
CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

Efficient Graph Reconstruction and Representation

Using Augmented Persistence Diagrams

Brittany Terese Fasy∗ Samuel Micka† David L. Millman‡ Anna Schenfisch§ Lucy Williams¶

Abstract

Persistent homology is a tool that can be employed to
summarize the shape of data by quantifying homological
features. When the data is an object in R

d, the (aug-
mented) persistent homology transform ((A)PHT) is a
family of persistence diagrams, parameterized by direc-
tions in the ambient space. A recent advance in under-
standing the PHT used the framework of reconstruction
in order to find finite a set of directions to faithfully rep-
resent the shape, a result that is of both theoretical and
practical interest. In this paper, we improve upon this
result and present an improved algorithm for graph—
and, more generally one-skeleton—reconstruction. The
improvement comes in reconstructing the edges, where
we use a radial binary (multi-)search. The binary search
employed takes advantage of the fact that the edges can
be ordered radially with respect to a reference plane, a
feature unique to graphs.

1 Introduction

At the heart of inverse problems in the field of topolog-
ical data analysis is the following question: how many
persistence diagrams are needed to faithfully represent a
shape? Since the introduction of persistence diagrams,
it has been known that many “shapes” can share the
same persistence diagram. With enough persistence di-
agrams, we arrive at a set of parameterized diagrams
(that is, diagrams labeled by direction) that uniquely,
or faithfully represents the underlying shape. Moreover,
the set of parameterized diagrams is faithful if and only
if it can be used to reconstruct the underlying shape.

The foundation for asking the question of how many
diagrams are needed for a faithful representation was
first introduced in [16], where Turner et al. defined the
Persistent Homology Transform (PHT) and the Euler

∗School of Computing and Department of Mathematical Sci-
ences, Montana State University, brittany.fasy@montana.edu

†Mathematics & Computer Science Department, Western Col-
orado University, smicka@western.edu

‡School of Computing, Montana State University,
david.millman@montana.edu

§Department of Mathematical Sciences, Montana State Uni-
versity, annaschenfisch@montana.edu

¶School of Computing, Montana State University,
luciawilliams@montana.edu

characteristic curve transform (ECCT). These trans-
forms map a simplicial complex embedded in R

d (a
shape) to sets of persistence diagrams (respectively, Eu-
ler characteristic curves) parmeterized by S

d−1, the set
of all directions in R

d. They showed that, up to mild
general position assumptions, no two simplicial com-
plexes can correspond to the same PHT or ECCT, i.e.,
they showed that the uncountably infinite sets making
up the PHT and ECCT faithfully represent the shape.

However, the PHT and ECCT are uncountably infi-
nite sets of diagrams (and Euler characteristic curves).
Thus, to bridge the gap between the theory and what
can be used in practice, a discretization of the PHT was
needed; several papers stepped up to the challenge and
proved that there exists a finite discretizations of topo-
logical transforms that are faithful for simplicial and
cubical complexes [1,2,4,5,7,8,12]. Beyond proving the
existence of these finite faithful sets, Belton et al. [2]
explicitly give an algorithm for using an oracle to re-
construct graphs embedded in R

d with n vertices. Their
reconstruction uses n2−n+d+1 augmented persistence
diagrams in O(dnd+1 + n4 + (d + n2)Π) time [2, The-
orem 17], where Θ(Π) is the time complexity it takes
for an oracle to produce answer a persistence diagram
querry. Since the direction-labeled diagram set can be
used for reconstructing the underlying graph, it is a
faithful discretization of the augmented PHT (APHT).

In the current work, we give a faithful discretization of
the APHT using Θ(d+m log n) diagrams and Θ(dnd+1+
dΠ + n2 + m log n(log n + d + Π)) time. This result is
an improvement over [2], both in the size of the set
and in the speed of reconstruction. The crux is in the
improvmeent to edge reconstruction. While the method
of [2] uses a linear scan of all possible edges for each ver-
tex, resulting in a quadratic number of diagrams needed,
here we show that we can detect edges with Θ(m log n)
diagrams using a radial binary multi-search.

2 Background and Tools

In this section, we provide definitions of the tools used
in the remainder of the paper. We make use of standard
notation such as using ei for the ith standard basis vec-
tor in R

d, where 1 ≤ i ≤ d. We use the notation (V,E)
for a graph and its vertex and edge sets, and use n = |V |
and m = |E|. We assume the reader is familar with

34th Canadian Conference on Computational Geometry, 2022

standard concepts in topology (such as simplicial com-
plexes, simplicial homology, Betti numbers), and note
that further information can be found in [6] for a gen-
eral introduction and in [7, Section 2.1] for a detailed
definition of the augmented persistence diagram.
First, we define our general postition assumption.

Assumption 1 Let V ⊂ R
d be a finite set with d ≥ 2.

We say V is in general position if the following proper-
ties are satisfied:

(i) Every set of d+ 1 points is affinely independent.

(ii) No three points are colinear after orthogonal pro-
jection into the space π(Rd), where π : Rd → R

2

is the orthogonal projection onto the plane spanned
by the first two basis elements, e1 and e2.

