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Abstract. Since its introduction in the mid-1990s, DBSCAN has become one of the most widely used clustering5
algorithms. However, one of the steps in DBSCAN is to perform a range query, a task that is difficult6
in many spaces, including the space of persistence diagrams. In this paper, we introduce a spanner7
into the DBSCAN algorithm to facilitate range queries in such spaces. We provide a proof-of-concept8
implementation, and study time and clustering performance for two data sets of persistence diagrams.9
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1. Introduction. A common task in data analysis is clustering. Since its introduction in the14

mid-1990s, DBSCAN [16] has become one of the most widely used clustering algorithms. Range15

queries—finding all data points that satisfy a certian (usually geometric) property, such as all points16

within distance ǫ of a point x—are a central step in the DBSCAN algorithm. However, computing17

range queries and pairwise distance matrices is a task that is often cumbersome in high-dimensions18

and in non-Euclidean spaces, such as spaces of: persistence diagrams, Reeb graphs, point clouds,19

and curves in space.20

In this paper, we are interested in studying the clustering of persistence diagrams. The space of21

persistence diagrams under the bottleneck distance has infinite doubling dimension [17], making it22

not suitable for many clustering algorithms. To get around this issue, approximating distances (and23

defining new distances) for the task of clustering persistence diagrams has been the focus of several24

recent papers in topological data analysis (TDA) [8,13,14,17,32]. We present DBSpan, a modified25

version of the DBSCAN algorithm, that replaces the range query with an approximate range query26

by using a spanner technique introduced by Kerber and Nigmetov [25] for approximating expensive27

distances. When used to cluster persistence diagrams, we demonstrate performance improvements28

over the standard DBSCAN algorithm.29

This paper begins, in Section 2, by introducing preliminaries needed to understand our algo-30

rithm, then presents the algorithm itself in Section 3. Furthermore, we provide a proof-of-concept31

implementation in Python1 and demonstrate the utility of the algorithm with experimental results32

in the space of persistence diagrams under the bottleneck distance in Section 4.33

2. Preliminaries. In this section, we introduce notation and definitions needed to understand34

the contributions of this short paper. Relevent references are provided where the interested reader35

can find more details on these preliminaries.36

Notation. S is a finite metric space, with corresponding distance metric d : S × S → R. For37

a point x ∈ S and radius ǫ > 0, we use Nǫ(x) to denote the set of points in S \ {x} within the38

closed ǫ-neighborhood or ǫ-neighborhood of x; that is, Nǫ(x) := {y 6= x ∈ S | d(x, y) ≤ ǫ}.39

Clustering (and Other Tasks) with Persistence Diagrams. While the algorithm presented in this40

paper is applicable to many types of data, we are particularly motivated by using persistence dia-41

grams to compare data, and the difficulties that arise in clustering data using persistence diagrams.42
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Geometrically, a persistence diagram is a multiset of points in the extended plane (the extended43

plan R
2
allows infinite coordinates). To compare two persistence diagrams D1 and D2, we use the44

bottleneck distance between them, denoted d∞(D1, D2). We defer formal definitions of persistence45

diagrams and distances between them to [15].46

The difficulty of dealing with persistence diagrams in tasks such as clustering or range queries47

largely boils down to two issues. First, the computation of the distance itself is expensive. To48

compute d∞(D1, D2), one must minimize over the set of all matchings between point sets D149

and D2. While heuristic improvements on computation have been made to prune this search space50

in practice [23], it is still a time-consuming task. Thus, for large data sets, computing all pairwise51

distances is impractical. Second, the doubling dimension (that is, the log of the number of balls52

of radius r
2 needed to cover a ball of radius r; see [11]) of the space of persistence diagrams is53

infinite [17,24,25]. Often, algorithms for computing nearest neighbors or range queries assume low54

doubling dimension. And, even in spaces of constant doubling dimension d, to use cover trees for55

computing nearest neighbors is O(d12 log n) for a data set with n points [2].56

DBSCAN. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) Algo-57

rithm was first introduced in [16] and has seen many improvements and implementations [4, 6, 7,58

20, 27]. (Most of the implementations are optimized for datasets lying in R
d). The intuition of59

this algorithm is that, given ǫ > 0, we: (1) for each point x, compute Nǫ(x), the set of all points60

whose distance is at most ǫ from x; (2) construct a neighborhood graph on these neighborhoods,61

restricting to the “dense” points (i.e., the vertices of this graph are the points whose ǫ-neigborhoods62

meet a minimum threshold of neighbors, and edges exist between vertices if their distance is at63

most 2ǫ). The output of DBSCAN is a labeling of each vertex with its cluster, or as ‘noise’ (that is,64

non-dense points whose ǫ-neighborhoods do not contain any dense point). The vertices of the con-65

nected components of this graph (along with additional points “at the boundary” of these clusters)66

