
Proceedings on Privacy Enhancing Technologies ; 2022 (2):557–577

Pouneh Nikkhah Bahrami*, Umar Iqbal, and Zubair Shafiq

FP-Radar: Longitudinal Measurement and Early
Detection of Browser Fingerprinting
Abstract: Browser fingerprinting is a stateless track-
ing technique that aims to combine information exposed
by multiple different web APIs to create a unique iden-
tifier for tracking users across the web. Over the last
decade, trackers have abused several existing and newly
proposed web APIs to further enhance the browser fin-
gerprint. Existing approaches are limited to detecting a
specific fingerprinting technique(s) at a particular point
in time. Thus, they are unable to systematically de-
tect novel fingerprinting techniques that abuse differ-
ent web APIs. In this paper, we propose FP-Radar,
a machine learning approach that leverages longitudi-
nal measurements of web API usage on top-100K web-
sites over the last decade for early detection of new and
evolving browser fingerprinting techniques. The results
show that FP-Radar is able to early detect the abuse
of newly introduced properties of already known (e.g.,
WebGL, Sensor) and as well as previously unknown (e.g.,
Gamepad, Clipboard) APIs for browser fingerprinting.
To the best of our knowledge, FP-Radar is the first to
detect the abuse of the Visibility API for ephemeral
fingerprinting in the wild.

Keywords: browser fingerprinting, Wayback Machine,
web APIs
DOI 10.2478/popets-2022-0056
Received 2021-08-31; revised 2021-12-15; accepted 2021-12-16.

1 Introduction
The online tracking ecosystem employs increasingly so-
phisticated tracking techniques to track users across the
web [25, 56, 70, 112]. In addition to well-known state-
ful tracking using third-party cookies, trackers have now
started to use more intrusive stateless tracking tech-

*Corresponding Author: Pouneh Nikkhah Bahrami:
University of California, Davis, Email: pnikkhah@ucdavis.edu
Umar Iqbal: University of Washington, E-mail:
umar@cs.washington.edu
Zubair Shafiq: University of California, Davis, E-mail:
zubair@ucdavis.edu

niques such as browser fingerprinting to gather device-
specific identifying information captured through vari-
ous HTTP header fields and APIs [16, 25, 27, 54, 71,
72, 78]. Stateless tracking is more intrusive than state-
ful tracking because the former does not lend itself to
transparency and control. While cookies are directly ob-
servable and removable at the client-side, a browser’s
fingerprint is not readily visible at the client-side and it
cannot be trivially removed or even modified. As web
browsers have started to implement aggressive counter-
measures against stateful tracking [90, 108, 110], it has
encouraged trackers to migrate to more opaque and in-
vasive stateless tracking [41, 90].

Browser fingerprinting techniques have evolved over
time. As web browsers support new functionality by
adding new APIs or updating existing APIs [95], the
browser’s fingerprinting surface has continued to ex-
pand. Early work by Mayer [57] and Eckersley [24]
demonstrated simple fingerprinting techniques that
abuse information exposed in HTTP headers and a few
APIs. A steady stream of more sophisticated fingerprint-
ing techniques have since been developed that abuse
existing and new APIs. For example, researchers have
shown that Canvas [72], WebGL [16], fonts [27], exten-
sions [96], the Audio API [25], the Battery Status API
[78, 79], the Performance API [88], and even sensor APIs
[7, 17] can expose information that can be abused to
build a more reliable fingerprint. Thus, as new APIs are
introduced in web browsers, it is reasonable to expect
that they might be abused to implement novel browser
fingerprinting techniques. In summary, browser finger-
printing is not a static phenomenon, but it is rather
evolving; as novel fingerprinting techniques are designed
over time.

Browser fingerprinting and its privacy implications
have received much attention from the research commu-
nity. Researchers have conducted large-scale measure-
ments to study the prevalence of browser fingerprinting
[2, 3, 17, 25, 26, 28, 41, 76, 79]. However, prior research
on browser fingerprinting is lacking in two major ways.
First, prior work is mostly limited to analyzing a specific
fingerprinting technique(s) at a particular point in time.
Since fingerprinting techniques evolve over time, it is im-
portant to study browser fingerprinting longitudinally.

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 558

Second, prior work is limited to detecting the deploy-
ment of already known fingerprinting techniques. It is
important to detect new fingerprinting techniques in a
timely fashion because early detection can aid proac-
tive mitigation efforts by the standards bodies [23] and
also prompt deployment of targeted countermeasures by
browser vendors [55, 81].

We propose FP-Radar, a machine learning ap-
proach for early detection of web API abuse for finger-
printing. FP-Radar detects abuse of new methods of
existing APIs or new APIs altogether by using the guilt-
by-association principle. More specifically, it first uses
the Wayback Machine to crawl the historical snapshots
of scripts on top-100K websites over the last decade.
FP-Radar conducts static analysis to construct a se-
ries of temporal API co-occurrence graphs for each year.
FP-Radar then uses hand-crafted and embedding fea-
tures to predict the evolution of co-occurrence relation-
ships between different API keywords over the years.
FP-Radar then builds and labels temporal clusters,
including the fingerprinting cluster, using the temporal
graphs. Finally, FP-Radar tracks the membership of
the fingerprinting cluster over time for early detection
of API abuse.

The results show that FP-Radar is able to detect
the abuse of already known as well as previously un-
known APIs for fingerprinting. First, FP-Radar de-
tects the abuse of a number of previously unknown
APIs including Page Visibility, Gamepad, Clipboard,
and Network Information for browser fingerprinting.
We find novel types of user environment/hardware fin-
gerprinting such as peripheral configuration via Gamepad
and system capabilities via Network Information APIs.
We also find that even though an API (e.g., Page
Visibility) does not directly expose highly identify-
ing information it can be abused for ephemeral finger-
printing. To the best of our knowledge, FP-Radar is
the first to detect the abuse of web APIs for ephemeral
fingerprinting in the wild. Second, FP-Radar detects
the abuse of newly introduced features of APIs that
are already known to be abused for fingerprinting. We
find that several of the newly introduced features of
Navigator (e.g., related to hardware capabilities such
as memory), Performance (e.g., time for DNS lookup
and page rendering), and WebGL (e.g., WebGL2 capabil-
ities) are now being abused for fingerprinting. Finally,
FP-Radar is able to detect the fingerprinting abuse of
APIs before/at their disclosure, at the time of their re-
lease by browser vendors, or their first occurrence in our
data. We find that FP-Radar’s time-to-detection is of-

ten several years before public disclosure (e.g., up to 5
years for Gamepad and 5 years for Page Visibility).

We summarize our key contributions below:
1. A retrospective longitudinal measurement study

of web API usage over the last decade.
2. A graph-based supervised ML approach that

builds a series of API co-occurrence graphs to pre-
dict the evolution of API usage in the future.

3. A graph-based unsupervised ML approach that
clusters temporal API co-occurrence graphs for
early detection of their abuse for fingerprinting.

2 Background & Related Work

2.1 Background

Web browsers support standardized web APIs to facili-
tate feature-rich websites that can be seamlessly loaded
on different browsers (e.g., Chrome, Firefox), operating
systems (e.g., Mac/Windows), and devices (e.g., mo-
bile/desktop). Unfortunately, the rich set of informa-
tion exposed by the web APIs can also be exploited by
trackers to fingerprint users’ devices. Trackers can sim-
ply combine several pieces of readily available informa-
tion, such as the operating system name, browser name,
browser version in the user-agent field, to build a fin-
gerprint that can distinguish between different devices.
Trackers can also use more sophisticated fingerprinting
techniques that exploit subtle differences in the under-
lying hardware/software configurations and capabilities
to gather distinctive information. For example, canvas
images are rendered differently on different browsers due
to the differences in their hardware/software image pro-
cessing pipeline. Combining several of these fingerprint-
ing techniques, trackers can create a fingerprint that is
often sufficient to uniquely and persistently identify the
web browser [24].

Browser fingerprinting is called stateless tracking
since there is no need to store state at the client-side, as
done in traditional cookie-based stateful tracking. State-
less tracking is considered more intrusive than stateful
tracking because the former does not lend itself to trans-
parency and control. While cookies and other types of
client-side storage mechanisms (e.g., localStorage, In-
dexedDB) can be directly observed and removed at the
client-side, a browser’s fingerprint is not readily visible
at the client-side and it cannot be trivially removed or
even modified. As web browsers have started to imple-
ment aggressive countermeasures against stateful track-

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 559

ing [90, 108, 110], it has encouraged trackers to migrate
to more opaque and invasive stateless tracking [41, 90].
Browser fingerprinting is already being used for cross-
site tracking [4, 41, 52] and is universally regarded as an
abusive practice by standards bodies [23, 77] and web
browsers [15, 55, 73].

2.2 Chronology of Browser Fingerprinting

The fingerprinting surface has continued to expand with
the introduction of new APIs and the disclosure of fin-
gerprinting potential in existing APIs. Soon after an
API is disclosed to have fingerprinting potential, they
are adopted by trackers. Countermeasures also follow
suit and attempt to mitigate the fingerprintability of
the API. As shown in Figure 1, this pattern has re-
peated over the years. We next provide a chronology of
the disclosure, adoption, countermeasure of web APIs
for fingerprinting.
Disclosure. Mayer [57] first investigated browser finger-
printing in 2009 and showed that the fingerprints cre-
ated through navigator and screen can uniquely iden-
tify 96.23% of the browsers. Soon after that in 2010, Eck-
ersly [24] conducted a large-scale user study to demon-
strate that the information exposed through HTTP
headers, e.g., User-Agent and APIs, e.g., navigator,
and Flash, e.g. fonts, can be used to uniquely identify
94.2% of the browsers. In 2012, Mowery and Shacham
[72] first introduced “execution-based” canvas and We-
bGL fingerprinting and showed that the certain images
rendered through canvas and WebGL APIs on different
devices produce different outputs due to the variance
in hardware (e.g., graphics card) and software (e.g.,
browser version, configurations). Since then researchers
have demonstrated the fingerprinting potential of mo-
bile sensors and canvas font in 2014 [7, 100], Battery
Status and WebRTC [10, 78] in 2015, and AudioContext
in 2016.
Adoption. Roughly after 2 years of disclosure, i.e., in
2013, browser fingerprinting, based on HTTP header
information, JavaScript APIs, and Flash, was discov-
ered on 40 of the top-10K websites [76]. Within the
next year, fingerprinting adoption exploded and can-
vas fingerprinting was discovered on 5,542 of top-100K
websites, which is only 2 years after its initial disclo-
sure [2]. The wide adoption of canvas fingerprinting was
attributed to the release of fingerprintjs2 [1], an open-
source fingerprinting library. Later, in 2016, Englehardt
et al. conducted a large scale study of top-1 million web-
sites and further found the deployment of canvas, font,

WebRTC, Audiocontext, and Battery Status API fin-
gerprinting on 14,371, 3,250, 715, 518, and 22 websites,
respectively [25, 79], i.e., only after 1-2 years of their
disclosure. In 2018, Das et al. [17] found the usage of
sensors, such as motion and orientation, for browser fin-
gerprinting on 3,695 of the top-100K websites, which is
4 years after their initial disclosure.
Countermeasures. Countermeasures against browser
fingerprinting have a difficult time keeping up with the
adoption of APIs for browser fingerprinting. It took
nearly 2 years, after the adoption of HTTP header
(e.g., User-Agent) and APIs (e.g., Navigator) for fin-
gerprinting, to propose robust countermeasures against
them [75, 101]. Similarly, the countermeasures against
Battery Status, canvas, AudioContext, and WebGL fin-
gerprinting were first proposed in 2016 [68], 2016 [5],
2017 [53], and 2019 [111], respectively, which is nearly 1–
7 years after their adoption. Some recent heuristics and
machine learning approaches [18, 25, 41, 85, 86] have at-
tempted to detect known fingerprinting techniques and
block the scripts that implement them. Englehardt and
Narayanan [25] proposed heuristics to detect fingerprint-
ing scripts that implement canvas, canvas Font, and
webRTC fingerprinting techniques. They incidentally dis-
covered the use of AudioContext fingerprinting in their
manual analysis of the detected fingerprinting scripts.
Iqbal et al. [41] proposed a supervised machine learn-
ing approach to detect fingerprinting scripts that imple-
ment various fingerprinting techniques, such as canvas,
canvas Font, webRTC, WebGL, and AudioContext. They
also incidentally discovered the potential use of pe-
ripheral probing (e.g., getLayoutMap) and Permissions
API-based fingerprinting in the post-hoc analysis of the
detected fingerprinting scripts. DuckDuckGo proposed
to detect browser fingerprinting scripts based on the sum
of “API weights” – which are the ratio of API’s appear-
ance in “suspicious” scripts to “non-suspicious” scripts
[18]. Based on the API weights, DuckDuckGo inciden-
tally discovered the potential use of deviceMemory and
Presentation APIs for browser fingerprinting [19].