(iii) Every point has a unique height with respect to the
direction e2.

We call a graph GP-immersed1 iff its vertex set is in
general position in R

d.

We note that (iii) is not strictly necessary, however, it
is convenient for simplicity of exposition. How to handle
this degeneracy is discussed in Appendix B.
Given a graph GP-immersed in R

d, we can filter the
graph based on the height in any direction s in the
sphere of directions S

d−1. To do so, we assign each
simplex a height. A vertex v ∈ V is assigned the
height s · v, and an edge [v0, v1] ∈ E is assigned the
height max{s · v0, s · v1}. This function, mapping ver-
tices and edges to heights, is known as a filter function,
which we use to compute persistent homology.

2.1 Persistence and the Oracle Framework

Given a filtered simplicial complex (that is, a simplicial
complex with each simplex assigned a “height”), the
corresponding augmented persistence diagram (APD) is
a record of of all homological events throughout the fil-
tration. A birth event is the introduction or appearance
of a new homological feature, and a death event is the
merging of two features. A death is paired with the
most recent of the birth-labeled features that it merges
together, creating a birth-death pairing, leaving the re-
maining feature labeled by the elder birth height. In an
APD, every simplex corresponds to exactly one event
(resulting in some pairings where the birth and death
heights are equal). As a result, by construction, APDs
contain at least one event at the height of each vertex.
For a simplicial complex (e.g., a graph) GP-immersed

in R
d and a direction in Sd−1, we use the lower-star

filtration: the nested sequence of graphs that arise by

1Here, we use immersed rather than embedded in order to allow
intersections of edges. Note, however, that this can only happen
when d = 2.

looking at all simplices at or below a given height and al-
lowing that height to grow from −∞ to∞. Throughout
this paper, we denote the i-dimensional APD by D̂i(s)

and write D̂(s) = ⊔iD̂i(s), omitting the graph itself
from the notation (as it is always clear from context).2

The (augmented) persistence homology transform
((A)PHT) is the set of (augmented) diagrams of lower-
star filtrations in all possible directions, parameterized
by the direction. That is, the setX = {(D̂(s), s)}s∈Sd−1 .
A faithful discretization is a finite subset of X from
which all other elements of X can be deduced (and,
by [16], corresponds to a unique simplicial complex).
The introduction of the (augmented) persistent homol-
ogy transform has sparked related research in applica-
tions of shape comparison [3,9–11,14,15,17,18]. As such,
finding a minimal faithful discretization is important for
the applicability of the (A)PHT. In what follows, we will
only consider APDs, and we may shorten notation and
refer to an APD by the word diagram.

In this work, we assume an oracle framework. That
is, we assume that we have no knowledge of the shape
itself, but we have access to an oracle from which we
can query directional diagrams.

Definition 2 (Oracle) For a graph (V,E) GP-
immersed in R

d and a direction s ∈ S
d−1, the

operation Oracle(s) returns the diagram D̂(s). We
define Θ(Π) to be the time complexity of this oracle

query and note that the space complexity of D̂(s)
is Θ(n + m). We assume that the data structure
returned by the oracle allows queries for specific birth
or death values in Θ(log n) time (for example, the we
could have two arrays of persistences points, one sorted
by birth values and one sorted by death values).

2.2 Constructions and Data Structures

In this subsection, we introduce the edge arc object
and other definitions useful for computing properties of
immersed graphs. Throughout this paper, we project
points in R

d to the (e1, e2)-plane. As a result, we use
“above (below)” without stating with respect to which
direction as shorthand for “above (below) with respect
to the direction e2.” This direction is intentionally cho-
sen (and used in our GP assumption), as it corresponds
to our intuition of above (below) in the figures. When
we measure an angle of a vector x, denoted ∡x, we mean
the angle that π(x) makes with the positive e1 axis.
Given a direction s and a vertex in a graph immersed

in R
d, we classify each edge (v, v′) as either an “incom-

ing” edge, when v′ is below v with respect to s, or an
“outgoing” edge, when v′ is above v with respect to s.
Note that all incoming edges have the same height as
the vertex with respect to the e2 direction.

2When calculating diagrams, we count D̂(s) as one diagram,
not multiple.

CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

Definition 3 (Indegree) Let (V,E) be a graph GP-
immersed in R

d. Let v ∈ V and s ∈ S
d−1. The indegree

of v in direction s, denoted Indeg(v, s), is the number
of edges incident to v with height s · v.

The following lemma relates the number of edges at
a given height to points in the APD.

Lemma 4 (Edge Count) Let (V,E) be a graph and
let c ∈ R. Let f : V ⊔E → R be a filter function. Then,
the edges in E with a function value of c are in one-to-
one correspondence with the following multiset of points
in D̂(f), the diagram corresponding to f :

{
(b, d) ∈ D̂1(f) s.t. b = c

}

∪
{
(b, d) ∈ D̂0(f) s.t. d = c

}
.

