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Abstract

Overparameterized neural networks enjoy great

representation power on complex data, and more

importantly yield sufficiently smooth output,

which is crucial to their generalization and ro-

bustness. Most existing function approximation

theories suggest that with sufficiently many pa-

rameters, neural networks can well approximate

certain classes of functions in terms of the func-

tion value. The neural network themselves, how-

ever, can be highly nonsmooth. To bridge this gap,

we take convolutional residual networks (Con-

vResNets) as an example, and prove that large

ConvResNets can not only approximate a target

function in terms of function value, but also ex-

hibit sufficient first-order smoothness. Moreover,

we extend our theory to approximating functions

supported on a low-dimensional manifold. Our

theory partially justifies the benefits of using deep

and wide networks in practice. Numerical experi-

ments on adversarial robust image classification

are provided to support our theory.

1. Introduction

Deep neural networks of enormous sizes have achieved

remarkable success in various applications. Some well-

known examples include ViT-Huge of 632 million parame-

ters (Dosovitskiy et al., 2020), BERT-Large of 336 million

parameters (Devlin et al., 2018), and the gigantic GPT-3
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of 175 billion parameters (Brown et al., 2020). In addition

to outstanding testing accuracy, there has been evidence

that large neural networks favor smoothness and yield good

robustness (Madry et al., 2017; Bubeck & Sellke, 2021).

Among vast literature on explaining the success of neural

networks, universal approximation theories analyze how

well neural networks can represent complex data models

(see literature in related work section). These works focus

on approximating a target function in terms of its function

value (i.e., in function L∞ norm). However, other impor-

tant properties, espcifically the smoothness of the neural

networks, are less investigated. A few early results pro-

vide asymptotic results on two-layer networks with smooth

activation for approximating both function value and deriva-

tives (Hornik et al., 1990; Cardaliaguet & Euvrard, 1992).

Recently, GÈuhring et al. (2020); Hon & Yang (2021) estab-

lished nonasymptotic approximation theory of feedforward

networks in terms of Sobolev norms.

In real-world applications, on the other hand, practitioners

empirically demonstrated a close tie between the smooth-

ness of a trained neural network to its adversarial robustness

(Gu & Rigazio, 2014; Hein & Andriushchenko, 2017; Weng

et al., 2018; Miyato et al., 2018). The intuition behind is

relatively clear. Consider, for instance, adding some adver-

sarial perturbation to an input. A network of small (local)

Lipschitz constant produces less deviation to the original

output, and therefore, is often resilient to adversarial at-

tackes. On the contrary, a network that is vulnerable to

adversarial attacks usually has a large Lipschitz constant.

Over the years, many computational methods are proposed

and extensively tested in experiments for promoting network

smoothness (Goodfellow et al., 2014; Madry et al., 2017;

Miyato et al., 2018; Zhang et al., 2019). Apart from these

explicit training methodologies, the size of a network is

also recognized as a critical factor to its generalization and

robustness (Zagoruyko & Komodakis, 2016; Madry et al.,

2017; Wu et al., 2020). Yet, theoretical understanding is

largely missing.

In this paper, we investigate universal approximation ability

of neural networks with smoothness guarantees. We con-

sider the convolutional residual networks (ConvResNet, see

a description in Section 2.2) with ReLU activation as an



Benefits of Deep and Wide Convolutional Residual Networks

example. We measure the approximation error of ConvRes-

Net in terms of not only the function value, but also higher

order smoothness. Specifically, suppose given a target func-

tion f belonging to a Sobolev space in a D-dimensional

hypercube. We provide an approximation error estimate in

terms of Sobolev norm as a function of the size of ConvRes-

Net. We also extend our theory to functions supported on a

d-dimensional Riemannian manifold (d≪ D). We summa-

rize our main results in the following informal theorem.

Theorem 1.1 (informal). Consider a ConvResNet architec-

ture with M̃ residual blocks and each convolutional filter

having at most J̃ channels. Let α ≥ 2 and 1 ≤ p ≤ ∞ be

positive integers. Then

• (Euclidean) for any target function in a Sobolev space

Wα,p((0, 1)D) with Sobolev norm ∥f∥Wα,p((0,1)D) ≤ 1,

there exists f̃ yielded by the ConvResNet architecture, such

that

∥f̃ − f∥W s,p ≤ const · (M̃J̃)−
α−s
D for s ∈ [0, 1]

with the constant depending on D,α, p;

• (Manifold) given M ⊂ R
D a d-dimensional Rieman-

nian manifold satisfying mild regularity conditions, for

any target function in a Sobolev space Wα,∞(M) with

∥f∥Wα,∞(M) ≤ 1, there exists f̃ yielded by the ConvRes-

Net architecture, such that

∥f̃ − f∥Wk,∞ ≤ const · (M̃J̃)−
α−k

d for k ∈ {0, 1}
with the constant depending on α, p,M.

Our theory restricts to s ≤ 1, since only first-order weak

derivatives exist for ReLU networks. Moreover, setting

s = 0 or s = 1 is of particular interest, as s = 0 recovers the

function value approximation guarantee and s = 1 extends

the guarantee to first-order derivatives. As can be seen, to

achieve the same function value approximation error, s =
1 requires a larger network, but enjoys good smoothness.

This can partially explain that larger networks are often

more robust. We refer readers to Corollary 3.3 for more

discussion.

