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Abstract

In human pedagogy, teachers and students can interact adaptively to maximize
communication efficiency. The teacher adjusts her teaching method for different
students, and the student, after getting familiar with the teacher’s instruction
mechanism, can infer the teacher’s intention to learn faster. Recently, the benefits
of integrating this cooperative pedagogy into machine concept learning in discrete
spaces have been proved by multiple works. However, how cooperative pedagogy
can facilitate machine parameter learning hasn’t been thoroughly studied. In this
paper, we propose a gradient optimization based teacher-aware learner who can
incorporate teacher’s cooperative intention into the likelihood function and learn
provably faster compared with the naive learning algorithms used in previous
machine teaching works. We give theoretical proof that the iterative teacher-aware
learning (ITAL) process leads to local and global improvements. We then validate
our algorithms with extensive experiments on various tasks including regression,
classification, and inverse reinforcement learning using synthetic and real data. We
also show the advantage of modeling teacher-awareness when agents are learning
from human teachers.

1 Introduction

Cooperative pedagogy is invoked across language, cognitive development, cultural anthropology, and
robotics to explain people’s ability to effectively transmit information and accumulate knowledge [19,
64]. As the usage of artificial intelligence and machine learning based systems ratchets up, it is
foreseeable that extensive human-computer and agent-agent pedagogical scenarios will occur in the
near future [49]. However, there is still a distance away from robots being able to directly teach
or learn from humans as efficiently and effectively as humans do. One of the many difficulties is
that machine learning and teaching are now usually studied in single-agent frameworks. Most of
the prevailing machine learning methods focus on the improvement of individual learners and the
explanations of how knowledge is obtained focus entirely on each learner’s unilateral experiences,
either passive observations from a Markov decision process [45, 55], random samples from a data
distribution [52, 29], responses of active queries provided by an oracle [3, 53], or demonstrations
from an expert [4].
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Such machine learning framework is diametrically distinctive from human education, in whose
context, learning often occurs sequentially instead of in batch, and from intentional messages given
by a pedagogical teacher rather than random data from a fixed sampling process [62]. Recently, the
advantage of pedagogical teachers over randomly sampled data or optimal task completion trajectories
from experts has been shown in machine teaching [10, 70, 71, 40, 18, 44, 11, 12] and in learning from
demonstration (LfD) [27, 31]. Nonetheless, compared with human pedagogy, these works still lack a
sophisticated student model that can accommodate the teacher’s cooperation into his learning and acts
differently than learning from passive data. Machine teaching algorithms model a cooperative teacher
giving instructions in the format of data examples for continuous parameter [10, 70, 71, 40], Bayesian
concept [18, 44] or version space learning [11, 12], but seldom do they consider how learners may
interpret differently between the data picked intentionally by the teacher and sampled randomly from
the world. Standard LfD takes in demonstrations from an (approximately-) optimal expert to learn the
underlying reward function [4]. Hadfield-Menell et al. [27], Ho et al. [31, 32] shows the advantage of
using pedagogical rather than optimal demonstrations, yet, in either case, the learners are not aware
of the teacher . Shafto et al. [54], Yang et al. [68], Wang et al. [62, 64] move one step further and
proposed recursive cooperative inference models having both the teacher and the student reasoning
each other, an ability known as theory of mind (ToM) [50, 8]. The first work modeled and predicted
human behavior while the latter three managed to integrate ToM into machine learning. Despite the
theoretical contribution, their approach [68, 62, 64] is confined to Bayesian concept learning with
finite hypothesis space, in which the Sinkhorn scaling [57] is tractable. It is unclear how to apply
their algorithms to settings involving continuous hypothesis spaces, such as learning neural networks.

In this paper, we study how to integrate the cooperative essence of pedagogy into machine parameter
learning and propose a teacher-aware learner who learns significantly faster than a naive learner,
given an iterative machine teacher [40, 41]. The learner estimates the teacher’s data selection
process with distribution and corrects his likelihood function with this estimation to accommodate
the teacher’s intention. Maximizing the new likelihood enables the learner to utilize both explicit
information from the selected data and implicit information suggested by the pedagogical context.
We theoretically proved the improvement brought by the learner’s teacher awareness and justified
our results with various experiments. We believe that our work can provide insights into both
human-machine interactions, such as online education, and machine-machine communications, such
as ad-hoc teamwork [9].

Our main contributions are i) modeling teacher-awareness for generic gradient optimization based
parameter learning; ii) theoretically proving the improvement guaranteed by the teacher-aware
learner over the naive learner under mild assumptions; iii) empirically illustrating the advantage of
teacher-awareness learner when interacting with both machine and human teachers.

2 Related Work

Machine Teaching Our work is related to machine teaching as we used an iterative machine
teacher in our framework. Machine teaching [70, 71, 40, 49] solves the problem of constructing an
optimal (usually minimal) dataset according to a target concept such that a student model can learn
the target concept based on this dataset. Most of the machine teaching algorithms consider a batch
setting, where the teacher designs a minimal dataset and provides it to a learning algorithm in one
shot [10, 70, 47, 71, 11]. Iterative machine teaching has also been studied, where the teacher gives
out data iteratively and checks the learner’s status before selecting the next data [34, 6, 40, 41, 43],
but previous works didn’t consider teacher-aware learners. There are also works applying machine
teaching to inverse reinforcement learning (IRL) and LfD [4, 10, 27, 31, 32, 28]. Our IRL experiments
are different from those works as our data are provided iteratively and sequentially. Also, our learner
is aware of the teacher’s intention. Ho et al. [31, 32] integrated Bayesian rule in LfD to model mutual
reasoning between the teacher and the learner, but they mainly used their model to explain human
data. A theoretical study of the teaching-complexity of the teacher-aware learners was presented
in [73, 17] where the teacher and the learner are aware of their cooperation. Their analysis mainly
attends to version-space learners which maintain all hypotheses consistent with the training data, and
cannot be applied to hypothesis selection via optimization, such as learning parameters.

Peltola et al. [49] studied machine teaching for an active sequential multi-arm bandit learner. Although
they also have a helpful teacher and a teacher-aware learner, their problem setting is different from
ours. First, in every round of multi-arm bandit, the learner can actively choose an arm to pull, and
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then the teacher provides feedback for that arm, while in our cases, the data batch in each round is
sampled randomly and independently from the learner’s current status. Second, as the teacher can
only give binary (success or not) feedback to the learner, the counterfactual reasoning required for
pedagogy is significantly simplified. Besides, they required that the same feature representation for
the arms is shared between the teacher and the learner. Also, the learner doesn’t have to know the
underlying parameter exactly to perform well in multi-arm bandit games, while in most of our cases,
the learner tries to match the teacher’s model exactly. Fisac et al. [20] used similar formulation to
model cooperative value alignment within a human-robot team. They assumed the human knows
the robot’s value function during interactions, and parameters to be aligned are sparse and low
dimensional.

Learning to Teach Sharing the same goal as machine teaching, learning to teach (L2T) also seeks a
teaching algorithm to improve the learning efficiency of AI. While machine teaching usually models
the question as an optimization problem and solves for a closed-form teaching algorithm, works in
L2T tend to train the teaching model in the process of the teacher-student interaction with gradient
based optimization [67] or reinforcement learning (RL) algorithms [19]. Nevertheless, these works
also focus mainly on the teacher algorithm and assume teacher-unaware learners. In some tasks,
typically when the student aims to learn a concept in a discrete space, the teacher can track the
learner’s status by modeling his belief over the concept [54]. As the beliefs within the learner’s
mind are not usually known by the teacher, the teaching process can be modeled as a partially
observable Markov decision process (POMDP) [46], solving the optimal policy of which returns a
teaching algorithm [51, 65]. From the teacher’s perspective, the unknown part of the environment
is the learner’s belief, a probability distribution over the concept space, so she has to form another
belief over the learner’s belief. The intractable modeling of belief over continuous variables usually
requires approximation methods such as particle filters [51, 65] to solve, restricting the scope of
these algorithms to naive learners and relatively simple learning tasks. Interactive POMDP [23, 66],
a probabilistic multi-agent model, can also be used to model cooperative pedagogy with recursive
teacher-learner reasoning. However, the nested belief over belief also suffers from intractability and is
hard to scale up. If the concept space of the learner is continuous by itself, such as high dimensional
continuous parameter spaces in our case, handling the belief over belief becomes difficult.

Cooperative Bayesian Inference Shafto et al. [54] studies human pedagogy with examples using
Bayesian learning models. The cooperative inference [68, 63, 64] in machine learning also formalizes
full recursive reasoning from the perspectives of both the teacher and the learner. Distinctive
from their concept learning settings, in this paper, we focus on parameter learning, in which the
student has intractable posterior distribution and learns via gradient-based optimization. In addition,
[54, 68, 63, 64] only consider the problem of a single interaction between the teacher and learner.
Wang et al. [62] proposed a sequential cooperative Bayesian inference algorithm and showed its
performance advantage over naive Bayesian learner analytically and empirically. Nevertheless, they
were still discussing concept learning with finite and usually small data and hypothesis sets. The
Sinkhorn scaling [30, 62, 64] becomes infeasible when dealing with continuous parameter learning.