(1)

In other words, each edge corresponds to either a birth
of a one-dimensional homological feature or a death of a
zero-dimensional feature in D̂(f). For more details and
a generalized proof, see [7, Appendix A].
If f is a lower-star filtration in direction s ∈ S

d−1, we
note that whenever a vertex v has a unique height with
respect to a direction s, the cardinality of the multiset
above is exactly Indeg(v, s).

Lemma 5 (Indegree Computation) Let (V,E) be a
graph GP-immersed in R

d. Let v ∈ V and let s ∈
S
d−1 such that s · v 6= s · v′ for any v′ 6= v ∈ V .

Then, Indeg(v, s) can be computed via the oracle using
one diagram and Θ(log n+Π) time.

Proof. Let D̂ = Oracle(s). By the assumption on s,
the height of v with respect to the direction s is unique.
Hence, we know that any edge at height c = s · v must
be incident to v. Thus, by the definition of indegree,
an edge has the height c if and only if it contributes to
the indegree of v in direction s. Using Lemma 4, we
count these edges by counting one-dimensional births
and zero-dimensional deaths at height c. Since D̂0

and D̂1 are sorted by both birth and death values (see

Definition 2) and since D̂ has Θ(n+m) points, searching
for these events takes Θ(log n + logm). Adding Θ(Π)
for the oracle query and recalling that m = O(n), the
total runtime is Θ(log n+Π). �

We conclude this section by introducing a data struc-
ture, the edge arc object ; see Table 1 for a summary of
the attributes of an edge arc and Figure 1 for an exam-
ple. An edge arc represents the region in the (e1, e2)-
plane centered at v that is swept out between the two
angles α1 and α2 (the word ‘arc’ is referring to the arc
of angles between α1 and α2, where the angle is mea-
sured with respect to the postive e1 axis). We only
consider edge arcs in the upper half-space, with respect
to the e2 direction, so the maximal edge arc is the up-
per half-plane and the start and stop angles always sat-
isfy 0 ≤ α1 ≤ α2 ≤ π. An edge arc stores an array

Table 1: Attributes of the edge arc object.

EA Edge Arc
v Vertex around which the edge arc

is centered
(α1, α2) Start and stop angles of the arc,

with respect to the e1 direction
verts Array of vertices in arc radially or-

dered clockwise in (e1, e2)-plane
count Number of edges incident to v

within the arc

Figure 1: An edge arc EA centered at vertex EA.v = v.
Other attributes of the edge arc include its start and
stop angles, EA.α1 = 1.75 radians and EA.α2 = π ≈
3.14 radians, the array of vertices EA.verts = {v1, v2},
and the count of edges EA.count = 1. Here, we also see
that Indeg(v, e1) = 1 and Indeg(v, e2) = 2.

of vertices sorted radially clockwise about π(v) in the
(e1, e2)-plane in decreasing angle with the e1-direction.
By construction, the first vertex in the array must be
closest to α2 and the last closest to α1. The edge arc
also stores the count of edges of E that have vertices
from verts as endpoints. In implementation, the angles
α1 and α2 do not need to be stored directly, but we
include them in psuedocode and discussions for clarity.
Given some arc EA centered at vertex v ∈ V , we need

to be able to compute EA.count , the number of edges
contained EA that are adjacent to v. The following
lemma provides such a computation. We omit a proof
because it is a straightforward adaptation of [7, Theo-
rem 16] and [2, Lemma 13].

Lemma 6 (Arc Count) Let (V,E) be a graph GP-
immersed in R

d. Let EA be an edge arc object, and
let v = EA.v. Let s ∈ S

d−1 be the direction perpendicu-
lar to α2 so that the arc is entirely below s · v. Let E∗

denote the edges with height s · v that are not contained
in EA. If no vertex in V is at the same height as v in
direction s, then

EA.count = Indeg(v, s)− |E∗|.

CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

Algorithm 2 UpEdges(v, Vv, inv, θ, D̂)

Input: v ∈ V ; Vv, array of all vertices in V above v,
ordered clockwise; inv, array of all incoming edges
of v, sorted radially clockwise; θ, the minimum angle
formed by any three vertices in π(V); and D̂, the
APD in direction e2

Output: array of all outgoing edges of v
1: indeg ← indegree of v in direction −e2.
2: eastack ← a stack of edge arc objects, initialized

with a single edge arc A, where A.v = v, A.α1 =
0, A.α2 = π, A.count = indeg , and A.verts = Vv

3: Ev ← ∅
4: while eastack is not empty do
5: EA← eastack .pop()
6: if EA.count = 0 then
7: Continue to top of while loop
8: end if
9: if |EA.count | = |EA.verts| then

10: Append v × EA.verts to Ev, in order
11: Continue to top of while loop
12: end if
13: (EAℓ,EAr)← SplitArc(EA, inv ∪ Ev, θ)
14: Push EAr onto eastack
15: Push EAℓ onto eastack
16: end while
17: return Ev

no edges, and it can be ignored (Lines 6–8). If it has
count exactly equal to the number of vertices in verts,
each vertex in verts must form an edge with v (Lines 9–
12). Otherwise, as demonstrated in Figure 3, the edge
arc is split in half using Algorithm 1 and each half is
put on the stack to be processed.