2.3 Takeaway
In conclusion, prior work is limited to reactive detection
of scripts that implement known fingerprinting tech-
niques. Unsurprisingly, as discussed above, existing ap-
proaches have a difficult time keeping up because they
are not designed to specifically detect new fingerprint-
ing techniques [18, 25, 41]. Thus, as we discuss next, it
is important to design approaches to detect new finger-
printing techniques in a timely fashion.

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 560

Fig. 1. The timeline summarizes the chronological disclosure and adoption of fingerprinting APIs and countermeasures. Disclosures are
represented with red, adoptions are represented with purple, and countermeasures are represented with green.

3 FP-Radar
We present the design and implementation of FP-
Radar, a temporal graph-based machine learning ap-
proach for early detection of web API abuse for browser
fingerprinting. As shown in Figure 2, FP-Radar is di-
vided into four components. First, it models the tempo-
ral co-occurrence of web APIs in scripts using a graph
representation. Second, it leverages the temporal graph
representation to predict future co-occurrence of web
APIs. Third, it leverages the predicted co-occurrence
to cluster web APIs based on their functionality. Fi-
nally, the temporal clusters are analyzed to detect abuse
of specific APIs (and their respective keywords) for
browser fingerprinting.

3.1 Modeling Temporal API
Co-occurrence

FP-Radar relies on the principle of guilt by association
to detect the abuse of web APIs for browser fingerprint-
ing. It means that if an API is being used alongside
known fingerprinting APIs then we can presume that
the API in question is also being abused for browser fin-
gerprinting. We rely on the insight that trackers often
use several fingerprinting techniques, and thus several
fingerprinting APIs, together, to conduct browser fin-
gerprinting [17, 25, 41, 54]. FP-Radar operationalizes
this insight in a longitudinal fashion to capture tempo-
ral trends in web API usage and early detection of web
API abuse for browser fingerprinting.

3.1.1 Longitudinal Data Crawling

To longitudinally analyze web APIs, FP-Radar needs
to measure their usage on the web over time. We conduct
a retrospective measurement study to analyze how web
API usage has evolved on popular websites. To gather
historical snapshots of popular websites, we rely on the
Internet Archive’s Wayback Machine [106]. The Way-

back Machine has periodically archived popular websites
and their resources (e.g., scripts, images) since 1996 and
has already archived more than 600 billion web pages
thus far. The Wayback Machine has been used in prior
literature to conduct longitudinal measurements of on-
line tracking [42, 56].
Crawling Scripts Using the Wayback Machine.
FP-Radar relies on the Wayback Machine [106] to
crawl historical snapshots of a large set of scripts
present on Alexa top-100K websites over the last decade
(2010–2019). Since crawling the Wayback Machine in-
curs significant additional overheads as compared to live
web crawls, we limit our Wayback Machine crawls to
scripts observed in our initial live crawl of Alexa top-
10K websites and 10K websites randomly sampled from
Alexa 10K-100K websites. To improve coverage of fin-
gerprinting scripts, we further use the Wayback Machine
to crawl historical snapshots of known fingerprinting
scripts reported in recent prior work on Alexa top-100K
websites [41]. It is noteworthy that FP-Radar is able to
establish a comprehensive longitudinal view of web API
usage because it conducts large-scale crawls of Alexa
top-100K websites using the Wayback Machine instead
of narrowly analyzing historical snapshots of a few fin-
gerprinting libraries such as fingerprintingjs2 [1].
Completeness Issues in the Wayback Machine.
The Wayback Machine has completeness issues due to
the inherent challenges of archiving the web [9, 34,
42, 47, 56]. First, the Wayback Machine used to not
crawl websites based on their robots.txt policy.1 Sec-
ond, the Wayback Machine’s crawls might miss dynamic
resources. The Wayback Machine does not fully exe-
cute JavaScript during its archival process and thus
misses some client-side dynamically generated URLs
[56]. Moreover, a resource might also not be captured
by the Wayback Machine if the resource URL (file name
or path) changes; thus the same resource is present
with a different URL in the Wayback Machine’s archival

1 Note that the Wayback Machine has resumed crawling web-
sites since 2017 irrespective of their robots.txt policy [30].

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 561

Fig. 2. FP-Radar: (a) We use the Wayback Machine to crawl historical snapshots of scripts present on Alexa top-100K websites from
2010 to 2019, (b) We first create AST representation of crawled scripts to extract web API keywords, we then model the temporal
co-occurrence of web APIs in scripts in a graph representation, (c) We leverage the temporal graph representation to predict future co-
occurrence of web API keywords, (d) We first leverage the predicted co-occurrence to cluster web APIs based on their functionality, we
then analyze the temporal clusters to detect abuse of specific API keywords for browser fingerprinting.

crawl as compared to our initial live crawl. Third, the
Wayback Machine crawls less popular websites less fre-
quently and thus might not crawl resources on low-
ranked websites at least once every year.
Wayback Machine Crawl Statistics. Despite the
aforementioned completeness issues in the Wayback Ma-
chine’s crawls, we are able to longitudinally crawl yearly
snapshots of almost 100K scripts from the Wayback Ma-
chine over the last decade (2010–2019). Based on the
FP-Inspector’s classification [103], this includes 1,658
fingerprinting and 92,193 non-fingerprinting scripts from
our initial live crawl. Note that we use a two-step pro-
cess to crawl the Wayback Machine: we first fetch the
URLs that point to the historical snapshots of scripts
[105] and then send requests for those URLs to gather
their script content. The first step returns URLs with
the timestamp and the hash digest of the script content.
The timestamps enable us to crawl scripts that are one
year apart from each other and the hash digest helps us
avoid crawling duplicate scripts in the second step.

We acknowledge that FP-Radar’s longitudinal
data collection might have missed a substantial num-
ber of scripts due to the completeness issues in the
Wayback Machine. Specifically, regarding our initial live
crawl, we note that FP-Radar is unable to crawl snap-
shots of 43.09% of the scripts from the Wayback Ma-
chine. While not ideal, we do not observe any bias in
the missing scripts. Specifically, both fingerprinting and

non-fingerprinting scripts are missed with roughly the
same proportion, i.e., 43.60% and 46.74%, respectively.
Moreover, despite the missing data, FP-Radar’s lon-
gitudinal data collection is able to capture the overall
trend of increasing adoption of browser fingerprinting
over the years. Specifically, we observe fingerprinting
scripts on 1.16% and 3.70% of the top-100K websites
in 2016 and 2018, respectively. This corroborates with
the findings of prior studies of browser fingerprinting,
which reported that 1.43% of the top-million [25] and
3.69% of the top-100K [17] websites conduct browser
fingerprinting in 2016 and 2018, respectively. Thus, we
conclude that FP-Radar’s longitudinal data collection
using the Wayback Machine is sufficient for us to retro-
spectively study the evolution of browser fingerprinting
and draw meaningful conclusions. We discuss alternates
to the Wayback Machine and ideas to improve the com-
pleteness of longitudinal crawls in Section 5.

3.1.2 Graph Representation

To model the guilt by association principle, we repre-
sent web API co-occurrence as a graph. Specifically, we
model API keywords as nodes and include an edge be-
tween the nodes if the API keywords co-occur in the
same script. We further weigh the edges based on the
normalized co-occurrence frequency.

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 562

API Keyword Extraction. To extract API key-
words from scripts, we model script text as abstract
syntax trees (ASTs) to normalize scripts for devel-
oper coding styles.2 ASTs also remove the non-essential
script content (e.g., comments), generalize the APIs
into generic primitives (e.g., VariableDeclaration and
ForStatement), and capture the syntactical relationship
between the APIs in form of a tree (e.g., an API call in
a loop). Most importantly, ASTs provide a traverse-able
tree representation of scripts, which allows us to extract
the API keywords. We then traverse the ASTs from their
roots to extract API keywords that match the standard-
ized web APIs [69].
Temporal Graph Representation. We capture the
longitudinal co-occurrence of API keywords by anno-
tating the edges with the timestamp, i.e., year, of API
keyword co-occurrence. Furthermore, we capture the fre-
quency of co-occurrence between the APIs over years by
summing the edge weights. Figure 3 demonstrates the
creation of a temporal graph. The figure shows a sam-
ple non-temporal graph representation for years 2010,
2011, and 2012 and their aggregated temporal graph
representation. It can be seen in the aggregated graph
representation that the edges are annotated with all the
years in which the APIs co-occur and that the weight
over the years is combined together. For example, the
weight of the edge between random and fullPath in the
aggregated graph (0.0041) is the sum of the weight of
the edges between 2010 and 2012.

3.2 Predicting API Co-occurrence

To assist with FP-Radar’s goal of early detection of
web API abuse for browser fingerprinting, we attempt
to predict API co-occurrence in the future. To this end,
we leverage the longitudinal connectivity of APIs with
each other to predict their future connectivity. We cap-
ture the longitudinal connectivity of APIs using hand-
crafted and graph-embedding features. Our rationale for
relying on these features is that the existing connectivity
of APIs is indicative of their future connectivity.
Hand-crafted Features. We first capture API co-
occurrence patterns, targeting neighborhood connectiv-
ity, through hand-crafted features. These features model
the connectivity between APIs, the centrality of APIs,

2 We unpack eval’ed scripts with an instrumented browser [43].
Unpacking allows us to treat scripts as code, which otherwise will
be treated as a text string.

and the commonalities in API neighborhoods. We also
incorporate node weight and temporal information by
giving more value to the recently formed edges. Specif-
ically, the weight between two nodes is multiplied by a
time factor, which decreases by one per year, for prior
years. Incorporating weighted temporal information al-
lows us to give more importance to the recent API
co-occurrence patterns in the graph, which might be a
better representative of the future connectivity between
APIs.

