discrete variables proposed by Laf-
ferty, McCallum and Pereira (2001), the Gaussian conditional random field model
(Sohn and Kim (2012); Yuan and Zhang (2014); Wytock and Kolter (2013)) as-
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sumes the following conditional density function of Y, given X:
1
p(Y | X,A,0) o \/det(A) exp {—2YTAY - XTGY} : (2.1)

where A is a p X p positive-definite and symmetric matrix, and © € R?*P is a
matrix of dimension ¢ x p. Throughout, we use ® as a compact notation for
parameters A and ©. Given a set of n random samples (X;,Y;) ;, the corre-
sponding log-likelihood function is given by

YD) = g <log det(A) — tr(SyyA + 25,0 + A‘1®T5m6)) : (2.2)

where Sy, = (1/n) i, ViYiT, Sey = (1/n) Y1y X['Y;, Spe = (1/n) S0, X X[
and the constant terms not involving the parameters are omitted. Irrelevant to
the marginal distribution of X, the sparsity patterns of ® determine the condi-

tional dependence relationship between the components of Y and the dependence
between X and Y:

Q=0 <+ X0 1y | x-0 y-0),
Aij=0 <= YO uyW|x y-(d)

where 1L denotes independence. Moreover, the GCRF model avoids modeling
the dependence structure among the X'’s, which is beneficial both computation-
ally and theoretically when the dimension of X is large. We now discuss two
alternative modeling frameworks that produce descriptions of the conditional de-
pendence structure.

2.1.1. Joint Gaussian graphical model on (X,Y)

One common approach used to learn the dependence structure is to model
(X,Y) using a joint graphical model. With the additional assumption that X
is normally distributed with mean zero, the GCRF model implies that (X,Y)
jointly follows a multivariate Gaussian distribution,

X
()~N 0
Y

Therefore © and A can be obtained as a partial outcome from fitting a large

-1
Qpr ©

o A (2.3)

Gaussian graphical model jointly on (X,Y’) using existing algorithms on high-
dimensional Gaussian graphical models such as the graphical Lasso as done by
Witten and Tibshirani (2009).
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This approach, however, is not optimal if we are only interested in © and
A. When the dimension of X is much larger than the dimension of Y, the com-
putational cost is dominated by estimating the graphical structure of X, which
is not of interest. Theoretically, the error from estimating 2., may affect the
estimation accuracy when estimating © and A, because the accuracy is affected
by the degree of sparsity of the entire graph (Bickel and Levina (2008); Cai, Liu
and Luo (2011); Ravikumar et al. (2011); Loh and Wainwright (2015, 2017); Gan,
Narisetty and Liang (2019)). To avoid estimating the irrelevant structure among
the X variables, one can work with the profile likelihood

((®) = max £(Qyz, O, A),

where Z(QIQ,,@,A) = log[[i, p(X:,Y: | Qua,©,A) is the log-likelihood of the
joint Gaussian distribution (2.3). As shown by Yuan and Zhang (2014), the profile
likelihood #(®) is exactly equal to the GCRF likelihood defined by (2.2). Although
it can be viewed as the profile likelihood of a joint Gaussian graphical model on
(X,Y), our GCRF model makes no assumption on the marginal distribution of
X, and is even applicable when X is discrete.

2.1.2. Covariate-adjusted graphical model

The other alternative modeling framework that can be used to learn the con-
ditional dependence structure is the multivariate regression framework. The con-
ditional distribution of Y given X from the GCRF model (2.1) can be reparametr-
ized as a multivariate regression model with B as the regression coefficient matrix,
and A as the error precision matrix, as follows:

Y| X ~N(BX,A™"), B=-A'el. (2.4)

Within this regression framework, referred to as the covariate-adjusted graphical
model, several approaches have been proposed to estimate B and A under sparsity
assumptions (Cai et al. (2012); Rothman, Levina and Zhu (2010); Yin and Li
(2011); Deshpande, Roc¢kova and George (2017)).

Although A indeed reveals the conditional dependence structure among the
elements of Y, the sparsity pattern of B is different to that of ©. The regression
coefficients B;; indicate how the conditional mean E(Y¥|X) depends on the X
variables, without conditioning on the other Y variables. In contrast, ©;; reflects
the conditional dependence between Y and X()  given all other X and Y
variables. Apart from the differences in the sparsity structures, another major
difference between the two parameterizations is that the log-likelihood function
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of the GCRF model parameterized by (0, A) is convex, whereas that from the
multivariate regression, parameterized by (B, A), is nonconvex (Yuan and Zhang
(2014)).