Theorem 8 (Finding Edges Above a Vertex)
Algorithm 2 finds the sorted array of edges above v

using Θ(deg(v) log n) augmented persistence diagrams
in Θ((deg(v) log n)(log n+ d+Π)) time.

Finally, our main algorithm (Algorithm 3) is a
sweepline algorithm, where we consider the vertices in
increasing order of their e2-coordinates and find the out-
going edges of the vertex being considered.

Theorem 9 (Edge Reconstruction) Let (V,E) be a
graph GP-immersed in R

d. Given V , Algorithm 3 recon-
structs E using Θ(m log n) augmented persistence dia-
grams in Θ(n2 +m log n(log n+ d+Π)) time.

3.2 Putting it Together: Full Reconstruction

The results of Section 3.1 are related to just part of
the full process of reconstruction, since reconstruction
begins with no knowledge of the underlying simplicial
complex. Identifying the location of all vertices is the

Algorithm 3 FindEdges(V)

Input: V , array of all vertices in the unknown graph
Output: E, array of all edges in the unknown graph
1: D̂ ← Oracle(−e2)
2: E ← {}
3: vertsabove ← for each v ∈ V , an array clockwise

ordering all vertices in V that are above v

4: θ ← min angle defined by any three vertices of π(V)
5: for v in V , in increasing height in direction e2 do
6: inedges ← clockwise sorted array of edges in E

incident to v

7: E+ = UpEdges(v, vertsabove[v], inedges, θ, D̂)
8: end for
9: return E

first step, and is one that has been previously examined
in detail. In particular, Belton et al. provide an algo-
rithm to reconstruct V in Θ(dnd+1+dΠ) time and d+1
oracle queries; see [2, Algorithm 1 & Theorem 9]. To-
gether with Theorem 9, we obtain the following runtime
and diagram count for a full reconstruction process.

Theorem 10 (Graph Reconstruction) Using
an oracle, we can reconstruct an unknown graph
immersed in R

d using Θ(d + m log n) diagrams
in Θ(dnd+1 + dΠ+ n2 +m log n(log n+ d+Π)) time.

We omit a proof of Theorem 10, as it simply com-
bines the results of [2, Theorem 9] and Theorem 9 of the
current paper. Observing that the methods presented
here are immediately applicable in the reconstruction of
one-skeletons of general simplicial complexes, we have
the following corollary:

Corollary 11 (One-Skeleton Reconstruction)
Let K be an unknown simplicial complex GP-immersed
in R

d. Algorithm 1 of [2] and Algorithm 3 of the
current paper reconstruct the one-skeleton of K us-
ing Θ(d + m log n) augmented persistence diagrams
in Θ(dnd+1 + dΠ+ n2 +m log n(log n+ d+Π)) time.

Finally, we note that embedding a graph (or simpli-
cial complex) in R

2 is a special case, as m = O(n) and d

is constant. In addition, by [2, Theorem 6], vertex re-
construction of a graph embedded in R

2 can be done
with three diagrams and Θ(n log n + Π) time. Hence,
we obtain a result for plane graph reconstruction:

Corollary 12 (Reconstruction in R
2) We can use

an oracle to reconstruct the one-skeleton of an unknown
simplicial complex embedded in R

2 using O(n log n) di-
agrams and O(n2 + nΠ log n) time.

4 Discussion

One way of proving that a discretization of the APHT
is faithful is through the method of reconstructing the

34th Canadian Conference on Computational Geometry, 2022

(a) At vertex v. (b) Split edge arc. (c) Split again.

Figure 3: We demonstrate one step of Algorithm 2. (a) By assumption, we initially know [v5, v] ∈ E. From Line 1 of
Algorithm 2 we also know that two of the four vertices above v are adjacent to v. Thus, we create an edge arc object
EA with EA.count = 2, and EA.verts = (v1, v2, v3, v4). (b) In Algorithm 1, we choose a direction s such that half of
the vertices in EA are below v. We use this split to create two edge arcs, EAr and EAℓ, corresponding to the pink
shaded regions on the right and left of the blue line defined by s. We push EAr onto a stack to be processed later
and focus on the arc EAℓ. Since two edges contribute to v’s indegree in direction s and one is the known edge [v5, v],
we have EA.count = 2−1 = 1. (c) Next, we find a new direction s that splits EAℓ.verts into two sets of size one. We
push the set above s onto our stack. The edge arc containing only v1 also has EA.count = 2− 1 = 1, so [v1, v] ∈ E.
After all steps of Algorithm 2 are applied to find the edges above a particular vertex, Algorithm 2 is then applied to
the next highest vertex, eventually processing every vertex in V in a sweep (Algorithm 3).

underlying simplicial complex. That is, by showing that
the underlying simplicial complex can be recovered with
the data of the discretization alone. In this paper, we
take that approach and provide an algorithm for recon-
structing a graph immersed in R

d. We use fewer persis-
tence diagrams than presented in alternate approaches.
For example, the algorithm that we present for edge
reconstruction (when the vertex locations are known)
uses Θ(m log n) diagrams. In contrast, [2, Theorem 16]
uses n2 − n diagrams. Note that, for a very dense edge
set, that is, when m = Θ(n2), the method in [2, Theo-
rem 16] uses fewer diagrams. However, if m = O(n), as
is common in many complexes, the represntation com-
puted in this paper has fewer diagrams. Moreover, we
emphasize that the number of diagrams is not exponen-
tial in the ambient dimension.