We list hand-crafted features below:
1. Common Neighbors: The number of common neigh-

bors between a node pair. The value is higher if the
nodes have a high number of common neighbors.

2. Adamic-Adar Index: The sum of the inverse loga-
rithmic degree of the neighbors shared by a node
pair. The nodes with fewer common neighbors have
higher values.

3. Hub Promoted Index: The number of common neigh-
bors divided by the number of neighbors of the node
with the least degree in a node pair. The node pairs
adjacent to hubs (high-degree nodes) have high val-
ues.

4. Hub Depressed Index: The number of common
neighbors divided by the number of neighbors of
the node with the highest degree in a node pair.
The node pairs adjacent to hubs (high-degree nodes)
have low values.

5. Jaccard Index: The proportion of common neighbors
by the total number of neighbors of a node pair.
The value is higher if a node pair has more common
neighbors in their neighborhood.

6. Leicht-Holme-Newman Index: The number of com-
mon neighbors divided by the product of the degree
of the node pair. The value is higher if the nodes
have a low degree.

7. Resource Allocation Index: The summation of the
inverse of the degree of common neighbors between
a node pair. The value is higher if the neighbors have
a low degree.

8. Salton Index (Cosine similarity): It measures the
cosine of the angle between the neighbors of a node
pair. The more common the neighboring nodes, the
higher the value.

9. Sorensen Similarity: The proportion of the common
neighbors by the sum of the degree of a node pair.
The value is higher if the node pair has low degree.

Prior research [13] has shown that these features are
highly predictive of future connectivity in temporal

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 563

Fig. 3. Creation of a sample temporal graph representation over years. (1), (2), and (3) represent the subgraphs for years 2010, 2011,
and 2012, respectively. (4) represents the aggregated temporal graph.

graphs. However, these features were only evaluated on
temporal social network graphs and they may not be
effective on temporal web API co-occurrence graphs.
Therefore, we compute the information gain [46] (feature
importance) of these features to evaluate their potential
in predicting the future connectivity between web APIs
in temporal API co-occurrence graphs. Table 1 lists the
information gain of hand-crafted features. Note that al-
most all features provide an information gain of at least
5% and the top three features provide the information
gain of more than 12%. Overall, the information gain
analysis indicates that hand-crafted features are generic
enough to be used for predicting future connectivity be-
tween web APIs in temporal API co-occurrence graphs.

Features Information gain (%)
Leicht Holme Newman Index 16.52 ± 1.63
Temporal Edge Weight 13.42 ± 3.48
Edge Weight 12.06 ± 3.16
Salton 8.61 ± 1.77
Resource Allocation 8.5 ± 1.94
Average Degree 7.8 ± 2.19
Sorensen Similarity 6.43 ± 1.58
Jaccard 6 ± 1.6
Common Neighbors 5.74 ± 1.51
Hub Depressed 5.5 ± 1.31
Adamic-Adar 4.84 ± 1.19
Hub Promoted 4.57 ± 2.07

Table 1. Hand-crafted features used by FP-Radar for graph
prediction and information gain values (averaged over 10 years)

Graph Embedding-based Features. We capture
more nuanced API co-occurrence patterns, potentially
not modeled by our hand-crafted features, through
graph embeddings. Graph embeddings encapsulate a
node’s neighborhood in a vector representation, such

that the similar nodes in the graph have similar vector
representation [33, 80]. We determine a node’s neighbor-
hood through a series of biased random walks. Specif-
ically, the random walks respect time order, i.e., edges
are traversed in ascending order of time, and recently
formed edges are selected with higher probability. Once
a node’s neighborhood is determined, it is mapped to
an embedding space, such that the embeddings of two
nodes that are similar to each other in the graph also
have similar embeddings. After creating the node em-
beddings, we combine the embeddings of a node pair
using a weighted L2 regularization [33].
Edge Prediction. We use a random forest [8] machine
learning ensemble to predict the JavaScript APIs future
co-occurrence. Random forest combines the decisions
from several decisions trees, each trained on a subset of
features selected at random, and outputs the majority
decision. We configure a random forest ensemble with
100 decision trees.

Each node in the decision tree is split using the best
feature, based on information gain, among the subset of
features. We note that our classes are imbalanced, i.e.,
API pairs are far less likely to not co-occur than they
are to co-occur. Thus, we bias our model by downsam-
pling no-occurrence instances to half of co-occurrence
instances. Penalizing the model allows us to predict the
APIs co-occurrence more favorably.

We predict the API co-occurrence over the year, i.e.,
from 2010–2020, by iteratively building the temporal
graph. Specifically, as we move forward in time, our tem-
poral graph contains APIs co-occurrences from all the
snapshots thus far. For example, for the year 2010, our
temporal graph only contains API co-occurrence that
existed in the year 2010, however, for the year 2014, the
temporal graph contains the API co-occurrence that ex-
isted between the years 2010 and 2014. For each year

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 564

Y , we treat all possible API pairs, from the temporal
graph of the last year GY −1, as probable candidates
that may co-occur in the current year. The actual co-
occurrence between the APIs in the current year Y , is
considered as ground truth. We then use this informa-
tion to train FP-Radar’s random forest ensemble. Once
we train the model, we use it to predict the future graph
in the following year, i.e., year Y + 1. Specifically, we
treat all possible API pairs, from the temporal graph
of current year GY , as probable candidates that may
co-occur next year. Since we are retrospectively predict-
ing the APIs co-occurrence, we are in a unique position
to also validate the predicted APIs co-occurrence that
would happen in the future, i.e., by using the future API
co-occurrence in year Y + 1. It is noteworthy that we
combine both hand-crafted and graph embedding-based
features to train a combined random forest ensemble.
Results. Table 2 presents FP-Radar’s accuracy in pre-
dicting API co-occurrence over the years. We provide
separate as well as the combined accuracy of hand-
crafted and graph embedding-based features. Table 2
shows that FP-Radar’s accuracy is significantly im-
proved when hand-crafted and graph embedding-based
features are combined together. Specifically, the aver-
age accuracy, over the years, for hand-crafted features is
87.58% and graph-embedding-based features is 75.71%.
When combined together, the mean accuracy increases
to 89.13%.

3.3 Clustering API Temporal Graphs

FP-Radar’s temporal graphs allow us to longitudinally
investigate the evolution of web API co-occurrence. To
this end, we partition temporal API graphs into clusters
to systematically analyze APIs that are used for similar
functionality together.FP-Radar clusters the graphs
based on the Louvain method [6], which partitions the
graph such that the modularity is maximized between
clusters. If a cluster contains more than one-third of the
API keywords, FP-Radar partitions it again into sub-
clusters.

FP-Radar clusters temporal API co-occurrence
graphs and links clusters across consecutive years to-
gether to form temporal clusters. Specifically, FP-
Radar links clusters together if their Jaccard similarity
is more than 20%. If more than one cluster meets the
similarity threshold in the prior year, they are merged
in the following year. If a cluster from the prior year
matches more than one cluster in the following year, it
is attached to all of the clusters in the following year.

If none of the clusters from prior years meet the sim-
ilarity threshold, a new temporal cluster is created in
the following year. Cluster from prior years that do
not get attached to the clusters in the following year,
may get attached to clusters in the coming years. Short-
lived clusters, with a lifespan of at most 2 years, are
filtered because they do not capture meaningful longi-
tudinal trends. Using this clustering process, FP-Radar
extracts 14 temporal clusters.
Jaccard Similarity Threshold. Figure 4 plots the
trade-off between the number of short-lived clusters
and the merging/splitting of clusters with varying Jac-
card similarity thresholds. Note that as the similarity
threshold increases, the number of short-lived clusters
increases and the number of merging/splitting of clus-
ters reduces. We pick 20% as the similarity threshold to
link clusters across consecutive years because it provides
the best trade-off. If we pick a higher similarity thresh-
old, we risk losing a significant number of APIs that are
present in the short-lived clusters and also risk merging
clusters with varying functionality together.

Fig. 4. The number of short-lived temporal clusters along with
the number of merging and splitting events with different similar-
ity thresholds.

3.4 Labeling Temporal Clusters

We next semi-automatically analyze the temporal clus-
ters to label them. To this end, we expect functionally
related APIs to appear together in a temporal clus-
ter. To map keywords to their respective interfaces and
APIs, we use MDN’s [69] hierarchical taxonomy of 88
APIs and 1024 interfaces. We then identify the domi-

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 565

Year # of # of Hand-crafted Graph embeddings Combined
Nodes Edges Accuracy Precision Recall Accuracy Precision Recall Accuracy Precision Recall

2012 1,170 226,013 87.12 % 78.90% 71.10% 79.40% 82.93% 86.99% 88.40% 89.50% 98.40%
2013 1,354 310,954 91.12% 84.25% 77.35% 77.63% 79.16% 90.13% 86.50% 91.80% 93.10%
2014 1.896 564,448 86.20% 89.40% 63.80% 76.18% 71.93% 79.20% 90.10% 96.0% 93.40%
2015 2,096 746,379 86.50% 81.30% 72.20% 71.93% 73.66% 90.76% 87.30% 89.70% 96.50%
2016 2,599 1,286,524 85.90% 82.10% 73.30% 73.28% 75.16% 89.50% 87.70% 97.60% 89.20%
2017 2,978 1,669,328 87.30% 81.14% 83.30% 74.75% 75.91% 91.01% 91.10% 94.80% 95.70%
2018 3,409 2,241,026 87.96% 80.90% 83.4% 74.42% 75.87% 90.35% 90.30% 95.40% 94.20%
2019 3,603 2,684,157 88.41% 80.30% 81.20% 78.14% 83.08% 84.41% 91.70% 92.70% 98.80%

Mean 2,385 1,216,103 87.58% 82.29% 75.71% 75.71% 78.13% 90.08% 89.13% 93.44% 94.91%
Table 2. FP-Radar’s accuracy in predicting APIs co-occurrence with hand-crafted and graph embedding-based features.

nant APIs of each temporal cluster using this taxonomy.
Specifically, we measure the dominance of an API in a
cluster as the fraction of its keywords that exist in the
cluster.
Labeling the Fingerprinting Cluster. Since differ-
ent fingerprinting techniques are often used together
[17, 25, 41, 54], we expect that the web APIs abused for
fingerprinting will be partitioned in a separate temporal
cluster. To label the fingerprinting cluster, we analyze
the following fingerprinting metrics for each of the 14
temporal clusters:
1. Percentage of API keywords that appear in finger-

printing scripts reported by [41].
2. Percentage of API keywords that are used in

the open-source fingerprintjs2 fingerprinting library
containing 152 API keywords [1].

3. Percentage of API keywords that only appear in
known fingerprinting scripts reported by [41] (i.e.,
not in any non-fingerprinting scripts).

4. The ratio of the fraction of API keywords that
appear in fingerprinting scripts to that in non-
fingerprinting scripts as reported by [41].