Pragmatics Reasoning Our work is inspired by the study of pragmatics (how context contributes to
the meaning) [26, 27] and ToM [50, 8]. The rational speech act (RSA) model raised by Golland et al.
[24] and developed in [22, 54, 25, 2] accommodates the idea of using not only the utterance but also
the selection of the utterance to understand the speaker. Previous works in these areas are mainly
from human action interpretation [21, 60, 36], language emergence [69, 35], linguistics [33, 2, 13]
and cognitive science [25, 8] perspectives. To our knowledge, our work is the first to relate pedagogy
and recursive reasoning to generic parameter learning and shows a provable improvement. Shafto
et al. [54] proposed computational models for more diverse concept spaces, but mainly focus on
modeling and predicting human behaviors.

3 Background

Finding the optimal way of teaching parameters has been a challenging problem because of the
continuous state space and long horizon planning. One common framework is machine teaching [70,
71]. Here, we adopt an iterative variation of machine teaching [40], consisting of three entities:
the learner, the teacher and the world. The world is defined as a parameter ω∗, fixed and known
only by the teacher. Given a model y = h(x;ω) parameterized by ω, the world is defined as
ω∗ = argminω∈Ω E(x,y)∼P(x,y)[l(h(x;ω), y)], where P(x, y) is the data distribution in standard
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machine learning. Here, l and h can vary across tasks, eg. l can be squared loss for regression,
cross-entropy for classification, and negative log-likelihood for IRL [5, 42]. In this paper, we assume
l to be a convex function and h(x;ω) = h(〈x, ω〉). h can be an identity function for linear regression
and softmax function for classification. Thus, we can omit h in the loss function and write l(〈x, ω〉, y)
for short. l and h are common knowledge of the teacher and the learner.

Representation: The teacher represents an example as (x, y) while the student represents the same
example as (x̃, ỹ) (typically y = ỹ and we use y when there is no ambiguity). The representation
x ∈ X and x̃ ∈ X̃ can be different but deterministically related by an unknown mapping, x̃ = G(x).
Suppose the teacher and the learner use model h(〈x, ω〉) and h(〈x̃, ν〉) respectively, then ω∗ and ν∗

are very likely in different spaces too. This is a common scenario when the teacher and the learner
are a human and a robot, or two robots from different factories. As the representation of examples
can be complex, such as features extracted by deep neural networks [45, 52, 29], using a linear model
h doesn’t impinge the expressive power of the overall model. In the rest of the paper, we use ω for
the teacher’s parameter and ν for the learner’s if they are from different spaces. Otherwise, we use ω
for both of them. We use x to refer to an example and its teacher representation. We use x̃ for its
learner representation. Also, we don’t specify the choice of G. Our only assumption about the teacher
and the learner’s representation will be discussed in Theorem 1.

Teacher: In general, the teacher can only communicate with the learner via examples. This restriction
doesn’t impinge the generality of the machine teaching framework, as the format of the data can
be generic, such as demonstration used in the IRL [72, 5, 61, 42]. In this paper, data are provided
iteratively. We use xt to denote the example used in the t-th iteration. The teacher aims to provide
examples iteratively so that the student parameter ν converges to its optimum ν∗ as fast as possible.
Since the teacher doesn’t know νt or ν∗, we let the learner provide some feedback to her in each
iteration so that she can track the pedagogy progress (details in Section 4.1).

Learner: The learner has an initial parameter ν0 before learning. At time t, he has learning rate
ηt. The learning algorithms for teacher-unaware learners are often simple. For iterative gradient
based optimization, the learner usually uses stochastic gradient descent [40, 41, 19, 67]. Suppose the
learner receives (xt, yt) from the teacher, his iterative update is:

νt = νt−1 − ηt
∂l
(
〈x̃t, νt−1〉, yt

)

∂νt−1
. (1)

Mutual knowledge: We limit the mutual knowledge between the teacher and the learner, otherwise,
the mutual reasoning between the two can theoretically become an infinite recursion. In this paper,
we consider a teacher who assumes a naive learner using Eq. (1) to update his model. Meanwhile,
the learner knows the teacher selects data deliberately instead of randomly (detailed in the next
section). If we define a naive learner as having level-0 recursive reasoning, then the teacher and
the teacher-aware learner have level-1 and level-2 recursive reasoning respectively. This level of
recursion is very close to human cognitive capability [14, 15] and was also adopted by [49].

To summarize, the loss function l, the model h, and the naive learner update function are common
knowledge to the teacher and the learner. ω∗ and the teaching mechanism are only known by the
teacher, while νt and the learning mechanism, i.e. how to update νt given data, are only known by
the learner. He knows the teacher intentionally selects helpful data according to her estimation of
himself, and the teacher assumes that the learner learns following Eq. (1). For our teacher-aware
learner, this assumption is inaccurate, but we’ll show how the proposed learner can learn much faster
than a naive learner.

4 Teacher-Aware Learning

4.1 Cooperative Teacher

We first define the teacher whom the learner should be aware of. Let’s consider a teacher using the
same feature representation as the learner and knowing his parameter in each iteration. [40] termed
this kind of teacher as the omniscient teacher, who, in the t−th iteration, greedily chooses example
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from a data batch Dt = {(xi, yi) ∼ P(x, y)}:

(xt, yt) = argmin
(x,y)∈Dt

∥∥∥∥ωt−1 − ηt
∂l(〈x, ωt−1〉, y)

∂ωt−1
− ω∗

∥∥∥∥
2

2

= argmax
(x,y)∈Dt

(
− η2t

∥∥∥∥
∂l(〈x, ωt−1〉, y)

∂ωt−1

∥∥∥∥
2

2

+ 2ηt

〈
ωt−1 − ω∗,

∂l(〈x, ωt−1〉, y)
∂ωt−1

〉)
. (2)

The expression after argmax in Eq. (2) is defined as the teaching volume TVω∗(x, y|ωt), which
represents the learner’s progress in this iteration. It is a trade-off between the difficulty and the
usefulness of an example [see 40, sec. 4.1]. Notice that the teacher has no control over Dt, which is
sampled from the data distribution P or from a large dataset. She only selects the best example from
Dt. Given Dt with a mild batch size, e.g. 20, the argmax in Eq. (2) can be exactly calculated.

Lessard et al. [38] has proved that, for an omniscient teacher, teaching greedily is sub-optimal.
Yet, their findings cannot be directly applied to more practical teaching scenarios. Thus, we keep
leveraging the greedy heuristic to model our cooperative teacher and generalize it to a non-omniscient
teacher who doesn’t fully know the learner in every iteration.

Suppose the teacher neither knows the learner’s νt−1 nor ν∗ and they use different feature representa-
tions of the data. To teach cooperatively, she has to imitate the learner’s model in her own feature
space and use ω∗ to guide the teaching. This can be done approximately if, in every round, the
learner gives the inner products of νt−1 and the data to the teacher as feedback. Given the convexity

of the loss function l, we have:
〈
ωt−1 − ω∗,

∂l(〈x, ωt−1〉, y)
ωt−1

〉
≥ l(〈x, ωt−1〉, y) − l(〈x, ω∗〉, y).

Now, Eq. (2) can be approximated by inner products between the model parameter and the data [40].
Denote the learner’s feedback as αx = 〈x̃, νt−1〉, ∀(x, y) ∈ Dt, x̃ = G(x), then the teacher will
teach as following:

argmax
(x,y)∈Dt

(
−η2t

∥∥∥∥
∂l(αx, y)

∂αx
x

∥∥∥∥
2

2

+ 2ηt
(
l(αx, y)− l(〈x, ω∗〉, y)

))
. (3)

It has been shown that cooperative teachers using Eq. (3) can substantially speed up the learning of a
standard SGD learner [40]. Nonetheless, only having a cooperative teacher doesn’t provide us the
most effective interaction between the two agents, as the learner doesn’t exploit the fact that the data
come from a helpful teacher [54]. In the next section, we introduce a teacher-aware learner.

4.2 Teacher-Aware Learner

Now we propose a learner who integrates teacher’s pedagogy into his parameter updating process.
Suppose we have a distribution p(x, y|ν∗ = ν) ∝ exp(−l(〈x̃, ν〉, y)), denoted as pν(x, y). Then,
applying gradient descent to l(〈x̃, ν〉, y) is equivalent to maximizing log pν(x, y) wrt. ν. Hence,
a learner updating parameters with Eq. (1) can be considered as performing maximum likelihood
estimation (MLE) when the data are randomly sampled from P(x, y).