One might hope to use binary search strategies to
reconstruct a simplicial complexe, but the methods pre-
sented here are unique to one-skeletons. Radially order-
ing higher dimensional simplices is not well-defined, and
this issue prevents the methods presented here from be-
ing immediately transferrable. On the other hand, with
the representation in this paper being output-sensitive
(as opposed to testing if every pair of vertices is a sim-
plex), we have hope for the discretization of the (A)PHT
of a simplicial complex immersed in R

d being propor-
tional to the size of the complex itself.

We also observe that not all diagrams used in our re-
construction algorithms were strictly necessary (i.e., the

set of diagrams used were not a minimal faithful set).
One straightforward way to reduce the number of dia-
grams used without altering the method much would be
to split the region above a vertex in the sweep into arcs
that contain exactly the same number of edges as ver-
tices, or no edges. This property can then be validated
by a simple difference of indegrees. In ongoing work,
we hope to make these claims precise. We also hope to
extend our methods to use topological descriptors that
are not dimension-returning (such as augmented Euler
Characteristic curves).

References

[1] R. L. Belton, B. T. Fasy, R. Mertz, S. Micka, D. L.
Millman, D. Salinas, A. Schenfisch, J. Schupbach, and
L. Williams. Learning simplicial complexes from per-
sistence diagrams. In Canadian Conference on Com-
putational Geometry, August 2018. Also available at
arXiv:1805.10716.

[2] R. L. Belton, B. T. Fasy, R. Mertz, S. Micka, D. L.
Millman, D. Salinas, A. Schenfisch, J. Schupbach, and
L. Williams. Reconstructing embedded graphs from
persistence diagrams. Computational Geometry: The-
ory and Applications, 2020.

[3] P. Bendich, J. S. Marron, E. Miller, A. Pieloch, and
S. Skwerer. Persistent homology analysis of brain artery
trees. The Annals of Applied Statistics, 10(1):198, 2016.

CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

[4] L. M. Betthauser. Topological Reconstruction of
Grayscale Images. PhD thesis, University of Florida,
2018.

[5] J. Curry, S. Mukherjee, and K. Turner. How many di-
rections determine a shape and other sufficiency results
for two topological transforms. arXiv:1805.09782, 2018.

[6] H. Edelsbrunner and J. Harer. Computational Topology:
An Introduction. American Mathematical Society, 2010.

[7] B. T. Fasy, S. Micka, D. L. Millman, A. Schen-
fisch, and L. Williams. A faithful discretization of
the augmented persistent homology transform. 2022.
arXiv:1912.12759.

[8] R. Ghrist, R. Levanger, and H. Mai. Persistent homol-
ogy and Euler integral transforms. Journal of Applied
and Computational Topology, 2(1-2):55–60, 2018.

[9] C. Giusti, E. Pastalkova, C. Curto, and V. Itskov.
Clique topology reveals intrinsic geometric structure
in neural correlations. Proceedings of the National
Academy of Sciences, 112(44):13455–13460, 2015.

[10] P. Lawson, A. B. Sholl, J. Q. Brown, B. T. Fasy, and
C. Wenk. Persistent homology for the quantitative eval-
uation of architectural features in prostate cancer his-
tology. Scientific Reports, 9, 2019.

[11] Y. Lee, S. D. Barthel, P. D lotko, S. M. Moosavi,
K. Hess, and B. Smit. Quantifying similarity of pore-
geometry in nanoporous materials. Nature Communi-
cations, 8:15396, 2017.

[12] S. A. Micka. Searching and Reconstruction: Algorithms
with Topological Descriptors. PhD thesis, Montana
State University, 2020.

[13] D. L. Millman and V. Verma. A slow algorithm for com-
puting the Gabriel graph with double precision. Pro-
ceedings of the 23rd Annual Canadian Conference on
Computational Geometry, 2011.

[14] A. H. Rizvi, P. G. Camara, E. K. Kandror, T. J.
Roberts, I. Schieren, T. Maniatis, and R. Rabadan.
Single-cell topological RNA-seq analysis reveals insights
into cellular differentiation and development. Nature
Biotechnology, 35(6):551, 2017.

[15] G. Singh, F. Mémoli, and G. E. Carlsson. Topological
methods for the analysis of high dimensional data sets
and 3d object recognition. SPBG, 91:100, 2007.

[16] K. Turner, S. Mukherjee, and D. M. Boyer. Persis-
tent homology transform for modeling shapes and sur-
faces. Information and Inference: A Journal of the
IMA, 3(4):310–344, 2014.