Note that FP-Radar partially relies on FP-Inspector
[41] to label the fingerprinting cluster. However, we ar-
gue that it is the best available ground truth for browser
fingerprinting, as compared to using other alternatives
such as filter lists. Disconnect [22] only provides the do-
main names of fingerprinting vendors, rather than the
full URLs of fingerprinting scripts, and thus cannot dis-
tinguish between fingerprinting and non-fingerprinting
resources served from the same domain.
Results. Table 3 shows the temporal clusters and their
key characteristics. Each row represents a cluster and
the rows are sorted based on the cluster size. We note
that the top-ranked cluster clearly has significantly more

pronounced fingerprinting metrics as compared to other
clusters; thus, we label this cluster as fingerprinting.
First, 61% of the keywords in the fingerprinting cluster
are used in fingerprinting scripts, which is at least ≈3X
more than any other temporal cluster. Second, 47% of
the keywords in the fingerprinting cluster are used in fin-
gerprintjs2, which is at least ≈9X more than any other
temporal cluster. Third, 12% of the keywords exclusively
appear in fingerprinting scripts, which is at least ≈6X
more than any other temporal cluster. Finally, the frac-
tion of the keywords that appear in fingerprinting to
non-fingerprinting scripts is 25.91, which is ≈4X more
than any other temporal cluster.

4 Analysis of APIs in the
Fingerprinting Cluster

In this section, we conduct an in-depth analysis of the
fingerprinting cluster detected by FP-Radar. Table 4
lists a subset of the keywords of top dominant APIs
in the fingerprinting cluster.3 We investigate how the
functionality of dominant APIs is being abused for fin-
gerprinting. We also assess the time-to-detection of FP-
Radar as compared to their browser release, appear-
ance, and disclosure dates. For each API keyword, we de-
fine release, appearance, disclosure, and detection dates
as follows:
1. Release refers to the earliest date of support by one

of the major browsers (e.g., Chrome, Firefox, Sa-
fari).

3 We select a representative subset out of 765 total keywords
to capture diverse use cases and cover almost all of the time-to-
detection categories for each API. We will include the complete
table along with the code/data as part of the artifact release.

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 566

Cluster Life-span % keywords % keywords % keywords in FP/Non- Dominant
size in years in FP scripts in fpjs2 [1] only FP scripts FP ratio APIs
765 5 61% 47% 12% 25.91 Battery, Navigator, Network Information
576 3 21% 5.26% 0 0 Long Tasks, Resource Timing, Background Tasks
318 3 11% 2.85% 0 0 XMLSerializer, Mouse, ShadowRoot
244 6 15.2% 7% 0 0.05 Mouse, TouchEvents, Canvas
205 4 10% 5.26% <1% 1.27 CSS Painting, XMLHTTPRequest
196 5 3.14% 11% 2% 5.65 VideoTrack, Geolocation, Long Tasks
158 5 17% 6% <1% 2.62 HTMLIFrameElement, Navigator, URL
152 3 14% 2.85% 0 0.10 Visual Viewport, Crypto, Channel Messaging
149 4 9% 4.11% 0 0 Fetch API, Notification, NodeFilter
128 6 16% 1.31% <1% 0.07 Resource Timing, Page Visibility, History
117 4 19% 2.46% 0 0.20 FullScreen, VideoTrack, HTMLMediaElement
109 7 2.15% 2.63% <1% 0.35 FileReader, Web Animations, XMLHttpRequest
107 4 3% 3.45% 0 0 Sensors, Gamepad, Fullscreen, Web Bluetooth
31 3 1.67% 2.19% 0 0 History, HTMLElement, HTMLTableElement

Table 3. Temporal clusters detected by FP-Radar and their key characteristics. Based on their fingerprinting potential, clusters are
marked with different gradients of red. The fingerprinting cluster (represented by dark red) clearly stands out as compared to the
remaining clusters in terms of its similarity with known fingerprinting scripts.

2. Appearance refers to the earliest date when the API
keyword appeared in our dataset.

3. Disclosure refers to the earliest date that a proof-
of-concept fingerprinting design or implementation
involving the API keyword was presented in a re-
search publication, W3C documentation, or public
forums.

4. Detection refers to the earliest date when the API
keyword was detected as a member of the finger-
printing cluster by FP-Radar.

Based on this information, we classify each API key-
word in the fingerprinting cluster into the following 4
categories:
1. FP-Radar detects abuse of API keywords that

are yet undisclosed to the best of our knowl-
edge. Denoted with green color in Table 4,
FP-Radar detects a number of yet-undisclosed
API keywords such as deviceMemeory (Navigator),
WebGL2RenderingContext (WebGL), illuminance
(Sensor), and paint (Performance).

2. FP-Radar detects abuse of APIs before dis-
closure. Denoted with yellow color in Table
4, FP-Radar detects a number of API key-
words before their disclosure such as getGamepads
(GamePad), visibilityState (Page Visibility),
and clipboardData (Clipboard).

3. FP-Radar detects abuse of APIs after disclosure.
Denoted with red color in Table 4, FP-Radar
detects some API keywords after their disclosure

such as force (Touch), DeviceMotionEvent (Sen-
sor), and plugins (Navigator).

4. FP-Radar detects abuse of APIs at disclosure.
Denoted with orange color in Table 4, FP-Radar
detects a number of API keywords at their dis-
closure such as chargingTime (Battery Status),
oscpu (Navigator), and touchenter (Touch). Note
that most of the late detections are in fact de-
tected as early as possible by FP-Radar because
the API keywords did not appear in our data be-
fore the detection date. In other words, FP-Radar
detects these API keywords at the first possible
opportunity. We also denote these with orange
color in Table 4. Such keywords include API key-
words such as altitudeAccuracy (Geolocation) and
chargingchange (Battery Status).

Next, we do a manual deep dive into each of the APIs
listed in Table 4 in the descending order of their dom-
inance. Note that we do not discuss some of the well-
known web APIs, such as canvas, canvas font, webRTC,
and AudioContext, that are already shown to be widely
abused for browser fingerprinting [2, 25].

Battery Status, standardized in 2011 [49] and sup-
ported in major browsers as early as 2014, is a non-
permissioned API that provides information about a
device’s battery status to help web applications adjust
resource usage when battery power is low. In 2015, Ole-
jnik et al. disclosed that battery capacity and charg-

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 567

API Name Keywords Release Date Appearance Date Disclosure Date Detection Date

Battery Status

chargingTime 2014 2015 2015 [78] 2015
chargingchange 2014 2017 2015 [78] 2017
dischargingTime 2014 2016 2015 [78] 2016

Navigator

deviceMemory 2017 2017 - 2018
hardwareConcurrency 2014 2014 2017 [87] 2015
oscpu 2004 2015 2009 [57] 2015
plugins 2003 2011 2009 [57] 2015
vendorSub 2004 2013 - 2016
webdriver 2015 2015 - 2015

Network Information

downlink 2017 2018 2020 [32] 2018
downlinkMax 2017 2018 2020 [32] 2019
rtt 2017 2017 2020 [32] 2019

Geolocation

altitudeAccuracy 2009 2016 2008 [82] 2016
geolocation 2009 2012 2008 [82] 2015
watchPosition 2009 2015 2008 [82] 2015

WebGL

bufferData 2011 2014 2012 [72] 2015
webgl 2011 2011 2012 [72] 2015
WEBGL_debug_renderer_info 2014 2014 2016 [25] 2015
WEBGL_depth_texture 2013 2017 - 2018
WebGL2RenderingContext 2017 2017 - 2018

Performance

domainLookupEnd 2015 2015 - 2015
domainLookupStart 2015 2015 - 2015
now 2012 2012 2016 [40] 2015
paint 2017 2018 - 2019

Page Visibility visibilityState 2013 2013 2020 [35] 2015
prerender 2013 2013 - 2015

Web Worker applicationCache 2010 2011 2017 [109] 2015
Worklet 2018 2018 - 2018

GamePad
Gamepad 2014 2014 2020 [14] 2019
getGamepads 2014 2014 2020 [14] 2015
mapping 2014 2015 - 2017

Mouse movementX 2014 2016 2013 [92] 2016
onmousemove 2003 2012 2004 [84] 2018

Touch

force 2012 2013 2013 [92] 2018
rotationAngle 2015 2017 - 2017
touchenter 2012 2015 2015 [92] 2015

Sensor

AbsoluteOrientationSensor 2018 2018 - 2018
AmbientLightSensor 2017 2017 - 2018
acceleration 2011 2013 2014 [7] 2017
DeviceMotionEvent 2014 2013 2014 [7] 2018
illuminance 2017 2017 - 2018
Magnetometer 2017 2017 - 2018
rotationRate 2011 2017 - 2018

Clipboard
copy 2007 2018 2020 [37] 2019
clipboardData 2013 2018 2020 [37] 2018
paste 2007 2018 2020 [37] 2019

Table 4. List of dominant API detected by FP-Radar and their time-to-detection: not-yet-disclosed early detection
on-time detection late detection .

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 568

ing level can be abused for fingerprinting [78].4 More
specifically, the information about current battery level
(level) and predicted time to charge (chargingTime)
or discharge (dischargingTime) can be used to esti-
mate a device’s battery capacity, which is lower than
its design capacity and often distinctive. FP-Radar
detects these keywords in 2015, right at the time of
disclosure. Furthermore, FP-Radar detects a change
in the abuse of Battery Status API starting 2017.
More specifically, fingerprinters started gathering the
change frequency of the battery status using key-
words such as chargingchange, chargingtimechange,
dischargingtimechange, and levelchange that reflect
different workloads to create a short-lived fingerprint.
Script 2 shows a fingerprinting snippet that uses the
aforementioned keywords.

Navigator, standardized in 1997 and supported by
all major browsers since then [62], is a non-permissioned
interface that provides information about the browser.
In 2009, Mayer [57] disclosed that the navigator ob-
ject provides information about a browser’s settings
that can be abused for fingerprinting. More specifi-
cally, the user agent string (userAgent), the languages
supported by the browser (languages), the list of in-
stalled plugins (plugins), and supported file formats
(mimeType) can reveal distinctive information about a
browser. Since these features individually might not be
sufficient to uniquely identify a browser, fingerprinters
tend to gather a number of device-specific information
exposed by the navigator to increase the entropy of the
fingerprint [54]. Script 3 shows a fingerprinting snippet
that gathers 18 different navigator properties includ-
ing the aforementioned keywords. FP-Radar detects
navigator-related keywords as early as 2015, which is
roughly around the time when researchers first docu-
mented fingerprinting on the web through large-scale
measurements [76]. Note that the Navigator interface
has been updated several times over the years to sup-
port new features. FP-Radar is able to detect the abuse
of most of the newly introduced navigator properties
in a timely fashion. For example, FP-Radar detects
hardwareConcurrency, which returns the available num-
ber of logical processor cores, in 2015 right after its stan-
dardization even though its abuse was disclosed later in
2017 [87].

Network Information API, standardized in 2014
[51] and supported by major mobile browsers (ex-

4 Due to these fingerprinting concerns [74], Firefox stopped sup-
porting the API in 2017 [11].

cept Safari) since 2017 [63], is a non-permissioned API
that provides network connection information of the
browser. More specifically, connection type (type, such
as WiFi, WiMAX, Ethernet), delay (rtt), bandwidth
(downlink and downlinkMax), and change in connec-
tion type (onchange) information are accessible via this
API. It is noteworthy that potential privacy issues of
the Network Status API were originally dismissed by
W3C (“minimal impact on privacy or fingerprinting”)
[50] and none of the prior fingerprinting measurement
studies report its abuse [10, 24, 57, 72, 78, 100]. How-
ever, as later acknowledged by W3C in 2020 [32], this
information could be abused to fingerprint a user based
on the time and order of transitions between networks
as well as user location. Note that Firefox and Safari
explicitly declined to support this API due to finger-
printing concerns [12, 94]. FP-Radar is able to detect
these keywords as soon as 2018, after their release date
but before their disclosure. Script 4 shows an example
fingerprinting snippet that collects all of the aforemen-
tioned network properties.