2.2. Proposed Bayesian regularization formulation

Our goal is to estimate the parameters © and A for the GCRF model (2.1)
under the assumption of sparsity. Although ¢;-regularization is a natural choice
for the GCRF model as considered by Yuan and Zhang (2014) and Wytock and
Kolter (2013), this approach induces bias on the parameters with large values.
Furthermore, it requires strong mutual incoherence assumptions for consistent
graph structure recovery. This motivates us to consider an alternative formulation
from the Bayesian regularization framework owing to its promising performance
in recent works (Rockovd and George (2016, 2018); Gan, Narisetty and Liang
(2019)).

We consider the spike and slab Lasso prior, which takes the form of a mixture
of two Laplace distributions:

mss(0) = n - LP(6;v1) + (1 —n) - LP(0; vo), (2.5)

where LP(0;v) = 1/(2v)e~1?1/? denotes the density function of a Laplace distri-
bution with scale parameter v, the two scale parameters satisfy v > vg > 0, and
71 is the mixing weight. Spike and slab priors with Gaussian components have
long been used for Bayesian variable selection (George and McCulloch (1993);
Ishwaran and Rao (2005); Narisetty and He (2014)). More recently, the spike
and slab Lasso prior has been shown to yield desirable shrinkage properties for
sparse estimation (Rockovd and George (2014); Rockova (2018); Rockovéa and
George (2018); Gan, Narisetty and Liang (2019)).

The following alternative representation of the spike and slab Lasso prior
(2.5) may help to explain the motivation behind such a mixture representation:

w(0]y) = LP(0;v1)7 - LP(6; vo)(l_ﬂ, ~v ~ Bern(n),

where the binary variable v can be interpreted as the indicator for € being a
signal or noise. When v = 1, the unknown parameter 6 is expected to represent
a signal taking a relatively large value, and is modeled by a Laplace distribution
with a larger scale parameter vy (i.e., the “slab” component); when v = 0, the
unknown parameter 6 is expected to represent noise, taking a value close to zero,
and is modeled by a Laplace distribution with a small scale parameter vy (i.e.,
the “spike” component).
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We place the spike and slab Lasso prior on all entries of ® and the upper-
triangular entries of A (owing to symmetry), and place a uniform prior on the
diagonal entries of A:

X [HT"SS(Aij)

i<j

X ! H WUnif(Au‘)] :

The support of the joint prior distribution is the set {(0,A) : A = 0,]|Al2 < R},
where A > 0 means that A is positive definite. We constrain the matrix Lo-

m(®) = !HWSS(Gz‘j)

norm of A to be upper bounded. Although this additional side constraint adds
a restriction to the high-dimensional parameter space, it is not that restrictive
because the upper bound R is allowed to change with (n,p,q) and can be quite
large.

2.3. MAP estimator: a penalized likelihood perspective

For computational efficiency, we estimate (©,A) using the posterior mode.
The negative log posterior can be written as

L(®) = —((®) + Y pengs(Oy) + »_ pengs(Ayj), (2.6)
]

1<j

where £(-) is the log-likelihood function (2.2), and pengg(-) is the negative loga-
rithm of the spike and slab Lasso prior (2.5):

pengg(0) = —log <2zlea|/”1 + :12;[:789/UO>. (2.7)
Finding the MAP estimator of (©,A) is equivalent to solving the optimization

problem
argmin  L(P). (2.8)

O,A>0,||Al|2<R

The minimizer of (2.6) has a natural interpretation as the penalized likelihood
estimator using the penalty function (2.7), which is induced by the Bayesian
spike and slab Lasso prior. In the penalized likelihood framework, the derivative
of a penalty function pengg(f) often plays the role of thresholding. An ideal
property of a penalty function is to threshold adaptively: pengg(6) is large when
6 is small, so the resulting estimate is exactly zero, and pengg(#) is small when
0 is large, so the resulting estimate is almost unbiased, without being affected
by the thresholding value. It is well known that the Bayesian penalty induced
from a single Laplace prior LP(6#;v) is equivalent to the ¢;-penalty (Tibshirani
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(1996); Park and Casella (2008)), the derivative of which takes a constant value,
and therefore, does not possess such an adaptive property, which is particularly
helpful for achieving structure recovery properties.