[17] S. Tymochko, E. Munch, J. Dunion, K. Corbosiero, and
R. Torn. Using persistent homology to quantify a di-
urnal cycle in hurricanes. Pattern Recognition Letters,
2020.

[18] Y. Wang, H. Ombao, and M. K. Chung. Statistical per-
sistent homology of brain signals. In IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1125–1129. IEEE, 2019.

A Algorithmic Proofs

In this appendix, we provide the proofs omitted from Sec-
tion 3. These proofs provide justification for the runtimes,
diagram compelxity, and correctness of the algorithms pre-
sented in this paper.

A.1 Proof of Theorem 7

Theorem 7 (Arc Splitting) Algorithm 1 uses one dia-
gram and Θ(log n + d + Π) time to split EA into two new
edge arcs EAℓ and EAr with the properties:

(i) The sets EAr.verts and EAℓ.verts partition the vertex
set EA.verts such that the vertices in EAℓ.verts come
before those in EAr.verts, with respect to the clockwise
ordering around EA.v.

(ii) |EAℓ.verts| = ⌈ 1
2
|EA.verts|⌉.

(iii) |EAr.verts| = ⌊ 1
2
|EA.verts|⌋.

Proof. For the runtime, we walk through the algorithm and
analyze the time and diagram complexity of each line. In
Lines 1–3, we find the angle α that splits EA.verts into two
equal sets, then in Line 4 compute a direction s orthogonal
to α. See Figure 2. Lines 1–4 use no diagrams and can
be done in constant time when restricting our attention to
the (e1, e2)-plane. However, we need s to be a direction in R

d

(as opposed to only in the (e1, e2)-plane), so the computation
takes Θ(d) time.3 Specifically, s is the vector

s = e
1

2
i(2α−π−θ) (2)

=

(

cos

(
α−

1

2
π −

1

2
θ

)
, sin

(
α−

1

2
π −

1

2
θ

)
, 0, 0, . . . , 0

)

.

To compute mℓ in Line 5, we compute Indeg(v, s) then sub-
tract the cardinality of the set S := {b ∈ bigedges | ∡b <
π + α}, where ∡b is taken to mean the angle b makes with
the e1-axis, when viewed as a vector with EA.v as the origin.
By Lemma 5, we compute Indeg(v, s) via the oracle using
one diagram and Θ(log n+ Π) time. Since bigedges is sorted
and since s lies in the (e1, e2)-plane, we can find the set S
in Θ(log(|bigedges|)) time. The subtraction in Line 5 takes
constant time, as does Line 6.

In Lines 7 and 8, we create two edge arc objects. The time
complexity of creating them is proportional to the size of the
obejcts themselves. All attributes of edge arc objects, except
the array of vertices (verts), are constant size. By construc-
tion, EAℓ.verts and EAr.verts split EA.verts into two sets,
which can be done näıvely in Θ(d|EA.verts|) time by walking
through EA.verts and storing each one explicitly. However,
we improve this to Θ(log |EA.verts|) time if we have a glob-
ally accessible array of vertices (sorted cw around v) and just
computes the pointers to the beginning and end of the sub-
arrays corresponding to the verts attributes of the new edge
arc objects. In total, Algorithm 1 and takes Θ(d + log n +

3With some clever data structures, this Θ(d) can be reduced
to constant time. For example, we could require vectors in R2

are automatically padded with 0’s to become vectors in Rd when
needed. However, this is out of the scope of the real RAM model
of computation.

34th Canadian Conference on Computational Geometry, 2022

Π + log(|bigedges|) + 1 + log(|EA.verts|)) = Θ(log n+ d+ Π)
time and uses uses one diagram.

Now that we have walked through the algorithm and es-
tablished the runtime and diagram complexity, we prove cor-
rectness. To do so, we first show that EAℓ and EAr are edge
arc objects. In particular, this means showing that they
have the correct values for count and verts. We prove this
for EAℓ; the proof for EAr follows a similar argument.

EAℓ.count: We must show that EAℓ.count is the number
of edges in EAℓ incident to EAℓ.v . By Lemma 4, the value re-
turned from Indeg(EA.v , s) counts all edges incident to EA.v
and below s·EA.v in direction s. By Lemma 6, this is exactly
the total number of edges in EAℓ plus edges (EA.v , v′) ∈ Ev

for which s · v′ < s · EA.v . Thus, by subtracting |{b ∈
bigedges | ∡b < π + α}| from Indeg(EA.v , s) on Line 5, we
are left with mℓ, the number of edges incident to EA.v con-
tained in EAℓ. Setting EAℓ.count = mℓ on Line 7, we see
that EAℓ.count is correct.

EAℓ.verts: We must show that EAℓ.verts contains an ar-
ray of all verices contained in EAℓ radially ordered clockwise.
This follows from the fact that EA.verts is all vertices con-
tained in EA ordered clockwise, so when we restrict EA.verts
to EA.verts[: mid] on Line 7, we are eliminating vertices not
contained in EAℓ, so EAℓ.verts is correct.