Geolocation API, standardized in 2008 [82] and
supported in all major browsers around 2009, is a
permissioned API that provides information about
geographical location of device including (latitude,
longitude, altitude, speed), as well as the accu-
racy of the acquired location data (altitudeAccuracy),
and whenever the position of the device changes
(watchPosition). The information exposed by the Ge-
olocation API can be abused for fingerprinting due to
its high precision (a double representing the position
in decimal degrees). Note that the Geolocation API was
permissioned from the very beginning because of the ob-
vious privacy concerns acknowledged by W3C [82]. FP-
Radar detects these keywords as early as 2015, at the
earliest formation of the fingerprinting cluster. Note that
the permission status (i.e., whether or not the user has
granted permission) itself reveals one bit of information
that can be combined with other fingerprinting features.
FP-Radar detects the abuse of PERMISSION_DENIED
and POSITION_UNAVAILABLE in 2016. Script 5 shows a
fingerprinting snippet that gathers the aforementioned
geolocation information, in addition to other fingerprint-
ing information.

WebGL API, standardized in 2010 [48] and sup-
ported in all major browsers soon afterwards, is a
non-permissioned API that can render interactive3D
objects in the browser and manipulate them through
JavaScript. WebGL API can be abused for finger-
printing in two main ways. First, WebGL can be
used to list all WebGL capabilities to build a fin-

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 569

gerprint. For example, scripts can check for We-
bGL support using window.WebGLRenderingContext
and getContext(‘webgl’) and list capabil-
ities such as SHADING_LANGUAGE_VERSION or
WEBGL_debug_renderer_info. Second, WebGL
can be used to render a canvas image (using
WebGLRenderingContext.canvas) that is then encoded
and hashed (using toDataURL) to build a fingerprint.
The rendering varies across devices due to differences in
the rendering pipeline that involves the operating sys-
tem, web browser, rendering engine, graphics driver, and
the underlying hardware. Note that WebGL 1 [21] was
extended to WebGL 2 [20] in 2017 to include new capa-
bilities such as pixel buffer objects (GetBufferSubData),
Primitive restart (draw_primitive_restart), and ras-
terizer discard (RASTERIZER_DISCARD). FP-Radar de-
tects the keywords associated with WebGL 1 as early
as 2015 and WebGL 2 as early as 2018.

Performance API, standardized in 2011 [45] and
supported in all major browsers around 2012, is a non-
permissioned API that covers Performance Timeline,
Resource Timing, Performance Timeline, Navigation
Timing, Resource Timing, and Paint Timing. It al-
lows scripts to accurately measure various performance-
related metrics during the page load such as DNS us-
ing domainLookupStart and domainLookupEnd or HTTP
using fetchStart, requestStart, responseStart, and
responseEnd. However, access to high-resolution tim-
ing information (e.g., up to sub-millisecond granu-
larity) can be abused for fingerprinting by precisely
timing certain operations that depend on the un-
derlying software/hardware pipeline [107]. For exam-
ple, in [88], the authors measured the clock difference
on a device using combination of Performance and
Crypto APIs. Specifically, they used performance.now
to time the execution of the pseudo-random genera-
tor (getRandomValues) to create a browser fingerprint.
FP-Radar detects most of the associated keywords
as early as 2015. Paint Timing API is a recent addi-
tion to Performance API and has been supported by
Chrome since 2017 and in other major browsers since
2020 [64]. This API measures the time it takes between
the moment a user navigate to a URL and the mo-
ment a pixel renders on a screen (e.g., first-paint
or first-contentful-paint representing time be-
tween navigation start performanceEntry.startTime
and when the browser renders any or content pixel, re-
spectively). This timing information can be distinctive
across different browsers based on differences in their
underlying compute/communication performance. FP-
Radar captures the abuse of Paint Timing API in 2019,

the first time it appears in our data. Script 7 shows a
fingerprinting snippet that measures the First Time to
Paint and First Contentful Paint in addition to other
fingerprinting information.

1 ...
2 // Register an event that will be
3 // triggered on visibility state change.
4 document.addEventListener ('visibilitychange '

, VisibilityStateHandler);
5
6 // return visibility state of the page
7 function getVisibilityState () {
8 return document.visibilityState;
9 }

10
11 // return current time
12 function getCurrentTime () {
13 return Date.now ();
14 }
15
16 // Capture current time & visibility state.
17 function VisibilityStateHandler () {
18 ...
19 VisibilityStateFP = {
20 VisibilityState: getVisibilityState () ,
21 CurrentTime: getCurrentTime ()
22 };
23 ...
24 }
25 ...

Script 1. A simplified version of a script that uses the Visibility
API to conduct ephemeral fingerprinting. Each time the visibility
state changes, it is recorded with the current timestamp.

Page Visibility API, standardized in 2011 [44]
and supported in all major browsers by 2013, is a
non-permissioned API. This API provides access to de-
termine the visibility state (i.e. visible, hidden, and
prerender) or be notified when the visibility state of
a document changes. While the visibility state (or the
change in visibility state) is not directly useful for fin-
gerprinting, but it can be abused for ephemeral fin-
gerprinting [35] when the changes in page visibility
state can be correlated across different sites. Specifically,
when a user switches between a pair of tabs/windows
then a change in the visibility state will be simultane-
ously triggered for both tabs/windows. This informa-
tion can be correlated by a script on both tabs/win-
dows to link whether the tabs/windows are on the same
browser/device. For example, Script 1 measures times-
tamps of the changes in page visibility state. It uses
Date.now to log the exact time the page visibility state
changes (onvisibilitychange). The sequence of times-
tamps when the page visibility state changes are ex-
pected to be the same and distinctive across all of the
co-visible sites in a user’s browser/device. Thus, it can
be used to build a cross-site ephemeral fingerprint. Dis-

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 570

closed in 2020 [35], FP-Radar first detects the abuse of
this API in 2015.

Web Worker API, standardized in 2009 [36] and
supported in all major browsers by 2010, is a non-
permissioned API. This API allows sites to run
compute-heavy scripts in the background without af-
fecting the performance of the main page. Although
DOM and Window objects are not accessible to Web
Worker API, it does have access to a number of other
APIs including WebGL. Workers can be used to run a
fingerprinting technique (e.g., Canvas fingerprinting us-
ing OffscreenCanvas [29]) in a background thread sep-
arate from the main execution thread of a web ap-
plication to avoid blocking the main thread. We have
not detected such a scenario in our dataset. However,
FP-Radar detects the presence of this API as early
as 2015 where scripts simply probe the support sta-
tus of this API (e.g., using window.Worker) alongside
other fingerprinting information. FP-Radar also de-
tects SharedWorkerGlobalScope.applicationCache in
a number of scripts that allows scripts to set and get
client-side state in the cache of the worker as an alter-
native to cookies.

Gamepad API, standardized in 2014 [91] and sup-
ported in all major browsers since then, is a non-
permissioned API that allows browsers to connect to
gamepads. getGamepads method returns the list of
Gamepad objects as well as their configuration such as
axes, buttons, displayId or hand. Probing whether a
browser has a connected Gamepad and, if there is one
connected, collecting the aforementioned configuration
information can reveal distinctive information about a
browser. Due to its potential privacy threats, start-
ing 2020, Mozilla requires thirds-party iframes to ask
for permission before calling the getGamepads method
[14]. FP-Radar detects these keywords as early as
2015, right after it was supported in major browsers,
even though it was disclosed 5 years later. Script 8
shows a fingerprinting snippet from 2015 that probes the
presence of Gamepad API and calling the getGamepads
method in addition to collecting other fingerprinting in-
formation.

Mouse-related interfaces, including MouseEvent,
WheelEvent, MouseScrollEvent, MouseWheelEvent, and
Pointer Lock, were first introduced in 2004 and have
since been updated to support new features. It can
capture coordinates of a pointing device (such as a
mouse) including clientX/Y, pageX/Y, offsetX/Y, and
movementX/Y in addition to its events such as click,
dblclick, and mousemove without requiring any per-
mission. Beginning as early as 2004 [84], there has been

a steady stream of studies demonstrating how mouse
movements can be used to identify (or authenticate)
users [99]. FP-Radar first detects the abuse of mouse-
related keywords for user behavior fingerprinting in 2016
and since then has detected other properties such as
movementX/Y, deltaX/Y/Z, and wheelDelta. Script 9
shows an example fingerprinting snippet that collects
mouse movement information in addition to other fin-
gerprinting information.

TouchEvent interface, standardized in 2011 [67] and
supported by all major browsers including mobile ver-
sion of browsers since 2013,5 is a non-permissioned in-
terface that is similar to mouse interfaces except that
it supports simultaneous touches and at different loca-
tions on the touch surface. Beginning as early as 2013
[92], there has been a steady stream of studies demon-
strating how touch events can be use to identify (or au-
thenticate) users [99]. Specifically, frequency of tapping
(captured by events such as ontouchstart, touchenter,
touchleave, and touchmove) and strength of tapping
(captured by force) can be used for user behavior fin-
gerprinting. FP-Radar first detects the abuse of touch-
related keywords for user behavior fingerprinting in 2016
and since then has detected other properties such as
rotationAngle.

Sensor APIs, standardized in 2012 [102], is only sup-
ported in Chrome since 2017. Privacy-oriented browsers
like Firefox and Safari have declined to implement
this API due to privacy concerns [65, 94]. It is a
permissioned API that provides sensor information
such as light intensity (using AmbientLightSensor)
and the force caused by vibration or a change in
motion (using Accelerometer. Older interfaces such
as DeviceMotionEvent and DeviceOrientationEvent,
which are not part of Sensor API but implemented
by all major browsers (except Safari) since 2011 [60],
provide non-permissioned access to a subset of sen-
sors related to a device’s position and orientation.
The information exposed by these APIs and inter-
faces is used for user behavior fingerprinting [7, 98,
104]. FP-Radar detects the sensor keywords associ-
ated with DeviceMotionEvent starting from 2017. Al-
though the sensor data was reported to be collected us-
ing DeviceMotionEvent in the previous studies, we de-
tect the abuse of Sensor API beyond that. For example,
FP-Radar detects the abuse of AmbientLightSensor
and illuminance that are not yet disclosed. Script 10

5 Desktop version of Firefox started supporting this interface
lately in 2017 [66].

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 571

shows an example fingerprinting snippet that collects
sensor information in addition to other fingerprinting
information.