In the proposition below, which is a generalization of Lemma 1 of Rockova
and George (2018), we show that the first and second derivatives of our Bayesian
penalty function, induced by the spike and slab Lasso prior, can be linked to the

mean and variance of a family of binary random variables.

Proposition 1. pengg(6) is a concave function when 6 is in RT, with

perlg(9) = EZ(9) = "0) , 1= 10)
U1 Vo

1 1)
pents(6) = = Var(Z(6)) = o)1~ ) (-~ o)
Vo V1
where Z(0) is a binary random variable taking the value 1/vy with probability
n(0), and the value 1/vy with probability 1 — n(0), where n(0) is given by n(f) =
WLP(0:01)/(nLP(B: 1) + (1 — ) LP(; vp)).

A consequence of Proposition 1 is that the spike and slab Lasso prior leads
to an adaptive regularization procedure: pengg(6) is a decreasing function with
respect to the magnitude of 6. In particular, the penalty at 6 is a weighted
average of a large penalty 1/vg and a small one 1/v1, where the weights 1(#) and
1—mn(0) are the conditional probabilities of § belonging to the “slab” and “spike”
components, respectively.

3. Theoretical Results

For our theoretical studies, we evaluate the performance of our Bayesian
procedure under the frequentist data-generating mechanism, that is, under the
assumption that the data Y are generated based on a fixed set of parameters ®°.
This is a common practice in theoretical analyses of Bayesian methods such as
those of Ishwaran and Rao (2005), Narisetty and He (2014), Castillo, Schmidt-
Hieber and Van der Vaart (2015), and Gan, Narisetty and Liang (2019).

We first provide the optimal fs-error bounds for all points from the HPD
region,

HPD = {® : 7(® | Data) > n(®° | Data)}
={®:L(®) < L(D")}, (3.1)

and show that there exists at least one local optimum in the HPD that has the
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optimal error rate in the ¢, -norm, and that it has the same support as the true
graph. We further show that the optimal error rate in the £,,-norm holds for all
local modes of the fractional posterior, that is, the posterior defined with respect
to a fractional likelihood.

Our results for the optimal error rate in the /,.-norm lead to support re-
covery consistency, without the incoherence condition required by Wytock and
Kolter (2013). Note that some existing works also do not require the incoherence
condition, but there are important differences between the respective results. The
results for the smoothly clipped absolute deviations (SCAD) penalty in Fan and
Li (2001) are valid for only one of the local solutions, whereas our results ascer-
tain the consistency for all solutions. The results of Cai, Liu and Luo (2011) are
applicable only to unconditional graphical models, and are not directly applica-
ble to settings with covariates that use the GCRF model, which is quite different
from unconditional graphical models.

Notation. Denote the true parameters as ®%, A and ©°. Let Sy = {(4,7) :
@gj # 0} denote the signal set, 65, = max(; jes, |<I>gj| be the minimal signal
p+q) card{j : @?j # 0} be the maximum degree of the
underlying conditional graph. We use Apin(A) and Apax(A) to denote the largest

strength, and d = max;_y,(

and smallest eigenvalues, respectively, of a symmetric matrix A, and || - ||, to
denote the { /lo operator norm of a matrix. Define

n -1

cer = [1(0") lloos a0 = IA") M lles et = SI1H55, llocs

where H := V?{(®°) denotes the Hessian matrix evaluated at ®°, and Hg lso
denotes a submatrix of H~! with row and column indices from the set Sp. Note
that H is a matrix with dimension equal to the total number of parameters in ®.
Furthermore, define K, = 8 max; X, + 8 max; ((AO)_I@TEgz@(AO)_I)n., where
30 denotes the covariance matrix of (X,Y), and X0, is the covariance matrix of
X.

Note that the symbols used in our theorems and proofs do not represent fixed
constants, and may vary with n, unless otherwise specified. We drop the subscript
n from symbols; otherwise, we would write p = p,,, and ®° = ®2. Our notation is
similar to that used in Loh and Wainwright (2017). In particular, this implies that
the minimum and maximum nonzero entries of the true parameters can depend
on the sample size. Note that K, is upper bounded by the maximum variance
of all variables. Therefore, K, can be upper bounded by a fixed constant not
depending on n if the the variances of the covariates and the response variables
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are upper bounded.

3.1. Preliminary results

Before presenting our results, we first present some preliminary results from
the literature on the log-likelihood function ¢(®).