Next, we prove Statement (i). Recall that EA.verts
orders the vertices in decreasing angle with e1. In
Line 3, ∡π(EA.verts[mid]−EA.v) is the angle made by EA.v
with the middle vertex. We tilt this angle by θ/2 on Line 3
to obtain angle α. By construction of α,

∡π(EA.verts[mid] − EA.v) > α.

By definition of θ, the angle α satisfies:

α > ∡π(EA.verts[mid + 1] − EA.v).

Since the array EA.verts is sorted, all vectors in the
set π(EA.verts[: mid] − EA.v) have an angle of at least α
with e1 and all vectors in π(EA.verts[: mid] − EA.v) have
an angle of at most α.

By Lines 1–2 and Line 5, we know that EA.verts contains
the first m = ⌈ 1

2
|EA.verts|⌉ vertices in EA.verts. Hence,

Statement (ii) holds. Statement (iii) follows from State-
ments (i) and (ii). �

A.2 Proof of Theorem 8

Theorem 8 (Finding Edges Above a Vertex)
Algorithm 2 finds the sorted array of edges above v
using Θ(deg(v) log n) augmented persistence diagrams
in Θ((deg(v) log n)(log n + d + Π)) time.

Proof. First, we analyze the time complexity of the algo-
rithm and the number of diagrams it requires. By Lemma 5,
Line 1 can be computed in θ(log n) time (since we are
given the diagram and do not need an additional oracle
query). Storing A.verts by storing a pointer to Vv, we ini-
tialize eastack and Ev in Lines 2 and 3 in constant time.

To analyze the complexity of the loop in Lines 4–16, we
first note that this is a radial binary multi-search. When
processing an edge arc, we decide whether all edges have
been found or if we need to split the edge arc. If there is

only one edge in the arc (i.e., EA.count = 1), then this loop
is a binary search for an edge, using the angle with e1 in
the (e1, e2)-plane as the search key. When EA.count > 1,
we search for all edges, finding them in decreasing angle
order (since arcs with larger angles are added after arcs of
smaller angles). The if statement in Lines 9–12 is where the
edges are added to Ev. Note that this shortcuts additional
edge arc splitting by stopping the process once we find that
the number of edges in the arc is equal to the number of
potential vertices that can form the edges. As a result, each
edge above v contributes to O(log n) edge arcs being added
to eastack and, in the case that every other vertex is incident
to an edge with v, we have Θ(log n) edge arcs added to the
stack. All operations in the while loop are constant time,
except splitting the edge arc object in Line 13, which uses
one diagram and takes Θ(log n + d + Π) time.

The complexity of Algorithm 2 is dominated by
the complexity of the while loop: the algorithm
uses Θ(deg(v) log n) augmented persistence diagrams and
takes takes Θ((deg(v) log n)(log n + d + Π)) time.

To prove correctness of this algorithm, we state the loop
invariant for the while loop:

(i) For (v, v′) ∈ E:

• If ∡(v′ − v) > Ev.α1, then (v, v′) is either in Ev

or inv.

• If ∡(v′ − v) > Ev.α1, then v′ is in verts for some
edge arc in eastack

• ∡(v′ − v) 6= Ev.α1

(ii) The edge arc stack is clockwise-ordered.

This loop invariant ensures that the call to Algorithm 1 in
Line 13 has valid input and that all outgoing edges are found
when the algorithm terminates. �

A.3 Proof of Theorem 9

Theorem 9 (Edge Reconstruction) Let (V,E) be a
graph GP-immersed in R

d. Given V , Algorithm 3 recon-
structs E using Θ(m log n) augmented persistence diagrams
in Θ(n2 + m log n(log n + d + Π)) time.

Proof. We first analyze the runtime and diagram count for
Algorithm 3 by walking through the algorithm line-by-line.
In Line 1, we ask the oracle for the diagram in direction −e2,
which takes Θ(Π) time. In [2, Theorem 14 (Edge Recon-
struction)], simultaneously find the cyclic ordering around
all vertices in Θ(n2) time by Lemmas 1 and 2 of [13]. In
Line 3, we do that as well; however, we do not store vertices
that are above v in the array vertsabove[v], and thus this
line takes Θ(n2) time. We note that such a cyclic ordering
exists around each vertex by Assumption 1projectedindep.
Once we have vertsabove, to find the minimum angle defined
by any three vertices of V , we check all angles between vec-
tors vertsabove[v][i]− v and vertsabove[v][i+ 1]− v in Line 4
in Θ(n + m) time.

The for loop in Lines 5–8 is repeated n times, once for
each vertex in V . To determine the order of processing the
vertices in V , we follow the births in D̂0, in decreasing or-
der (since D̂0 is the lower-star filtration in direction −e2).