Clipboard API, standardized in 2015 [97] but not
supported by major browsers until 2018 [59], imple-
ments clipboard operations such as copy, cut, and
paste. Moreover, if a user grants permission, it pro-
vides asynchronous access to read and modify the con-
tents of the system clipboard using read (or readText
or clipboardData.getData(’Text’)) and write (or
writeText) methods. However, since this API can ac-
cess the clipboard data, there are serious privacy con-
cerns due to the possibility that the clipboard might con-
tain personally identifiable information (PII) [37]. FP-
Radar detects the abuse of Clipboard API as early as
2018. Script 6 shows an example fingerprinting snippet
that collects clipboard information in addition to other
fingerprinting information.
Validation. We sift through public disclosures to val-
idate the fingerprinting potential and abuse of APIs
listed in Table 4. Figure 5 shows the breakdown of dis-
closed and undisclosed APIs along with FP-Radar’s
detection time. We find that the 44% of API key-
words detected by FP-Radar are still publicly undis-
closed. We try to validate the remaining undisclosed
detections by comparing them with DuckduckGo’s re-
cently released list of fingerprinting APIs [19]. We
note that FP-Radar detects more than 80% of fin-
gerprinting API keywords detected by DuckDuckGo.
However, 90% of keywords detected by FP-Radar, in-
cluding several well-known fingerprinting APIs, such
as Battery.changingTime, Geolocation.geolocation,
and WebGL.WEBGL_debug_renderer_info are still not
detected by DuckDuckGo. DuckDuckGo primarily
misses the remaining keywords because it detects a lim-
ited number of APIs (96 at the time of writing) using
a simple heuristic that uses the ratio of an APIs ap-
pearance in “suspicious” scripts to an “non-suspicious”
scripts to label them as fingerprinting (see more details
in Section 2).

5 Limitations
In this section, we discuss some of the limitations of
FP-Radar’s pipeline including completeness of retro-
spective measurements, the robustness of the analysis
technique, and ground truth assessment of fingerprint-
ing scripts and fingerprinting techniques.

Fig. 5. Breakdown of disclosed and undisclosed APIs along with
FP-Radar’s detection time.

Measurements. FP-Radar relies on the Wayback
Machine for retrospective longitudinal measurements of
browser fingerprinting. As we discuss in Section 3.1.1,
the Wayback Machine’s archiving process has limita-
tions that lead to potentially incomplete coverage. Un-
fortunately, to the best of our knowledge, there is no
other publicly available service that archives complete
historical versions of web pages. HTTP Archive [38] is
a related project that archives millions of URLs each
month. However, it does not store the response bodies
of all of the resources [31] and the downloadable data is
only available for the last 6 years, i.e., 2016 to 2021 [39].
Given the democratization of large-scale web crawling
tools and capabilities, going forward, future work can
consider conducting live crawls to complement missing
resources in archiving services such as the Wayback Ma-
chine or HTTP Archive.
Robustness. FP-Radar relies on static analysis of
JavaScript code snippets, i.e., AST-based representa-
tion of scripts, to extract web API keywords. Re-
lying on static analysis makes it challenging for
FP-Radar to process obfuscated scripts and at-
tribute some generic keywords to APIs. Specifically,
some fingerprinting scripts use eval-based code ob-
fuscation techniques [93] and some keywords are
implemented by multiple APIs, e.g., font is im-
plemented by CanvasRenderingContext2D [58] and
HTMLElement.style [61]. We attempt to unpack ob-
fuscated scripts by loading them in an instrumented
browser and extracting scripts as they are parsed by
the JavaScript engine. This approach is able to unpack
scripts containing eval or Function, but does not fully
address other more sophisticated obfuscation techniques

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 572

[89]. While we do not fully address the keyword at-
tribution issue because it is non-trivial to attribute a
generic keyword to the calling API without executing
the scripts, we mitigate this issue in our analysis by fil-
tering generic keywords that belong to multiple APIs.
To fully address these concerns, FP-Radar can be ex-
tended to include dynamic analysis as well; however, it
suffers from code coverage issues that are non-trivial to
address. Note that FP-Radar is not susceptible to ob-
fuscation by a small number of scripts since it leverages
tens of thousands of scripts to build its API keyword
co-occurrence graph representation. Similarly, filtering
a small number of generic keywords does not affect the
correctness of the analysis.
Ground Truth. Since FP-Radar uses unsupervised
clustering, it relies on the classification of fingerprint-
ing scripts [103], provided by FP-Inspector [41], to label
the fingerprinting cluster. Since the classifications of FP-
Inspector are not validated for scripts observed in prior
years, we cannot solely rely on that as our ground truth
while investigating fingerprinting techniques in Section
4. To mitigate this concern, we conduct a manual anal-
ysis to validate the fingerprinting abuse of the APIs de-
tected by FP-Radar. We also rely on a wide range of
additional external sources including W3C documents,
published research papers, and bug reports to assist with
our manual analysis.

6 Conclusion
We presented FP-Radar, a machine learning approach
for early detection of web API abuse for browser fin-
gerprinting. FP-Radar advances the state-of-the-art in
browser fingerprinting in two major ways. First, unlike
prior work that is limited to analyzing a specific fin-
gerprinting technique(s) at a particular point in time,
FP-Radar conducts a retrospective longitudinal mea-
surement study of browser fingerprinting over the last
decade using the Wayback Machine. Second, unlike prior
work that is limited to detecting deployment of already
known fingerprinting techniques, FP-Radar is able to
detect abuse of new methods of existing web APIs or
new web APIs altogether by leveraging the aforemen-
tioned longitudinal measurements to model and cluster
the evolution of API usage as a temporal graph. Most
notably, FP-Radar detects novel types of user environ-
ment/hardware fingerprinting such as peripheral config-
uration via Gamepad and system capabilities via Network
Information APIs as well as ephemeral fingerprinting of

Page Visibility API even though it does not directly
expose highly identifying information.

FP-Radar is able to detect the abuse of web API
features before/at their disclosure, thus demonstrating
its utility as an early detection system that can in-
form standards bodies and browser vendors interested
in designing and deploying mitigations in a timely fash-
ion. FP-Radar can complement prior approaches (e.g.,
[25, 41, 86]) to detect fingerprinting scripts by helping
them adapt to new and evolving fingerprinting tech-
niques. In addition to disclosing our findings to rele-
vant organizations, we plan to release FP-Radar’s code
and longitudinal measurement dataset artifacts to fos-
ter follow-up research. We also plan to collaborate with
existing web tracking projects (e.g., [18, 83]) to develop
a public-facing implementation that can leverage their
live web crawls in the future.

Acknowledgment
This work is supported in part by the National Science
Foundation under grant numbers 2102347, 2051592,
2103439, and 2127309 (Computing Research Association
for the CIFellows 2021 Project).

References
[1] Modern & flexible browser fingerprinting library. https:

//github.com/Valve/fingerprintjs2.
[2] G. Acar, C. Eubank, S. Englehardt, M. Juarez,

A. Narayanan, and C. Diaz. The Web Never Forgets: Per-
sistent Tracking Mechanisms in the Wild. In CCS, 2014.

[3] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses,
F. Piessens, and B. Preneel. FPDetective: dusting the
web for fingerprinters. In ACM CCS, 2013.

[4] F. Alaca and P. van Oorschot. Device Fingerprinting for
Augmenting Web Authentication: Classification and Analy-
sis of Methods. In ACSAC, 2016.

[5] P. Baumann, S. Katzenbeisser, M. Stopczynski, and
E. Tews. Disguised Chromium Browser: Robust Browser,
Flash and Canvas Fingerprinting Protection. In ACM on
Workshop on Privacy in the Electronic Society, 2016.

[6] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefeb-
vre. Fast unfolding of communities in large networks.
Journal of statistical mechanics: theory and experiment,
2008(10):P10008, 2008.

[7] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh. Mo-
bile Device Identification via Sensor Fingerprinting. arXiv
preprint arXiv:1408.1416, 2014.

[8] L. Breiman. Random Forests. In Machine learning, 2001.

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 573

[9] J. F. Brunelle, M. Kelly, H. SalahEldeen, M. C. Weigle,
and M. L. Nelson. Not all mementos are created equal:
Measuring the impact of missing resources. International
Journal on Digital Libraries, 16(3):283–301, 2015.

[10] WebRTC Internal IP Address Leakage. https://bugzilla.
mozilla.org/show_bug.cgi?id=959893.

[11] Remove web content access to Battery API. https:
//bugzilla.mozilla.org/show_bug.cgi?id=1313580, 2016.

[12] Bug 1372072 - Neutralize the threat of fingerprinting of
network information API When ’privacy.resistFingerprinting’
is true. https://bugzilla.mozilla.org/show_bug.cgi?id=
1372072, 2017.

[13] E. Bütün, M. Kaya, and R. Alhajj. Extension of neighbor-
based link prediction methods for directed, weighted and
temporal social networks. Information Sciences, 463:152–
165, 2018.

[14] M. Caceres. Securing Gamepad API. https://hacks.mozilla.
org/2020/07/securing-gamepad-api/, 2020.

[15] D. Cameron. Apple Declares War on Browser Fingerprint-
ing, the Sneaky Tactic That Tracks You in Incognito Mode.
https://gizmodo.com/apple-declares-war-on-browser-
fingerprinting-the-sneak-1826549108.

[16] Y. Cao, S. Li, and E. Wijmans. (Cross-) browser finger-
printing via OS and hardware level features. In NDSS,
2017.

[17] A. Das, G. Acar, N. Borisov, and A. Pradeep. The Web’s
Sixth Sense:A Study of Scripts Accessing Smartphone Sen-
sors. In CCS, 2018.

[18] DuckDuckGo’s Tracker Radar. https://
github.com/duckduckgo/tracker-radar/blob/
3c82647d3a5ea16ab6408cad2a52ba4b72f66637/docs/FAQ.
md.

[19] DuckDuckGo’s Tracker Radar Detected Fingerprinting
APIs. https://github.com/duckduckgo/tracker-radar/blob/
main/build-data/generated/api_fingerprint_weights.json.

[20] J. G. Dean Jackson. WebGL 2 Specification. https://www.
khronos.org/registry/webgl/specs/2.0/.

[21] J. G. Dean Jackson. WebGL specification. https://www.
khronos.org/registry/webgl/specs/latest/1.0.

[22] Disconnect tracking protection lists. https://disconnect.
me/trackerprotection.

[23] N. Doty. W3C Fingerprinting Guidance. https://w3c.
github.io/fingerprinting-guidance.

[24] P. Eckersley. How unique is your web browser? In Inter-
national Symposium on Privacy Enhancing Technologies
Symposium, 2010.

[25] S. Englehardt and A. Narayanan. Online Tracking: A 1-
million-site Measurement and Analysis. In ACM Conference
on Computer and Communications Security (CCS), 2016.

[26] A. FaizKhademi, M. Zulkernine, and K. Weldemariam. Fp-
guard: Detection and prevention of browser fingerprinting.
In IFIP Annual Conference on Data and Applications Secu-
rity and Privacy, 2015.

[27] D. Fifield and S. Egelman. Fingerprinting web users
through font metrics. In International Conference on Fi-
nancial Cryptography and Data Security, pages 107–124.
Springer, 2015.

[28] G. A. Fowler. Think you’re anonymous online? A third
of popular websites are ’fingerprinting’ you. https://
www.washingtonpost.com/technology/2019/10/31/think-

youre-anonymous-online-third-popular-websites-are-
fingerprinting-you/, 2019.

[29] E. Gasperowicz. OffscreenCanvas — Speed up Your Canvas
Operations with a Web Worker. https://developers.google.
com/web/updates/2018/08/offscreen-canvas, 2020.

[30] M. Graham. robots.txt meant for search engines don’t work
well for web archives. https://blog.archive.org/2017/04/
17/robots-txt-meant-for-search-engines-dont-work-well-
for-web-archives/, 2017.

[31] I. Grigorik. Quickstart guide to exploring the HTTP
Archive. https://discuss.httparchive.org/t/quickstart-guide-
to-exploring-the-http-archive/682.

[32] I. Grigorik. Network Information API. https://wicg.github.
io/netinfo/, 2020.

[33] A. Grover and J. Leskovec. node2vec: Scalable feature
learning for networks. In KDD, 2016.

[34] N. H. Hashim, J. Murphy, and P. O’Connor. Take me back:
Validating the wayback machine as a measure of website
evolution. In Information and Communication Technologies
in Tourism 2007, 2007.

[35] A. Herath. Ephemeral Fingerprinting On The Web. https:
//github.com/asankah/ephemeral-fingerprinting, 2020.

[36] I. Hickson. Web Workers. https://www.w3.org/TR/2009/
WD-workers-20090423, 2009.

[37] W. Hsieh. Async Clipboard API. https://webkit.org/blog/
10855/async-clipboard-api, 2020.

[38] HTTP Archive. https://httparchive.org/.
[39] HTTP Archive Data. https://github.com/HTTPArchive/

httparchive.org/blob/main/docs/gettingstarted_bigquery.
md#understanding-how-the-tables-are-structured.

[40] J. M. Ilya Grigorik, James Simonsen. High Resolution Time
Level 3. https://www.w3.org/TR/2016/WD-hr-time-3-
20161031/#privacy-security, 2016.

[41] U. Iqbal, S. Englehardt, and Z. Shafiq. Fingerprinting the
Fingerprinters: Learning to Detect Browser Fingerprinting
Behaviors. In Proceedings of the IEEE Symposium on
Security & Privacy, 2021.

[42] U. Iqbal, Z. Shafiq, and Z. Qian. The Ad Wars: Retrospec-
tive Measurement and Analysis of Anti-Adblock Filter Lists.
In IMC, 2017.

[43] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and
Z. Shafiq. AdGraph: A Graph-Based Approach to Ad and
Tracker Blocking. In Proceedings of the IEEE Symposium
on Security & Privacy, 2020.

[44] A. J. Jatinder Mann. Page Visibility. https://www.w3.org/
TR/2011/WD-page-visibility-20110602/, 2011.

[45] Z. W. Jatinder Mann. Performance Timeline. https://www.
w3.org/TR/2011/WD-performance-timeline-20110811/,
2011.

[46] John Ross Quinlan. Induction of decision trees. Kluwer
Academic Publisher, 1986.

[47] M. Kelly, J. F. Brunelle, M. C. Weigle, and M. L. Nelson.
On the change in archivability of websites over time. In
International Conference on Theory and Practice of Digital
Libraries, pages 35–47. Springer, 2013.

[48] Khronos releases Final WebGL 1.0 specification. https:
//www.khronos.org/news/press/khronos-releases-final-
webgl-1.0-specification, 2011.

[49] A. Kostiainen. Battery status event specification. https:
//www.w3.org/TR/2011/WD-battery-status-20110426/,

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 574

2011.
[50] M. Lamouri. The Network Information API. https://www.

w3.org/TR/2012/WD-netinfo-api-20121129/#security-
and-privacy-considerations, 2012.

[51] M. Lamouri. The Network Information API. https://dvcs.
w3.org/hg/dap/raw-file/tip/network-api/Overview.html,
2014.

[52] P. Laperdrix, G. Avoine, B. Baudry, and N. Nikiforakis.
Morellian Analysis for Browsers: Making Web Authentica-
tion Stronger with Canvas Fingerprinting. In International
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), 2019.

[53] P. Laperdrix, B. Baudry, and V. Mishra. Fprandom: Ran-
domizing core browser objects to break advanced device
fingerprinting techniques. In International Symposium on
Engineering Secure Software and Systems, pages 97–114.
Springer, 2017.

[54] P. Laperdrix, N. Bielova, B. Baudry, and G. Avoine.
Browser fingerprinting: A survey. ACM Transactions on
the Web, 2020.

[55] A. B. Lassey. Combating Fingerprinting with a Privacy
Budget Explainer. https://github.com/bslassey/privacy-
budget.

[56] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner. In-
ternet Jones and the Raiders of the Lost Trackers: An Ar-
chaeological Study of Web Tracking from 1996 to 2016. In
USENIX Security Symposium, 2016.

[57] J. R. Mayer. Any person... a pamphleteer”: Internet
anonymity in the age of web 2.0. Undergraduate Senior
Thesis, Princeton University, page 85, 2009.

[58] CanvasRenderingContext2D.font. https://developer.mozilla.
org/en-US/docs/Web/API/CanvasRenderingContext2D/
font.

[59] Clipboard API. https://developer.mozilla.org/en-US/docs/
Web/API/Clipboard_API.

[60] DeviceMotionEvent. https://developer.mozilla.org/en-
US/docs/Web/API/DeviceMotionEvent.

[61] HTMLElement.style. https://developer.mozilla.org/en-
US/docs/Web/API/HTMLElement/style.

[62] Navigator - Web APIs: MDN. https://developer.mozilla.
org/en-US/docs/Web/API/Navigator.

[63] Network Information API - Web APIs: MDN. https://
developer.mozilla.org/en-US/docs/Web/API/Network_
Information_API.

[64] PerformancePaintTiming. https://developer.mozilla.org/en-
US/docs/Web/API/PerformancePaintTiming.

[65] Sensor APIs. https://developer.mozilla.org/en-US/docs/
Web/API/Sensor_APIs.

[66] TouchEvent. https://developer.mozilla.org/en-US/docs/
Web/API/TouchEvent.

[67] Touch Events Specification. https://www.w3.org/TR/
2011/WD-touch-events-20110505, 2011.

[68] Battery Status API removed from Firefox. https:
//developer.mozilla.org/en-US/docs/Mozilla/Firefox/
Releases/52#other_apis, 2016.

[69] MDN Web APIs. , https://developer.mozilla.org/en-
US/docs/Web/API.

[70] G. Merzdovnik, M. Huber, D. Buhov, N. Nikiforakis, S. Ne-
uner, M. Schmiedecker, and E. Weippl. Block Me If You
Can: A Large-Scale Study of Tracker-Blocking Tools. In

IEEE European Symposium on Security and Privacy, 2017.
[71] K. Mowery, D. Bogenreif, S. Yilek, and H. Shacham. Fin-

gerprinting information in javascript implementations. In
Web 2.0 Workshop on Security and Privacy (W2SP), 2011.

[72] K. Mowery and H. Shacham. Pixel perfect: Fingerprinting
canvas in html5. Proceedings of W2SP, 2012.

[73] How to block fingerprinting with Firefox. https://blog.
mozilla.org/firefox/how-to-block-fingerprinting-with-
firefox/.

[74] Removing the Battery Status API? https://groups.
google.com/g/mozilla.dev.platform/c/5U8NHoUY-
1k/m/9ybyzQIYCAAJ?pli=1, 2016.

[75] Nick Nikiforakis and Wouter Joosen and Benjamin Livshits.
PriVaricator: Deceiving Fingerprinters with Little White
Lies. In WWW, 2015.

[76] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster: Exploring
the ecosystem of web-based device fingerprinting. In 2013
IEEE Symposium on Security and Privacy, pages 541–555.
IEEE, 2013.

[77] M. Nottingham. Unsanctioned Web Tracking. https://
www.w3.org/2001/tag/doc/unsanctioned-tracking/, 2015.

[78] L. Olejnik, G. Acar, C. Castelluccia, and C. Diaz. The
leaking battery: A privacy analysis of the HTML5 Battery
Status API. In Proceedings of the 10th International Work-
shop Data Privacy Management, and Security Assurance,
2015.

[79] L. Olejnik, S. Englehardt, and A. Narayanan. Battery Sta-
tus Not Included: Assessing Privacy in Web Standards. In
International Workshop on Privacy Engineering, 2017.

[80] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online
learning of social representations. In KDD, 2014.

[81] M. Perry, E. Clark, S. Murdoch, and G. Koppen. Fin-
gerprinting defenses in the tor browser. https://www.
torproject.org/projects/torbrowser/design/#fingerprinting-
defenses.

[82] A. Popescu. geolocation api specification. https://www.w3.
org/TR/2008/WD-geolocation-API-20081222/, 2008.

[83] Princeton Web Transparency & Accountability Project.
https://webtap.princeton.edu/.

[84] M. Pusara and C. E. Brodley. User re-authentication via
mouse movements. In 2004 ACM workshop on Visualiza-
tion and data mining for computer security, 2004.

[85] N. Reitinger and M. L. Mazurek. Ml-cb: Machine learning
canvas block. Proceedings on Privacy Enhancing Technolo-
gies, 2021.

[86] V. Rizzo, S. Traverso, and M. Mellia. Unveiling web finger-
printing in the wild via code mining and machine learning.
PETS, 2021.

[87] T. Saito, K. Yasuda, K. Tanabe, and K. Takahashi. Web
browser tampering: inspecting cpu features from side-
channel information. In International Conference on Broad-
band and Wireless Computing, Communication and Appli-
cations, 2017.

[88] I. Sanchez-Rola, I. Santos, and D. Balzarotti. Clock around
the clock: Time-based device fingerprinting. In ACM CCS,
2018.

[89] S. Sarker, J. Jueckstock, and A. Kapravelos. Hiding in
Plain Site: Detecting JavaScript Obfuscation through Con-
cealed Browser API Usage. In ACM Internet Measurement

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 575

Conference (IMC), 2020.
[90] J. Schuh. Building a more private web: A path to-

wards making third party cookies obsolete. https:
//blog.chromium.org/2020/01/building-more-private-web-
path-towards.html, 2020.

[91] T. M. Scott Graham. Gamepad. https://www.w3.org/TR/
2014/WD-gamepad-20140225.

[92] M. Shahzad, A. X. Liu, and A. Samuel. Secure unlocking
of mobile touch screen devices by simple gestures: You can
see it but you can not do it. In Proceedings of the 19th
annual international conference on Mobile computing &
networking, 2013.

[93] P. Skolka, C.-A. Staicu, and M. Pradel. Anything to Hide?
Studying Minified and Obfuscated Code in the Web. In
World Wide Web (WWW) Conference, 2019.

[94] Apple Declined To Implement 16 Web APIs in Safari Due
To Privacy Concerns . https://apple.slashdot.org/story/20/
06/29/1456247/apple-declined-to-implement-16-web-apis-
in-safari-due-to-privacy-concerns, 2020.

[95] P. Snyder, L. Ansari, C. Taylor, and C. Kanich. Browser
feature usage on the modern web. In Proceedings of the
2016 Internet Measurement Conference, 2016.

[96] O. Starov and N. Nikiforakis. Xhound: Quantifying the fin-
gerprintability of browser extensions. In 2017 IEEE Sympo-
sium on Security and Privacy (SP), pages 941–956. IEEE,
2017.

[97] H. R. M. Steen. Clipboard API and events. https://www.
w3.org/TR/2015/WD-clipboard-apis-20151215/, 2015.

[98] H. M. Thang, V. Q. Viet, N. D. Thuc, and D. Choi. Gait
identification using accelerometer on mobile phone. In
International Conference on Control, Automation and Infor-
mation Sciences (ICCAIS), pages 344–348. IEEE, 2012.

[99] P. A. Thomas and K. P. Mathew. A broad review on non-
intrusive active user authentication in biometrics. Journal
of Ambient Intelligence and Humanized Computing, 2021.

[100] Tor browser canvas font fingerprinting.
https://gitlab.torproject.org/legacy/trac/-/issues/13400.

[101] C. F. Torres, H. Jonker, and S. Mauw. FP-Block: Usable
web privacy by controlling browser fingerprinting. In ES-
ORICS, 2015.

[102] D. D. Tran. Sensor API Specification. https://dvcs.w3.org/
hg/dap/raw-file/default/sensor-api/Overview.html, 2012.

[103] umar iqbal. FP-Inspector Code and Data. https://uiowa-
irl.github.io/FP-Inspector/.

[104] T. Van Goethem, W. Scheepers, D. Preuveneers, and
W. Joosen. Accelerometer-based device fingerprinting
for multi-factor mobile authentication. In International
Symposium on Engineering Secure Software and Systems.
Springer, 2016.

[105] Wayback Machine API. https://archive.org/help/wayback_
api.php.

[106] Wayback Machine. https://archive.org/web/.
[107] Y. Weiss. High Resolution Time, Privacy and Security.

https://www.w3.org/TR/hr-time-3/#sec-privacy-security.
[108] J. Wilander. Full Third-Party Cookie Blocking and More.

https://webkit.org/blog/10218/full-third-party-cookie-
blocking-and-more/.

[109] J. Wilander. Full third-party cookie blocking and more.
https://webkit.org/blog/10218/full-third-party-cookie-
blocking-and-more, 2020.

[110] M. Wood. Today’s Firefox Blocks Third-Party Tracking
Cookies and Cryptomining by Default. https://blog.mozilla.
org/blog/2019/09/03/todays-firefox-blocks-third-party-
tracking-cookies-and-cryptomining-by-default/, 2019.

[111] S. Wu, S. Li, Y. Cao, and N. Wang. Rendered private:
Making GLSL execution uniform to prevent WebGL-based
browser fingerprinting. In Proceedings of the 28th USENIX
Security Symposium (USENIX Security), 2019.

[112] Z. Yu, S. Macbeth, K. Modi, and J. M. Pujol. Tracking the
Trackers. In World Wide Web (WWW) Conference, 2016.

7 Appendix
We provide examples of fingerprinting code snippets to
support the discussion in the main text. We make mi-
nor revisions to the code to improve its readability. Note
that all of the code snippets provided here use multiple
fingerprinting techniques. However, we only show the
relevant part of the code that is pertinent to our discus-
sion in the main text.

1 // Battery Status API support probing.
2 if ('getBattery ' in navigator) {
3 BatteryManagerObj=navigator.getBattery ()
4 || navigator.battery ()
5 BatteryManagerObj.then (monitorBattery);
6 }
7 else {
8 ChromeSamples.setStatus ('not supported ');
9 }

10
11 // Get battery level , charging ,
12 // and discharging time.
13 function getStatus (battery) {
14 return Math.floor (100 * battery.level)
15 }
16
17 // Trigger the function whenever
18 // the battery status changes.
19 function monitorBattery (battery) {
20 // get the battery level
21 getStatus (battery);
22
23 // Monitor for further updates.
24 [" chargingchange "," chargingtimechange ",
25 " dischargingtimechange ", " levelchange "].
26 forEach (function (battery) {
27 a.addEventListener (battery , null)
28 })
29 }

Script 2. Simplified version of a script that uses the Battery
status API for fingerprinting.

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 576

1 function getUseragentData (t) {
2 nvgtr_dict = {},
3 nvgtr_dict.PX59 = navigator.userAgent ,
4 nvgtr_dict.PX61 = navigator.language ,
5 nvgtr_dict.PX313 = navigator.languages ,
6 nvgtr_dict.PX63 = navigator.platform ,
7 nvgtr_dict.PX86 = !!(navigator.doNotTrack

|| null === navigator.doNotTrack ||
navigator.msDoNotTrack ||
window.doNotTrack),

8 nvgtr_dict.PX88 = getMimeType () ,
9 nvgtr_dict.PX169 = navigator.mimeTypes &&

navigator.mimeTypes.length || -1 ,
10 nvgtr_dict.PX62 = navigator.product ,
11 nvgtr_dict.PX69 = navigator.productSub ,
12 nvgtr_dict.PX64 = navigator.appVersion;
13 nvgtr_dict.PX65 = navigator.appName
14 nvgtr_dict.PX66 = navigator.appCodeName
15 nvgtr_dict.PX67 = navigator.buildID
16 nvgtr_dict.PX51 = navigator.plugins ,
17 nvgtr_dict.PX60 = " onLine " in navigator &&

!0 === navigator.onLine ,
18 nvgtr_dict.PX68 = " cookieEnabled " in

navigator && !0 ===
navigator.cookieEnabled }

19
20 function getMimeType () {
21 try {
22 var t = navigator.mimeTypes &&

navigator.mimeTypes.toString ();
23 return "[object MimeTypeArray]" === t ||

/ MSMimeTypesCollection / i.test (t) }
24 catch (t) { return !1} }

Script 3. Simplified version of a script that reads several of the
Navigator API properties to conduct fingerprinting.

1 function NetworkConnection (i) {
2 function connectionObject (t, i, r) {
3 // Returns the NetworkInformation object
4 // that contains information about the
5 // network connection of a device.
6 return navigator.connection ||

navigator.mozConnection ||
navigator.webkitConnection

7 }
8
9 // Return network properties.

10 return t(a, i.Events), r(a, [{
11 value: function () {
12 this._dataQueue.addToQueue (
13 ...
14 timestamp: this.getEventTimestamp (),
15 connectionType: this._connection.type ?
16 this._connection.type : "",
17 efectivType:this._connection.effectiveType
18 ? this._connection.effectiveType : "",
19 downlinkMax: this._connection.downlinkMax
20 ? this._connection.downlinkMax.toString ()
21 : "",downlink: this._connection.downlink ?
22 this._connection.downlink.toString () : "",
23 rtt: this._connection.rtt ?
24 this._connection.rtt.toString () : "",
25 ...
26)}
27 ...
28 }

Script 4. Simplified version of a script that uses several properties
of the Network Information API to conduct fingerprinting.

1 // Other tracking functionality.
2 ...
3 this.monitorEmailHashes = function () {...} ,
4 this.doCookieMatching = function () {...} ,
5
6
7 // Collection of latitude and longitude.
8 this.requestGeo = function () {
9 var e = this;

10 navigator.geolocation.getCurrentPosition (
11 function (t) {
12 e.bountyAppend ("lat",t.coords.latitude),
13 e.bountyAppend ("lng",t.coords.longitude),
14 e.bountyAppend ("acc",t.coords.accuracy)
15 }, function (t) {
16 e.error (" Could not lookup Geo Location ")
17 }, {
18 enableHighAccuracy: !0,
19 timeout: 1500 ,
20 maximumAge: Infinity
21 })
22 },
23
24 // Collection of other fingerprinting

information.
25 this.collectBrowserInfo = function () {...}
26 ...

Script 5. Simplified version of a script that collects email hashes,
does cookie matching and uses Geolocation API to conduct
fingerprinting.

1 ...
2 // Capturing clipboard text & current time.
3 u._sendToQueue = function (e, t) {
4 var n = u.getEventTimestamp (e),
5 o = e.clipboardData ?
6 e.clipboardData.getData ("text") :
7 window.clipboardData ?
8 window.clipboardData.getData ("text"):"";
9

10 var s = u.getExports ().
11 EnumDef.Events.clipboardEventType [e.type];
12
13 u._dataQueue.addToQueue (" clipboard_event ",
14 { timestamp: n, copiedText: o,
15 clipboardEventType: s})
16 ...
17 }
18 ...

Script 6. Simplified version of script that uses the Clipboard API
to conduct ephemeral fingerprinting.

FP-Radar: Longitudinal Measurement and Early Detection of Browser Fingerprinting 577

1 ...
2 // Reading the timing of webpage paint

events.
3 {
4 key: " onWindowLoad ",
5 value: function () {
6 y.a.preloadAll ();
7 e = performance.getEntriesByType ("paint");
8
9 e.forEach (function (e) {

10 console.log ("". concat (e.name , ": ").
concat (e.startTime))

11 })
12 }
13 ...

Script 7. Simplified version of script that uses the Performance
API to conduct fingerprinting.

1 ...
2 onLoad = function () {
3 frame = document.createElement ('iframe ');
4 flags = [];
5 ...
6 if (isPresent (navigator , 'getGamepads ')) {
7 flags.push ('gamepads ');
8 }
9 ...

10 flags = flags.join (',');
11 frame.src = (" http: //" + host + "/

statframe.html #") + flags;
12 frame.style.cssText = 'display: none; ';
13 return document.body.appendChild (frame);
14 ...
15 };

Script 8. Simplified version of a script that probes the GamePad
API to conduct fingerprinting.

1 ...
2 function mn(t) {
3 g("PX847");
4 var n = p();
5 if (va) {
6 var e = pa[si];
7 ua = si , la = n;
8 var r = t.deltaY || t.wheelDelta
9 || t.detail;

10
11 if (r = + r.toFixed (2) , null === e) {
12 fa ++;
13 var o = wn(t, !1);
14 o.PX172 = [r], o.PX173 = gt(n)
15 , pa[si] = o
16 }
17 else ma.mousewheel <= pa[si]. PX172.length
18 ? (Xn(), va = !1) : pa[si]. PX172.push (r)}
19
20 X("PX847")
21 }
22
23 function gn() {
24 if (g("PX847"), pa.mousemove) {
25 t = pa.mousemove.coordination_start.length
26 , n = pa.mousemove.
27 coordination_start [t-1].PX70 ,
28 e = Sn(Tn(_t(pa.mousemove.
29 coordination_start))),
30 r = Tn(_t(pa.mousemove.coordination_end));
31 r.length > 0 && (r[0]. PX70 -= n);
32 var o = Sn(r);
33
34 pa.mousemove.PX172 = "" !== o
35 ? e + "|" + o : e,
36 delete pa.mousemove.coordination_start ,
37 delete pa.mousemove.coordination_end ,
38 yn(pa.mousemove , " mousemove "),
39 pa.mousemove = null
40 }
41 X("PX847")
42 }
43 ...

Script 9. Simplified version of a script that uses the Mouse API to
conduct fingerprinting.

1 ...
2 vn.DataMappingDefs = {
3 // This script define 23 variable with the

name of methods / properties related to
each API. Then starts collecting
information for each API including
Sensor API.

4 ...
5 AMBIENT_LIGHT_EVENT_MAP: [" eventSequence ", "

timestamp ", " illuminance "],
6 ACCELEROMETER_EVENT_MAP: [" eventSequence ", "

timestamp ", "x", "y", "z"],
7 GYRO_EVENT_MAP: [" eventSequence ", " timestamp

", " absolute ", "alpha", "beta", "gamma"
],

8 ORIENTATION_EVENT_MAP: [" eventSequence ", "
timestamp ", " absolute ", "alpha", "beta",

"gamma"],
9 ...

Script 10. Simplified version of a script that uses Sensor APIs to
conduct fingerprinting.