are the clusters that DBSCAN computes.67

The central step of DBSCAN is the computation of the ǫ-neighborhoods. This step is an68

example of a range query : given a shape in the domain (such as a disc in R
2), find all data points69

that are contained in that shape. In R
2, a data structure can be created to support range queries70

of ℓ∞ balls with O(n log n) precomputation such that a range query whose range has k points71

will take O(log n+ k) distance calculations [38]. Assuming the ǫ-neighborhoods in DBSCAN have72

constant size, we observe that the computation of all ǫ neighborhoods takes O(n log n). In spaces73

with low doubling dimension, rather than calculating the ǫ-neighborhoods exactly, approximating74

these using approximate nearest neighbor graphs can be used. For example, [39] replaces the range75

queries in DBSCAN with locality sensitive hashing. And, a paper posted to ArXiv in 2020 [9]76

uses approximate k-nn graphs using random projections to provide a speedy approximation of77

the ǫ-neighborhoods in DBSCAN. However, in spaces with large doubling dimension, a single range78

query (in practice) resorts to scanning through all data points; hence, the computation of the ǫ-79

neighborhoods requires O(n2) distance calculations.80

DBSCAN is familiar to the TDA community, as papers have been published using DBSCAN.81

Within this context, DBSCAN has been used to cluster points within a persistence diagram [26,29],82

as a comparison against TDA-based techniques for clustering [12, 21, 28, 31], and as a clustering83

subroutine in a TDA pipeline [3]. In the latter, a pairwise distance matrix is required as input,84

which makes using DBSCAN prohibitive for large data sets of persistence diagrams.85

Spanners. In DBSCAN, when spatial range queries or other ways to speed-up the calculation86

of ǫ-neighborhoods are not possible, we rely on the pairwise distance matrix; that is, we need to87

store (or at least compute) the distance between every pair of input data. Thinking of this matrix88

as a large graph (a vertex for each datum and an edge for each pairwise distance), spanners help89

to simplify the graph, while maintaining approximate distances. In particular, a (1+ δ)-spanner of90

a discrete metric space (S, d) is a weighted graph G = (S,E, ω) such that for all pairs p, q ∈ S,91

(2.1) d(p, q) ≤ dG(p, q) ≤ (1 + δ)d(p, q),92
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where dG(p, q) is the length of the shortest path between p and q in G. Spanners were originally93

introduced to simplify the pairwise distance matrix for points in the plane [10], but have since been94

used in other metric spaces as well [1, 19, 25]. However, the underlying assumption is often that95

distances are fast to compute and that we can have access to the entire pairwise distance matrix96

to compute the spanner.97

On the other hand, Kerber and Nigmetov [25] studied spanners in metric spaces where the98

distances are expensive to compute, such as in the space of persistence diagrams. Given a param-99

eter δ, they provide algorithms to compute a (1 + δ)-spanner for a pairwise distance graph. The100

spanners do not require computing all |S|2 distances, and in practice, tend to be linear in size.101

While we defer the details of the algorithm to [25], we note that their algorithm is an iterative102

method that maintains, for each p, q ∈ S, a lower and an upper bound, a(p, q) and b(p, q) for the103

distance d(p, q). When selecting which distance to compute next (that is, which edge to add to the104

spanner), they offer two heuristics, BlindGreedy and BlindRandom. Both of these heuristics105

select which edge based on the ratio b(p,q)
a(p,q) , with BlindGreedy selecting the edge that maximizes106

that ratio and BlindRandom selecting randomly among edges whose ratio is at least 1 + δ.107

3. Algorithm. We present DBSpan, an approximation of DBSCAN for metric spaces where108

the distances are expensive to compute. The algorithm, given in Algorithm 3.1, mirrors DBSCAN,109

but differs in two key places:110

1. We replace the ǫ-neighborhood Nǫ(p) with an approximate nearest-neighbor ball Ñ δ
ǫ (p)111

computed using distances in the spanner graph from [25] using the BlindRandom heuristic.112

2. Rather than computing the ǫ-neighborhoods on the fly, the approximate ǫ-neighborhoods113

from the spanner are precomputed in Line 3.114

Note that the ǫ-neighborhoods for DBSCAN could also be pre-computed; however, all Θ(|S|2)115

distances between input data will still need to be computed first. By using the spanner from [25],116

DBSpan reduces the number of pairwise distances that need to be computed.117

Implementation. Along with this paper, we are releasing an open-source Python implementation118

(see link in Footnote 1). This code uses Scikit-TDA [34] for computing persistence diagrams on Rips119

filtrations and computing the bottleneck distance between persistence diagrams. For the most part,120

the Python code mirrors Algorithm 3.1. We note that, for clarity of exposition and for adhering121

to variable naming practices in Python, several variables have different names in the pseudocode122

in this paper and the Python code: S in the pseudocode is called data in the Python code, ǫ is123

called eps, m is called min samples, and Q is called queue. In addition, the Python code has one124

performance improvement: rather than pushing p onto the queue in Line 13, p is directly processed125

and Q is initialized to Nǫ(p). This saves one range query.126

Relationship between Clusters Found by DBSCAN and DBSpan. By Equation (2.1), several rela-127

tionships between the clusters found by DBSCAN and DBSpan arise that allow us to ensure that128

‘nearby’ points are clustered together and ‘far away’ points are not. In particular:129

1. If p, q ∈ S such that DBSpan(S, ǫ,m, δ) clusters them into the same cluster and their ǫ-130

neighborhoods have at least m points, then p and q will be in the same cluster using131

DBSCAN(S, ǫ,M) for all M ≥ m.132

2. If p, q ∈ S such that DBSpan(S, ǫ,m, δ) clusters them into different clusters, Cp and Cq, if133

there are no outliers, and if the minimum inter-cluster distance between all pairs of clusters134

is greater than (1+δ)ǫ, then p and q will not be in the same cluster using DBSCAN(S, ǫ,m).135

These statements follow from the fact that the approximate ǫ-neighborhoods are computed from136

an (1 + δ)-spanner over S.137

4. Experimental Results.138

Experimental Methods. In the experiments, we compare clustering using the scikit-learn [30]139

implementation of DBSCAN to the clustering obtained using DBSpan (Algorithm 3.1). To validate140

the clustering, we treat the clusters from DBSCAN as the ground truth and compute the adjusted141

Rand index (ARI) [37] for DBSpan. Similar to the standard Rand index [33], if the clusters match142
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Algorithm 3.1 DBSpan(S, ǫ,m, δ)

Input: Dataset S; neighborhood radius ǫ ≥ 0; core size m ≥ 0; and spanner parameter δ
Output: A cluster label is attributed to each point in S

1: For all p ∈ S, initialize p.cluster = −1 {All points are considered unlabeled initially}
2: Compute spanner of S
3: For all p ∈ S, compute Ñ δ

ǫ (p) using the spanner
4: c = 0 {number of clusters; also current cluster number}
5: for p ∈ S do

6: if p is labeled then

7: continue

8: else if |Ñ δ
ǫ (p)| < m then

9: p.cluster ← 0 {p is labeled as noise}
10: continue

11: end if

12: c← c+ 1
13: Q.push(p) {initialize queue of points to be added to current cluster}
14: while Q is not empty do

15: q ← Q.pop()
16: if q.cluster ≥ 1 then

17: continue

18: end if

19: q.cluster ← c {q is now considered labeled}
20: if |Ñ δ

ǫ (q)| ≥ m then

21: Add Ñǫ(q) to Q

22: end if

23: end while

24: end for

25: return

exactly between DBSCAN and DBSpan (up to relabeling), then the adjusted index is one. The143

more disagreement between the two clusterings, the closer the index is to zero.144

Experiment 1: Shape Dataset. In this experiment, we study how in the shape dataset, varying145

the approxiation of the true distance, δ, changes the quality of the clustering (as measured by ARI).146

We consider a simple data set of shapes in R
4. Using TaDAsets from Scikit-TDA [34], we147

create 74 shapes from three different classes: 30 torii, 30 spheres, and 14 Swiss rolls. For each148

shape, we sample 100 points form the shape, apply Gaussian noise with σ = .1, and compute the149

persistence diagram corresponding to the Vietoris-Rips filtration. Then, the 1d diagram is used as150

input into DBSCAN and DBSpan with common parameters ǫ = 0.3 and m = 15.151

In Table 1, we see the result of varying the spanner parameter δ and comparing the speed and152

accuracy of DBSpan. The first column, δ, is the approximation for the spanner. The second column153

is the ARI of the DBSpan output as compared to the DBSCAN ground truth. The third column is154

the number of edges in the resulting spanner. The fourth column is the proportion of edges in the155

spanner to the complete graph. Note that the complete graph has 2701 edges. The fifth column156

is the time (in seconds) for running DBSpan. The sixth column is the speedup of DBSpan. Note157

that the DBSCAN took 74.99s to complete.158

Observe that for δ = {.1, 1}, DBSpan and DBSCAN have a ARI index of 1, which means159

that they produced the same output. Unfortunately, when δ = .1, DBSpan is slightly slower than160

DBSCAN. In this case, even though we only compute 83% of all distances, the cost of determining161

which distances can be omitted overwhelms the gains (as could be expected). For this problem, δ =162

10 strikes a nice balance between speed and accuracy as Rand index is .98 with a 4x speedup.163
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Table 1: Performance metrics comparing DBSCAN and varying δ values for DBSpan. For this
experiment, DBSCAN ran in 74.99 seconds and the complete graph contains 2701 edges. We
compare accuracy between the clusterings with the adjusted Rand index (ARI) in column 2 and
measure DBSpan time in column 5 in seconds.

δ ARI Num Edges % Possible Edges DBSpan time Speedup

0.1 1.00 2243 83.0 80.91 0.9
1.0 1.00 1114 41.2 48.00 1.6

10.0 0.98 442 16.4 18.74 4.0
50.0 0.84 398 14.7 16.58 4.5

100.0 0.86 375 13.9 15.66 4.8
500.0 0.95 421 15.6 18.62 4.0

1000.0 0.84 388 14.4 17.44 4.3

Table 2: Performance metrics comparing DBSCAN and DBSpan on varying size inputs. We com-
pare accuracy between the clusterings with the adjusted Rand index (ARI) in column 2. The time
to run DBSCAN and DBSpan are meaused in seconds and reported in columns 4 and 5, respectively.

Num Dgms ARI % Possible Edges DBSCAN time DBSpan time Speedup

30 1.00 66.5 283.25 185.14 1.5
45 1.00 66.3 654.45 429.65 1.5
60 0.79 64.5 1007.53 656.37 1.5
75 0.94 55.9 1762.89 998.35 1.8
90 0.90 56.2 2435.76 1369.58 1.8

105 0.96 54.3 3476.13 1942.88 1.8
120 0.86 49.3 4457.90 2269.63 2.0

For δ > 10, however, the sparsification (and along with it the loss of accuracy and speed up) seems164

to plateau at computing 15%±1.5% of the possible edges. We have seen this plateau in other tests165

cases as well and would like to investigate further.166

Experiment 2: Prostate Cancer Dataset. In this experiment, we study the scaling of DBSpan. For167

a fixed distance approximation, we compare various size datasets. As in the previous experiment,168

we treat the clusters from DBSCAN as ground truth and assess accuracy with ARI.169

We consider a subset of images from the Kaggle Prostate cANcer graDe Assessment (PANDA)170

Challenge [5], partitioned into small 512 × 512 pixel regions of interest (ROIs). For each ROI, we171

use the Histocartography Python library [22] to extract nuclei centroids, and we use GUDHI [36]172

to compute a persistence diagram using the Vietoris-Rips filtration on these centroids. So that173

we consider interesting diagrams, we remove any diagram with less that 100 1d-persistence points.174

The resulting set of 8595 1d-diagrams are available on the Open Science Framework [18] in the175

DBSpan Test Dataset project [35]. The distribution of the number of points in these diagrams are176

imbalanced, so when we sample from this set, we create three levels: diagrams with less than 150177

points, diagrams with between 150 and 200 points, and diagrams with more than 200 points; and178

perform disproportionate stratified random sampling. Then, the sampled diagrams are used as179

input into DBSCAN and DBSpan with common parameters ǫ = 10 and m = 5.180

Then, we pick a reasonable delta value for this experiment by sampling 30 diagrams from our181

dataset and identifying a δ in which the ARI is still close to 1. For this dataset, at δ = 1, we have182

a ARI of .867 while only computing about 64% of the pairwise distance matrix.183

In Table 2, we see the result of varying the number of diagrams and compare the speed and184

accuracy of DBSpan to DBSCAN. The first column is the number of diagrams to cluster. The185

second column is the ARI of the DBSpan output as compared to the DBSCAN ground truth. The186

third column is the proportion of edges in the spanner to the complete graph. The fourth column is187

the time (in seconds) for running DBSCAN. The fifth column is the time (in seconds) for running188

DBSpan. The sixth column is the speedup of DBSpan.189
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Observe that as the input gets larger we increase the speedup from 1.5 to 2. As one would190

expect, speed seems to increase with the reduction of the number of edges. Perhaps, unexpectedly,191

the proportion of edges computed decreases as the as we increase the number of nodes. For all but192

two trials, the ARI is above .9. Note that from the previous experiment, one would not expect the193

ARI to change substantially for a fixed δ. It seems that further study is required to understand194

how to pick a more predictable δ for clustering.195

5. Conclusions. In this paper, we introduced a spanner into the DBSCAN algorithm to facil-196

itate range queries in spaces with expensive distance computations. In the practical side, we saw197

that even when we remove the computation of a small fraction of distances, we see improvements198

in performance with little deviation from the output of DBSCAN. We believe that we could see199

an even larger speedups by optimizing the implementation and by parallelizing the construction of200

the spanner. Kerber and Nigmetov [25] proposed multiple heuristics for building up the spanner201

without computing all distances. In this paper, we only considered one method. Are there better202

ways to add edges to the spanner when the task is approximating neighborhoods? Finally, our203

process for picking δ is done in a somewhat ad-hock fashion. It would be useful to develop a more204

theoretically guided method.205
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