CCCG 2022, Toronto, ON, Canada, August 25–27, 2022

Thus, finding the order takes Θ(n) time. In each itera-
tion, we compute the incoming edges (those whose other
vertex is below v) in Line 6 followed by all outgoing edges
(those whose other vertex is above v) in Line 7. By As-
sumption 1(iii), every edge is either incoming or outgo-
ing with respect to direction e2. Thus, all edges incident
to v are in E once E is updated in Line 6. By Theo-
rem 8, when processing vertex v, the call to Algorithm 2
on Line 7 takes Θ((deg(v) log n)(log n + d + Π)) time and
uses Θ(deg(v) log n) diagrams. Summing over all vertices,
we see that the loop in Lines 5–8 takes

∑

v∈V

Θ((deg(v) log n)(log n + d + Π))

= Θ(m log n(log n + d + Π))

time and uses
∑

v∈V
Θ(deg(v) log n) = Θ(m log n) aug-

mented persistence diagrams.
In total, Algorithm 3 takes Θ(Π) + Θ(n2) + Θ(n + m) +

Θ(n)+Θ(m log n(log n+d+Π)) = Θ(n2+m log n(log n+d+
Π)) time and uses Θ(1)+Θ(m log n) = Θ(m log n) diagrams.

Next, we prove the correctness of Algorithm 3 (i.e., that
all edges are found). In order to process vertices in order of
their heights in the e2 direction, we first sort them in Line 5.
For 1 ≤ j ≤ n, let vj be the jth vertex in this ordering.
To show that Algorithm 3 finds all edges in E, we consider
the loop invariant (LI): when we process vj , all edges with
maximum vertex height equal or less than the height of vj
are known. The LI is trivially true for v1. We now assume
that it is true for iteration j, and show that it must be
true for iteration j + 1. By assumption, all edges (vi, vj)
with 1 ≤ i < j are known, and so by Theorem 8, Algorithm 2
finds all edges (vk, vj), where k > j, and we add them to the
edge set E. Note that, by assumption, all edges (vx, vi)
for 1 ≤ i ≤ j are also already known, and so the invariant
is maintained. Thus, after the loop terminates, all edges
are found. �

B Basis

In Assumption 1(iii), we assume all vertices of the under-
lying graph are unique with respect to the first basis di-
rection e2. In this appendix, we provide details of how to
find a basis where all vertices have a unique height with
respect to the second basis direction. I.e., this appendix al-
lows us to remove one general position assumption by show-
ing it can be satisfied deterministically, at an added cost
of Θ(|P | log |P | + d + Π) time.

Lemma 13 (Creation of Orthonormal Basis) Given a
point set P ⊂ R

d satisfying Assumption 1(i) and Assump-
tion 1(ii), we can use two diagrams and Θ(|P | log |P |+d+Π)
time to create the orthonormal basis {b1, b2, e3, e4, . . . , ed} so
that all points of P have a unique height in direction b2.

Proof. Algorithm 6 (Tilt) of [7] takes diagrams from two
linearly independent directions s, s′ ∈ S

d−1, the point set P ,
and returns a direction s∗ in Θ(|P | log |P |+ d+ Π) time4 so
that the following properties holds for all p1, p2 ∈ P :

4While [7] does not account for diagram computation time,
there are two diagrams used in this process, hence our addition
of Θ(Π) to the total runtime.

(i) If p1 is strictly above (below) p2 with respect to direc-
tion s, then p1 is strictly above (below, respectively)
p2 with respect to direction s∗.

(ii) If p1 and p2 are at the same height with respect to
direction s and p1 is strictly above (below) p2 with
respect to direction s′, then p1 is strictly above (re-
spectively, below) p2 with respect to direction s∗.

(iii) If p1 is is at the same height as p2 with respect to both
directions s and s′, then p1 and p2 are at the same
height with respect to direction s∗.

A proof of correctness is given in [7, Lemma 32 (Tilt)].
We start with the standard basis for R

d, {e1, e2, . . . , ed},
and we replace the first two basis elements as follows. Let b2
be the direction obtain by using Tilt with s = e1, s′ = e2,
and P = P .

By Assumption 1(ii), no three points of P are colinear
when projected onto the first two coordinates. In particular,
this means no two points share the same heights in both
the e1 and e2 directions. Then, by Statements (i)-(ii) above,
the direction b2 must order all vertices of P uniquely. Using
only the first two coordinates of b2 and e1, we then perform
Gram Schmidt orthanormalization to compute the first two
coordinates of b1. More precisely, letting b

(j)
i denote the jth

coordinate of bi, we compute

(
b
(1)
1

b
(2)
1

)

=

(
1
0

)
−

〈(
b
(1)
2 b

(2)
2

)T
,
(
1 0

)T
〉

∣∣∣∣

∣∣∣∣
(
b
(1)
2 b

(2)
2

)T ∣∣∣∣

∣∣∣∣
2

(
b
(1)
2

b
(2)
2

)

(3)

We then set b
(j)
1 = 0 for 2 < j ≤ d, so that b1 ∈ span{e1, e2},

b2 ⊥ b1, and ||b1|| = 1. Only considering the first two coor-
dinates of b2 and e1 means this process takes constant time.
The remaining ei for 2 ≤ i ≤ d can be used to fill the basis.

Finally, we have a basis satisfying all assumptions of As-
sumption 1, namely, {b1, b2, e3, e4, . . . , ed}. �

