
OVRSEEN: Auditing Network Traffic and Privacy Policies in Oculus VR

Rahmadi Trimananda,1 Hieu Le,1 Hao Cui,1 Janice Tran Ho,1 Anastasia Shuba,2 and Athina Markopoulou1

1University of California, Irvine
2Independent Researcher

Abstract

Virtual reality (VR) is an emerging technology that enables
new applications but also introduces privacy risks. In this
paper, we focus on Oculus VR (OVR), the leading platform in
the VR space and we provide the first comprehensive analysis
of personal data exposed by OVR apps and the platform itself,
from a combined networking and privacy policy perspective.
We experimented with the Quest 2 headset and tested the
most popular VR apps available on the official Oculus and the
SideQuest app stores. We developed OVRSEEN, a method-
ology and system for collecting, analyzing, and comparing
network traffic and privacy policies on OVR. On the network-
ing side, we captured and decrypted network traffic of VR
apps, which was previously not possible on OVR, and we
extracted data flows, defined as happ, data type, destinationi.
Compared to the mobile and other app ecosystems, we found
OVR to be more centralized and driven by tracking and an-
alytics, rather than by third-party advertising. We show that
the data types exposed by VR apps include personally identi-
fiable information (PII), device information that can be used
for fingerprinting, and VR-specific data types. By comparing
the data flows found in the network traffic with statements
made in the apps’ privacy policies, we found that approxi-
mately 70% of OVR data flows were not properly disclosed.
Furthermore, we extracted additional context from the privacy
policies, and we observed that 69% of the data flows were
used for purposes unrelated to the core functionality of apps.

1 Introduction

Virtual reality (VR) technology has created an emerging mar-
ket: VR hardware and software revenues are projected to in-
crease from $800 million in 2018 to $5.5 billion in 2023 [50].
Among VR platforms, Oculus VR (OVR) is a pioneering, and
arguably the most popular one: within six months since Oc-
tober 2020, an estimated five million Quest 2 headsets were
sold [16, 20]. VR technology enables a number of applica-
tions, including recreational games, physical training, health
therapy, and many others [49].

VR also introduces privacy risks: some are similar to those
on other Internet-based platforms (e.g.,mobile phones [12,13],
IoT devices [3, 17], and Smart TVs [35, 64]), but others are
unique to VR. For example, VR headsets and hand controllers

are equipped with sensors that may collect data about the
user’s physical movement, body characteristics and activity,
voice activity, hand tracking, eye tracking, facial expressions,
and play area [25, 34], which may in turn reveal information
about our physique, emotions, and home. The privacy aspects
of VR platforms are currently not well understood [2].
To the best of our knowledge, our work is the first large

scale, comprehensive measurement and characterization of
privacy aspects of OVR apps and platform, from a combined
network and privacy policy point of view. We set out to char-
acterize how sensitive information is collected and shared
in the VR ecosystem, in theory (as described in the privacy
policies) and in practice (as exhibited in the network traffic
generated by VR apps). We center our analysis around the
concept of data flow, which we define as the tuple happ, data
type, destinationi extracted from the network traffic. First,
we are interested in the sender of information, namely the
VR app. Second, we are interested in the exposed data types,
including personally identifiable information (PII), device in-
formation that can be used for fingerprinting, and VR sensor
data. Third, we are interested in the recipient of the infor-
mation, namely the destination domain, which we further
categorize into entity or organization, first vs. third party w.r.t.
the sending app, and ads and tracking services (ATS). Inspired
by the framework of contextual integrity [38], we also seek
to characterize whether the data flows are appropriate or not
within their context. More specifically, our notion of context
includes: consistency, i.e., whether actual data flows extracted
from network traffic agree with the corresponding statements
made in the privacy policy; purpose, extracted from privacy
policies and confirmed by destination domains (e.g., whether
they are ATS); and other information (e.g., “notice and con-
sent”). Our methodology and system, OVRSEEN, is depicted
on Fig. 1. Next we summarize our methodology and findings.

Network traffic: methodology and findings. We were
able to explore 140 popular, paid and free, OVR apps; and
then capture, decrypt, and analyze the network traffic they
generate in order to assess their practices with respect to col-
lection and sharing of personal data on the OVR platform.

OVRSEEN collects network traffic without rooting the
Quest 2, by building on the open-source AntMonitor [51],
which we had to modify to work on the Android 10-based Ocu-

Network Traffic Analysis

Privacy Policy Analysis

App Stores

Raw Data

PCAPNG

JSON

Network Traffic Collection

Oculus Quest 2

App
Frida
Agent

AntMonitor

PC

Unity & Unreal
Libraries

Frida Client

Oculus/Facebook,
Unity, Unreal,
Third Parties

Privacy Policies

Data Flows
In Context

App

Data Type

Destination

Privacy Policy Analyzer

Entity Ontology

Data Ontology Collection
Statements

App

Data Type

Entity Polisis

Improved
PoliCheck

Translation

Context

Consistency

Purpose

Other

Data Flows

App

Data Type

Destination

Network
Traffic

Analysis

Data Types
Exposures

ATS
Ecosystem

2 31

4

5

6

7

Figure 1: Overview of OVRSEEN.We select the most popular apps from the official Oculus and SideQuest app stores. First, we
experiment with them and analyze their network traffic: (1) we obtain raw data in PCAPNG and JSON; (2) we extract data
flows happ, data type, destinationi; and (3) we analyze them w.r.t. data types and ATS ecosystem. Second, we analyze the same
apps’ (and their used libraries’) privacy policies: (4) we build VR-specific data and entity ontologies, informed both by network
traffic and privacy policy text; and (5) we extract collection statements happ, data type, entityi from the privacy policy. Third,
we compare the two: (6) using our improved PoliCheck, we map each data flow to a collection statement, and we perform
network-to-policy consistency analysis. Finally, (7) we translate the sentence containing the collection statement into a text
segment that Polisis can use to extract the data collection purpose. The end result is that data flows, extracted from network
traffic, are augmented with additional context, such as consistency with policy and purpose of collection.

lus OS. Furthermore, we successfully addressed new technical
challenges for decrypting network traffic on OVR. OVRSEEN
combines dynamic analysis (using Frida [42]) with binary
analysis to find and bypass certificate validation functions,
even when the app contains a stripped binary [63]. This was a
challenge specific to OVR: prior work on decrypting network
traffic on Android [35,52] hooked into standard Android SDK
functions and not the ones packaged with Unity and Unreal,
which are the basis for game apps.

We extracted and analyzed data flows found in the col-
lected network traffic from the 140 OVR apps, and we made
the following observations. We studied a broad range of 21
data types that are exposed and found that 33 and 70 apps
send PII data types (e.g., Device ID, User ID, and Android
ID) to first-and third-party destinations, respectively (see Ta-
ble 3). Notably, 58 apps expose VR sensory data (e.g., physi-
cal movement, play area) to third-parties. We used state-of-
the-art blocklists to identify ATS and discovered that, unlike
other popular platforms (e.g., Android and Smart TVs), OVR
exposes data primarily to tracking and analytics services, and
has a less diverse tracking ecosystem. Notably, the blocklists
identified only 36% of these exposures. On the other hand,
we found no data exposure to advertising services as ads on
OVR is still in an experimental phase [41].

Privacy policy: methodology and findings. We provide
an NLP-based methodology for analyzing the privacy policies

that accompany VR apps. More specifically, OVRSEEN maps
each data flow (found in the network traffic) to its correspond-
ing data collection statement (found in the text of the privacy
policy), and checks the consistency of the two. Furthermore,
it extracts the purpose of data flows from the privacy pol-
icy, as well as from the ATS analysis of destination domains.
Consistency, purpose, and additional information provide con-
text, in which we can holistically assess the appropriateness
of a data flow [38]. Our methodology builds on, combines,
and improves state-of-the-art tools originally developed for
mobile apps: PolicyLint [4], PoliCheck [5], and Polisis [19].
We curated VR-specific ontologies for data types and entities,
guided by both the network traffic and privacy policies. We
also interfaced between different NLP models of PoliCheck
and Polisis to extract the purpose behind each data flow.

Our network-to-policy consistency analysis revealed that
about 70% of data flows from VR apps were not disclosed
or consistent with their privacy policies: only 30% were con-
sistent. Furthermore, 38 apps did not have privacy policies,
including apps from the official Oculus app store. Some app
developers also had the tendency to neglect declaring data
collected by the platform and third parties. We found that by
automatically including these other parties’ privacy policies
in OVRSEEN’s network-to-policy consistency analysis, 74%
of data flows became consistent. We also found that 69%
of data flows have purposes unrelated to the core function-

ality (e.g., advertising, marketing campaigns, analytics), and
only a handful of apps are explicit about notice and consent.
OVRSEEN’s implementation and datasets are made available
at [59].

Overview. The rest of this paper is structured as follows.
Section 2 provides background on the OVR platform and its
data collection practices that motivate our work. Section 3
provides the methodology and results for OVRSEEN’s net-
work traffic analysis. Section 4 provides the methodology and
results for OVRSEEN’s policy analysis, network-to-policy
consistency analysis, and purpose extraction. Section 5 dis-
cusses the findings and provides recommendations. Section 6
discusses related work. Section 7 concludes the paper.

2 Oculus VR Platform and Apps

In this paper, we focus on the Oculus VR (OVR), a represen-
tative of state-of-the art VR platform. A pioneer and leader
in the VR space, OVR was bought by Facebook in 2014 [16]
(we refer to both as “platform-party”), and it maintains to
be the most popular VR platform today. Facebook has inte-
grated more social features and analytics to OVR and now
even requires users to sign in using a Facebook account [39].

We used the latest Oculus device, Quest 2, for testing. Quest
2 is completely wireless: it can operate standalone and run
apps, without being connected to other devices. In contrast,
e.g., Sony Playstation VR needs to be connected to a Playsta-
tion 4 as its game controller. Quest 2 runs Oculus OS, a variant
of Android 10 that has been modified and optimized to run
VR environments and apps. The device comes with a few
pre-installed apps, such as the Oculus browser. VR apps are
usually developed using two popular game engines called
Unity [62] and Unreal [15]. Unlike traditional Android apps
that run on Android JVM, these 3D app development frame-
works compile VR apps into optimized (i.e., stripped) binaries
to run on Quest 2 [63].
Oculus has an official app store and a number of third-

party app stores. The Oculus app store offers a wide range
of apps (many of them are paid), which are carefully curated
and tested (e.g., for VR motion sickness). In addition to the
Oculus app store, we focus on SideQuest—the most popular
third-party app store endorsed by Facebook [32]. In contrast
to apps from the official store, apps available on SideQuest
are typically at their early development stage and thus are
mostly free. Many of them transition from SideQuest to the
Oculus app store once they mature and become paid apps. As
of March 2021, the official Oculus app store has 267 apps
(79 free and 183 paid), and the SideQuest app store has 1,075
apps (859 free and 218 paid).

Motivation: privacy risks in OVR. VR introduces pri-
vacy risks, some of which are similar to other Internet-based
platforms (e.g., Android [12,13], IoT devices [3, 17], Smart

TVs [35, 64]), etc.), while others are unique to the VR plat-
form. For example, VR headsets and hand controllers are
equipped with sensors that collect data about the user’s physi-
cal movement, body characteristics, voice activity, hand track-
ing, eye tracking, facial expressions, and play area [25,34,36],
which may in turn reveal sensitive information about our
physique, emotions, and home. Quest 2 can also act as a fit-
ness tracker, thanks to the built-in Oculus Move app that
tracks time spent for actively moving and amount of calories
burned across all apps [40]. Furthermore, Oculus has been
continuously updating their privacy policy with a trend of
increasingly collecting more data over the years. Most no-
tably, we observed a major update in May 2018, coinciding
with the GDPR implementation date. Many apps have no pri-
vacy policy, or fail to properly include the privacy policies of
third-party libraries. Please see Appendix A in [58] for more
detail on observations that motivated our study, and Section 6
on related work. The privacy risks on the relatively new VR
platform are not yet well understood.

Goal and approach: privacy analysis of OVR. In this pa-
per, we seek to characterize the privacy risks introduced when
potentially-sensitive data available on the device are sent by
the VR apps and/or the platform to remote destinations for var-
ious purposes. We followed an experimental and data-driven
approach, and we chose to test and analyze the most popular
VR apps. In Section 3, we characterize the actual behavior
exhibited in the network traffic generated by these VR apps
and platform. In Section 4, we present how we downloaded
the privacy policies of the selected VR apps, the platform,
and relevant third-party libraries, used NLP to extract and
analyze the statements made about data collection, analyzed
their consistency when compared against the actual data flows
found in traffic, and extracted the purpose of data collection.

App corpus. We selected OVR apps that are widely used by
players. Our app corpus consists of 150 popular paid and free
apps from both the official Oculus app store and SideQuest.
In contrast, previous work typically considered only free apps
from the official app store [12,13,35,64]. We used the number
of ratings/reviews as the popularity metric, and considered
only apps that received at least 3.5 stars. We selected three
groups of 50 apps each: (1) the top-50 free apps and (2) the
top-50 paid apps from the Oculus app store, and (3) the top-50
apps from the SideQuest store. We selected an equal number
of paid and free apps from the Oculus app store to gain insight
into both groups equally. We purposely did not just pick the
top-100 apps, because paid apps tend to receive more reviews
from users and this would bias our findings towards paid apps.
Specifically, this would make our corpus consist of 90% paid
and 10% free apps.

Our app corpus is representative of both app stores. Our top-
50 free and top-50 paid Oculus apps constitute close to 40%
of all apps on the Oculus app store, whereas the total number
of downloads of our top-50 SideQuest apps is approximately

45% of all downloads for the SideQuest store. Out of these
150 apps, selected for their popularity and representativeness,
we were able to decrypt and analyze the network traffic for
140 of them for reasons explained in Section 3.2.1.

3 OVRSEEN: Network Traffic

In this section, we detail our methodology for collecting
and analyzing network traffic. In Section 3.1, we present
OVRSEEN’s system for collecting network traffic and high-
light our decryption technique. Next, in Section 3.2, we de-
scribe our network traffic dataset and the extracted data flows.
In Section 3.3, we report our findings on the OVR ATS ecosys-
tem by identifying domains that were labeled as ATS by pop-
ular blocklists. Finally, in Section 3.4, we discuss data types
exposures in the extracted data flows according to the context
based on whether their destination is an ATS or not.

3.1 Network Traffic Collection

In this section, we present OVRSEEN’s system for collecting
and decrypting the network traffic that apps generate (1 in
Fig. 1). It is important to mention that OVRSEEN does not re-
quire rooting Quest 2, and as of June 2021, there are no known
methods for doing so [21]. Since the Oculus OS is based on
Android, we enhanced AntMonitor [51] to support the Oculus
OS. Furthermore, to decrypt TLS traffic, we use Frida [42], a
dynamic instrumentation toolkit. Using Frida to bypass cer-
tificate validation specifically for Quest 2 apps presents new
technical challenges, compared to Android apps that have a
different structure. Next, we describe these challenges and
how we address them.

Traffic collection. For collecting network traffic,
OVRSEEN integrates AntMonitor [51]—a VPN-based
tool for Android that does not require root access. It runs
completely on the device without the need to re-route
traffic to a server. AntMonitor stores the collected traffic
in PCAPNG format, where each packet is annotated (in
the form of a PCAPNG comment) with the name of the
corresponding app. To decrypt TLS connections, AntMonitor
installs a user CA certificate. However, since Oculus OS
is a modified version of Android 10, and AntMonitor only
supports up to Android 7, we made multiple compatibility
changes to support Oculus OS. In addition, we enhanced
the way AntMonitor stores decrypted packets: we adjust the
sequence and ack numbers to make packet re-assembly by
common tools (e.g., tshark) feasible in post-processing.
We will submit a pull request to AntMonitor’s open-source
repository, so that other researchers can make use of it, not
only on Quest 2, but also on other newer Android devices.
For further details, see Appendix B.1 in [58].

TLS decryption. Newer Android devices, such as Quest
2, pose a challenge for TLS decryption: as of Android 7,

apps that target API level 24 (Android 7.0) and above no
longer trust user-added certificates [7]. Since Quest 2 cannot
be rooted, we cannot install AntMonitor’s certificate as a sys-
tem certificate. Thus, to circumvent the mistrust of AntMoni-
tor’s certificate, OVRSEEN uses Frida (see Fig. 1) to intercept
certificate validation APIs. To use Frida in a non-rooted envi-
ronment, we extract each app and repackage it to include and
start the Frida server when the app loads. The Frida server
then listens to commands from a Frida client that is running
on a PC using ADB. Although ADB typically requires a USB
connection, we run ADB over TCP to be able to use Quest 2
wirelessly, allowing for free-roaming testing of VR apps.

OVRSEEN uses the Frida client to load and inject our cus-
tom JavaScript code that intercepts various APIs used to ver-
ify CA certificates. In general, Android and Quest 2 apps
use three categories of libraries to validate certificates: (1)
the standard Android library, (2) the Mbed TLS library [61]
provided by the Unity SDK, and (3) the Unreal version of the
OpenSSL library [14]. OVRSEEN places Frida hooks into
the certificate validation functions provided by these three
libraries. These hooks change the return value of the inter-
cepted functions and set certain flags used to determine the
validity of a certificate to ensure that AntMonitor’s certificate
is always trusted. While bypassing certificate validation in
the standard Android library is a widely known technique [9],
bypassing validation in Unity and Unreal SDKs is not. Thus,
we developed the following technique.

Decrypting Unity and Unreal. Since most Quest 2 apps
are developed using either the Unity or the Unreal game en-
gines, they use the certificate validation functions provided
by these engines instead of the ones in the standard Android
library. Below, we present our implementation of certificate
validation bypassing for each engine.

For Unity, we discovered that the main function that
is responsible for checking the validity of certificates
is mbedtls_x509_crt_verify_with_profile() in the
Mbed TLS library, by inspecting its source code [6]. This
library is used by the Unity framework as part of its SDK.
Although Unity apps and its SDK are written in C#, the final
Unity library is a C++ binary. When a Unity app is pack-
aged for release, unused APIs and debugging symbols get
removed from the Unity library’s binary. This process makes
it difficult to hook into Unity’s functions since we cannot
locate the address of a function of interest without having
the symbol table to look up its address. Furthermore, since
the binary also gets stripped of unused functions, we can-
not rely on the debug versions of the binary to look up ad-
dresses because each app will have a different number of
APIs included. To address this challenge, OVRSEEN auto-
matically analyzes the debug versions of the non-stripped
Unity binaries (provided by the Unity engine), extracts
the function signature (i.e., a set of hexadecimal numbers)
of mbedtls_x509_crt_verify_with_profile(), and then
looks for this signature in the stripped version of the binary

App Store Apps Domains eSLDs Packets TCP Fl.

Oculus-Free 43 85 48 2,818 2,126
Oculus-Paid 49 54 35 2,278 1,883
SideQuest 48 57 40 2,679 2,260

Total 140 158 92 7,775 6,269

Table 1: Network traffic dataset summary. Note that the
same domains and eSLDs can appear across the three groups
of “App Store”, so their totals are based on unique counts.

to find its address. This address can then be used to create the
necessary Frida hook for an app. The details of this automated
binary analysis can be found in Appendix B.2 in [58].
For Unreal, we discovered that the main function that is

responsible for checking the validity of certificates is the func-
tion x509_verify_cert() in the OpenSSL library, which
is integrated as part of the Unreal SDK. Fortunately, the
Unreal SDK binary file comes with a partial symbol table
that contains the location of x509_verify_cert(), and thus,
OVRSEEN can set a Frida hook for it.

3.2 Network Traffic Dataset

3.2.1 Raw Network Traffic Data

We used OVRSEEN to collect network traffic for 1401 apps
in our corpus during the months of March and April 2021. To
exercise these 140 apps and collect their traffic, we manually
interacted with each one for seven minutes. Although there are
existing tools that automate the exploration of regular (non-
gaming) mobile apps (e.g., [28]), automatic interaction with
a variety of games is an open research problem. Fortunately,
manual testing allows us to customize app exploration and
split our testing time between exploring menus within the app
to cover more of the potential behavior, and actually playing
the game, which better captures the typical usage by a human
user. As shown by prior work, such testing criteria lead to
more diverse network traffic and reveal more privacy-related
data flows [22, 47, 64]. Although our methodology might not
be exhaustive, it is inline with prior work [35, 64].

Table 1 presents the summary of our network traffic dataset.
We discovered 158 domains and 92 eSLDs in 6,269 TCP flows
that contain 7,775 packets. Among the 140 apps, 96 were
developed using the Unity framework, 31 were developed
using the Unreal framework, and 13 were developed using
other frameworks.

1The remaining 10 apps were excluded for the following reasons: (1) six
apps could not be repackaged; (2) two apps were browser apps, which would
open up the web ecosystem, diverting our focus from VR; (3) one app was
no longer found on the store—we created our lists of top apps one month
ahead of our experiments; and (4) one app could not start on the Quest 2 even
without any of our modifications.

3.2.2 Network Data Flows Extracted

We processed the raw network traffic dataset and identified
1,135 data flows: happ, data type, destinationi. Next, we de-
scribe our methodology for extracting that information.

App names. For each network packet, the app name
is obtained by AntMonitor [51]. This feature required
a modification to work on Android 10, as described in
Appendix B.1 in [58].

Data types. The data types we extracted from our network
traffic dataset are listed in Table 3 and can be categorized into
roughly three groups. First, we find personally identifiable in-
formation (PII), including: user identifiers (e.g.,Name, Email,
and User ID), device identifiers (Android ID, Device ID, and
Serial Number), Geolocation, etc. Second, we found system
parameters and settings, whose combinations are known to
be used by trackers to create unique profiles of users [35, 37],
i.e., Fingerprints. Examples include various version informa-
tion (e.g., Build and SDK Versions), Flags (e.g., indicating
whether the device is rooted or not), Hardware Info (e.g., De-
vice Model, CPU Vendor, etc.), Usage Time, etc. Finally, we
also find data types that are unique to VR devices (e.g., VR
Movement and VR Field of View) and group them as VR Sen-
sory Data. These can be used to uniquely identify a user or
convey sensitive information—the VR Play Area, for instance,
can represent the actual area of the user’s household.
We use several approaches to find these data types in

HTTP headers and bodies, and also in any raw TCP seg-
ments that contain ASCII characters. First, we use string
matching to search for data that is static by nature. For exam-
ple, we search for user profile data (e.g., User Name, Email,
etc.) using our test OVR account and for any device iden-
tifiers (e.g., Serial Number, Device ID, etc.) that can be re-
trieved by browsing the Quest 2 settings. In addition, we
search for their MD5 and SHA1 hashes. Second, we utilize
regular expressions to capture more dynamic data types. For
example, we can capture different Unity SDK versions using
UnityPlayer/[\d.]+\d. Finally, for cases where a packet
contains structured data (e.g., URL query parameters, HTTP
Headers, JSON in HTTP body, etc.), we split the packet into
key-value pairs and create a list of unique keys that appear
in our entire network traffic dataset. We then examine this
list to discover keys that can be used to further enhance our
search for data types. For instance, we identified that the
keys “user_id” and “x–playeruid” can be used to find User
IDs. Appendix C.1 in [58] provides more details on our data
types.

Destinations. To extract the destination fully qualified do-
main name (FQDN), we use the HTTP Host field and the TLS
SNI (for cases where we could not decrypt the traffic). Using
tldextract, we also identify the effective second-level domain
(eSLD) and use it to determine the high level organization
that owns it via Crunchbase. We also adopt similar labeling

(a) (b)

Figure 2: Top-10 platform and third-party (a) eSLDs and (b) ATS FQDNs. They are ordered by the number of apps that
contact them. Each app may have a few first-party domains: we found that 46 out of 140 (33%) apps contact their own eSLDs.

methodologies from [64] and [5] to categorize each destina-
tion as either first-, platform-, or third-party. To perform the
categorization, we also make use of collected privacy poli-
cies (see Fig. 1 and Section 4), as described next. First, we
tokenize the domain and the app’s package name. We label a
domain as first-party if the domain’s tokens either appear in
the app’s privacy policy URL or match the package name’s
tokens. If the domain is part of cloud-based services (e.g.,
vrapp.amazonaws.com), we only consider the tokens in the
subdomain (vrapp). Second, we categorize the destination as
platform-party if the domain contains the keywords “oculus”
or “facebook”. Finally, we default to the third-party label.
This means that the data collection is performed by an entity
that is not associated with app developers nor the platform,
and the developer may not have control of the data being
collected. The next section presents further analysis of the
destination domains.

3.3 OVR Advertising & Tracking Ecosystem

In this section, we explore the destination domains found in
our network traffic dataset (see Section 3.2.2). Fig. 2a presents
the top-10 eSLDs for platform and third-party. We found that,
unlike the mobile ecosystem, the presence of third-parties
is minimal and platform traffic dominates in all apps (e.g.,
oculus.com, f acebook.com). The most prominent third-party
organization is Unity (e.g., unity3d.com), which appears in
68 out of 140 apps (49%). This is expected since 96 apps in
our dataset were developed using the Unity engine (see Sec-
tion 3.2.1). Conversely, although 31 apps in our dataset were
developed using the Unreal engine, it does not appear as a ma-
jor third-party data collector because Unreal does not provide
its own analytics service. Beyond Unity, other small players
include Alphabet (e.g., google.com, cloudfunctions.net) and
Amazon (e.g., amazonaws.com). In addition, 87 out of 140
apps contact four or fewer third-party eSLDs (62%).

Identifying ATS domains. To identify ATS domains, we
apply the following popular domain-based blocklists: (1) Pi-

Hole’s Default List [43], a list that blocks cross-platform ATS
domains for IoT devices; (2) Mother of All Adblocking [8],
a list that blocks both ads and tracking domains for mobile
devices; and (3) Disconnect Me [10], a list that blocks track-
ing domains. For the rest of the paper, we will refer to the
above lists simply as “blocklists”. We note that there are no
blocklists that are curated for VR platforms. Thus, we choose
blocklists that balance between IoT and mobile devices, and
one that specializes in tracking.

OVR ATS ecosystem. The majority of identified ATS do-
mains relate to social and analytics-based purposes. Fig. 2b
provides the top-10 ATS FQDNs that are labeled by our block-
lists. We found that the prevalent platform-related FQDNs
along with Unity, the prominent third party, are labeled as
ATS. This is expected: domains such as graph.oculus.com
and perf-events.cloud.unity3d.com are utilized for social
features like managing leaderboards and app analytics,
respectively. We also consider the presence of organiza-
tions based on the number of unique domains contacted.
The most popular organization is Alphabet, which has
13 domains, such as google-analytics.com and firebase-
settings.crashlytics.com. Four domains are associated with
Facebook, such as graph.facebook.com. Similarly, four are
from Unity, such as userreporting.cloud.unity3d.com and
config.uca.cloud.unity3d.com. Other domains are associated
with analytics companies that focus on tracking how users
interact with apps (e.g., whether they sign up for an ac-
count) such as logs-01.loggly.com, api.mixpanel.com, and
api2.amplitude.com. Lastly, we provide an in-depth compari-
son to other ecosystems in Section 5.1.

Missed by blocklists. The three blocklists that we use in
OVRSEEN are not tailored for the Oculus platform. As a
result, there could be domains that are ATS related but not
labeled as such. To that end, we explored and leveraged data
flows to find potential domains that are missed by blocklists.
In particular, we start from data types exposed in our network
traffic, and identify the destinations where these data types
are sent to. Table 2 summarizes third-party destinations that

FQDN Organization Data Types

bdb51.playfabapi.com Microsoft 11

sharedprod.braincloudservers.com bitHeads Inc. 8

cloud.liveswitch.io Frozen Mountain
Software

7

datarouter.ol.epicgames.com Epic Games 6

9e0j15elj5.execute-api.us-west-
1.amazonaws.com

Amazon 5

Table 2: Top-5 third-party FQDNs that are missed by block-
lists based on the number of data types exposed.

collect the most data types and are not already captured by
any of the blocklists. We found the presence of 11 different
organizations, not caught by blocklists, including: Microsoft,
bitHeads Inc., and Epic Games—the company that created
the Unreal engine. The majority are cloud-based services that
provide social features, such as messaging, and the ability to
track users for engagement and monetization (e.g., promotions
to different segments of users). We provide additional FQDNs
missed by blocklists in Appendix C.2 in [58].

3.4 Data Flows in Context

The exposure of a particular data type, on its own, does not
convey much information: it may be appropriate or inappropri-
ate depending on the context [38]. For example, geolocation
sent to the GoogleEarth VR or Wander VR app is necessary
for the functionality, while geolocation used for ATS purposes
is less appropriate. The network traffic can be used to partly
infer the purpose of data flows, e.g., depending on whether
the destination being first-, third-, or platform-party; or an
ATS. Table 3 lists all data types found in our network traffic,
extracted using the methods explained in Section 3.2.2.

Third party. Half of the apps (70 out of 140) expose data
flows to third-party FQDNs, 36% of which are labeled as
ATS by blocklists. Third parties collect a number of PII data
types, including Device ID (64 apps), User ID (65 apps), and
Android ID (31 apps), indicating cross-app tracking. In addi-
tion, third parties collect system, hardware, and version info
from over 60 apps—denoting the possibility that the data
types are utilized to fingerprint users. Further, all VR specific
data types, with the exception of VR Movement, are collected
by a single third-party ATS domain belonging to Unity. VR
Movement is collected by a diverse set of third-party desti-
nations, such as google-analytics.com, playfabapi.com and
logs-01.loggly.com, implying that trackers are becoming in-
terested in collecting VR analytics.

Platform party. Our findings on exposures to platform-
party domains are a lower bound since not all platform traffic
could be decrypted (see Section 7). However, even with lim-
ited decryption, we see a number of exposures whose destina-
tions are five third-party FQDNs. Although only one of these

Data Types (21) Apps FQDNs % Blocked

PII 1st 3rd Pl. 1st 3rd Pl. 1st 3rd Pl.

Device ID 6 64 2 6 13 1 0 38 100
User ID 5 65 0 5 13 0 20 38 -
Android ID 6 31 18 6 7 2 17 43 50
Serial Number 0 0 18 0 0 2 - - 50
Person Name 1 7 0 1 4 0 0 50 -
Email 2 5 0 2 5 0 0 20 -
Geolocation 0 5 0 0 4 0 - 50 -

Fingerprint

SDK Version 23 69 20 34 28 4 6 46 0
Hardware Info 21 65 19 25 23 3 4 39 33
System Version 16 62 19 20 21 3 5 43 33
Session Info 7 66 2 7 13 1 14 46 100
App Name 4 65 2 4 10 1 25 40 100
Build Version 0 61 0 0 3 0 - 100 -
Flags 6 53 2 6 8 1 0 50 100
Usage Time 2 59 0 2 4 0 0 50 -
Language 5 28 16 5 9 1 0 56 0
Cookies 5 4 2 5 3 1 0 33 100

VR Sensory Data

VR Play Area 0 40 0 0 1 0 - 100 -
VR Movement 1 24 2 1 6 1 0 67 100
VR Field of View 0 16 0 0 1 0 - 100 -
VR Pupillary 0 16 0 0 1 0 - 100 -
Distance

Total 33 70 22 44 39 5 5 36 20

Table 3: Data types exposed in the network traffic dataset.

Column “Apps” reports the number of apps that send the data
type to a destination; column “FQDNs” reports the number of
FQDNs that receive that data type; and column “% Blocked”
reports the percentage of FQDNs blocked by blocklists. Using
sub-columns, we denote party categories: first (1st), third (3rd),
and platform (Pl.) parties.

FQDNs is labeled as ATS by the blocklists, other platform-
party FQDNs could be ATS domains that are missed by block-
lists (see Section 3.3). For example, graph.facebook.com is an
ATS FQDN, and graph.oculus.com appears to be its counter-
part for OVR; it collects six different data types in our dataset.
Notably, the platform party is the sole party responsible for
collecting a sensitive hardware ID that cannot be reset by the
user—the Serial Number. In contrast to OVR, the Android
developer guide strongly discourages its use [18].

First party. Only 33 apps expose data flows to first-party
FQDNs, and only 5% of them are labeled as ATS. Interest-
ingly, the blocklists tend to have higher block rates for first-
party FQDNs if they collect certain data types, e.g., Android
ID (17%), User ID (20%), and App Name (25%). Popular
data types collected by first-party destinations are Hardware
Info (21 apps), SDK Version (23 apps), and System Version
(16 apps). For developers, this information can be used to
prioritize bug fixes or improvements that would impact the
most users. Thus, it makes sense that only ~5% of first-party
FQDNs that collect this information are labeled as ATS.

Summary. The OVR ATS ecosystem is young when com-
pared to Android and Smart TVs. It is dominated by tracking
domains for social features and analytics, but not by ads. We
have detailed 21 different data types that OVR sends to first-,
third-, and platform-parties. State-of-the-art blocklists only
captured 36% of exposures to third parties, missing some
sensitive exposures such as Email, User ID, and Device ID.

4 OVRSEEN: Privacy Policy Analysis

In this section, we turn our attention to the intended data
collection and sharing practices, as stated in the text privacy
policy. For example, from the text ”We may collect your email
address and share it for advertising purposes”, we want to ex-
tract the collection statement (“we”, which implies the app’s
first-party entity; “collect” as action; and “email address” as
data type) and the purpose (“advertising”). In Section 4.1.1,
we present our methodology for extracting data collection
statements, and comparing them against data flows found in
network traffic for consistency. OVRSEEN builds and im-
proves on state-of-the-art NLP-based tools: PoliCheck [5]
and PolicyLint [4], previously developed for mobile apps.
In Section 4.1.2, we present our VR-specific ontologies for
data types and entities. In Section 4.1.3, we report network-
to-policy consistency results. Section 4.2 describes how we
interface between the different NLP models of PoliCheck and
Polisis to extract the data collection purpose and other context
for each data flow.

Collecting privacy policies. For each app in Section 3, we
also collected its privacy policy on the same day that we
collected its network traffic. Specifically, we used an auto-
mated Selenium [56] script to crawl the webstore and ex-
tracted URLs of privacy policies. For apps without a policy
listed, we followed the link to the developer’s website to find
a privacy policy. We also included eight third-party policies
(e.g., from Unity, Google), referred to by the apps’ policies.

For the top-50 free apps on the Oculus store, we found that
only 34 out of the 43 apps have privacy policies. Surprisingly,
for the top-50 paid apps, we found that only 39 out of 49
apps have privacy policies. For the top-50 apps on SideQuest,
we found that only 29 out of 48 apps have privacy policies.
Overall, among apps in our corpus, we found that only 102
(out of 140) apps provide valid English privacy policies. We
treated the remaining apps as having empty privacy policies,
ultimately leading OVRSEEN to classify their data flows as
omitted disclosures.

4.1 Network-to-Policy Consistency

Our goal is to analyze text in the app’s privacy policy, extract
statements about data collection (and sharing), and compare
them against the actual data flows found in network traffic.

4.1.1 Consistency Analysis System

OVRSEEN builds on state-of-the-art tools: PolicyLint [4] and
PoliCheck [5]. PolicyLint [4] provides an NLP pipeline that
takes a sentence as input. For example, it takes the sentence
“We may collect your email address and share it for advertising
purposes”, and extracts the collection statement “(entity: we,
action: collect, data type: email address)”. More generally,
PolicyLint takes the app’s privacy policy text, parses sentences
and performs standard NLP processing, and eventually ex-
tracts data collection statements defined as the tuple P=happ,
data type, entityi, where app is the sender and entity is the
recipient performing an action (collect or not collect) on the
data type. PoliCheck [5] takes the app’s data flows (extracted
from the network traffic and defined as F =hdata type, entityi)
and compares it against the stated P for consistency.

PoliCheck classifies the disclosure of F as clear (if the data
flow exactly matches a collection statement), vague (if the
data flow matches a collection statement in broader terms),
omitted (if there is no collection statement corresponding to
the data flow), ambiguous (if there are contradicting collection
statements about a data flow), or incorrect (if there is a data
flow for which the collection statement states otherwise). Fol-
lowing PoliCheck’s terminology [5], we further group these
five types of disclosures into two groups: consistent (clear and
vague disclosures) and inconsistent (omitted, ambiguous, and
incorrect) disclosures. The idea is that for consistent disclo-
sures, there is a statement in the policy that matches the data
type and entity, either clearly or vaguely. Table 4 provides
real examples of data collection disclosures extracted from
VR apps that we analyzed.

Consistency analysis relies on pre-built ontologies and syn-
onym lists used to match (i) the data type and destination
that appear in each F with (ii) any instance of P that dis-
closes the same (or a broader) data type and destination2.
OVRSEEN’s adaptation of ontologies specifically for VR is
described in Section 4.1.2. We also improved several aspects
of PoliCheck, as described in detail in Appendix D.1 in [58].
First, we added a feature to include a third-party privacy policy
for analysis if it is mentioned in the app’s policy. We found
that 30% (31/102) of our apps’ privacy policies reference
third-party privacy policies, and the original PoliCheck would
mislabel third-party data flows from these apps as omitted.
Second, we added a feature to more accurately resolve first-
party entity names. Previously, only first-person pronouns
(e.g., “we”) were used to indicate a first-party reference, while
some privacy policies use company and app names in first-
party references. The original PoliCheck would incorrectly

2For example (see Fig. 3a), “email address” is a special case of “contact
info” and, eventually, of “pii”. There is a clear disclosure w.r.t. data type if
the “email address” is found in a data flow and a collection statement. A
vague disclosure is declared if the “email address” is found in a data flow
and a collection statement that uses the term “pii” in the privacy policy. An
omitted disclosure means that “email address” is found in a data flow, but
there is no mention of it (or any of its broader terms) in the privacy policy.

Disclosure Type Privacy Policy Text Action : Data Collection Statement (P) Data Flow (F)

C
o
n
s
is
te
n
t Clear “For example, we collect information ..., and a

timestamp for the request.”
collect : hcom.cvr.terminus, usage time, wei husage time, wei

Vague “We will share your information (in some cases collect : hcom.HomeNetGames.WW1oculus, hserial number, oculusi
personal information) with third-parties, ...” pii, third partyi handroid id, oculusi

Omitted - collect : hcom.kluge.SynthRiders, -, -i hsystem version, oculusi
hsdk version, oculusi
hhardware information, oculusi

I
n
c
o
n
s
is
te
n
t Ambiguous “..., Skydance will not disclose any Personally collect : hcom.SDI.TWD, pii, third partyi hserial number, oculusi

Identifiable Information to third parties ... handroid id, oculusi
your Personally Identifiable Information will be
disclosed to such third parties and ...”

Incorrect “We do not share our customer’s personal in- not_collect : hcom.downpourinteractive. hdevice id, unityi
formation with unaffiliated third parties ...” onward, pii, third partyi huser id, oculusi

Table 4: Examples to illustrate the types of disclosures identified by PoliCheck. A data collection statement (P) is extracted
from the privacy policy text and is defined as the tuple P=happ, data type, entityi. A data flow (F) is extracted from the network
traffic and is defined as F =hdata type, entityi. During the consistency analysis, each P can be mapped to zero, one, or more F .

recognize these first-party references as third-party entities
for 16% (16/102) of our apps’ privacy policies.

4.1.2 Building Ontologies for VR

Ontologies are used to represent subsumptive relationships
between terms: a link from term A to term B indicates that A is
a broader term (hypernym) that subsumes B. There are two on-
tologies, namely data and entity ontologies: the data ontology
maps data types and entity ontology maps destination entities.
Since PoliCheck was originally designed for Android mobile
app’s privacy policies, it is important to adapt the ontologies
to include data types and destinations specific to VR’s privacy
policies and actual data flows.

VR data ontology. Fig. 3a shows the data ontology we de-
veloped for VR apps. Leaf nodes correspond to all 21 data
types found in the network traffic and listed in Table 3. Non-
leaf nodes are broader terms extracted from privacy policies
and may subsume more specific data types, e.g., “device iden-
tifier” is a non-leaf node that subsumes “android id”. We built
a VR data ontology, starting from the original Android data
ontology, in a few steps as follows. First, we cleaned up the
original data ontology by removing data types that do not
exist on OVR (e.g., “IMEI”, “SIM serial number”, etc.). We
also merged similar terms (e.g., “account information” and
“registration information”) to make the structure clearer. Next,
we used PoliCheck to parse privacy policies from VR apps.
When PoliCheck parses the sentences in a privacy policy, it
extracts terms and tries to match them with the nodes in the
data ontology and the synonym list. If PoliCheck does not find
a match for the term, it will save it in a log file. We inspected
each term from this log file, and added it either as a new node
in the data ontology or as a synonym to an existing term in
the synonym list. Finally, we added new terms for data types
identified in network traffic (see Section 3.4) as leaf nodes in
the ontology. Most notably, we added VR-specific data types
(see VR Sensory Data category shown in Table 3): “biomet-

ric info” and “environment info”. The term “biometric info”
includes physical characteristics of human body (e.g., height,
weight, voice, etc.); we found some VR apps that collect
user’s “pupillary distance” information. The term “environ-
ment information” includes VR-specific sensory information
that describes the physical environment; we found some VR
apps that collect user’s “play area” and “movement”. Table 5
shows the summary of the new VR data ontology. It consists
of 63 nodes: 39 nodes are new in OVRSEEN’s data ontology.
Overall, the original Android data ontology was used to track
12 data types (i.e., 12 leaf nodes) [5], whereas our VR data
ontology is used to track 21 data types (i.e., 21 leaf nodes)
appearing in the network traffic (see Table 3 and Fig. 3a).

VR entity ontology. Entities are names of companies and
other organizations which refer to destinations. We use a list
of domain-to-entity mappings to determine which entity each
domain belongs to (see Appendix D.1 in [58])—domain ex-
traction and categorization as either first-, third-, or platform-
party are described in detail in Section 3.2.2. We modified
the Android entity ontology to adapt it to VR as follows: (1)
we pruned entities that were not found in privacy policies of
VR apps or in our network traffic dataset, and (2) we added
new entities found in both sources. Table 5 summarizes the
new entity ontology. It consists of 64 nodes: 21 nodes are new
in OVRSEEN’s entity ontology. Fig. 3b shows our VR entity
ontology, in which we added two new non-leaf nodes: “plat-
form provider” (which includes online distribution platforms
or app stores that support the distribution of VR apps) and
“api” (which refers to various third-party APIs and services
that do not belong to existing entities). We identified 16 new
entities that were not included in the original entity ontology.
We visited the websites of those new entities and found that:
three are platform providers, four are analytic providers, and
12 are service providers; these become the leaf nodes of “api”.
We also added a new leaf node called “others” to cover a few
data flows, whose destinations cannot be determined from the
IP address or domain name.

(a) Data Ontology (b) Entity Ontology
Figure 3: Ontologies for VR data flows. Please recall that each data flow, F, is defined as F =hdata type, entityi. We started
from the PoliCheck ontologies, originally developed for Android (printed in gray). First, we eliminated nodes that did not appear
in our VR network traffic and privacy policies. Then, we added new leaf nodes (printed in black) based on new data types found
in the VR network traffic and/or privacy policies text. Finally, we defined additional non-leaf nodes, such as “biometric info” and
”api”, in the resulting VR data and entity ontologies.

Platform Data Ontology Entity Ontology

Android [5] 38 nodes 209 nodes
OVR (OVRSEEN) 63 nodes 64 nodes

New nodes in OVR 39 nodes 21 nodes

Table 5: Comparison of PoliCheck and OVRSEEN Ontologies.
Nodes include leaf nodes (21 data types and 16 entities) and
non-leaf nodes (see Fig. 3).

Summary. Building VR ontologies has been non-trivial.
We had to examine a list of more than 500 new terms and
phrases that were not part of the original ontologies. Next, we
had to decide whether to add a term into the ontology as a new
node, or as a synonym to an existing node. In the meantime,
we had to remove certain nodes irrelevant to VR and merge
others because the original Android ontologies were partially
machine-generated and not carefully curated.

4.1.3 Network-to-Policy Consistency Results

We ran OVRSEEN’s privacy policy analyzer to perform
network-to-policy consistency analysis. Please recall that we
extracted 1,135 data flows from 140 apps (see Section 3.2.2).

OVR data flow consistency. In total, 68% (776/1,135) data
flows are classified as inconsistent disclosures. The large ma-
jority of them 97% (752/776) are omitted disclosures, which
are not declared at all in the apps’ respective privacy policies.

Fig. 4 presents the data-flow-to-policy consistency analysis
results. Out of 93 apps which expose data types, 82 apps have
at least one inconsistent data flows. Among the remaining
32% (359/1,135) consistent data flows, 86% (309/359) are
classified as vague disclosures. They are declared in vague
terms in the privacy policies (e.g., the app’s data flows contain
the data type “email address”, whereas its privacy policy only
declares that the app collects “personal information”). Clear
disclosures are found in only 16 apps.

Data type consistency. Fig. 5a reports network-to-policy
consistency analysis results by data types—recall that in Sec-
tion 3.2.2 we introduced all the exposed data types into three
categories: PII, Fingerprint, and VR Sensory Data. The PII
category contributes to 22% (250/1,135) of all data flows.
Among the three categories, PII has the best consistency: 57%
(142/250) data flows in this category are classified as consis-
tent disclosures. These data types are well understood and also
treated as PII in other platforms. On Android [5], it is reported
that 59% of PII flows were consistent—this is similar to our
observation on OVR. The Fingerprint category constitutes
69% (784/1,135) of all data flows: around 25% (199/784) of
data flows in this category are classified as consistent disclo-
sures. The VR Sensory Data category constitutes around 9%
(101/1,135) of all data flows—this category is unique to the
VR platform. Only 18% (18/101) data flows of this category
are consistent—this indicates that the collection of data types
in this category is not properly disclosed in privacy policies.

Figure 4: Summary of network-to-policy consistency analysis results. Columns whose labels are in parentheses provide
aggregate values: e.g., column “(platform)” aggregates the columns “oculus” and “facebook”; column “(other 3rd parties)”
aggregates the subsequent columns. The numbers count data flows; each data flow is defined as happ, data type, destinationi).

Entity consistency. Fig. 5b reports our network-to-policy
consistency results, by entities. Only 29% (298/1,022) of third-
party and platform data flows are classified as consistent dis-
closures. First-party data flows constitute 10% (113/1,135) of
all data flows: 54% (61/113) of these first-party data flows are
classified as consistent disclosures. Thus, 69% (785/1,135) of
all data flows are classified as inconsistent disclosures. Third-
party and platform data flows constitute 90% (1,022/1,135) of
all data flows—surprisingly, only 29% (298/1,022) of these
third-party and platform data flows are classified as consistent
disclosures.
Unity is the most popular third-party entity, with 66%

(746/1,135) of all data flows. Only 31% (232/746) of these
Unity data flows are classified as consistent, while the ma-
jority (69%) are classified as inconsistent disclosures. Plat-
form (i.e., Oculus and Facebook) data flows account for 11%
(122/1,135) of all data flows; only 28% (34/122) of them are
classified as consistent disclosures. Other less prevalent enti-
ties account only around 14% (154/1,135) of all data flows.

Referencing Oculus and Unity privacy policies. Privacy
policies can link to each other. For instance, when using Quest
2, users should be expected to consent to the Oculus privacy
policy (for OVR). Likewise, when app developers utilize a
third party engine (e.g., Unity) their privacy policies should
include the Unity privacy policy. To the best of our knowledge,
this aspect has not been considered in prior work [5, 27, 69].
Interestingly, when we included the Oculus and Unity

privacy policies (when applicable) in addition to the app’s
own privacy policy, we found that the majority of platform
(116/122 or 96%) and Unity (725/746 or 97%) data flows get
classified as consistent disclosures. Thus, 74% (841/1,135) of
all data flows get classified as consistent disclosures. Fig. 6
shows the comparison of the results from this new experiment
with the previous results shown in Fig. 5b. These show that
data flows are properly disclosed in Unity and Oculus privacy
policies even though the app developers’ privacy policies
usually do not refer to these two important privacy policies.
Furthermore, we noticed that the Oculus and Unity privacy
policies are well-written and clearly disclose collected data
types. As discussed in [5], developers may be unaware of their
responsibility to disclose third-party data collections, or they
may not know exactly how third-party SDKs in their apps
collect data from users. This is a recommendation for future
improvement.

Validation of PoliCheck results (network-to-policy consis-

tency). To test the correctness of PoliCheck when applied
to VR apps, we manually inspected all data flows from apps
that provided a privacy policy, and checked their consistency
with corresponding collection statements in the policy. Three
authors had to agree on the consistency result (one of the five
disclosure types) of each data flow. We found the following.
First, we considered multi-class classification into consis-

tent, omitted and incorrect disclosures, similar to PoliCheck’s
evaluation [5]. The performance of multi-class classification

(a)

(b)

Figure 5: Network-to-policy consistency analysis results ag-
gregated by (a) data types, and (b) destination entities.

can be assessed using micro-averaging or macro-averaging
of metrics across classes. Micro-averaging is more appro-
priate for imbalanced datasets and was also used for consis-
tency analysis of Android apps [5] and Alexa skills [27]. In
our VR dataset, we obtained 84% micro-averaged precision,
recall and F1-score3. This is comparable to the correspond-
ing numbers when applying PoliCheck to mobile [5] and
Alexa Skills [27], which reported 90.8% and 83.3% (micro-
averaged) precision/recall/F1-score, respectively. For com-
pleteness, we also computed the macro-averaged precision,
recall and F1-score to be 74%, 89%, and 81% respectively
(see Table 8 in [58]).

Second, we considered the binary classification case (i.e.,
we treat inconsistent disclosures as positive and consistent
disclosures as negative samples). We obtained 77% precision,
94% recall, and 85% F1-score (see Appendix D.2 in [58] for
more details). Overall, PoliCheck, along with our improve-
ments for OVRSEEN, works well on VR apps4.

3In multi-class classification, every misclassification is a false positive
for one class and a false negative for other classes; thus, micro-averaged
precision, recall, and F1-score are all the same (see Appendix D.2 in [58]).

4However, the precision is lower when distinguishing between clear and

Figure 6: Referencing Oculus and Unity privacy policies.

Comparing the results from the ideal case (including Unity
and Oculus privacy policies by default) and the previous ac-
tual results (only including the app’s privacy policy and any
third-party privacy policies linked explicitly therein).

4.2 Data Collection in Context

Consistent (i.e., clear, or even vague) disclosures are desirable
because they notify the user about the VR apps’ data collec-
tion and sharing practices. However, they are not sufficient to
determine whether the information flow is within its context
or social norms. This context includes (but is not limited to)
the purpose and use, notice and consent, whether it is legally
required, and other aspects of the “transmission principle” in
the terminology of contextual integrity [38]. In the previous
section, we have discussed the consistency of the network
traffic w.r.t. the privacy policy statements: this provides some
context. In this section, we identify an additional context: we
focus on the purpose of data collection.

Purpose. We extract purpose from the app’s privacy policy
using Polisis [19]—an online privacy policy analysis service
based on deep learning. Polisis annotates privacy policy texts
with purposes at text-segment level. We developed a transla-
tion layer to map annotated purposes from Polisis into consis-
tent data flows (see Appendix D.3 in [58]). This mapping is
possible only for data flows with consistent disclosures, since
we need the policy to extract the purpose of a data flow. We
were able to process 293 (out of 359) consistent data flows5
that correspond to 141 text segments annotated by Polisis.
Out of the 293 data flows, 69 correspond to text segments an-
notated as “unspecific”, i.e., Polisis extracted no purpose. The
remaining 224 data flows correspond to text segments anno-
tated with purposes. Since a data flow can be associated with
multiple purposes, we expanded the 224 into 370 data flows,
so that each data flow has exactly one purpose. There are nine
distinct purposes identified by Polisis (including advertising,
analytics, personalization, legal, etc.; see Fig. 7).

vague disclosures. Our validation shows 23% vague disclosures were actu-
ally clearly disclosed. This is because OVRSEEN’s privacy policy analyzer
inherits the limitations of PoliCheck’s NLP model which cannot extract data
types and entities from a collection statement that spans multiple sentences..

5Polisis did not process the text segments that correspond to the remaining
66 consistent data flows: it did not annotate the text segments and simply
reported that their texts were too short to analyze.

unity 255

Oculus 251

SideQuest 119

advertising 119

analytics 70

merger 64

user id 51

session info 45

usage time 44

1st party 43
additional feature 38

sdk version 29

language 27

android id 27
device id 27

marketing 27

hardware info 20

loggly 20
system version 19

oculus 19
basic feature 17playfab 15

security 14
personalization 12

flags 11
app name 11
build version 11
email address 10
serial number 9

legal 9
vr movement 7
vr play area 7
person name 6

others 5

cookie 4

epic 4

vr field of view 3

facebook 3

vr pupillary distance 2

avatar sdk 2
google 2

gamesparks 1
firefox 1

Destination (Entity)

App
Purpose

Data Type

Figure 7: Data flows in context. We consider the data flows (happ, data type, destinationi) found in the network traffic, and,
in particular, the 370 data flows associated with consistent disclosures. We analyze these in conjunction with their purpose
as extracted from the privacy policy text and depict the augmented tuples happ, data type, destination, purpose i in the above
alluvial diagram. The diagram is read from left to right, for example: (1) out of 251 data flows from the Oculus app store, no
more than 51 data flows collect User ID and send it to various destinations; (2) the majority of User ID is collected by Unity; and
(3) Unity is responsible for the majority of data flows with the purpose of advertising. Finally, the color scheme of the edges helps
keep track of the flow. From App to Data Type, the color indicates the app store: blue for Oculus apps and gray for SideQuest
apps. From Data Type to Destination, the color indicates the type of data collected: PII and VR Sensory Data data flows are in
orange, while Fingerprinting data flows are in green. From Destination to Purpose, we use blue to denote first-party destinations
and red to denote third-party destinations.

To further understand whether data collection is essential
to app functionality, we distinguish between purposes that
support core functionality (i.e., basic features, security, per-
sonalization, legal purposes, and merger) and those unrelated
to core functionality (i.e., advertising, analytics, marketing,
and additional features) [33]. Intuitively, core functionality in-
dicates services that users expect from an app, such as reading
articles from a news app ormaking a purchase with a shopping
app. We found that only 31% (116/370) of all data flows are re-
lated to core functionality, while 69% (254/370) are unrelated.
Interestingly, 81% (94/116) of core-functionality-related data
flows are associated with third-party entities, indicating that
app developers use cloud services. On the other hand, data
collection purposes unrelated to core functionality can be
used for marketing emails or cross-platform targeted adver-
tisements. This is partly also corroborated by our ATS findings
in Section 3.3: 83% (211/254) are associated with third-party
tracking entities. In OVR, data types can be collected for
tracking purposes and used for ads on other mediums (e.g.,
Facebook website) and not on the Quest 2 device itself.

Next, we looked into the data types exposed for different
purposes. The majority of data flows related to core function-
ality (56% or 65/116) expose PII data types, while Fingerprint-
ing data types appear in most (66% or 173/254) data flows
unrelated to functionality. We found that 15 data types are

collected for functionality: these are comprised of Fingerprint-
ing (41% or 48/116 data flows) and VR Sensory Data (3% or
3/116 data flows). We found that 19 data types are collected
for purposes unrelated to functionality: these are comprised
of PII (26% or 65/254 data flows) and VR Sensory Data (6%
or 16/254 data flows). Interestingly, VR Movement, VR Play
Area, and VR Field of View are mainly used for “advertising”,
while VR Movement and VR Pupillary Distance are used for
“basic features”, “security”, and “merger” purposes [19].

Validation of Polisis results (purpose extraction). In or-
der to validate the results pertaining to purpose extraction,
we read all the 141 text segments previously annotated by
Polisis. Then, we manually annotated each text segment with
one or more purposes (based on the nine distinct purposes
identified by Polisis). We had three authors look at each seg-
ment independently and then agree upon its annotation. We
then compared our annotation with the purpose output by
Polisis for the same segment. We found that this purpose ex-
traction has 80%, 79%, and 78% micro-averaged precision,
recall, and F1-score respectively6. These micro-averaged re-
sults are directly comparable to the Polisis’ results in [19]:
OVRSEEN’s purpose extraction works well on VR apps. For
completeness, we also computed the macro-averaged preci-

6Please note that this is multi-label classification. Thus, unlike multi-class
classification for PoliCheck, precision, recall, and F1-score are different.

sion, recall, and F1-score: 81%, 78%, and 78%, respectively.
Table 9 in Appendix D.3 in [58] reports the precision, recall,
and F1-score for each purpose classification, and their micro-
and macro-averages.

5 Discussion

5.1 VR-Specific Considerations

VR tracking has unique aspects and trends compared to other
ecosystems, including but not limited to the following.

VR ads. The VR advertising ecosystem is currently at its
infancy. Our analysis of destinations from the network traffic
revealed that ad-related activity was missing entirely from
OVR at the time of our experiments. Facebook recently started
testing on-device ads for Oculus in June 2021 [41]. Ads on
VR platforms will be immersive experiences instead of flat
visual images; for example, Unity uses separate virtual rooms
for ads [60]. We expect that tracking will further expand once
advertising comes into VR (e.g., to include tracking how
users interact and behave within the virtual ad space). As VR
advertising and tracking evolve, our OVRSEEN methodology,
system, and datasets will continue to enable analysis that was
not previously possible on any VR platforms.

Comparison to other ecosystems. Our analysis showed
that the major players in the OVR tracking ecosystem are
currently Facebook and Unity (see Fig. 2 and 5). The more
established ecosystems such as mobile and Smart TVs are
dominated by Alphabet [23,64]; they also have a more diverse
playing field of trackers (e.g., Amazon, Comscore Inc., and
Adobe)—spanning hundreds of tracking destinations [23, 52,
64]. OVR currently has only a few players (e.g., Facebook,
Unity, Epic, and Alphabet). OVRSEEN can be a useful tool
for continuing the study on this developing ecosystem.

Sensitive data. Compared to other devices, such as mobile,
Smart TVs and IoT, the type of data that can be collected from
a VR headset is arguably more sensitive. For example, OVR
has access to various biometric information (e.g., pupillary
distance, hand geometry, and body motion tracking data) that
can be used to identify users and even infer their health [40].
A study by Miller et al. [34] revealed the feasibility of identi-
fying users with a simple machine learning model using less
than five minutes of body motion tracking data from a VR
device. Our experiments found evidence of apps collecting
data types that are unique to VR, including biometric-related
data types (see Section 3.2.2). While the numbers we found
are small so far, with the developing VR tracking ecosystem,
it is important to have a system such as OVRSEEN to detect
the increasing collection of sensitive data over time.

Generalization. Within OVR, we only used OVRSEEN to
analyze 140 apps in our corpus. However, we believe that it
can be applied to other OVR apps, as long as they are created

according to OVR standards. Beyond OVR, the network traffic
analysis and network-to-policy consistency analysis can also
be applied to other platforms, as long as their network traffic
can be decrypted, as was the case with prior work on Android,
Smart TV, etc. [35, 45, 51, 64].

5.2 Recommendations

Based on our findings, we provide recommendations for the
OVR platform and developers to improve their data trans-
parency practices.

Provide a privacy policy. We found that 38 out of the 140
popular apps, out of which 19 are from the Oculus app store,
did not provide any privacy policy at all. Furthermore, 97%
of inconsistent data flow disclosures were due to omitted
disclosures by these 38 apps missing privacy policies (see
Section 4). We recommend that the OVR platform require de-
velopers to provide a privacy policy for their apps, especially
those available on the official Oculus app store.

Reference other parties’ privacy policies. Developers are
not the only ones collecting data during the usage of an app:
third-parties (e.g., Unity, Microsoft) and platform-party (e.g.,
Oculus/Facebook) can also collect data. We found that 81
out of 102 app privacy policies did not reference policies of
third-party libraries used by the app. We recommend that
developers reference third-party and platform-party privacy
policies. If they do that, then the consistency of disclosures
will be quite high: up to 74% of data flows in the network
traffic we collected (see Section 4.1.3). This indicates that, at
least at this early stage, the VR ecosystem is better behaved
than the mobile tracking ecosystem.

Notice and consent. We found that fewer than 10 out of
102 apps that provide a privacy policy explicitly ask users to
read it and give consent to data collection (e.g., for analytics
purposes) upon first opening the app. We recommend that de-
velopers provide notice and ask for users’ consent (e.g., when
a user launches the app for the first time) for data collection
and sharing, as required by privacy laws such as GDPR [67].

Notifying developers. We contacted Oculus as well as the
developers of the 140 apps that we tested. We provided cour-
tesy notifications of the specific data flows and consistency
we identified in their apps, along with recommendations. We
received 24 responses (see the details in Appendix E in [58]).
Developers were, in general, appreciative of the information
and willing to adopt recommendations to improve their pri-
vacy policies. Several indicated they did not have the training
or tools to ensure consistent disclosures.

6 Related Work

Privacy in Context. The framework of “Privacy in Con-
text" [38] specifies the following aspects of information flow:

(1) actors: sender, recipient, subject; (2) type of informa-
tion; and (3) transmission principle. The goal is to determine
whether the information flow is appropriate within its con-
text. The “transmission principle" is key in determining the
appropriateness of the flow and may include: the purpose of
data collection, notice and consent, required by law, etc. [38].
In this paper, we seek to provide context for the data flows
(happ, data type, destinationi) found in the network traffic.
We primarily focus on the network-to-policy consistency, pur-
pose of data collection, and we briefly comment on notice
and consent. Most prior work on network analysis only char-
acterized destinations (first vs. third parties, ATS, etc.) or data
types exposed without additional contexts. One exception is
MobiPurpose [22], which inferred data collection purposes of
mobile (not VR) apps, using network traffic and app features
(e.g., URL paths, app metadata, domain name, etc.); the au-
thors stated that “the purpose interpretation can be subjective
and ambiguous”. Our notion of purpose is explicitly stated
in the privacy policies and/or indicated by the destination
domain matching ATS blocklists. Shvartzshnaider et al. intro-
duced the contextual integrity (CI) framework to understand
and evaluate privacy policies [54]—they, however, leveraged
manual inspection and not automation.

Privacy of various platforms. The research community
has looked into privacy risks in various platforms, using static
or dynamic code analysis, and—most relevant to us—network
traffic analysis. Enck et al. performed static analysis of An-
droid apps [13] and discovered PII misuse (e.g., personal/-
phone identifiers) and ATS activity. Taintdroid, first intro-
duced taint tracking for mobile apps [12]. Ren et al. [46]
did a comprehensive evaluation of information exposure on
smart home IoT devices. Moghaddam et al. and Varmarken
et al. observed the prevalence of PII exposures and ATS ac-
tivity [35, 64] in Smart TVs. Lentzsch et al. [27] performed
a comprehensive evaluation on Alexa, a voice assistant plat-
form. Ren et al. [47], Razaghpanah et al. [45], and Shuba et
al. [51–53] developed tools for analysis of network traffic gen-
erated by mobile apps, and inspection for privacy exposures
and ATS activity. Our work is the first to perform network
traffic analysis on the emerging OVR platform, using dynamic
analysis to capture and decrypt networking traffic on the de-
vice; this is more challenging for Unity and Unreal based
apps because, unlike prior work that dealt with standard An-
droid APIs, we had to deal with stripped binary files (i.e.,
no symbol table). Augmented reality (AR) is another plat-
form the research community has been focusing on in the
past decade [1, 24, 26, 44, 48, 66]. While AR augments our
perception and interaction with the real world, VR replaces
the real world with a virtual one. Nevertheless, some AR pri-
vacy issues are similar to those in VR since they have similar
sensors, e.g., motion sensors.

Privacy of VR. Although there is work on security aspects
of VR devices (e.g., authentication and attacks on using vir-

tual keyboards) [11, 29–31], the privacy of VR is currently
not fully understood. Adams et al. [2] interviewed VR users
and developers on security and privacy concerns, and learnt
that they were concerned with data collection potentially per-
formed by VR devices (e.g., sensors, device being always
on) and that they did not trust VR manufacturers (e.g., Face-
book owning Oculus). Miller et al. present a study on the
implications of the ability of VR technology to track body
motions [34]. Our work is motivated by these concerns but
goes beyond user surveys to analyze data collection practices
exhibited in the network traffic and stated in privacy policies.

Privacy policy analysis. Privacy policy and consistency anal-
ysis in various app ecosystems [4, 5, 19, 55, 65, 68, 69] is be-
coming increasingly automated. Privee [68] is a privacy policy
analyzer that uses NLP to classify the content of a website pri-
vacy policy using a set of binary questions. Slavin et al. used
static code analysis, ontologies, and information flow analysis
to analyze privacy policies for mobile apps on Android [55].
Wang et al. applied similar techniques to check for privacy
leaks from user-entered data in GUI [65]. Zimmeck et al. also
leveraged static code analysis for privacy policy consistency
analysis [69]; they improved on previous work by attempting
to comply with legal requirements (e.g., first vs. third party,
negative policy statements, etc.). In Section 4, we leverage two
state-of-the-art tools, namely PoliCheck [5] and Polisis [19],
to perform data-flow-to-policy consistency analysis and to
extract the data collection purpose, respectively. PoliCheck
was built on top of PolicyLint [4], a privacy policy analyzer
for mobile apps. It analyzes both positive and negative data
collection (and sharing) statements, and detects contradic-
tions. Lentzsch et al. also used off-the-shelf PoliCheck using
a data ontology crafted for Alexa skills. OVRSEEN focuses
on OVR and improves on PoliCheck in several ways, includ-
ing VR-specific ontologies, referencing third-party policies,
and extracting data collection purposes.

7 Conclusion

Summary. We present the first comprehensive study of pri-
vacy aspects for Oculus VR (OVR), the most popular VR
platform. We developed OVRSEEN, a methodology and sys-
tem to characterize the data collection and sharing practices
of the OVR ecosystem by (1) capturing and analyzing data
flows found in the network traffic of 140 popular OVR apps,
and (2) providing additional contexts via privacy policy anal-
ysis that checks for consistency and identifies the purpose of
data collection. We make OVRSEEN’s implementation and
datasets publicly available at [59]. An extended version of
this paper, including appendices, can be found in [58].

Limitations and future directions. On the networking
side, we were able to decrypt, for the first time, traffic of OVR
apps, but the OVR platform itself is closed and we could not
decrypt most of its traffic. In future work, we will explore the

possibility of addressing this limitation by further exploring
binary analysis. On the privacy policy side, PoliCheck and
Polisis rely on different underlying NLP model, with inherent
limitations and incompatibilities—this motivates future work
on a unified privacy policy and context analyzer.

Acknowledgment

This project was supported by NSF Awards 1815666 and
1956393. We would like to thank our shepherd, Tara Whalen,
and the USENIX Security 2022 reviewers for their feedback,
which helped to significantly improve the paper. We would
also like to thank Yiyu Qian, for his help with part of our data
collection process.

References

[1] A. Acquisti, R. Gross, and F. D. Stutzman. Face Recog-
nition and Privacy in the Age of Augmented Reality.
Journal of Privacy and Confidentiality, 6(2):1, 2014.

[2] D. Adams, A. Bah, C. Barwulor, N. Musaby, K. Pitkin,
and E. M. Redmiles. Ethics Emerging: the Story of
Privacy and Security Perceptions in Virtual Reality. In
SOUPS, Aug. 2018.

[3] O. Alrawi, C. Lever, M. Antonakakis, and F. Monrose.
SoK: Security Evaluation of Home-Based IoT Deploy-
ments. In IEEE SP, 2019.

[4] B. Andow, S. Y. Mahmud, W. Wang, J. Whitaker,
W. Enck, B. Reaves, K. Singh, and T. Xie. PolicyLint:
Investigating Internal Privacy Policy Contradictions on
Google Play. In USENIX Security, Aug. 2019.

[5] B. Andow, S. Y. Mahmud, J. Whitaker, W. Enck,
B. Reaves, K. Singh, and S. Egelman. Actions Speak
Louder than Words: Entity-Sensitive Privacy Policy and
Data Flow Analysis with PoliCheck. In USENIX Secu-
rity, Aug. 2020.

[6] ARMmbed. mbedtls: x509_crt.c. https:

//github.com/ARMmbed/mbedtls/blob/
development/library/x509_crt.c, 2021.

[7] C. Brubaker and Android Security team. Changes to
trusted certificate authorities in android nougat. https:
//android-developers.googleblog.com/2016/
07/changes-to-trusted-certificate.html, July
2016.

[8] BSDgeek_Jake (XDADeveloper). Moaab: Mother of all
ad-blocking. https://forum.xda-developers.com/
showthread.php?t=1916098, 2019.

[9] P. Cipolloni. Universal android ssl pinning bypass with
frida. https://techblog.mediaservice.net/2017/
07/universal-android-ssl-pinning-bypass-

with-frida/, July 2017.

[10] Disconnect, Inc. disconnect-tracking-protection:
Canonical repository for the disconnect services file.
https://github.com/disconnectme/disconnect-
tracking-protection, 2021.

[11] R. Duezguen, P. Mayer, S. Das, and M. Volkamer. To-
wards Secure and Usable Authentication for Augmented
and Virtual Reality Head-Mounted Displays. arXiv
preprint arXiv:2007.11663, 2020.

[12] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Pri-
vacy Monitoring on Smartphones. In OSDI, Oct. 2010.

[13] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri.
A Study of Android Application Security. In USENIX
Security, Aug. 2011.

[14] Epic Games, Inc. Openssl (unreal version). https:

//github.com/EpicGames/UnrealEngine/tree/
master/Engine/Source/ThirdParty/OpenSSL,
2021.

[15] Epic Games, Inc. Unreal engine. https://

www.unrealengine.com/, 2021.

[16] Facebook. Facebook to acquire oculus.
https://about.fb.com/news/2014/03/facebook-
to-acquire-oculus/, March 2014.

[17] E. Fernandes, J. Jung, and A. Prakash. Security Analysis
of Emerging Smart Home Applications. In IEEE SP,
2016.

[18] Google. Android developers - best practices
for unique. https://developer.android.com/
training/articles/user-data-ids, 2021.

[19] H. Harkous, K. Fawaz, R. Lebret, F. Schaub, K. G. Shin,
and K. Aberer. Polisis: Automated Analysis and Pre-
sentation of Privacy Policies Using Deep Learning. In
USENIX Security, Aug. 2018.

[20] S. Hayden. Oculus quest 2 surpasses original quest in
monthly active users. https://www.roadtovr.com/
oculus-quest-2-monthly-active-users/, Jan-
uary 2021.

[21] D. Heaney. The oculus quest 2 ‘jailbreak’ seems to
be fake. https://uploadvr.com/oculus-quest-2-
jailbreak-seems-fake/, November 2020.

https://github.com/ARMmbed/mbedtls/blob/development/library/x509_crt.c
https://github.com/ARMmbed/mbedtls/blob/development/library/x509_crt.c
https://github.com/ARMmbed/mbedtls/blob/development/library/x509_crt.c
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://android-developers.googleblog.com/2016/07/changes-to-trusted-certificate.html
https://forum.xda-developers.com/showthread.php?t=1916098
https://forum.xda-developers.com/showthread.php?t=1916098
https://techblog.mediaservice.net/2017/07/universal-android-ssl-pinning-bypass-with-frida/
https://techblog.mediaservice.net/2017/07/universal-android-ssl-pinning-bypass-with-frida/
https://techblog.mediaservice.net/2017/07/universal-android-ssl-pinning-bypass-with-frida/
https://github.com/disconnectme/disconnect-tracking-protection
https://github.com/disconnectme/disconnect-tracking-protection
https://github.com/EpicGames/UnrealEngine/tree/master/Engine/Source/ThirdParty/OpenSSL
https://github.com/EpicGames/UnrealEngine/tree/master/Engine/Source/ThirdParty/OpenSSL
https://github.com/EpicGames/UnrealEngine/tree/master/Engine/Source/ThirdParty/OpenSSL
https://www.unrealengine.com/
https://www.unrealengine.com/
https://about.fb.com/news/2014/03/facebook-to-acquire-oculus/
https://about.fb.com/news/2014/03/facebook-to-acquire-oculus/
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://www.roadtovr.com/oculus-quest-2-monthly-active-users/
https://www.roadtovr.com/oculus-quest-2-monthly-active-users/
https://uploadvr.com/oculus-quest-2-jailbreak-seems-fake/
https://uploadvr.com/oculus-quest-2-jailbreak-seems-fake/

[22] H. Jin, M. Liu, K. Dodhia, Y. Li, G. Srivastava,
M. Fredrikson, Y. Agarwal, and J. I. Hong. Why Are
They Collecting My Data? Inferring the Purposes of
Network Traffic in Mobile Apps. In ACM IMWUT,
2018.

[23] K. Kollnig, A. Shuba, R. Binns, M. V. Kleek, and
N. Shadbolt. Are iPhones Really Better for Privacy?
Comparative Study of iOS and Android Apps. arXiv
preprint arXiv:2109.13722, 2021.

[24] A. Kotsios. Privacy in an Augmented Reality. Inter-
national Journal of Law and Information Technology,
23(2):157–185, 2015.

[25] B. Lang. Where to change quest 2 privacy set-
tings and see your vr data collected by facebook.
https://www.roadtovr.com/oculus-quest-2-
privacy-facebook-data-collection-settings/,
October 2020.

[26] K. Lebeck, K. Ruth, T. Kohno, and F. Roesner. Towards
Security and Privacy for Multi-User Augmented Reality:
Foundations with End Users. In IEEE SP, 2018.

[27] C. Lentzsch, S. J. Shah, B. Andow, M. Degeling, A. Das,
and W. Enck. Hey Alexa, is this Skill Safe?: Taking a
Closer Look at the Alexa Skill Ecosystem. In NDSS,
2021.

[28] Y. Li, Z. Yang, Y. Guo, and X. Chen. DroidBot: a
Lightweight UI-Guided Test Input Generator for An-
droid. In IEEE/ACM ICSE-C, 2017.

[29] Z. Ling, Z. Li, C. Chen, J. Luo, W. Yu, and X. Fu. I
KnowWhat You Enter on Gear VR. In IEEE CNS, 2019.

[30] S. Luo, A. Nguyen, C. Song, F. Lin, W. Xu, and Z. Yan.
OcuLock: Exploring Human Visual System for Authen-
tication in Virtual Reality Head-mounted Display. In
NDSS, 2020.

[31] F. Mathis, J. H. Williamson, K. Vaniea, and M. Khamis.
Fast and Secure Authentication in Virtual Reality us-
ing Coordinated 3D Manipulation and Pointing. ACM
ToCHI, 2021.

[32] L. Matney. The oculus quest’s unofficial app store
gets backing from oculus founder palmer luckey.
https://techcrunch.com/2020/09/23/the-
oculus-quests-unofficial-app-store-gets-

backing-from-oculus-founder-palmer-luckey/,
September 2020.

[33] E. McCallister, T. Grance, and K. Scarfone. Guide to
Protecting the Confidentiality of Personally Identifiable
Information (PII). Technical Report NIST Special Pub-
lication (SP) 800-122, 2010.

[34] M. R. Miller, F. Herrera, H. Jun, J. A. Landay, and J. N.
Bailenson. Personal Identifiability of User Tracking
Data during Observation of 360-degree VR Video. Sci-
entific Reports, 2020.

[35] H. Mohajeri Moghaddam, G. Acar, B. Burgess,
A. Mathur, D. Y. Huang, N. Feamster, E. W. Felten,
P. Mittal, and A. Narayanan. Watching You Watch: The
Tracking Ecosystem of Over-the-Top TV Streaming De-
vices. In ACM CCS, 2019.

[36] Mozilla Corporation and Individual mozilla.org
contributors. Privacy & security guide: Oculus quest
2 vr headset. https://foundation.mozilla.org/
en/privacynotincluded/oculus-quest-2-vr-

headset/, November 2020.

[37] Mozilla Corporation and Individual mozilla.org contrib-
utors. What is fingerprinting and why you should block
it. https://www.mozilla.org/en-US/firefox/
features/block-fingerprinting/, 2021.

[38] H. Nissenbaum. Privacy in Context - Technology, Policy,
and the Integrity of Social Life. 2010.

[39] Oculus. A single way to log into oculus and unlock
social features. https://www.oculus.com/blog/a-
single-way-to-log-into-oculus-and-unlock-

social-features/, August 2020.

[40] Oculus. Track your fitness in vr with oculus move.
https://support.oculus.com/move/, 2021.

[41] Oculus Blog. Testing In-Headset VR Ads.
https://www.oculus.com/blog/testing-in-
headset-vr-ads, Sep 2021.

[42] Ole André V. Ravnås. Frida - dynamic instrumentation
toolkit for developers, reverse-engineers, and security
researchers. https://frida.re/, 2021.

[43] Pi-hole. Pi-hole: Network-wide ad blocking. https:

//pi-hole.net/, 2021.

[44] P. A. Rauschnabel, J. He, and Y. K. Ro. Antecedents
to the Adoption of Augmented Reality Smart Glasses:
A Closer Look at Privacy Risks. Journal of Business
Research, 92:374–384, 2018.

[45] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez,
S. Sundaresan, M. Allman, C. Kreibich, and P. Gill.
Apps, Trackers, Privacy, and Regulators: A Global Study
of the Mobile Tracking Ecosystem. In NDSS, 2018.

[46] J. Ren, D. J. Dubois, D. Choffnes, A. M. Mandalari,
R. Kolcun, and H. Haddadi. Information Exposure From
Consumer IoT Devices: A Multidimensional, Network-
Informed Measurement Approach. In IMC, 2019.

https://www.roadtovr.com/oculus-quest-2-privacy-facebook-data-collection-settings/
https://www.roadtovr.com/oculus-quest-2-privacy-facebook-data-collection-settings/
https://techcrunch.com/2020/09/23/the-oculus-quests-unofficial-app-store-gets-backing-from-oculus-founder-palmer-luckey/
https://techcrunch.com/2020/09/23/the-oculus-quests-unofficial-app-store-gets-backing-from-oculus-founder-palmer-luckey/
https://techcrunch.com/2020/09/23/the-oculus-quests-unofficial-app-store-gets-backing-from-oculus-founder-palmer-luckey/
https://foundation.mozilla.org/en/privacynotincluded/oculus-quest-2-vr-headset/
https://foundation.mozilla.org/en/privacynotincluded/oculus-quest-2-vr-headset/
https://foundation.mozilla.org/en/privacynotincluded/oculus-quest-2-vr-headset/
https://www.mozilla.org/en-US/firefox/features/block-fingerprinting/
https://www.mozilla.org/en-US/firefox/features/block-fingerprinting/
https://www.oculus.com/blog/a-single-way-to-log-into-oculus-and-unlock-social-features/
https://www.oculus.com/blog/a-single-way-to-log-into-oculus-and-unlock-social-features/
https://www.oculus.com/blog/a-single-way-to-log-into-oculus-and-unlock-social-features/
https://support.oculus.com/move/
https://www.oculus.com/blog/testing-in-headset-vr-ads
https://www.oculus.com/blog/testing-in-headset-vr-ads
https://frida.re/
https://pi-hole.net/
https://pi-hole.net/

[47] J. Ren, A. Rao, M. Lindorfer, A. Legout, and
D. Choffnes. ReCon: Revealing and Controlling PII
Leaks in Mobile Network Traffic. In MobiSys, 2016.

[48] F. Roesner, T. Kohno, and D. Molnar. Security and Pri-
vacy for Augmented Reality Systems. CACM, 57(4):88–
96, 2014.

[49] S. Rogers. Virtual reality for good use cases: From
educating on racial bias to pain relief during childbirth.
https://www.forbes.com/sites/solrogers/2020/
03/09/virtual-reality-for-good-use-cases-

from-educating-on-racial-bias-to-pain-

relief-during-childbirth/, March 2020.

[50] P. Sarnoff. The vr in the enterprise report: How
retailers and brands are illustrating vr’s potential in
sales, employee training, and product development.
https://www.businessinsider.com/virtual-
reality-for-enterprise-sales-employee-

training-product-2018-12, December 2018.

[51] A. Shuba, A. Le, E. Alimpertis, M. Gjoka, and
A. Markopoulou. AntMonitor: A System for On-Device
Mobile Network Monitoring and its Applications. arXiv
preprint arXiv:1611.04268, 2016.

[52] A. Shuba and A. Markopoulou. NoMoATS: Towards
Automatic Detection of Mobile Tracking. In PETS,
2020.

[53] A. Shuba, A. Markopoulou, and Z. Shafiq. NoMoAds:
Effective and Efficient Cross-App Mobile Ad-Blocking.
In PETS, 2018.

[54] Y. Shvartzshnaider, N. Apthorpe, N. Feamster, and
H. Nissenbaum. Going Against the (Appropriate) Flow:
a Contextual Integrity Approach to Privacy Policy Anal-
ysis. In HCOMP, 2019.

[55] R. Slavin, X. Wang, M. B. Hosseini, J. Hester, R. Kr-
ishnan, J. Bhatia, T. D. Breaux, and J. Niu. Toward a
Framework for Detecting Privacy Policy Violations in
Android Application Code. In ACM/IEEE ICSE, 2016.

[56] Software Freedom Conservancy. Seleniumhq browser
automation. https://www.selenium.dev/, 2021.

[57] Spatial Systems, Inc. Spatial: Virtual spaces that bring
us together. https://spatial.io/, 2021.

[58] R. Trimananda, H. Le, H. Cui, J. T. Ho, A. Shuba, and
A. Markopoulou. OVRseen: Auditing Network Traf-
fic and Privacy Policies in Oculus VR. arXiv preprint
arXiv:2106.05407, 2021.

[59] UCI Networking Group. OVRseen project page. https:
//athinagroup.eng.uci.edu/projects/ovrseen/.

[60] Unity. The Virtual Room ad: a real way to make money
in VR. https://create.unity3d.com/virtual-
room-ad, 2021.

[61] Unity Technologies. mbed tls: An open source, portable,
easy to use, readable and flexible ssl library. https://
github.com/Unity-Technologies/mbedtls, 2021.

[62] Unity Technologies. Unity - the leading platform
for creating interactive, real-time content. https://

unity.com/, 2021.

[63] Unity Technologies. Unity manual: Managed
code stripping. https://docs.unity3d.com/Manual/
ManagedCodeStripping.html, 2021.

[64] J. Varmarken, H. Le, A. Shuba, A. Markopoulou, and
Z. Shafiq. The TV is Smart and Full of Trackers: Mea-
suring Smart TV Advertising and Tracking. In PETS,
2020.

[65] X. Wang, X. Qin, M. Bokaei Hosseini, R. Slavin, T. D.
Breaux, and J. Niu. GUILeak: Tracing Privacy Policy
Claims on User Input Data for Android Applications. In
IEEE/ACM ICSE, 2018.

[66] B. Wassom. Augmented Reality Law, Privacy, and
Ethics: Law, Society, and Emerging AR Technologies.
2014.

[67] B. Wolford. What is gdpr, the eu’s new data protection
law? https://gdpr.eu/what-is-gdpr/, 2019.

[68] S. Zimmeck and S. M. Bellovin. Privee: An Architecture
for Automatically Analyzing Web Privacy Policies. In
USENIX Security, Aug. 2014.

[69] S. Zimmeck, Z. Wang, L. Zou, R. Iyengar, B. Liu,
F. Schaub, S. Wilson, N. M. Sadeh, S. M. Bellovin,
and J. R. Reidenberg. Automated Analysis of Privacy
Requirements for Mobile Apps. In NDSS, 2017.

https://www.forbes.com/sites/solrogers/2020/03/09/virtual-reality-for-good-use-cases-from-educating-on-racial-bias-to-pain-relief-during-childbirth/
https://www.forbes.com/sites/solrogers/2020/03/09/virtual-reality-for-good-use-cases-from-educating-on-racial-bias-to-pain-relief-during-childbirth/
https://www.forbes.com/sites/solrogers/2020/03/09/virtual-reality-for-good-use-cases-from-educating-on-racial-bias-to-pain-relief-during-childbirth/
https://www.forbes.com/sites/solrogers/2020/03/09/virtual-reality-for-good-use-cases-from-educating-on-racial-bias-to-pain-relief-during-childbirth/
https://www.businessinsider.com/virtual-reality-for-enterprise-sales-employee-training-product-2018-12
https://www.businessinsider.com/virtual-reality-for-enterprise-sales-employee-training-product-2018-12
https://www.businessinsider.com/virtual-reality-for-enterprise-sales-employee-training-product-2018-12
https://www.selenium.dev/
https://spatial.io/
https://athinagroup.eng.uci.edu/projects/ovrseen/
https://athinagroup.eng.uci.edu/projects/ovrseen/
https://create.unity3d.com/virtual-room-ad
https://create.unity3d.com/virtual-room-ad
https://github.com/Unity-Technologies/mbedtls
https://github.com/Unity-Technologies/mbedtls
https://unity.com/
https://unity.com/
https://docs.unity3d.com/Manual/ManagedCodeStripping.html
https://docs.unity3d.com/Manual/ManagedCodeStripping.html
https://gdpr.eu/what-is-gdpr/