Nonetheless, in the machine teaching framework, data are no longer randomly sampled from P(x, y).
A teacher-aware learner should rectify his updating rule by considering teacher’s helpfulness. Given
the dataset Dt at time t, the learner can postulate that the teacher is more likely to choose the example
she thinks helpful following p(x, y|ν∗ = ν, νt−1, Dt), denoted as qν(x, y|νt−1, Dt) for short:

qν(x, y|νt−1, Dt) =
exp(βtT̂ V ν(x̃, y|νt−1))∫

(x′,y′)∈Dt exp(βtT̂ V ν(x̃′, y′|νt−1))
, βt ≥ 0, (4)

with T̂ V ν(x̃, y|νt−1) = −η2t

∥∥∥∥
∂l(〈x̃, νt−1〉, y)

∂νt−1

∥∥∥∥
2

2

+ 2ηt

(
l
(
〈x̃, νt−1〉, y

)
− l

(
〈x̃, ν〉, y

))
. (5)

The Boltzmann noisy rationality model [7] indicates that the teacher samples data according to the
soft-max of their approximation of the teaching volumes, calculated wrt. her ν∗ and the inner product
feedback from the learner. Although, in practice, this estimation is usually different from the teacher’s
actual example selection distribution, which is a hard-max, corresponding to βt → ∞, maximizing it
wrt. ν can still improve the learning.
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The learner now wants to learn a ν, which not only makes yt more likely to be the correct label of
xt, but also (xt, yt) more likely to be chosen from Dt. Intuitively, given all data in Dt are coherent
with the true distribution, the teacher gives (xt; yt) but not other examples. With what ν can the
probability of this selection be maximized? So, at every time t, the student maximizes pν(xt, yt) and
qν(x

t, yt|νt−1, Dt) wrt. ν simultaneously. We can still use gradient descent. Omit y when there is
no confusion. Denote gx(γ) =

∂l(〈x̃,γ〉,y)
∂γ , then we have (derivation in supplementary Section A.1):

νt = νt−1 − ηt

(∂l(〈x̃t, νt−1〉, y)
∂νt−1

− ∂ log qν(x̃
t, yt)

∂ν

∣∣∣
ν=νt−1

)

= νt−1 − ηtgxt(νt−1)− 2βtη
2
t

(
gxt(νt−1)− Ex∼qνt−1 [gx(ν

t−1)]
)
. (6)

Notice that νt−1 is a constant in qν(x
t, yt|νt−1, Dt) and the optimization is wrt. ν, which is treated as

ν∗ in the calculation. The gradient is computed at ν = νt−1. This is equivalent to maximizing a new
log-likelihood function log

(
pν(x

t, yt)qν(x
t, yt|νt−1, Dt)

)
, an approximation of the log probability

that (xt, yt) being sampled in Dt and then being selected by the teacher given ν∗ = ν. The product is
an approximation of p

(
(xt, yt), Dt|νt−1, ν∗ = ν

)
because the sampling of data in Dt except (xt, yt)

is regarded as deterministic. When βt = 0, i.e. the learner thinks the teacher uniformly samples data,
and Eq. (6) becomes regular SGD.

An interpretation of the benefits brought by Eq. (6) is that the learner not only learns from the literal
meaning of the example selected by the teacher (the second term), but also compares that example
with “also-rans” in Dt (the third term), forming a context incorporating additional information.
This is a prevailing phenomenon in human communication, as messages often convey both literal
meanings and pragmatic (contributed by the context) meanings [60, 58, 69]. In other words, we can
acquire not only explicit information from what others said but also implicit information from what
others didn’t say. When the message space is finite and known, exact computations of the implicit
information becomes tractable. Therefore, in scenarios like human-robot interactions, where robots
usually provide predefined user interfaces with a fixed choice of instructions, our algorithm can easily
conduct counterfactual reasoning by comparing the user’s selected instruction with the others and
deliver faster learning than only using the selected one. In Section 5.2, our experiment with humans
as the teacher illustrates such an advantage.

One nuance is that if we use νt−1 as the ν in Eq. (4), the second term of the teaching volume will
be 0. Thus, to better approximate ν∗, in practice, we plug in νt−1 − ηt

∂l(〈x̃,νt−1〉,y)
∂νt−1 . That is, the

learner first updates νt−1 just like a naive learner. Then he calculates the gradient of log qν wrt. the
new ν and does an additional gradient descent corresponding to the last term in Eq. (6). Also, in
supervised learning settings, the teacher needs to provide labels of the whole dataset for the learner to
calculate the expectation. This is a mild requirement easy to be satisfied in practice. In the iterative
process, Dt is a mini-batch sampled from a large dataset with a small batch size, say 20 examples.
Thus, Ex∼qν [gx(ν)] can be calculated exactly, and, compared with the standard mini-batch gradient
descent, the only additional information needed from the teacher is the index of (xt, yt). In fact,
we can further relax this condition by letting the learner estimate Ex∼qν [gx(ν)] with only a subset
D̂t ⊆ Dt. In our experiments, we show that with only one random unchosen example provided, i.e.
|D̂t| = 1, the teacher-aware learner outperforms the naive learner. See Algorithm 1 for details.

We now prove the teacher-aware learner can always perform better than a naive learner given proper
conditions.
Theorem 1 (Local Improvement). Denote ν̃t = νt−1 − ηtgxt(νt−1). For a specific loss function
l, given the same learning status νt−1 and a teacher following Eq. (3), suppose xt satisfies that
xt itself maximizes T̂ V ν̃t(x, y|νt−1). Denote x̂t as the x ∈ Dt which achieves the second largest
T̂ V ν̃t(x, y|νt−1). Suppose that ‖gx(ν̃t)‖2 ≤ G for any x ∈ Dt. If 〈ν̃t− ν∗, gxt(ν̃t)− gx̂t(ν̃t)〉 > 0,
then with large enough βt, the teacher-aware learner using Eq. (6) is guaranteed to make no smaller
progress than a naive learner using Eq. (1).

One intuition for the assumption is that the best example selected by the teacher does bring more
benefits to the learner than the other examples do. Suppose we have ν̂t = ν̃t − ηtgx̂t(ν̃t), then
moving from ν̂t to νt follows ηt(gx̂t(ν̃t)−gxt(ν̃t)). The assumption 〈ν̃t−ν∗, gxt(ν̃t)−gx̂t(ν̃t)〉 =
〈ν∗− ν̃t, gx̂t(ν̃t)−gxt(ν̃t)〉 > 0 simply suggests that updating with xt gives the learner an advantage
over updating with x̂t. The advantage points to ν∗ (the two vectors ν∗ − ν̃t and gx̂t(ν̃t)− gxt(ν̃t)
form an acute angle).
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Algorithm 1: Iterative Teacher-Aware Learning
Input: Data distribution D, teacher parameter ω∗, learning rate ηt, teacher estimation scale βt

Result: ν(T )

1 Randomly initialize student model ν(0) ∼ Uniform(N); Set t = 1 and T as the maximum
iteration number;

2 while t < T do
3 Teacher gets data batch Dt ∼ D
4 Learner reports αx = 〈ν(t−1), x̃〉 for all x ∈ Dt to the teacher
5 Teacher selects data for time t:

(xt, yt) = argmax(x,y)∈Dt

(
− η2t

∥∥∥∂l(αx,y)
∂αx

x
∥∥∥
2

+ 2ηt

(
l
(
αx, y

)
− l

(
〈ω∗, x〉, y

)))

6 Learner uses the selected data (x̃t, yt) and Dt to calculate

7 ν̂(t) = ν(t−1) − ηt
∂l(〈x̃t,ν(t−1)〉,yt)

∂ν(t−1)

8 ν(t) = ν̂(t) − 2βtη
2
t

(
∂l(〈x̃t,ν̂(t)〉,yt)

∂ν̂(t) − E(x̃,y)∼q
ν̂(t) (x̃,y|ν(t−1),Dt)

[
∂l(〈x̃,ν̂(t)〉,y)

∂ν̂(t)

] )

9 where qν̂(t)(x̃, y|ν(t−1), Dt) =
exp

(
βtT̂ V

ν̂(t)

(
x̃,y|ν(t−1),Dt

))

∑
(x′,y′)∈Dt exp

(
βtT̂ V

ν̂(t)

(
x̃′,y′|ν(t−1),Dt

))

10 with T̂ V ν̂(t)(x̃, y|ν(t−1), Dt) defined in Eq. (5).
11 t = t+ 1
12 end

Corollary 2 (Global Improvement). Under the same condition of Theorem 1, suppose that
‖∂l(〈x̃, ν〉, y)/∂ν‖22 and l(〈x̃, ν〉, y) are L-Lipschitz for x with any ν. Suppose the sample set
Dt satisfies that for any x ∈ Dt, there exists x′ ∈ Dt such that ‖x′ − x‖2 ≤ ε/(TL(η2t + 4ηt)) for
any t, where T is the total number of iterations. Then if the inequality

‖ν1 − ν∗‖22 − max
(x,y)∈Dt

T̂ V ν∗(x, y|ν1) ≤ ‖ν2 − ν∗‖22 − max
(x,y)∈Dt

T̂ V ν∗(x, y|ν2) (7)

holds for any ν1, ν2 that satisfy ‖ν1−ν∗‖22 ≤ ‖ν2−ν∗‖22, then with the same parameter initialization,
learning rate and a teacher following Eq. (3), a teacher-aware learner can always converge not
slower than a naive learner up to ε error.

To guarantee that ‖x′ − x‖2 ≤ ε/(TL(η2t + 4ηt)) for any x ∈ D, we need the subset Dt ⊆ D to be
‘uniform distributed’ on D. To achieve this goal, we can uniformly sample point x ∈ D and let Dt

to be the set of these points. It is easy to verify that the ‘uniform distributed’ property holds with
high probability when |Dt| is large enough. Meanwhile, Eq. (7) in Corollary 2 is defined as teaching
monotonicity in Liu et al. [40], and they proved that the squared loss satisfies teaching monotonicity
given a dataset D = {x ∈ Rd, ‖x‖ ≤ R} [see 40, proposition 3]. The main difference between
Eq. (7) and that in Liu et al. [40] is that Eq. (7) works for the non-omniscient teacher setting, while
Liu et al. [40] focuses on the omniscient teacher setting. Detailed proofs of the theories can be found
in Section A of our supplementary.

5 Experiments

5.1 Machine Teacher

To justify the effectiveness of ITAL, we compared it with iterative machine teaching (IMT) with a
naive learner on regression, classification, and IRL tasks. The coverage of squared loss, cross-entropy
loss, and negative log-likelihood proves the robustness of our algorithm on various selections of
l. For regression tasks, we measured the performance using the difference between ‖ωt − ω∗‖2
and the mean squared loss of the test set. For the classification task, we measured the difference,
the cross-entropy loss, and the classification accuracy of the test set. For online IRL problems, we
measured the parameter difference, the total variance between the teacher’s and the learner’s policies,
and the average rewards achieved by the learner. The feature dimension of the teachers can be
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(b) Gaussian data.
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(c) CIFAR-10.
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(d) Tiny ImageNet.
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Figure 1: Fig. 1a-Fig. 1f: Cooperative teacher results. Our method always gives a substantial
improvement over IMT, showing the effect of teacher-awareness. Within 2000 steps, ITAL already
show convergence, while a naive learner only learns to a limited extent in most tasks. Fig. 1g: In the
top plot, the height of each bar represents the decrease of the L2-distance between the learner’s reward
parameter and the ground-truth parameter. In the bottom, the height represents the accumulated
reward. Paired t-tests were conducted between Human (Machine) ITAL & IMT respectively.

different from that of the learners in some experiments. In Fig. 1, we show the results of the teacher
having a smaller feature dimension than the learner does. We show the opposite in the supplementary
Section B. Batch means the learner uses all the data in the mini-batch to calculate the mean gradient.
SGD means the learner randomly selects an example in the mini-batch to calculate the gradient.
ITAL-Ms represent our algorithm with M indicates |D̂t|. The mini-batch Dt is randomly sampled
at every step with batch size 20. The learning rate is 1e-3 for all the experiments. βt is in the scale
of 1e4, varying for different settings. We grid search βt starting from 1e4 and use the largest one
inducing Eq. (4) that is no longer a delta function. We ran each experiment with 20 different random
seeds to calculate the mean and its standard error, shown in Fig. 1.

It can be seen that using the full mini-batch gives almost identical learning performance as using
only one random sample from it. IMT has noticeable but limited improvements comparing with
Batch and SGD, suggesting not necessarily substantial advantage brought by the helpful teacher.
ITAL, on the other hand, significantly outperforms all other baselines, even with only 2 data points
as the approximation of the full mini-batch. The learner modeled by these baselines only learns
from the examples, but when the examples are no longer acquired randomly but from an intentional
teacher, the example selection of the teacher also conveys a large amount of information. In particular,
the teacher-aware learner can absorb information from not only the selected examples but also the
unselected ones. As the learner has access to more unselected examples, he has a better approximation
of the teaching process and learns more efficiently. Additional experimental details can be found in
supplementary Section B.

5.1.1 Supervised Learning

Linear Models on Synthetic Data: In these experiments, we explored the convergence of our
method in linear regression and multinomial logistic regression. For linear regression, we randomly
generated a M -dimensional vector and a bias term as the ω∗, and X ∈ RN×(d+1) as the training
set, with the last column being all 1s. The labels are Y = Xω∗. For the classification task, we
randomly generated K points in the d-dimensional space, each of which is used as the mean of a
normal distribution. Then we sampled N/K points from each Gaussian distribution together as the
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training data. The labels are the indices of these distributions. With these data, we trained a logistic
regression model using Scikit-learn [48], and used the coefficients as the teacher’s ω∗. We used a
random orthogonal projection matrix to generate the teacher’s feature space from student’s. At every
step, a subset of the training data is randomly selected as the mini-batch. The data points in that
mini-batch along with their labels and the index of the data selected by the teacher are sent to the
student. Details of the data generation can be found in supplementary Section B.1.

Linear Classifiers on Natural Image Datasets: We further evaluated our teacher-aware learner on
image datasets, CIFAR-10 [37] and Tiny ImageNet [1] (an adaptation of ImageNet [16] used in
Stanford 231n with 200 classes and 500 images in each class). In these experiments, the teacher tried
to teach the parameters of the last fully connected (FC) layer in a convolutional neural network (CNN)
trained on the dataset. We trained 3 baseline CNNs independently to do CIFAR-10 10-class and
ImageNet 200-class classification. All of them achieved reasonable accuracy (≥ 82% for CIFAR-10
and ≥ 58% top-1, ≥ 85% top-5 for ImageNet). For CIFAR-10, we trained three different types of
CNNs, CNN-6/9/12. For ImageNet we used VGG-13/16/19 [56]. The features fed into the last FC
layers are extracted to be the teaching dataset. The learner’s feature is from CNN-9/VGG-16 and
we set the teacher as either CNN-6/12 or VGG-13/19. Details about CIFAR-10 and Tiny ImageNet
experiments are in B.3 and Section B.4 respectively.

Linear Regression for Equation Simplification: In this experiment, we learned a linear value
function that can be used to guide action selections. Given polynomial equations with fraction
coefficients and unmerged terms, we want to simplify them into cleaner forms with all the terms
merged correctly, all the coefficients rescaled to integers without common factors larger than 1, and
all the terms sorted by the descending power. For example, equation − 1

2x
2y+ 1

3xy = − 1
5y

3 + 1
3x

2y

will be simplified to −25x2y + 10xy + 6y3 = 0. We defined a set of equation editing actions and a
set of simplification rules. For a given equation, we applied the rules, recorded every editing action,
and collected a simplifying trajectory. With all the trajectories of the training equations, we trained
a value function by assuming that the value monotonically increases in each trajectory. Then the
teacher tried to teach the student this value function. We used three different feature dimensions:
40D, 45D, and 50D. The learner always used 45D, and the teacher used 40D or 50D. Details can be
found in Section B.5.

5.1.2 Online Inverse Reinforcement Learning

In this experiment, we changed from labeled data in standard supervised learning to demonstrations
in IRL. The learner wanted to learn the parameter for a linear reward function r(s, ω∗) so that the
likelihood of the demonstrations is maximized [5, 61, 42]. One challenge is that the max function in
Bellman equations [59] is non-differentiable. Thus, we approximated max with soft-max, namely:
max(a0, ..., an) ≈ log(

∑n
i=0 exp kai)

n , with k controlling the level of approximation and leveraged
the online Bellman gradient iteration [39]. The IRL environment is an 8×8 map, with a randomly
generated reward assigned to each grid. If we encode each grid using a one-hot vector, then the
reward parameter is a 64D vector with the i-th entry corresponding to the reward of the i-th grid.
The agent can go up, down, left, or right in each grid. All demonstrations are in the format of (s, a),
where s indicates a grid and a an action demonstrated in that grid. The teacher uses a shuffled map
encoding. For instance, if the first grid is [1, 0, ..., 0] to the learner, then it became [0, ..., 0, 1, 0, ...] to
the teacher. Details are included in Section B.6.

5.1.3 Adversarial Teacher

In addition to the cooperative setting that we assumed throughout the discussion above, we also
explored if the learner can still learn given an adversarial teacher. An adversarial teacher doesn’t
mean that she gives fake data to the student, but she uses argmin in Eq. (4) instead of using argmax.
That is, she always chooses the least helpful data for the learner. Hence, a learner, being aware of
this unhelpful pedagogy, will adjust Eq. (3) accordingly by using βt ≤ 0. We redid all previous
experiments with an adversarial teacher and showed that our learner can still learn effectively given an
adversarial teacher, while a naive learner barely improves (see Fig. 14 in Section B.7). This experiment
justifies the universal utility of modeling the teacher’s intention regardless of the informativeness of
the teaching examples.
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5.2 Human Teacher

In the previous section, we showed that teacher-awareness substantially accelerates learning, given
a machine teacher. In this section, we further investigate if our teacher-aware learner can show an
advantage in scenarios where humans play the role of the cooperative teacher. We hypothesize that
despite the discrepancy between the pedagogical pattern of human and machine teachers, our learner
can still benefit from his teacher-awareness modeled with Eq. (4).

We conducted a proof-of-concept human study with a similar but simplified version of the IRL
experiments in Section 5.1.2. To better suit human participants, we first change the maps from 8× 8
to 5× 5. Second, instead of assigning random continuous rewards to the grids, we color them with
white, blue, and red, representing neutral, bad, and good tiles. In each teaching session, a participant
is given one of the five reward maps as the ground truth and a randomly initialized learner to be
taught. Then, the participant will be asked to teach the learner about the ground truth reward in each
grid by providing (s, a) examples as in Section 5.1.2. In each time step, we construct the examples
by randomly sampling a set of 10 grids and drawing an arrow on each sampled grid indicating which
direction the learner should go to if in that grid. The human teacher is asked to choose the most
helpful arrow given the learner’s current reward map. The map configurations are in Fig. 15 in
Section B.8. A similar map setup for reward teaching was used by Ho et al. [31]. Every participant
will teach both the naive and the teacher-aware learner about the same map. We then run a paired
sample t-test to compare the learning effect of the two types of learners. We show the improvement
of the L2-distance between the learner’s reward parameters and the ground-truth reward parameters
and the accumulated reward in Fig. 1g. Comparison of policy total variance and learning curves are
included in Section B.8 of the supplementary.

For all maps, the ITAL method has a significant (p-value ≈ 0) advantage over its IMT counterparts.
The human ITALs all perform worse than machine ITALs. This is as expected as we directly reuse
the machine teacher model to simulate humans. There is no guarantee that all the participants follow
the same teaching pattern as the machine teacher, or even have a consistent teaching pattern at all.
Yet, we still manage to grasp human cooperation to some extent. To illustrate the influence of the
teacher model, we also teach the ITAL learner with a random teacher, who samples the example
uniformly every time and is not cooperative at all. As shown in Fig. 1g, this combination doesn’t
benefit the learner, because the mismatch between the imagined cooperative teacher and the actual
random teacher will very likely introduce over-interpretation of the examples. To summary, these
results justify that human teachers do have cooperative (contrary to uniform) pedagogy patterns and
the current teacher-aware model can take advantage of them. Finding a comprehensive and accurate
human-robot communication model will be an open question for future works.

6 Discussion and Conclusions

Pedagogy has a profound cognitive science background, but it hasn’t received much attention in
machine learning works until recently. In this paper, we integrate pedagogy with parameter learning
and propose a teacher-aware learning algorithm. Our algorithm changes the model update step for the
gradient learner to accommodate the intention of the teacher. We provide theoretical and empirical
evidence to justify the advantage of the teacher-aware learner over the naive learner.

To be aware of the teacher, the learner needs an accurate estimation of the teaching model. In many
cases, such a model is not directly accessible, e.g. when there is a human-in-the-loop. In this paper,
we model the teacher in a heuristic manner. Our human study proved the generality of this model,
especially when the learner only assumes a sub-optimal teacher with Boltzmann rationality. In future
work, a more advanced teacher model should be investigated, acquired through task-specific data
and/or interactions between the agents. Another limitation of our work is that, in our current setting,
the learner’s feedback is restricted to be inner products. A more generic message space can be
leveraged to develop comprehensive learning as a bidirectional communication platform. We believe
our work illustrates the promising benefits of accommodating human pedagogy into machine learning
algorithms and approaching learning as a multi-agent problem.
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A Proofs and Derivations

A.1 Gradient Derivation

T̂ V ν(x̃, y|νt−1) = −η2t
∥∥∥∥
∂l(〈x̃, νt−1〉, y)

∂νt−1

∥∥∥∥
2

2

+ 2ηt

(
l
(
〈x̃, νt−1〉, y

)
− l
(
〈x̃, ν〉, y

))
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Denote gx(ν) =
∂l(〈x̃, ν〉, y)

∂ν
∂ log qν(x̃t, yt|νt−1, D)

∂ν
=

∂

∂ν

(
βtT̂ V ν(xt, yt|νt−1)− log

∫

(x,y)∈D
exp

(
βtT̂ V ν(x, y|νt−1)

))

= −2βtηtgxt(ν) +
2βtηt

∫
(x,y)∼D gx(ν) exp(−βtT̂ V ν(x, y|νt−1))
∫
(x,y)∈D exp

(
− βtT̂ V ν(x, y|νt−1)

)

= −2βtηt(gxt(ν)− Ex∼qν [gx(ν)])

A.2 Proof of Theorem 1

For simplicity, let gx denote gx(ν̃t) in this proof. First we provide an intuition for the assumption.
Suppose we have ν̂t = ν̃t− ηtgx̂t , then moving from ν̂t to νt follows ηt(gx̂t − gxt). The assumption
〈ν̃t − ν∗, gxt − gx̂t〉 = 〈ν∗ − ν̃t, gx̂t − gxt〉 > 0 simply suggests that updating with xt gives the
learner an advantage over updating with x̂t. The advantage points to ν∗ (the two vectors ν∗ − ν̃t and
gx̂t − gxt form an acute angle).

Next, we start the proof. We need the following lemma:

Lemma 1. Denote x̂t as the x which achieves the second largest T̂ V ν∗(x̃, y|νt−1). Suppose that
〈ν̃t − ν∗, gxt − gx̂t〉 > 0, then there exists α > 0 such that with large enough βt, we have

∥∥βtη2t (gxt − Ex ∼qν̃t [gx])
∥∥
2
≤ α‖ν̃t − ν∗‖2 (S-1)

and

〈ν̃t − ν∗, gxt − Ex ∼qν̃t [gx]〉 ≥ α‖ν̃t − ν∗‖2
∥∥gxt − Ex ∼qν̃t [gx]

∥∥
2
. (S-2)

Proof of Lemma 1. We set α = 〈ν̃t − ν∗, gxt − gx̂t〉/(2‖ν̃t − ν∗‖2‖gxt − gx̂t‖2) > 0.

First we show that
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥
2
≤ α‖ν̃t − ν∗‖2. For simplicity we denote s(x) =

T̂ V ν̃t(x̃, y|νt−1). Then by assumption on the selection of xt we have xt = arg maxx∈Dt s(x) and

(gxt − Ex ∼qν̃t [gx])

∫

x′∈D
exp(βts(x

′))

=

(
gxt −

∫
x′∈D exp(βts(x

′))gx′∫
x′∈D exp(βts(x′))

)∫

x′∈D
exp(βts(x

′))

= exp(βts(x
t))[gxt − gxt ] + exp(βts(x̂

t))[gxt − gx̂t ] +
∑

x6=xt,x̂t
exp(βts(x))[gxt − gx]

= exp(βts(x̂
t))[gxt − gx̂t ] +

∑

x6=xt,x̂t
exp(βts(x))[gxt − gx]. (S-3)

Therefore, denote ξt−1 = s(x̂t)− s(xt) < 0, we have that when βt →∞,

βt
∥∥gxt − Ex ∼qν̃t [gx]

∥∥
2

≤ βt
∥∥gxt − Ex ∼qν̃t [gx]

∥∥
2

∫

x′∈D
exp(βt[s(x

′)− s(xt)])

= βt exp(−βts(xt))
∥∥∥∥(gxt − Ex ∼qν̃t [gx])

∫

x′∈D
exp(βts(x

′))

∥∥∥∥
2

= βt

∥∥∥∥ exp(βt[s(x̂
t)− s(xt)])[gxt − gx̂t ] +

∑

x6=xt,x̂t
exp(βt[s(x)− s(xt)])[gxt − gx]

∥∥∥∥
2

≤ βt
∑

x6=xt

∥∥∥∥ exp(βt[s(x)− s(xt)])[gxt − gx]

∥∥∥∥
2

≤ βt|D| exp
(
βtξt−1

)
max
x′∈D

‖gxt − gx′‖2

2



≤ βt|D| exp
(
βtξt−1

)
max
x′∈D

(
‖gxt‖2 + ‖gx′‖2

)

= 2βt|D| exp
(
βtξt−1

)
G

→ 0,

where the first inequality holds due to the fact s(x′) < s(xt) for any x′ ∈ D, the second inequality
holds due to triangle inequality, the third inequality holds due to the facts

(
s(x)− s(xt)

)
< ξt−1 for

any x 6= xt, the fourth inequality holds due to the assumption that ‖gx‖2 ≤ G, the last line holds due
to the fact that x exp(ax)→ 0 for a < 0 and x→∞. Therefore, taking large enough βt, we have

∥∥βtη2t (gxt − Ex ∼qν̃t [gx])
∥∥
2
≤ α‖ν̃t − ν∗‖2.

Next we show that 〈ν̃t − ν∗, gxt − Ex ∼qν̃t [gx]〉 ≥ α‖ν̃t − ν∗‖2
∥∥gxt − Ex ∼qν̃t [gx]

∥∥
2
. From (S-3)

we have

(gxt − Ex ∼qν̃t [gx]) exp(−βts(x̂t))
∫

x′∈D
exp(βts(x

′))

= gxt − gx̂t +
∑

x6=xt,x̂t
exp(βt[s(x)− s(x̂t)])[gxt − gx]

︸ ︷︷ ︸
g(βt)

,

For g(βt), denote ξ̂t−1 = minx6=xt,x̂t [s(x)− s(x̂t)] < 0. Then when βt →∞, we have

‖g(βt)‖2 ≤
∑

x6=xt,x̂t

∥∥∥∥ exp(βt[s(x)− s(x̂t)])[gxt − gx]

∥∥∥∥
2

≤ |D| exp(βtξ̂t−1) max
x∈D
‖gxt − gx‖2

≤ 2G|D| exp(βtξ̂t−1)

→ 0, (S-4)

where the first inequality holds due to triangle inequality, the second inequality holds due to the fact
s(x)− s(x̂t) < ξ̂t−1, the third inequality holds due to the assumption that ‖gx‖2 ≤ G, the last line
holds because exp(−x)→ 0 when x→∞. Thus when βt →∞, we have

gxt − Ex ∼qν̃t [gx]

‖gxt − Ex ∼qν̃t [gx]‖2
=

(gxt − Ex ∼qν̃t [gx]) exp(−βts(x̂t))
∫
x′∈D exp(βts(x

′))∥∥(gxt − Ex ∼qν̃t [gx]) exp(−βts(x̂t))
∫
x′∈D exp(βts(x′))

∥∥
2

=
gxt − gx̂t + g(βt)

‖gxt − gx̂t + g(βt)‖2
→ gxt − gx̂t
‖gxt − gx̂t‖2

,

where the last line holds due to g(βt)→ 0 from (S-4). Therefore, we know that for large enough βt,
we have ∣∣∣∣

〈
ν̃t − ν∗
‖ν̃t − ν∗‖2

,
gxt − Ex ∼qν̃t [gx]

‖gxt − Ex ∼qν̃t [gx]‖2

〉
−
〈

ν̃t − ν∗
‖ν̃t − ν∗‖2

,
gxt − gx̂t
‖gxt − gx̂t‖2

〉∣∣∣∣ ≤ α,

Finally, due to the fact 〈ν̃t − ν∗, gxt − gx̂t〉 = 2α‖ν̃t − ν∗‖2‖gxt − gx̂t‖2 from (S-2), we have
〈

ν̃t − ν∗
‖ν̃t − ν∗‖2

,
gxt − Ex ∼qν̃t [gx]

‖gxt − Ex ∼qν̃t [gx]‖2

〉
≥
〈

ν̃t − ν∗
‖ν̃t − ν∗‖2

,
gxt − gx̂t
‖gxt − gx̂t‖2

〉
− α = α.

Now we prove the main theorem.

Proof of Theorem 1. The naive learner and the teacher-aware learner, after receiving (xt, yt), will
update their model to ν̃t = (νt−1 − ηtgxt) and νt =

(
νt−1 − ηtgxt − 2βtη

2
t (gxt − Ex∼qν̃t [gx])

)
respectively. Then with large enough βt, we have

‖νt − ν∗‖22

3



=
∥∥ν̃t − ν∗ − 2βtη

2
t (gxt − Ex ∼qν̃t [gx])

∥∥2
2

= ‖ν̃t − ν∗‖22 − 4〈ν̃t − ν∗, βtη2t (gxt − Ex ∼qν̃t [gx])〉+ 4
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥2
2

≤ ‖ν̃t − ν∗‖22 − 4α‖ν̃t − ν∗‖2
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥
2

+ 4
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥2
2

≤ ‖ν̃t − ν∗‖22 − 4α‖ν̃t − ν∗‖2
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥
2

+ 4α‖ν̃t − ν∗‖2
∥∥βtη2t (gxt − Ex ∼qν̃t [gx])

∥∥
2

= ‖ν̃t − ν∗‖22,
where the first inequality holds due to (S-2) in Lemma 1, the second inequality holds due to (S-1) in
Lemma 1.

A.3 Proof of Corollary 2

Proof. Let νa and νb be the model parameter of the naive learner and the teacher-aware learner.

Denote T̂ V
E

ν∗(ν) = maxx∈E T̂ V ν∗(x, y|ν), E is some dataset. Let x∗ denote the argmax of
maxx∈D T̂ V ν∗(x, y|ν), then by the assumption on Dt, we know that there exists x′ such that
‖x′ − x∗‖2 ≤ ε/(TL(η2t + 4ηt)). Then we have

T̂ V
D

ν∗(ν)− T̂ V D
t

ν∗ (ν)

= max
x∈D

(−η2t gx(ν) + 2ηt(l(ν, x)− l(ν∗, x))− max
x∈Dt

(−η2t gx(ν) + 2ηt(l(ν, x)− l(ν∗, x))

≤ (−η2t gx∗(ν) + 2ηt(l(ν, x
∗)− l(ν∗, x∗))− (−η2t gx′(ν) + 2ηt(l(ν, x

′)− l(ν∗, x′))
≤ L(η2t ‖x∗ − x′‖2 + 4ηt‖x∗ − x′‖2) (L-Lipschitz)
≤ ε/T. (S-5)

Now we prove that ‖νtb − ν∗‖22 ≤ ‖νta − ν∗‖22 + t/T ε for all 1 ≤ t ≤ T . As ν0 is the same
for both learners, knowing theorem 1, we have ‖ν1b − ν∗‖22 ≤ ‖ν1a − ν∗‖22 + 1/Tε. Suppose
‖νtb − ν∗‖22 ≤ ‖νta − ν∗‖22 + t/T ε, then we have

‖νt+1
b − ν∗‖
≤ ‖νtb − ν∗‖22 − TV D

t

ν∗ (νtb) (Theorem 1)

≤ ‖νtb − ν∗‖22 − T̂ V
Dt

ν∗ (νtb) (convexity of l)

≤ ‖νtb − ν∗‖22 − T̂ V
D

ν∗(ν
t
b) + ε/T T̂V

D

ν∗(ν)− T̂ V D
t

ν∗ (ν) ≤ ε

≤ ‖νta − ν∗‖22 − T̂ V
D

ν∗(ν
t
a) + (t+ 1)/Tε (condition)

≤ ‖νta − ν∗‖22 − T̂ V
Dt

ν∗ (νta) + (t+ 1)/Tε T̂V
D

ν∗(ν)− T̂ V D
t

ν∗ (ν) ≥ 0

= ‖νt+1
a − ν∗‖22 + (t+ 1)/Tε

Therefore, we have ‖νtb − ν∗‖22 ≤ ‖νta − ν∗‖22 + t/T ε, which suggests that the teacher-aware learner
can always converge no slower than the naive learner up to an ε factor.

B Detailed Experiment Settings

We used two types of loss functions in all the experiment. For regression tasks, our loss function is

min
ω∈Rd,b∈R

1

n

n∑

i=1

1

2

(
ωTxi + b− yi

)2
+
λ

2
‖ω‖22

For classification tasks, our loss function is

min
ω∈Rd,b∈R

1

n

n∑

i=1

K∑

k=1

−1(yi = k) log pik +
λ

2
‖ω‖22

4
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Figure 1: Square loss of the linear regression.

pik =
exp(ωTk xi + bk)

∑K
k′=1 exp(ωTk′xi + b′k)

where ω ∈ RK×d and ωk is the k-th row of ω, b ∈ RK and bk is the k-th element of b. The norm
is Frobenius norm. In both regression and classification tasks, we refer to [ω, b] as ω∗. In all the
following experiments, we used a constant learning rate 10−3 for all the algorithms. The size of the
minibatch was set to 20. As the gradient scale is different in different experiments, we used different
βs. We chose the hyperparameter β so that at the beginning of the learning, the data in the mini-batch
with the smallest teaching volume has above 80% probability of being selected. In the supplementary
material, we show additional results of our experiments. All plots are consistent with the results in
the main text. All of our experiments were run on machines with 16 I9-9900K cores and 64GiB
RAM. The longest setting is the Tiny ImageNet classification, takes about 12 hours to finish (2000
iterations for 8 methods and 20 random seeds).

B.1 Linear Models on Synthesized Data
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Figure 2: Classification accuracy and Cross Entropy loss of the 10-class Gaussian data classification.

For the regression task, both ω∗ and X are randomly generated from a uniform distribution, namely
ωi, b,Xij ∼ U [−1, 1]. Y = Xω∗. The data points have dimension 100, and β is chosen to be
2000. For the classification task, we first randomly generate K points as the center of each class
from U [−1, 1]. Then, we use these points as the centers of Normal distributions with Σ = 0.5I(d+1).
N/K points are sampled from each distribution as the data. We get ω∗ using the logistic regression
model in Scikit-learn [4]. For classification task with 30D data, we use β = 60000. We used λ = 0
for both tasks. For the scenario of different feature spaces, we use a random orthogonal projection
matrix to generate the teacher’s feature space from the student’s. ω∗ and ν∗ are multiplied with the
inverse of the projection matrix to preserve the inner product. Figure 1 shows the square loss of
the linear regression task. Figure 2 shows the classification accuracy and the Cross Entropy loss of
10-class classification tasks.
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Figure 3: L2 distance, accuracy and Cross Entropy loss of the 10-class MNIST classification, in
which the teacher uses 20D features.

B.2 Linear Classifiers on MNIST Dataset

Table 1: MNIST CNN structure
20-Dim CNN 24-Dim CNN 30-Dim CNN

Conv 1 1 layer, 64 [3×3] filters, leaky ReLU
Pool 2×2 Max with Stride 2

Conv 2 1 layers, 32 [3×3] filters, leaky ReLU
Pool 2×2 Max with Stride 2

Conv 3 1 layer, 32 [3×3] filters, leaky ReLU
FC 20, tanh 24, tanh 30, tanh
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Figure 4: L2 distance, classification accuracy and Cross Entropy loss of the 10-class MNIST
classification, in which the teacher uses 30D features.

We also did experiment with the MNIST dataset, which didn’t mentioned in the main text for
space sake. For our 10-class MNIST experiment, we trained 3 different CNNs with the similar
architecture, only differing in the number of units in the last fully connected (FC) layer. The structure
is summarized in table 1. All three CNNs were able to achieve above 97% test accuracy. To test
our ITAL method, we had the teacher teach the parameters of the FC layer to the student. The input
of this layer is used as feature vectors of the images. The learner always used features with 24D,
but the teacher varied with 20D and 30D, results presented in figure. In both settings, β is set to
30000. The FC layer weights trained with supervise learning were used as ν∗. Figure 3 and 4 show
the classification accuracy and Cross Entropy loss of the training.

B.3 Linear Classifiers on CIFAR-10

The overall design of this experiment resembles the MNIST classification. We used CIFAR-10, a
dataset with more enriched and complicated natural images. We trained three different CNNs with
6, 9, and 12 convoluted layers on an augmented CIFAR dataset. With 40 epochs and an adaptive
learning rate, we were able to achieve about 82 percent test accuracy for all three architectures. Table 2
summarizes the CNN structure we used. To stabilize training, we used an exponential decaying β,
βt = 50000(1− 5e−6)t. We think that because the feature representation is quite different between
the teacher and the student, as the iterative learning goes, the approximation error might accumulate.
Thus, the learner’s estimation of the teacher’s data selection will be less accurate towards the end of
the learning, especially for the most ambiguous examples (images prone to mistakes). At this time,
using a large β can be unstable. In other words, it is hard for the learner to reason about the teacher at

6



0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

0.2

0.4

0.6

0.8
10-Class Classification Accuracy

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

1

2

3

4

5

Cross Entropy Loss

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 5: Accuracy and Cross Entropy loss of the 10-class CIFAR-10 classification, in which the
teacher uses features extracted from CNN-6 detailed in table 2. The L2 loss curves we included in
the main text section 5 figure 1c was from this setting.
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Figure 6: L2 distance, classification accuracy and Cross Entropy loss of the 10-class CIFAR-10
classification, in which the teacher uses features extracted from the CNN-12 detailed in table 2.

the end of the learning, so he should be less confident using the pragmatic information suggested by
the teacher’s intention. Figure 5 and 6 show the accuracy and Cross Entropy loss of this task.

B.4 Linear Classifiers on Tiny ImageNet

The overall design of this experiment resembles the MNIST and CIFAR-10 classification. We used
Tiny ImageNet, a large scale dataset with natural images. We first extracted 2048D features from
VGG-13/16/19 without finetuning and then downsampled the features to 10D with a multilayer
perceptron with three FC-ReLU-layers (500, 250, 10) trained with Cross Entropy loss. Figure 7 and 8
show the accuracy and Cross Entropy loss of this task.

B.5 Linear Regression for Equation Simplification

In this experiment, we let the teacher teach a value function to the student so that he can use this
value function to simplify polynomials given predefined operations. We first created an Equation
Simplification dataset. we randomly generate two fourth-degree polynomials with three variables
x, y, z as the left- and right-hand sides of the equations. The coefficients of the polynomials are

Table 2: CIFAR-10 CNN structures.
CNN-6 CNN-9 CNN-12

Conv 1 2 layers of 16 [3×3] filters 3 layers of 16 [3×3] filters 4 layers of 16 [3×3] filters
Pool 2×2 Max with Stride 2

Conv 2 2 layers of 32 [3×3] filters 3 layers of 32 [3×3] filters 4 layers of 32 [3×3] filters
Pool 2×2 Max with Stride 2

Conv 3 2 layers of 64 [3×3] filters 3 layers of 64 [3×3] filters 4 layers of 64 [3×3] filters
Pool 2×2 Max with Stride 2
FC 32 32 32
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Figure 7: Top-5 accuracy and Cross Entropy loss of the 200-class Tiny ImageNet classification, in
which the teacher uses features extracted from VGG-13. The L2 loss curves we included in the main
text section 5 fig. 1d was from this setting.

0 250 500 750 1000 1250 1500 1750 2000

10

11

12

13

14

15

L2 Distance

0 250 500 750 1000 1250 1500 1750 2000
Training Iteration

4

6

8

10

12
Cross Entropy Loss

0 250 500 750 1000 1250 1500 1750 2000
0.00

0.05

0.10

0.15

0.20
200-Class Classification Accuracy

ITAL-5 Batch ITAL-20 ITAL-10ITAL-15 ITAL-2SGD IMT

 Machine ITAL Machine IMT Human ITAL Random ITAL Human IMT Teacher

Figure 8: L2 distance, top-5 accuracy and Cross Entropy loss of the 200-class Tiny ImageNet
classification, in which the teacher uses features extracted from the VGG-19.

either fractions or integers. The range of magnitude is 20 and 5 for the nominator and denominator,
respectively. We define a set of operations that can be performed on an equation.

• Scale: scale a term by an integer factor.

• Reduction: reduce the fraction coefficient of a term to the simplest form.

• Cancel common factors: divide coefficients of all terms by the greatest common factor of
integer coefficients and the nominators of fractional coefficients.

• Move: move a term to a specified position in the equation.

• Merge: merge two terms that contain the same denominators and variables with the same
degrees.

• Cancel denominators: multiply all terms by the least common multiple of the denominators
of all coefficients.

To simplify an equation, we apply operations in the following way:

1. Canceling common factors

2. Merging terms with the same denominators

3. Merging terms with different denominators by scaling the terms with the least common
multiple and then applying the merge operation

4. Removing fractions in the coefficients

5. Rearranging the terms by descending degrees of x, y, z with the move operation

At each step, only one operation is performed on a single term (two terms for merging), and we do
not move on to the next operation until the present one is no longer applicable to the current equation.
After the simplification process, all the remaining terms are on the left-hand side, while the right-hand
side is simply 0. We record the series of equations generated as a simplification trajectory. Some
example simplification trajectories would be:
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Figure 9: Square loss and simplification accuracy using the learned value function. We compared the
last equation in the trajectories generated by the predefined rules and the greedy search results guided
by the learned value function. Given the same teacher, teacher-aware learning algorithm outperforms
naive learners in terms of accuracy and convergence rate. The gray horizontal dash line represents test
accuracy using the ground truth parameter of 45D. For these results, the teacher uses 40D features,
same as the L2-loss in section 5 figure 1e.
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Figure 10: L2 distance, square loss and simplification accuracy using the learned value function. The
teacher uses 50D features for these results.

Example equation 1 :
1

4
xyz − 3

2
xyz = −14y3 +

1

5

−5

4
xyz = −14y3 +

1

5
(merge)

−25xyz = −280y3 + 4 (cancel denominators)

−25xyz + 280y3 = 4 (move)

−25xyz + 280y3 − 4 = 0 (move)

Example equation 2 : 5x3y +
8

3
z = −14

3
z + 6xy2z +

11

3
xz2 + 6yz2

5x3y +
22

3
z = 6xy2z +

11

3
xz2 + 6yz2 (merge)

15x3y + 22z = 18xy2z + 11xz2 + 18yz2 (cancel denominators)

15x3y − 18xy2z + 22z = 11xz2 + 18yz2 (move)

15x3y − 18xy2z − 11xz2 + 22z = 18yz2 (move)

15x3y − 18xy2z − 11xz2 − 18yz2 + 22z = 0 (move)

We applied CNN φθ to learn the features of the generated equations and a linear value function wrt.
these features. We first encode equations using a codebook which maps each character to a trainable
vector embedding. Thus, each equation can be encoded as a matrix. Then, we treat each equation as
a 3D tensor with size 1×W × C, where W is the number of characters in the equation and C is the
length of embedding. We set C = 30, and W ranges from 6 to 173. During training, we padded 0
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Table 3: Equation CNN structure
40-Dim CNN 45-Dim CNN 50-Dim CNN

Conv 1 1 layer, 64 [5×5] filters, leaky ReLU
Conv 2 1 layers, 64 [5×5] filters, leaky ReLU

Pool 2×2 Max with Stride 2
Conv 3 1 layer, 32 [3×3] filters, leaky ReLU
Conv 4 1 layer, 32 [3×3] filters, leaky ReLU

Pool 2×2 Max with Stride 2
Conv 5 1 layer, 32 [3×3] filters, leaky ReLU
Conv 6 1 layer, 32 [3×3] filters, leaky ReLU

Pool 2×2 Max with Stride 2
FC 40, tanh 45, tanh 50, tanh

to make sure all equations in one batch form a regular tensor. We fed the encoded equations to the
CNN and used the output as their feature vectors. The structure of the CNN is summarized in table 3.
The value of a given equation is the inner product of its feature vector and the parameter ω. The loss
function is based on contrastive loss and seeks to maximize the difference between the values of the
simpler equations and the complicated equations. During training, we learn the network parameters
and the weight vector simultaneously with:

L(ω, θ) =
1

|S+|
∑

(Ei,Ej)∈S+

max
(

1−
(
φθ(Ei)− φθ(Ej)

)T
ω, 0

)
+

1

|S−|
∑

(Ei,Ej)∈S−
max

(
1−

(
φθ(Ej)− φθ(Ei)

)T
ω, 0

)
+
λ

2
‖ω‖22

where S+ and S− hold positive and negative pairs respectively. The positive data are pairs of
equations from the same simplification trajectory, where the first equation in the pair is generated
after the second one. That is, the first equation is simplified from the second equation, hence having a
higher value. For the negative data, we randomly select an equation from a simplification trajectory
excluding the simplification result and randomly apply an operation to that equation. If the result
of the operation is different from the next equation in the trajectory, we add the result-equation pair
to S−. Otherwise, we randomly choose a different operation until the result of the operation is not
the next equation in the trajectory, and then add the pair to S−. This way, we acquire pairs whose
first equations have lower values than the second ones’. We train 3 sets of value functions, with the
different feature dimensions, 40D, 45D, and 50D.

After we learned a value function, we utilized ω∗ as the ground truth parameter. The teacher and
the learner represent the equations with the learned features. The learner always used features with
45D, and the teacher used 40D or 50D, corresponding to figure 9 and 10. In all settings, β is set to
5000. We tested the learned parameters with equations not included in the training set. Specifically,
to simplify an equation, we applied all possible operations to it and obtained the outcome equation
values. Then we used the greedy search to select candidates according to their values. The search ends
when all the outcome equations have a lower value than the current equation. If the final equation
generated by the learned value function matches with the simplification generated by our rules, we
count this simplification as correct. In figure 9 and 10, we provide the square loss and the accuracy
for the simplification task.

B.6 Online Inverse Reinforcement Learning

In this experiment, we want to learn a reward function r(s, ω∗). We can define a Markov Decision
Process 〈S,A, r, P, γ〉, where S is the state space, A is the action space, r : S → R is a reward
function mapping from state to a real number as the reward. P ass′ is the transition model that state s
becomes s′ after the agent conducts action a. γ is a discount factor that ensures the convergence of
the MDP over an infinite horizon. Given a reward function, using Bellman equation we have

V ∗(s) = max
a∈A

∑

s′|s,a
P ass′

[
r(s′) + γV ∗(s′)

]
(S-6)
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Figure 11: IRL map examples. Each map has 8× 8 grids. Every grid contains a reward. Maps in the
first row plots the ground truth rewards in each grid. Red bars represent positive rewards and blue
bars represent negative rewards. The learner tries to learn a policy to walk in the map and collect the
most accumulative rewards. The arrows below indicate the most probable action taken by the learner
after he learned the reward function. The red grids are targets of all their neighbors.
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Figure 12: Total variance between the learner’s policy and the teacher’s policy and the actual gain of
the learner during the learning process. The gray horizontal dash line represents teacher’s expected
accumulative reward.

Q∗(s, a) = max
a∈A

∑

s′|s,a
P ass′

[
r(s′) + γmax

a′∈A
Q∗(s′, a′)

]
(S-7)

Suppose an agent behaves by following Boltzman rationality:

π(at|st;ω) =
exp (αQ∗(st, at;ω))∑
a′∈A exp (αQ∗(st, a′;ω))

(S-8)

Take log-likelihood of this function we can have an objective function that the learner can optimize to
learn ω∗.

l(st, at;ωt−1) = αQ∗(st, at;ωt−1)− log
∑

a′∈A
αQ∗(st, a′;ωt−1) (S-9)

ωt = ωt−1 + ηt
∂l(st, at;ωt−1)

∂ωt−1
(S-10)

Then, the online IRL process can be accomodated by our learning framework. One issue is that
the max operation in Q is not deferentiable. Thus, we approximated max with soft-max, namely:
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Figure 13: Learning results of sparse reward maps. All grids in the 8×8 map have 0 reward but 3
grids with reward 1. In every experiment, we randomly selected the 3 grids. Curves drawn with
results using 20 different random seeds. The gray horizontal dash line represents teacher’s expected
accumulative reward.

max(a0, ..., an) ≈ log(
∑n
i=0 exp kai)

n , with k controlling the level of approximation and leveraged the
online Bellman gradient iteration [3] to calculate the gradient for each step.

∂Vg,k(s;ωt)

∂ωt
=
∑

a∈A

exp (kQg,k(s, a;ωt))∑
a′∈A exp (kQg,k(s, a′;ωt))

∂Qg,k(s, a;ωt)

∂ωt
(S-11)

∂Qg,k(s, a;ωt)

∂ωt
=
∑

s′|s,a
P ass′

(∂r(s′;ωt)
∂ωt

+ γ
∂Vg,k(s′;ωt)

∂ωt
)

(S-12)

In every round, we randomly sample 20 (s, a) pairs from |S|× |A| state-action pairs as our minibatch.
Then the teacher will conduct Bellman gradient iteration. The learner will return his reward estimation
for each grid to the teacher.

We used an 8× 8 grid map as the environment, and the action space A includes four actions up, down,
left, right. See figure 11 for map examples. 80% of the time, the agent goes to its target, 18% of the
time ends up in another random neighbor grid and 2% of the time dies abruptly (game ends). We
set γ = 0.5. The reward in each grid is randomly sampled from a uniform distribution, U [−2, 2]. If
we encode each grid with a one-hot vector, then the reward parameter is a 64D vector with the i-th
entry corresponding to the reward of the i-th grid. The teacher uses a shuffled map encoding as the
student’s. For instance, if the first grid is [1, 0, ..., 0] to the learner, then it becomes [0, ..., 0, 1, 0, ...]
to the teacher. See figure 12 for the actual accumulative reward acquired by the agent during learning.

In addition to the environment with random dense rewards, we tested the teacher-aware learner in a
sparse reward environment. Each time, we only pick 3 grids randomly to assign non-zero reward.
Our algorithm still shows robust performance. Results in figure 13.

B.7 Adversarial Teacher

Table 4: Selection of βs in the adversarial teacher experiments. For cooperative teachers, the absolute
values of the βs are the same, only the signs are flipped.

Experiment Value of β
Linear Classifiers on Synthesized Data -60000
Linear Regression on Synthesized Data -5000
Linear Classifiers on MNIST Dataset -30000
Linear Classifiers on CIFAR Dataset −50000(1− 5e−6)t

Linear Classifiers on Tiny ImageNet Dataset −1000
Linear Regression for Equation Simplification -5000

Online Inverse Reinforcement Learning (Random Rewards) -25000
Online Inverse Reinforcement Learning (Sparse Rewards) -30000

We further test the robustness of our algorithm with an adversarial teacher, who, instead of choosing
the most helpful data, chooses the least helpful one. She replace the arg max in equation (2) in the
main text with arg min. In this scenario, a naive learner can barely learn, but the teacher-aware
learner still shows steady improvement. See table 4 for the β used in these experiments.
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(a) Linear Regression
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(b) Gaussian data 10-class classification.
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(c) MNIST 10-class, 20D teacher features
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(d) MNIST 10-class, 30D teacher features
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(e) CIFAR-10, teacher feature from CNN-9.
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(f) CIFAR-10, teacher feature from CNN-12.
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(g) Tiny ImageNet, teacher feature from VGG-13, showing top-5 accuracy.
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(h) Tiny ImageNet, teacher feature from VGG-19, showing top-5 accuracy.
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(i) Equation simplification, 40D teacher features
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(j) Equation simplification, 50D teacher features
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(k) Online inverse reinforcement learning
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Figure 14: Adversarial teacher results. With an adversarial teacher, a naive learner can no longer
learn effectively. ITAL still learns efficiently. SGD and batch learning are included for comparison.
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Figure 16: Actual interface used in the human study. The reward spectrum will be shown to the
subjects at the experiment introduction. In this example, the subject chose the green arrow as the
example at the 1-st iteration. Then, as we annotated with the orange T-shaped boxes, the estimated
reward of the target tile of the green arrow increased, while rewards of the arrow source and the
surrounding neighbors decreased. The orange boxes were not included in the human study.

B.8 Human Teacher

We conducted a proof-of-concept human study on 20 university students, 10 females and 10 males.
We want to validate that our teacher-aware learner can also outperform naive learners given a human
teacher. In other words, our teacher model can be applied to human teachers, despite of their
potentially different pedagogical patterns. The goal of the experiment is for the participant to teach
the reward of a ground-truth reward map to a learner. To reduce human subjects’ cognitive burden, we
use three types of tiles (red, blue and white) on the map to represent bad, good and neutral grids. We
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Figure 17: Human study results. All the p-values are calculated with paired t-test.
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Figure 18: Learning curves for each map.
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used 5 different map configurations shown in figure 15. The learner’s current reward map is shown
to the human participants during the entire teaching session. As the reward values are continuous
at the learner’s side, we used the color pallet in figure 16 to render the grids in the learner’s map.
We also included a map indicating the most probable actions the learner will take given his current
reward map, so that the human teacher can tell which grid the learner attaches a higher reward if
some neighboring grids have similar colors. The directions of these arrows are calculated with value
iteration using the learner’s current reward parameters. An example human interface was shown in
figure 16. In each time step, ten arrows will be drawn on ten randomly sampled grids. Selecting one
of the arrows tells the learner that he should follow the arrow’s direction if he was at this grid. Then
the learner will update his reward parameters based on this instruction using the same equation (S-10)
as in section B.6.

We hold the experiment as a Jupyter Notebook [2] and launch it via Binder [1]. We first introduce the
experiment logic to the human subjects and include a short warm-up phase for the subjects to get
familiar with the learner’s update process. Then, we let the subjects to teach the maps, starting from
Map A to Map E. Every subject needs to teach both a teacher-aware learner and a naive learner, whose
order is randomly determined. For every map, the initialization of the two learners are the same for
the same human subject and different across subjects. Like the inverse RL experiment in section B.6,
we evaluate the learning results in terms of L2-distance between the learners’ reward parameters and
the ground-truth parameters, the total variance between the learners’ policy and the policy derived
with the ground-truth reward and the actual accumulated reward acquired by the learner after the
learning completes.

The results are presented in figure 17. The advantages of the teacher-aware learners are significant
(p-value < 0.01) on all measurements, computed with a paired t-test. We also did an ablative study,
in which the human teacher was replaced by a random teacher. As shown in the figure 17 and 18,
when paired with a random teacher, the teacher-aware learner doesn’t show any advantage and has
much larger variance. That is to say, the teacher model only benefits the learning when it matches
with the actual teacher data selection process. Otherwise, the teacher-aware learner will over-interpret
the data he receives. Figure 18 shows the learning curves of all the map configurations.
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