In our analysis, we examine ¢(®) in a small neighborhood around the true
parameter value ®°. Expand V/(®° + A) as follows:

VI(@°) + H - vec(A) + R(A), (3.2)

where H = V2((®°) is the Hessian matrix, and R(A) = V(P 4+A)—-V{(P°)—H-
vec(A) denotes the residual. The following lemma provides some useful bounds
for VL(®) and R(A). We omit the proof here, because the first bound is the same
as Proposition 4 in Yuan and Zhang (2014), and the second bound is similar
to Lemma 3 in Wytock and Kolter (2013), with their notation of ||Szz|lcc <
c% replaced by ||Szzlle < 9p2, where pa = 1.5Amax(X%,). Note that our log-

likelihood function ¢(®) differs from theirs by a factor n/2.

Lemma 1. Assume data are generated from a GCRF model with true parameter
0,

1. We have ||V£(®°) |0 < Kiy/nlog(10(p + q)2/n) with probability 1—eq, given
the sample size n > 1log(10(p + q)% /o), where € is any constant in (0,1).

2. If |Allo < (1/d) min{1/3c}, ceo/2}, then (2/n)||R(A)|lso < 1,854d%cEcho
p2l|Allsos where pa = 1.5 Amax(22,.).

The local strong convexity of the log-likelihood function ¢(®) plays an impor-
tant role in our theoretical analysis. Following Yuan and Zhang (2014), we define
the local restricted strong convexity (LRSC) constant, a quantity that measures
the local curvature of £(®) at ®:

(VD0 + A) — V), A)
1Al

B(®%: r, a) = inf {

[A]l2 <7, [|Asg

1 §a||ASo|1}-

We next state an assumption that is needed in our theoretical analysis.

Assumption 1. Assume that the covariate vector X is from a random design

with covariance matriz 2°

o, and satisfies the following sg-sparse restricted isom-
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etry property condition:

T
inf (ZTgézZ cu# 0, ||lullo < 50> > 0.5,

ul' S pu

sup <uT§]2xu U 7é 0, HU”O < S()> < 15,
T

)\max[(eo) Sx:ceo] <14

Amax[(©)"£2,00]

The same assumption is made by Yuan and Zhang (2014) to analyze the GCRF
model with the £1-penalty, and is also frequently used in compressed sensing. It is
well known that this condition holds with high probability when X is sub-Gaussian,
with a well conditioned population covariance matriz satisfying certain regularity
assumptions on the eigenvalues, and n sufficiently large, for example, n > O((p-|-
s0) log(p+ q)) (Candes and Tao (2007); Yuan and Zhang (2014)).

The following lemma, which summarizes Proposition 3 from Yuan and Zhang
(2014), ensures that B(®Y;r, a) is positive for a GCRF model with high proba-

bility when the sample size n is sufficiently large. That is, ¢(®) behaves like a
1 < al|lAg, |1, although £(®) is

strongly convex function locally in the cone ||Age
not a strongly convex function at ®V.

Lemma 2. Let

p1 = 0.5min Amax(A”) " Amin(22,)), p2 = L5Amax(E0,),

Amax[(89) 7%, 9
ro:min 0-5)\min(A0)7 0'13\/ a; [( p) xT ] y
2

_ L1 . )\min<3A0)
Po = {40Amax<A0> o [1’ 16X ma <<@°>ng£@0>] } '

Assume that Assumption 1 holds with
_ P2\ 2
So = |S()‘+ ’74<p1>0z |S()‘-‘ (3.3)

Then, we have B(®%;r, o) > npy, for r < ro.
3.2. Rate of convergence for all points in the HPD

We first show that for any point ® in the HPD region, its error term A =
® — ®° belongs to a cone if 1/v; is chosen properly.
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Lemma 3. If 1/v; > 2|[{(®°)||c0, then for any ® = ®° + A such that L(®) <
L(9%), we have | Ag:|l1 < af|As, |1, where a =1+ 2vq /vo.

We then show that all points from the HPD region, including the global max-
imum and all stationary points of the posterior distribution with L(®) < L(®9),
are close to the true parameter value within an optimal statistical precision. Our
analysis allows the quantities (vg, v1, R) and the model size p, ¢, and |Sy| to grow
with the sample size n. However, we suppress this dependence on n in our nota-
tion, for convenience.

Theorem 1. (Rate of convergence for all points in the HPD). Assume Assump-
tion 1 holds, with so defined in (3.3). If

(i) the prior hyperparameters vy, and vy satisfy

VU)o _ 1 _, floglta) 1, [loalpta)

n T onu n nvg n
for some constants Cy > C1,
(ii) the matriz norm bound R satisfies R < 2Amin(A°)\/T0/en, and
(iii) the sample size n satisfies n > log(10(p + q)?/eo),

then for any ® from the HPD region (3.1), we have

1
Hq) _ (I)O”F <g, = Co+ C1 |50’ Og(p+Q)
Bo n

with probability no less than 1 — ey, where €y is a constant from (0, 1).

Our conditions and theoretical results require the following condition on the
magnitude of the relationship among (p,q,n): (p + so)log(p + ¢) = o(n). This
ensures that Assumption 1 holds with high probability, and that the F-norm
estimation error bound of Theorem 1 goes to zero. This is not a restrictive
requirement because our focus is high-dimensional settings where dim(X) = ¢ >
dim(Y') = p, and it still allows the covariate dimension ¢ to be much larger than
the sample size.

A proof of Theorem 1 is provided in the Supplementary Material. Our proof
is motivated by Theorem 1 of Yuan and Zhang (2014). However, the proof
technique in Yuan and Zhang (2014) is tailored to the Lasso penalty, which needs
to be extended to handle our concave penalty function, pengg().

Theorem 1 does not impose any conditions on the mixing weight 1 and the
difference between the two scale parameters vy and vy. Therefore, Theorem 1
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includes special cases such as n = 0, n = 1, and v; = vg. In these cases, the
spike and slab Lasso penalty degenerates to the ordinary Lasso penalty with
one unique global optimum. For the Lasso penalty, Yuan and Zhang (2014) es-
tablished a similar error bound for the global optimum. However, our result is
stronger because it establishes the error bound for all points in the HPD, includ-
ing the global optimum.

3.3. Faster rate of convergence for a local optimum and its sparsistency

The result in Section 3.2 is for all points in the HPD region. Next, we provide
stronger results for the estimation and selection accuracy for at least one local
optimum in the HPD.

Theorem 2 (Rate of convergence in the {,-norm and sparsistency). Assume
Assumption 1 holds, with sy defined in (3.3). Then, there exists a stationary
point ® in the HPD, such that

~ 1
bge =0, [&— q>0||oo<rn._4chl+co,/Og“q

with probability 1 — €y, if the following conditions hold:
(i) the prior hyperparameters vg,v1, and n satisfy 0 < n ~ O(1)

(Ve 1 _ )08+ q) W LCECR) p+ q)
n ~ nun n ’

for some constants Cy > C1;

(i) 6%, > 1, + 8o, where &g > [nlog(p + q)] =2, with 0 < a < 1 and

1 1 coo  2pengg(0T)
3esod’ 3,708d2 ¢ csope’ 2d  n(cy + 1/ch)

Tn < min{

(iii) the sample size n satisfies n > log(10(p + q)?/eo).

The condition §°. > 7, + dp is the usual beta-min condition, meaning that

the minimal signal strength in ®g, should be bigger than the ¢,-error bound by
a small margin &y, where &y can go to zero at a rate slower than [nlog(p + q)]~*.
Under the beta-min condition, Theorem 2 ensures that mm(l 7)ESo |¢”] > do.
Consequently, ® achieves sparsistency; that is, <I>SL =0 and <I>SO #0.

In contrast to Theorem 1, Theorem 2 requires 7 to be strictly between zero

and one, and vy to be strictly bigger than vy; thus the ordinary one-component
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Laplace prior, that is, the Lasso penalty, does not satisfy the assumptions here.
Note that our theoretical results do not require that 1 be small and decrease to
zero with the dimension, nor do they allow vy /vy to diverge. This appears to
contradict prior results on Bayesian variable selection using spike and slab pri-
ors, such as those of George and McCulloch (1993), Ishwaran and Rao (2005),
Narisetty and He (2014), and Castillo, Schmidt-Hieber and Van der Vaart (2015).
The main reason for this difference is that these approaches consider the inte-
grated posterior on all models, after integrating out the continuous model param-
eters owing to which they require a multiplicity adjustment for a large number of
models. In contrast, because our theoretical analysis studies the posterior on the
continuous model parameters directly, our conditions on the prior parameters vy
and 77 do not have a direct correspondence with the previous choices. In partic-
ular, our theoretical results are under the condition that v; is not much larger
than vy, because a larger gap between them would imply more nonconvexity of
the negative log posterior, which makes it difficult to compute and theoretically
study its stationary points.

A proof for Theorem 2 is provided in the Supplementary Material, which
is motivated by similar results by Ravikumar et al. (2011), Wytock and Kolter
(2013), Loh and Wainwright (2017), and Gan, Narisetty and Liang (2019). We
start with a restricted optimization problem

A>(§%?3=OL((I))7 (3.4)
and then show that there exists a solution ® to (3.4) that satisfies || ® —®°||oe < 7.
The last and most important step is to prove that ® is indeed a local minimizer
of the objective function L(®) by showing that L(®) > L(®), for any ® in a small
neighborhood of ®.

Previously, under mutual incoherence conditions, Wytock and Kolter (2013)
showed that the convergence rate in the f.-norm for the GCRF model with
{1- penalty is of the same order as ours. However, their approach requires the
restrictive mutual incoherence condition, that is, ||Hges, (Hs,s,) 'l < 1, which
our approach does not require. We illustrate that this condition can be easily
violated in the following toy example. Consider a simple Markov chain GCRF
model in Figure 1(a), with

1p0 080 0
A= |plp|, ©°=|0pB0
0pl 0 0 pg
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Figure 1. Violation of mutual incoherence condition for the chain graph.

In Figure 1(b), we plot [[Hses,(Hs,s,) 'l for five different choices of 8. For
each (3, the mutual incoherence condition is violated once p is larger than some
threshold.

3.4. On the uniqueness of the stationary points in the HPD

Although Theorem 2 asserts that there is one stationary point in the HPD
region that has a desired rate of convergence, it is natural to ask whether the
stationary point is unique. Unfortunately, we cannot ascertain this directly for
the posterior distribution using the spike and slab regularization. However, if
we consider a slightly modified version of the negative log-posterior minimization
(2.6) given by

L. (©) = —{(P) + kPen(®), (3.5)

where k is a parameter that enhances the amount of Bayesian regularization, the
stationary solution can be proved to be unique for some choices of k.

The modified objective function (3.5) can be viewed as the negative log-
posterior corresponding to the fractional posterior distribution .(© | Data),
which is the posterior distribution defined with respect to the likelihood of the
data raised to the power 1/k, that is, 7. (© | Data) o< exp(¢(®)/x — Pen(®)). The
HPD region corresponding to this fractional posterior distribution can be defined
accordingly as

(@ Lo(®) < Lu(@°)}. (3.6)

Next, we show that Theorem 1 and Theorem 2 can be extended to cover
the fractional posterior. In addition, we can show that with a proper choice of
hyperparameters, the HPD region is unimodal, with a unique stationary point
that achieves the desired /.-accuracy.

Theorem 3. Assume Assumption 1 holds, with so defined in (3.3). Further,

assume the following conditions hold:
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(i) k= log(p + q);

(ii) the prior hyperparameters vg,vi, and n satisfy 0 <n~ O(1) < 1,

D% || 5 1 1
[Ve(@2)l <" og(p+q)7 Ko og(p + Q)’
n nuy n nuvg n

for some constants Cy > C1;
(iii) the matriz norm bound R satisfies R < 2Amin(A°)\/T0/en; and

(iv) the sample size n satisfies n > log(10(p + q)?/eo). Then, with probability
going to one, for any point in the HPD region (3.6), we have
_ Co+C1 [|So|log(p+ q)

b — | p < = .
& - a0 <o, = 2E :

Further, if we assume ry, satisfies 6°. —r, > &g, where 6o > [nlog(p + q)]~/2,
with 0 < a < 1, and

1 1 ceo  2penyg(0T) }

< mi
Tn = T { 3esod’ 3,708d2ck chope’ 2d " n(cy + 1/ch)

then the unique stationary point ® from the HPD region satisfies

- ~ log(p +
(I)SS =0, H‘I)—(I)OHOO <r,:= 4CH<01+C(]) g(]:lq),

with probability converging to 1.

4. Empirical Results
4.1. Simulation studies

In the simulation studies, we compare different methods in terms of their
parameter estimation, structure recovery, and prediction. Following Yuan and
Zhang (2014), we generate X from a zero-mean multivariate Gaussian distribution
with a dense precision matrix ©%, = 0.5(J + I), where J is a matrix of ones,
and generate Y given X from the GCRF model (2.1), with the true (6Y A°)
generated as follows. The precision matrix A° is generated as a random graph,
similar to the setup of the random graph in Peng et al. (2009). We first generate
the entries in the precision matrix following the distribution of S x B x Uy, where
(S+1)/2 ~ Bern(0.5), B ~ Bern(0.1), U; ~ Uniform(1,2), and the three random
variables are independent. We then rescale the nonzero elements to ensure the
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positive definiteness of A. Specifically, we first sum the absolute value of each

row, and then divide each off-diagonal entry by 1.1 fold of it. We then average

the rescaled matrix with its transpose to ensure symmetry. Finally, the diagonal
entries are all set to one. We consider the following forms of true ©°:

1. Model 1 (Random Graph): entries in ©Y are generated as S x B x Uy where

S and B are random variables, as defined before, and are independent of

Us ~ Uniform(0.5,1).

2. Model 2 (Banded Model 1): for the ith row of O, the ((i —1)/|g/p] + 1)th
element is generated from S x B x Us. All other entries are zero.

3. Model 3 (Banded Model 2): the ith row of % has probability 0.1 of being
nonzero and probability 0.9 of being all zero; when the ith row of the @Y is
nonzero, its entries are generated from the distribution of S x B x Uy, where
(S+1)/2 ~Bern(0.5), B ~ Bern(0.1), and Uz ~ Uniform(0.5, 1).

For each model, we fix the observation size as n = 100 and the dimension
of the outcome vector as p = 50, and take the covariate dimension ¢ to be
(50,100, 200, 500). The results are summarized based on 100 replications. We re-
port three metrics to measure the estimation, selection, and prediction accuracy
of each method: 7) for the estimation accuracy, we use the Frobenius norm dis-
tance (denoted as Fnorm); #i) for the selection accuracy of the structure recovery,
we use the Matthews correlation coefficient (MCC):

TP x TN — FP x FN

MCC = ;
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

where TP, TN, FP, and FN are true positives, true negatives, false positives, and
false negatives, respectively; iii) for the prediction accuracy, we use the average
MSE on an independently generated test data set of size 100. Note that it may
not be meaningful to compare results across different values of ¢, because the
level of sparsity in (Y, A°) and the magnitude of the signal in A change with
q. Thus, we recommend comparing the results across different methods for the
same value of q.

In the simulation studies, we compare our method, denoted as BayesCRF,
with the following alternative methods: 1)the GCRF model with ¢;-regularization,
based on the implementation of Wytock and Kolter (2013), and denoted as L1-
GCRF; 2) a joint graphical Lasso (Friedman, Hastie and Tibshirani (2008)) for
(X,Y), denoted as GLasso; and 3) a covariate-adjusted graphical model proposed
by Cai et al. (2012), denoted as CAPME. Because CAPME does not directly es-
timate ©, we first estimate B, the regression coefficient matrix, and then use



18 GAN, NARISETTY AND LIANG

Table 1. Banded Model 1: Performance comparison of different methods. Larger values of
MCC indicate better performance while smaller values of Fnorm and Test Error indicate
better performance. Best performing method is highlighted in boldface.

n = 100,q = 50,p = 50 n = 100, ¢ = 100, p = 50
MCC Fnorm Test Error MCC Fnorm Test Error
GLasso 0.330(0.022)  4.223(0.040)  1.279(0.032)  0.314(0.015)  5.316(0.035)  1.390(0.035)

CAPME -0.037(0.001) 30.346(2.709)  1.455(0.046) -0.036(0.012) 43.642(3.320) 1.696(0.046)
LI-GCRF  0.130(0.020)  3.050(0.110) 1.250(0.028) 0.216(0.021)  3.595(0.194) 1.309(0.031)
BayesCRF 0.409(0.026) 2.498(0.094)  1.278(0.032) 0.452(0.024) 2.453(0.077) 1.335(0.031)
n =100, q = 200, p = 50 n =100, q = 500, p = 50
MCC Fnorm Test Error MCC Fnorm Test Error
GLasso 0.394(0.012)  9.118(0.015)  2.051(0.053) 0.304(0.046) 12.684(0.162) 2.777(0.187)
CAPME -0.033(0.010) 63.073(6.914)  2.294(0.069)  0.071(0.004) 13.735(1.546)  2.232(0.060)
) )
)

LI-GCRF  0.361(0.015)  5.369(0.228)  1.489(0.031) 0.412(0.011) 8.628(0.333)  1.665(0.041)
BayesCRF 0.606(0.015) 3.163(0.110) 1.431(0.032) 0.674(0.011) 6.297(0.143) 1.555(0.035)

the relationship given by (2.4) to recover ©. We fix vy = /1/(nlog(p + q)),
v1 = 3vg, and 1 = 0.5 for our BayesCRF method, with @ = 1 corresponding to
the complete posterior. We choose the tuning parameters for the aforementioned
alternatives using cross-validation, as suggested in the respective papers.

The results for the banded Model 1 are provided in Table 1. The results for
the other models are presented in the Supplementary Material owing to space
limitations but we comment on them here. We have the following conclusions
from the results: 1) Our BayesCRF method achieves the best performance for
parameter estimation (based on Fnorm), support recovery (based on MCC), and
prediction (based on Test Error) in most of the cases considered. These results
can be attributed to the adaptiveness of the spike and slab Lasso penalty. 2) The
performance of GLasso is not as desirable as that of BayesCRF, likely because of
the accumulation of errors in estimating the structure of X, which is not relevant
to the parameters of the GCRF model, as discussed in Section 2. 3) CAPME
exhibits poor performance in terms of the MCC and Fnorm measures, because it is
not designed to detect the conditional dependence structure of interest. However,
it works well for prediction because this depends on B alone. 4) L1-GCRF
performs worse than BayesCRF, but performs better than the other competing
methods in general, although its test error is too large in the random graph
setting with ¢ = 500 and n = 100.
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4.2. Application: asset returns prediction

We now compare the performance of our method with that of the other
alternatives for the problem of predicting asset returns. The data set we consider
is the weekly price data of S&P 500 stocks for 265 consecutive weeks from March
10, 2003, to March, 24, 2008, collected by Pfaff (2016). We screen out all stocks
with extremely low or high marginal variance, and keep 67 stocks that vary
modestly, that is, stocks with a variance between 25 and 40. All stock prices
are log transformed. Let V; = [Y,!,...,Y,57] € RS denote the stocks prices at
time point ¢, and let X; = [Yi_5,Yi—4,Y;—3,Y;_2,Y;_1] denote the prices for the
previous five weeks. We want to recover the dependence structure between Y; and
X, and within Y;, to provide insights into the dependency between the prices of
different stocks and between their previous prices. We also measure how well we
can predict Y; using X; because we cannot directly evaluate the quality of the
estimated structure.

We apply all methods to the first 212 days to estimate ®, and make pre-
dictions on the remaining 53 days using equation (2.4). We first standardize
all variables to have zero mean and unit variance. We then transform the data
back to the original log-scale to make predictions. The tuning parameters for all
methods are selected using five-fold cross-validation, and the average prediction

errors are evaluated using

1 265
Err = — Y, — Y|
"= > IV = Yill2
t=213

The average prediction errors for the methods are provided in Table 2. BayesCRF
achieves the smallest average prediction error. The prediction performance of
GLasso and CAPME are similar, while the algorithm for L1-GCRF fails to make
an accurate prediction.

The conditional graphs estimated from the methods are shown in Figure 2.
We observe the following: 1) BayesCRF detects that some of the concurrent prices
of the assets are conditionally dependent on each other (shown in the estimated
A matrix), and there is an AR(2)-like structure for each asset over time (shown
in the estimated ©), that is, Y}’ is conditionally dependent on Y} ;,Y;’ 5. GLasso
and L1-GCRF detect much noisier patterns with longer time dependences. 2)
BayesCRF provides sparser estimates of the matrices (©,A) and, at the same
time, the best prediction accuracy. This suggests that BayesCRF provides a
desirable estimation with both sparsity and accuracy. In practice, it is favorable
to have sparser estimates because sparse models reduce the cost of data processing
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L1-GCRF for A Glasso for A CAPME for A BayesCRF for A
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(a) Estimates for the precision matrix A for the asset return data.
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(b) Estimates for © for the asset return data. The ith horizontal axis tick (from left to right)
represents the ith entry X, and the ith vertical axis tick (from down to top) represents the ith
entry Y;.

Figure 2. Estimates of the graphs in the asset returns application. White represents the
noise, and black represents the selected signal.

Table 2. Average Prediction Error for Asset Return Prediction

BayesCRF L1-GCRF CAPME Glasso
0.910(0.384) 3.817(0.468) 1.443(0.442) 1.250(0.495)

and management.

Supplementary Material

The online Supplementary Material provides details on the properties of the
proposed Bayesian regularization function, the log likelihood function, our pro-
posed EM algorithm for computations, and its derivation, proofs for all the tech-
nical results, and additional simulation results.
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