Theorem 1.1 implies that as the number of residual blocks

increases or each filter having more channels, ConvRes-

Net gives better approximation of the target function. In

order to achieve an ϵ-error, we may set M̃J̃ = O(ϵ−
D

α−s )

(O(ϵ−
d

α−s ) for the manifold case), while there is no scaling

restriction between M̃ and J̃ . See an explicit configura-

tion of ConvResNet architecture depending on M̃ and J̃
in Theorem 3.2 and Theorem 4.5. (Although the rate in

the manifold case is independent of D, the network size

inevitably weakly depends on D.)

Our result on Euclidean spaces is related to GÈuhring et al.

(2020); Hon & Yang (2021), nonetheless, they focus on ap-

proximation guarantees of feedforward networks in terms of

W s,p norm. It is also worth mentioning that our results are

complementary to Bubeck & Sellke (2021), which provides

a lower bound on network Lipschitz continuity. Bubeck &

Sellke (2021) suggest that small network suffers from bad

Lipschitz continuity, in fitting isoperimetric random data.

However, whether large network enjoys good smoothness

is questionable. Our result proves that large network in-

deed yields appealing Lipschitz continuity from a function

approximation perspective.

The manifold case draws motivation from the fact that data

in real applications are often governed by a small num-

ber of free parameters (Tenenbaum et al., 2000; Roweis &

Saul, 2000; Coifman et al., 2005; Allard et al., 2012). As a

concrete example, Pope et al. (2021) estimate the intrinsic

dimension of many benchmark data sets, including MNIST,

CIFAR-10/100, and ImageNet. A striking finding is that the

intrinsic dimension of ImageNet is merely around 43, in a

sharp contrast to its 224× 224× 3 total pixels. Therefore,

it is reasonable to model data as a low-dimensional Rieman-

nian manifold, and we show ConvResNet can adapt to data

geometric structures and does not suffer from the curse of

ambient dimensionality.

Related work Approximation theories of feedforward

neural network have been studied for a long time, most

of which dedicate to function value approximation. The

earliest literature dates back to late 1980s. For example,

Irie & Miyake (1988); Funahashi (1989); Cybenko (1989);

Hornik (1991); Chui & Li (1992); Leshno et al. (1993) inves-

tigated the approximation power of two-layer feedforward

neural networks with sigmoidal activation for square inte-

grable functions and established some asymptotic results,

where the number of neurons goes to infinity. Barron (1993);

Mhaskar (1996) established nonasymptotic results for the so-

called ªBarronº function space. For multi-layer feedforward

neural networks with ReLU activation, Yarotsky (2017) an-

alyzed the approximation of Sobolev Wα,∞ functions in a

D-dimensional hypercube, and proved nonasymptotic re-

sults that given a pre-specified approximation error ϵ, the

depth and width of neural networks need to be at most of

the order O(ϵ−D/α) and O(log(1/ϵ)), respectively. More

recently, Suzuki (2019); Suzuki & Nitanda (2019); Liu et al.

(2021) extended to more general function classes such as

Besov spaces.

Approximation theories for convolutional networks are

established by Zhou (2020b;a); Petersen & Voigtlaender

(2020). In Zhou (2020b), the authors consider CNN with

ReLU activation whose width increases linearly from the

first layer to the last. They show that such a CNN can ap-

proximate functions in Sobolev Wα,2 space with arbitrary

accuracy for integer α ≥ 2 +D/2. To have a better control

on the width of the network, the authors of Zhou (2020a)

studied downsampled CNNs, and show that the downsam-
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pled CNN can approximate Lipschitz ridge functions with

an arbitrary accuracy. In Petersen & Voigtlaender (2020),

the authors show that any approximation bounds of FNN

can be achieved by CNNs. The results in Oono & Suzuki

(2019); Liu et al. (2021) dedicate to convolutional residual

networks. In Oono & Suzuki (2019), the authors show that

ConvResNets is able to approximate HÈolder functions with

an arbitrary accuracy.

Theoretical results on approximating or learning functions

on low-dimensional manifold can be found in Shaham et al.

(2018); Chui & Mhaskar (2018); Schmidt-Hieber (2019);

Chen et al. (2019a;b; 2020); Nakada & Imaizumi (2019);

Cloninger & Klock (2020); Shen et al. (2019); Montanelli

& Yang (2020); Liu et al. (2021; 2022). These works show

that when the target function is defined on or around a low-

dimensional manifold, to achieve an approximation error ϵ,
the network size mainly depends on the intrinsic dimension

and weakly depends on the ambient dimension.

Notations: We use lower case letters to denote scalars, bold

lower case letters to denote vectors, upper case letters to de-

note matrices, and calligraphic letters to denote tensors and

sets. For x = [x1, ..., xD]⊤,v = [v1, ..., vD]⊤, we denote

xv = xv1

1 · · ·xvD

D (if well-defined) and |v| = ∑D
i=1 |vi|.

Let α = [α1, ..., αD]⊤ ∈ N
D be a multi-index and f be a

function, we denoteDαf = ∂|α|f

∂x
α1

1
···∂x

αD
D

. Let Ω be a subset

in R
D, we denote Ω as its closure and ch(Ω) as its convex

hull. We use Br(c) to denote the closed Euclidean ball with

radius r and centered at c.

2. Preliminary

2.1. Sobolev Functions

We focus on studying neural networks for approximat-

ing Sobolev functions. We provide a formal definition of

Sobolev functions in both Euclidean spaces and on mani-

folds. We begin with Sobolev functions in Euclidean spaces

(Brezis & BrÂezis, 2011, Chapter 8).

Definition 2.1 (Sobolev spaces). Let α ≥ 0, 1 ≤ p ≤ ∞
be integers, and domain Ω ⊂ R

D. We define Sobolev space

Wα,p(Ω) as

Wα,p(Ω) =
{
f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all |α| ≤ α

}
,

where α is a multi-index.

For f ∈Wα,p(Ω), we define its Sobolev norm as

∥f∥Wα,p(Ω) =
( ∑

|α|≤α

∥Dαf∥pLp(Ω)

)1/p
.

In the special case of p = ∞, the Sobolev norm can be

rewritten as ∥f∥Wα,∞(Ω) = max|α|≤α ∥Dαf∥L∞(Ω). In

this case, ∥f∥W 0,∞ < ∞ implies the function value is

bounded, and ∥f∥W 1,∞ < ∞ implies both the function

value and its gradient are bounded.

Our later approximation theories will provide error estimate

in terms of Sobolev norms. To allow more flexibility, we

define fractional Sobolev norms, which can be viewed as

a generalization of Sobolev norms to non-integer α. The

fractional Sobolev functions are defined as follows.

Definition 2.2 (Sobolev±Slobodeckij spaces (Slobodeckij,

1958)). For 0 < s < 1 and 1 ≤ p ≤ ∞, we define W s,p(Ω)
as

W s,p(Ω) =
{
f ∈ Lp(Ω) : ∥f∥W s,p(Ω) <∞

}

with

∥f∥W s,p(Ω) =
(
∥f∥pLp(Ω) +

∫

Ω

∫

Ω

( |f(x)− f(y)|
∥x− y∥s+D/p

2

)p
dxdy

)1/p

for 1 ≤ p <∞ and

∥f∥W s,∞(Ω) =

max

{
∥f∥L∞(Ω), ess sup

x,y∈Ω

|f(x)− f(y)|
∥x− y∥s2

}
.

We restrict our attention to s < 1 for simplicity, as we focus

on approximation guarantees up to first-order continuity.

Next, we extend Sobolev spaces to Riemannian manifolds.

We provide a brief introduction to manifold; a more detailed

description can be found in Appendix A. Roughly speaking,

a Riemannian manifold M is a collection of local neighbor-

hoods, each of which is diffeomorphic to a low-dimensional

Euclidean space. These local neighborhoods are termed

charts, and a collection of which is an atlas. We provide a

formal definition.

Definition 2.3 (Atlas). A smooth atlas for a d-dimensional

manifold M ⊂ R
D is a collection of charts {(Uα, ϕα)}α∈A,

which verifies
⋃

α∈A Uα = M and ϕα : Uα 7→ R
d being

diffeomorphic and pairwise compatible, i.e.,

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) and

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

are both smooth for any α, β ∈ A. An atlas is called finite

if it contains finitely many charts.

To define Sobolev spaces on a manifold M, we shall con-

sider function regularity on each chart, as charts are geomet-

rically ªakinº to a Eulidean space through the chart mapping

ϕα. One caveat, however, is that the chart mapping ϕα can

be arbitrarily rescaled, which results in potential unbound-

edness. We therefore, fix an atlas on M to mitigate this

issue. We are ready to define Sobolev spaces on a manifold

(Driver, 2003, Definition 48.17).
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terms of the W s,p norm. Here p is a positive integer and s
can vary in [0, 1]; in particular, s = 0 corresponds to func-

tion value approximation, and s = 1 resembles the result

Section 1. We formally define our target function class as a

Sobolev norm ball.

Assumption 3.1. Let α ≥ 2, 1 ≤ p ≤ +∞ be integers.

Assume the target function f satisfies

f ∈Wα,p
(
(0, 1)D

)
and ∥f∥Wα,p((0,1)D) ≤ 1.

We set the norm ball of radius 1 for the sake of simplicity,

while the results in the sequel hold for any constant radius.

We also let α ≥ 2 for techincal convenience. In the follow-

ing theorem, we show that ConvResNets can approximate

any functions in a Sobolev norm ball in terms of W s,p norm

(s ≤ 1). The approximation error is obtained as a function

of the network configuration.

Theorem 3.2. For any positive integers K ∈ [2, D], M̃ ,

and J̃ > 0, we choose

L = O(log(M̃J̃)), J = O(J̃), κ1 = O((M̃J̃)1/D),

κ2 = O((M̃J̃)1/D), M = O(M̃).

Then given s ∈ [0, 1], the ConvResNet architec-

ture C(M,L, J,K, κ1, κ2) can approximate any func-

tion f satisfying Assumption 3.1, i.e., there exists f̃ ∈
C(M,L, J,K, κ1, κ2) with

∥f̃ − f∥W s,p((0,1)D) ≤ C1(M̃J̃)−
α−s
D

for some constant C1 depending on D,α, p.

Theorem 3.2 says that the approximation power of Con-

vResNet amplifies as its width and depth increase. To better

interpret the result, we choose s = 1 and p = ∞, which cor-

responds to simultaneously approximating function value

and first-order derivatives.

Corollary 3.3. In the setup of Theorem 3.2, taking

s = 1 and p = ∞, the ConvResNet architecture

C(M,L, J,K, κ1, κ2) can approximate any f satisfying

Assumption 3.1 up to first-order, i.e., there exists f̃ ∈
C(M,L, J,K, κ1, κ2) with

∥f̃ − f∥∞ ≤ C2(M̃J̃)−
α−1

D and

sup
i

∥∥∥∥∥
∂f̃

∂xi
− ∂f

∂xi

∥∥∥∥∥
∞

≤ C2(M̃J̃)−
α−1

D ,

where the constant C2 depends on D and α. In particular,

we have Lipschitz continuity bound

∥f̃∥Lip ≤ 1 + C2

√
D(M̃J̃)−

α−1

D .

Theorem 3.2 and Corollary 3.3 have rich implications.

Large network for smooth approximation. Taking s = 0
in Theorem 3.2 recovers function approximation in terms of

L∞ norm. The corresponding approximation error scales

as O((M̃J̃)−
α
D ). A quick comparison to Corollary 3.3

indicates that in order to additionally capture the first-order

information of a target function, large network is needed to

achieve the same function value error bound.

Arbitrary width and depth. GÈuhring et al. (2020); Hon

& Yang (2021) provide approximation guarantees of feed-

forward networks in terms of W s,p norm. Despite different

network architectures, we remark that our theory covers

general networks with arbitrary width and depth. More

specifically, for a given approximation error ϵ, GÈuhring et al.

(2020) set the network depth and width as O(log 1/ϵ) and

O(ϵ−D/(α−s)), respectively. Yet in our result, we only need

to ensure M̃J̃ = O(ϵ−D/(α−s)), which does not require

any scaling relation between M̃ and J̃ .

Theorem 3.2 can be used as a tool to analyze the empirical

residual error. Specifically, assume the response in the data

set contains bounded zero±mean noise, we have the follow-

ing probability bound on the upper bound of the empirical

residual error (see a proof in Appendix D)

Theorem 3.4. Let {(xi, yi)}ni=1 be a given data set where

xi’s are i.i.d. samples from some distribution defined on

[0, 1]D and
yi = f(xi) + ξi

with i.i.d. noise ξi’s satisfying E[ξi] = 0 and |ξi| ≤ σ for all

i = 1, ..., n. Assume f satisfy Assumption 3.1 with p = +∞.

For 0 < ε < min{σ, 1}, let C = C(M,L, J,K, κ1, κ2)

be the network architecture in Theorem 3.2 with M̃J̃ =(
ε
C1

)−D/α

= O(ε−D/α). We have

P

(
∃f̃ ∈ C :

∥∥∥f̃
∥∥∥
Lip

≤ 1 +
√
Dε

α−1

α and

1

n

n∑

i=1

(f̃(xi)− yi)
2 ≤ 2ε2 + σ2

)

≥ 1− exp

(
− 3nε2

104σ4

)
. (4)

Theorem 3.4 implies that with high probability, larger net-

work architectures ensure the existence of a network that has

small empirical residual error as well as certain smoothness,

i.e., a bounded Lipschitz constant whcih is close to that of

the underlying function. Our result is an upper bound coun-

terpart of Bubeck & Sellke (2021, Theorem 3), in which a

high probability lower bound of the Lipschitz constant is

derived.

Connection to adversarial robustness. Consider, for ex-

ample, the supervised learning scenario. Noisy or noiseless

response is generated by a ground truth function satisfying

Assumption 3.1. Corollary 3.3 then indicates the existence

of a properly large ConvResNet capable of smoothly ap-

proximating the data model, and the network’s Lipschitz
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constant is approximately that of the ground truth function.

Such Lipschitz continuity should be considered nearly op-

timal, in viewing of the smoothness of the ground truth

function. The network’s Lipschitz continuity closely relates

to adversarial risk (Uesato et al., 2018; Zhao et al., 2021)

defined as

Definition 3.5 (Adversarial risk). Given a data distribution

ρ, and a loss function l(·, ·), for a positive constant δ > 0,

we define the adversarial risk of a network f̃ as

R(f̃ , δ) = E(x,y)∈supp(ρ)

[
sup

x′∈Bδ(x)

ℓ
(
f̃(x′), y

)]
, (5)

where Bδ(x) is the Euclidean ball with radius δ centered at

x.

In the case δ = 0, the adversarial risk R(f̃ , 0) reduces

to the population risk E(x,y)∈supp(ρ)

[
ℓ
(
f̃(x), y

)]
. Based

on Theorem 3.2 and Corollary 3.3, we have the following

theorem on adversarial risk (see a proof in Appendix E):

Theorem 3.6. Let ρ be a data distribution defined on

[0, 1]D × [−R,R] for some constant R and l(·, ·) be a loss

function with Lipschitz constant LLip. Denote the popula-

tion risk minimizer by f :

f = argmin
g

E(x,y)∈supp(ρ)l(g(x), y). (6)

Assume f satisfies Assumption 3.1 with p = +∞. For 0 <
ε < 1, let C(M,L, J,K, κ1, κ2) be the network architecture

in Theorem 3.2 with M̃J̃ =
(

ε
C1

)−D/α

= O(ε−D/α).

Then there exists f̃ ∈ C(M,L, J,K, κ1, κ2) so that

∥f̃ − f∥∞ ≤ ε,
∥∥∥f̃
∥∥∥
Lip

≤ 1 +
√
Dε

α−1

α (7)

and

R(f̃ , δ) ≤ R(f̃ , 0) + LLip

(
1 +

√
Dε

α−1

α

)
δ. (8)

In Theorem 3.6, the difference between the adversarial risk

and population risk depends on the Lipschitz constant of the

network f̃ , the Lipscthiz constant of the loss function and

the adversarial parameter δ. It implies that large networks

can give rise to smooth functions with a small adversarial

risk, i.e., adversarially robust. This partially explains the

empirical observation that large networks are often smooth

with respect to input, and hence, tend to have better robust-

ness. However, how to use practical training algorithms to

find such networks remains curiously unclear.

4. Approximation on Manifold

Theorem 3.2 indicates a curse of data dimensionality: When

data dimension D is large, such as image data, Theorem

3.2 converges extremely slowly and becomes less attrac-

tive. Motivated by applications, we model data as a low-

dimensional Riemannian manifold M and extend our ap-

proximation theory to functions defined on M. We will

show that ConvResNet is adaptable to manifold structures.

We first impose some mild regularity conditions.

Assumption 4.1. M is a d-dimensional compact Rieman-

nian manifold isometrically embedded in R
D. It’s range is

bounded by B, i.e., there exists a constant B > 0 such that

for any x ∈ M, we have ∥x∥∞ ≤ B.

Besides boundedness, we characterize the curvature of man-

ifold by the following geometric notion.

Definition 4.2 (Reach (Federer, 1959; Niyogi et al., 2008)).

Define the set

G = {x ∈ R
D : ∃ distinct p,q ∈ M such that

d(x,M) = ∥x− p∥2 = ∥x− q∥2}.
Then the reach of M is defined as

reach(M) = inf
x∈M

inf
y∈G

∥x− y∥2.

To roughly put, a large reach implies that the manifold is

flat. While a manifold with a small reach can be highly

zigzagging. Therefore, the reach is highly relevant to the

difficulty of capturing the local structures on a manifold.

We assume a positive reach on M.

Assumption 4.3. The reach of M is τ > 0.

Similar to Section 3, we consider a Sobolev norm ball on

M as target function class.

Assumption 4.4. Let α ≥ 2 be an integer. Assume the

target function f satisfies

f ∈Wα,∞ (M) and ∥f∥Wα,∞(M) ≤ 1.

We now present a counterpart of Theorem 3.2, showing an

efficient approximation of functions in a Sobolev norm ball

on M.

Theorem 4.5. For any positive integers K ∈ [2, D], M̃ ,

and J̃ > 0, we choose

L = O(log(M̃J̃)) +D, J = O(DJ̃),

κ1 = O((M̃J̃)1/d), κ2 = O((M̃J̃)1/d), M = O(M̃).

Then given k ∈ {0, 1}, the ConvResNet architec-

ture C(M,L, J,K, κ1, κ2) can approximate any func-

tion f satisfying Assumption 4.4, i.e., there exists f̃ ∈
C(M,L, J,K, κ1, κ2) with

∥f̃ − f∥Wk,∞(M) ≤ C3(M̃J̃)−
α−k

d ,

where constant C3 depends on d, α,B, τ , and the surface

area of M.
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As can be seen, the approximation error decays at a rate

only depending on intrinsic data dimension d, which is

a significant improvement over Theorem 3.2 given d ≪
D. We also note that the size of ConvResNet has a weak

dependence on D, yet it is inevitable due to the residual

connection preserves input dimensionality.

Theorem 4.5 can be viewed as further results of recent ad-

vances on the adaptability of neural networks for approxi-

mating functions on low-dimensional structures. In particu-

lar, Chen et al. (2019a) and Schmidt-Hieber (2019) share a

very similar setup as Theorem 4.5, and established function

value approximation theories.

5. Numerical Experiments

We verify our theory by numerical experiments. Due to

the complex structure of convolutional residual networks,

directly estimating the Lipschitz constant is rather difficult.

We instead testing the adversarial robustness as an indication

of the network smoothness.

We consider the TRADES model which uses a data driven

smoothness regularization and encourages model smooth-

ness. By keeping the same clean testing accuracy, we can

compare model smoothness through the robust testing accu-

racy. We follow the setup in TRADES (Zhang et al., 2019),

and report the performance of WideResNet (Zagoruyko &

Komodakis, 2016) with different widening factor (WF) and

number of convolutional layers per residual block (we term

as ªdepthº in the sequel). We use the CIFAR-10 data set.

Hyperparameters in training are set as follows: perturbation

diameter ϵ = 0.031 under the ℓ∞ norm, step size for gener-

ating perturbation 0.007, number of iterations 10, learning

rate 0.1, batch size b = 128 and run 76 epochs on the train-

ing dataset. We run the White-box attacks by applying PGD

attack with 20 iterations (PGD-20) and the step size is 0.003.

We report the robust accuracy Arob and the natural accuracy

Anat on the test data set.

The training objective is

min
f

E(x,y)∼DL(f(x), y) + max
∥x̃−x∥∞≤ϵ

R (f(x), f (x̃)) /λ,

where L is the cross entropy loss, R is the KL-divergence,

x is the clean input, x̃ is the adversarial input, y is the label,

λ is the tuning parameter controlling the strength of the

regularizer, and D denotes the training dataset {xi, yi}ni=1.

For a fair comparison, we tune λ such that networks of

different sizes achieve approximately the same natural accu-

racy. This can be understood as achieving approximately the

same L∞ approximation error to the data model. As can be

seen in Table 1, Anat of different models about matches the

performance in Zhang et al. (2019), indicating the network

has been sufficiently trained. By comparing the robust accu-

racy Arob, we observe that wider and deeper WideResNet

attains better robustness. When fixing the depth, a wider net-

work can achieve a higher robust accuracy. Similarly, when

fixing the widening factor, a deeper network can achieve a

higher robust accuracy.

Table 1: Performance of Wide Residual Networks with

different widening factors and depths under PGD-20 attacks.

Depth WF Anat Arob

16

1 78.87± 0.47% 34.31± 0.45%

2 79.34± 0.28 % 46.14± 0.21%

4 79.97± 0.04% 51.40± 0.16%

22

1 78.51± 0.25% 41.47± 0.11%

2 79.49± 0.48% 49.63± 0.07%

4 80.81± 0.44% 53.36± 0.21%

28

1 79.46± 0.06% 43.33± 0.57%

2 79.01± 0.11% 50.85± 0.07%

4 80.90± 0.71% 54.45± 0.14%

34

1 78.58± 0.09% 46.14± 0.16%

2 79.29± 0.35% 51.63± 0.28%

4 80.79± 0.71% 55.28± 0.35%

6. Proof Sketch

We highlight key steps in establishing Theorem 3.2 and 4.5

in this section. Full proofs are deferred to Appendix C and

F, respectively.

6.1. Proof Sketch of Theorem 3.2

The main idea consists of two stages: 1) Approximating

target function f in terms of W s,p norm using a sum of

averaged Taylor polynomials; 2) Implementing the sum of

averaged Taylor polynomials by a given width and depth

ConvResNet up to a certain error. In stage 1), we rely on

tools from the finite element anaylsis to quantify approxima-

tion error. In stage 2), we first represent polynomials using

convolutional networks, and then assemble them according

to the specified width and depth as a ConvResNet. We dive

into the following four steps.

Step 1: Decompose f using a partition of unity. Given the

network size parameter M̃ and J̃ , we define a partition of

unity {ϕj}N
D

j=1 on (0, 1)D for an integerN = O((M̃J̃)1/D),
so that each ϕj is supported on a small hypercube of

edge length 4
3N . The function f is decomposed into

f =
∑ND

j=1 fj with fj = fϕj . See Figure 2(a) for an il-

lustration.

Step 2: Averaged Taylor polynomial approximation.

Each fj is a Sobolev function, which may not have classical

derivatives but weak derivatives. Similar to approximating

differentiable functions by Taylor polynomials, we approx-

imate fj by an averaged Taylor polynomial f̂j , which is
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defined in an integral form and indeed is a polynomial. The

approximation error of averaged Taylor polynomial is simi-

lar to that of using Taylor polynomial, and can be found in

Lemma C.6.

Step 3: Network implementation. As shown in Lemma

G.6 and C.9, CNN can approximate multiplication and com-

positions of muliplications well. Since a polynomial is a

sum of compositions of multiplication, each f̂i can be ap-

proximated by a sum ofO(1) CNNs, and therefore
∑ND

i=1 f̂i
is approximated by a sum of O(ND) CNNs, each of which

has width of O(1). We prove in Lemma C.11 that such

a sum can be realized by a sum of M̃ CNNs with width

J̃ . The new sum can be realized by a ConvResNet with

M̃ residual blocks (Lemma C.12), where each summand

corresponds to a residual block and the sum is realized using

skip-layer connections.

Step 4: Error estimation. To estimate the approximation

error of f̃ , we decompose the error as

∥f̃ − f∥W s,p(0,1)D ≤
ND∑

j=1

∥f̃j − f̂j∥W s,p((0,1)D)

+
ND∑

j=1

∥f̂j − fj∥W s,p((0,1)D). (9)

On the right-hand side of (9), the second term is the approx-

imation error of averaged Taylor polynomial, whose upper

bound is given by Lemma C.8.

The first term is the network implementation error. We de-

rive an upper bound of it in Lemma C.10. In the proof of

Lemma C.10, we first derive an upper bound with respect

to the W k,p norm for k = 0, 1. The case k = 0 corre-

sponds to the error of function value approximation, and

the case k = 1 corresponds to the error of first order weak

derivative approximation. Note that each f̂j is a polynomial,

and each f̃j consists of compositions of ×̃, the network

approximation of multiplication ×. The error indeed is the

approximation error of compositions of ×̃. We first derive

the W k,∞ approximation error of ×̃ and then show that

compositions of ×̃ have W k,p approximation errors of the

same order. After the upper bounds of W 0,p and W 1,p er-

rors are derived, these upper bounds are generalized toW s,p

errors using an argument on interpolation spaces, which is

discussed in Appendix G.2.

Combining the upper bounds of both terms in (9) gives rise

to the total approximation error as a function ofN . Utilizing

the relation M̃J̃ = O(ND), we can further express the

approximation error in terms of number of blocks and width

of the ConvResNet.

(a) Partition of unity on (0, 1)D . (b) Partition of unity on M.

Figure 2: (a) Illustration of ϕj’s and fj’s in Step 1 of the

proof of Theorem 3.2. (b) Illustration of the construction

of charts and paritition of unity in Step 1 of the proof of

Theorem 4.5. The red curve represents a cross section of ρi.

6.2. Proof Sketch of Theorem 4.5

We exploit the geometric nature of manifold M and Sobolev

functions on it to prove Theorem 4.5. By an explicit con-

struction of a finite atlas on M based on the curvature con-

dition in Assumption 4.3, we first restrict ourselves to a

single chart on M. Recall Definition 2.4 that a Sobolev

function f on M is locally Sobolev on a chart. We are thus,

able to locally approximate f on each chart by the results

in Theorem 3.2. However, the main challenge stems from

combining these local approximations to obtain a global

guarantee. This requires to determine which charts a given

input belongs to. We develop a chart determination sub-

network for approximating indicator functions of charts,

nonetheless, its Lipschitz continuity is troublesome due to

the sharp jump on the boundary of a chart. We resolve

such an issue by carefully constructing a partition of unity

vanishing at a neighborhood of the boundary of charts. We

provide more details in the following four steps.

Step 1: Decompose f using an atlas and partition of unity

of M. We first construct an atlas and a partition of unity

of M so that each function in the partition of unity is com-

pactly supported in a chart (Lemma F.1). To construct an

atlas of M, we use a set of D-dimensional Euclidean balls

{Br/2(ci)}CM
i=1 with centers {ci}CM

i=1 ⊂ M and radius r/2
satisfying 0 < r < τ/4 to cover M. Since M is compact,

CM is finite. The collection of intersections between each

ball and M, denoted by {Ũi}CM
i=1 with Ũi = Br/2(ci)∩M,

forms an open cover of M. It is guaranteed that there exists

a C∞ partition of unity {ρi}Mi=1 so that ρi is supported in

Ũi (Lemma H.1). We then double the radius and denote

Ui = Br(ci) ∩M. The collection {Ui}CM
i=1 is also an open

cover of M. Since Ũi ⊂ Ui, ρi is compactly supported in

Ui and the distance between the support of ρi and ∂Ui is

at least r/2. For each Ui, an orthogonal projection φi with

proper scaling and shifting, which projects any x ∈ Ui to a

tangent plane, is constructed so that φi(Ui) ⊂ (0, 1)d. See

the proof of Lemma F.1 for details. With this construction,

we illustrate Ui and ρi in Figure 2(b). We then focus on
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the atlas {Ui, φi}CM
i=1 and partition of unity {ρi}Mi=1. We

decompose f as f =
∑CM

i=1 (fi ◦ φ−1
i ) ◦ φi with fi = fρi.

Step 2: Averaged Taylor polynomial approximation. In

the decomposition in Step 1, each fi ◦ φ−1
i is a Sobolev

function compactly supported in φi(Ui) ⊂ (0, 1)d. Extend

fi◦φ−1
i to (0, 1)d by 0. The extended function has the same

smoothness as fi ◦ φ−1
i , and can be approximated by a sum

of local averaged Taylor polynomials
∑Nd

i=1 f̂i,j , as what

has been done in the proof of Theorem 3.2.

Step 3: Network implementation. Each polynomial f̂i,j
can be approximated by a CNN f̃i,j . Since we are only

interested in the value of f̃i,j ◦ φi(x) when x ∈ Ui, we

need to determine the chart it belongs to. We accomplish

this by introducing a chart determination function 1i(x) =
1[0,r2] ◦ d2i (x), where 1[0,r2](a) is a step function which

outputs 1 when a ∈ [0, r2] and outputs 0 otherwise, d2i (x)
computes the squared Euclidean distance between x and

ci. The squared distance function d2i can be approximated

by a CNN with high accuracy. To approximate the step

function 1[0,r2], we construct a CNN which outputs 1 on

[0, r2 −∆], 0 on [r2,∞) and is linear on [r2 −∆, r2] for

some small ∆. The CNN approximation of 1i , denoted by

1̃i, is illustrated in Figure 3(a). Our network approximation

of f is constructed as

f̃(x) =

CM∑

i=1

Nd∑

j=1

×̃(f̃i,j ◦ φi(x), 1̃i(x)),

where ×̃ denotes the CNN approximation of multiplica-

tion. By Lemma C.11 and C.12, f̃ can be realized by a

ConvResNet with M̃ blocks and width of O(J̃) as long as

M̃J̃ = O(Nd).

Step 4: Error estimation. We decompose the error into

two parts: 1) the error between f and its averaged Taylor

polynomial approximation, and 2) the error between the

averaged Taylor polynomial and its network approximation,

see (42) in Appendix F. The first part can be bounded using

Lemma C.8. The second part is characterized by the approx-

imation error of ×̃ for multiplication, of f̃i,j for averaged

Taylor polynomials, and of 1̃i for chart determination 1i.

The first two errors can be bounded using techniques similar

to those in the proof of Theorem 3.2.

For the approximation error of 1̃i, bounding its W 1,∞ norm

is the most challenging task. To derive an upper bound,

one needs to bound |(f̃i,j ◦ φi) × (∂(1̃i ◦ φ−1
i )/∂zl)| for

l = 1, ..., d and z ∈ φi(Ui). In our network construction,

1̃i ◦ φ−1
i is linear on a narrow band, denoted by Ωi,2, with

width of O(∆). Its weak derivative on the narrow band is of

O(1/∆), which blows up as ∆ → 0 and causes problems.

To eliminate the effect of ∆, we show that the value of f̃i,j ◦
φi is small enough so that its product with ∂(1̃i ◦φ−1

i )/∂zl

(a) Chart determination.

Hyper cubes

(b) Projected region in (0, 1)d.

Figure 3: (a) Illustration of an element of a chart and parti-

tion of unity. The red curve represents a cross section of ρi.
(b) Illustration of the chart determination network 1̃i. The

black curve represents a cross section of 1̃i. (c) Illustration

of the projected regions in (0, 1)d.

does not blow up as ∆ → 0. Specifically, thanks to the

fact that fi is compactly supported on Ui, we have fi ◦ φ−1

is compactly supported on φi(Ui). Therefore there exists

another band Ωi,1 adjacent to φi(∂Ui) so that fi ◦ φ−1 = 0
on Ωi,1. We choose ∆ small enough so that Ωi,2 ⊂ Ωi,1,

and f̂i,j and all of its first order weak derivatives vanish on

Ωi,2, see Figure 3(a) and (b) for illustrations. Note that f̃i,j
is an approximation of f̂i,j . We can show that f̃i = 0 on

φi(∂Ui), and all of its first order weak derivatives on Ωi,2

are in the same order of other error terms. Since the width of

Ωi,2 is of O(∆), by Taylor’s theorem, |f̃i,j ◦φi| is bounded

by a linear function of ∆ on Ωi,2. With such a construction

and proper choice of ∆, the resulting upper bound is in the

same order of those of other terms. See Lemma F.3 for

details.

Combining all of the error bounds, we can express the error

in terms of N . Substituting the relation M̃J̃ = O(Nd)
proves Theorem 4.5.

7. Conclusion

We provide universal approximation theories of Convolu-

tional Residual Networks in terms of Sobolev norms. Our

theory applies to Sobolev function spaces defined on a high-

dimensional hypercube or low-dimensional Riemannian

manifold. We demonstrate that deep and wide ConvResNets

can provide approximation with good first-order smoothness

properties. This partially justifies why using large networks

in practice often leads to better performance and robustness.

Acknowledgment

The work of Hao Liu is partially supported by HKBU

162784 and HKBU 179356. The work of Wenjing Liao

is partially supported by DMS 2012652 and NSF CAREER

2145167. The work of Wenjing Liao and Tuo Zhao is par-

tially supported by DMS 2012652.



Benefits of Deep and Wide Convolutional Residual Networks

References

Allard, W. K., Chen, G., and Maggioni, M. Multi-scale

geometric methods for data sets II: Geometric multi-

resolution analysis. Appl. Comput. Harmon. Anal., 32(3):

435±462, 2012.

Barron, A. R. Universal approximation bounds for super-

positions of a sigmoidal function. IEEE Trans. Inform.

Theory, 39(3):930±945, 1993.

Brenner, S. C., Scott, L. R., and Scott, L. R. The Math-

ematical Theory of Finite Element Methods, volume 3.

Springer, 2008.

Brezis, H. and BrÂezis, H. Functional Analysis, Sobolev

Spaces and Partial Differential Equations, volume 2.

Springer, 2011.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,

J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,

Askell, A., et al. Language models are few-shot learners.

arXiv preprint arXiv:2005.14165, 2020.

Bubeck, S. and Sellke, M. A universal law of robustness via

isoperimetry. arXiv preprint arXiv:2105.12806, 2021.

Cardaliaguet, P. and Euvrard, G. Approximation of a func-

tion and its derivative with a neural network. Neural

Networks, 5(2):207±220, 1992.

Chen, M., Jiang, H., Liao, W., and Zhao, T. Efficient ap-

proximation of deep ReLU networks for functions on low

dimensional manifolds. Advances in Neural Information

Processing Systems, 32:8174±8184, 2019a.

Chen, M., Jiang, H., Liao, W., and Zhao, T. Nonpara-

metric regression on low-dimensional manifolds using

deep ReLU networks. arXiv preprint arXiv:1908.01842,

2019b.

Chen, M., Liu, H., Liao, W., and Zhao, T. Doubly robust off-

policy learning on low-dimensional manifolds by deep

neural networks. arXiv preprint arXiv:2011.01797, 2020.

Chui, C. K. and Li, X. Approximation by ridge functions

and neural networks with one hidden layer. J. Approx.

Theory, 70(2):131±141, 1992.

Chui, C. K. and Mhaskar, H. N. Deep nets for local manifold

learning. Frontiers in Applied Mathematics and Statistics,

4:12, 2018.

Cloninger, A. and Klock, T. ReLU nets adapt to intrinsic

dimensionality beyond the target domain. arXiv e-prints,

pp. arXiv±2008, 2020.

Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler,

B., Warner, F., and Zucker, S. W. Geometric diffusions

as a tool for harmonic analysis and structure definition

of data: Diffusion maps. Proc. Natl. Acad. Sci., 102(21):

7426±7431, 2005.

Conway, J. H. and Sloane, N. J. A. Sphere Packings, Lattices

and Groups. Springer Science & Business Media, 1988.

Cybenko, G. Approximation by superpositions of a sig-

moidal function. Math. Control Signals Systems, 2(4):

303±314, 1989.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:

Pre-training of deep bidirectional transformers for lan-

guage understanding. arXiv preprint arXiv:1810.04805,

2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,

D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,

Heigold, G., Gelly, S., et al. An image is worth 16x16

words: Transformers for image recognition at scale. arXiv

preprint arXiv:2010.11929, 2020.

Driver, B. K. Analysis tools with applications. Lecture

notes, 2003.

Federer, H. Curvature measures. Transactions of the Ameri-

can Mathematical Society, 93(3):418±491, 1959.

Funahashi, K.-I. On the approximate realization of contin-

uous mappings by neural networks. Neural Networks, 2

(3):183±192, 1989.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explain-

ing and harnessing adversarial examples. arXiv preprint

arXiv:1412.6572, 2014.

Gu, S. and Rigazio, L. Towards deep neural network archi-

tectures robust to adversarial examples. arXiv preprint

arXiv:1412.5068, 2014.

GÈuhring, I., Kutyniok, G., and Petersen, P. Error bounds

for approximations with deep ReLU neural networks in

W s,p norms. Analysis and Applications, 18(05):803±859,

2020.

Hein, M. and Andriushchenko, M. Formal guarantees on the

robustness of a classifier against adversarial manipulation.

arXiv preprint arXiv:1705.08475, 2017.

Hon, S. and Yang, H. Simultaneous neural network

approximations in Sobolev spaces. arXiv preprint

arXiv:2109.00161, 2021.

Hornik, K. Approximation capabilities of multilayer feed-

forward networks. Neural Networks, 4(2):251±257, 1991.



Benefits of Deep and Wide Convolutional Residual Networks

Hornik, K., Stinchcombe, M., and White, H. Universal

approximation of an unknown mapping and its derivatives

using multilayer feedforward networks. Neural Networks,

3(5):551±560, 1990.

Irie, B. and Miyake, S. Capabilities of three-layered per-

ceptrons. In IEEE International Conference on Neural

Networks, volume 1, pp. 218, 1988.

Lee, J. M. Riemannian Manifolds: An Introduction to Cur-

vature, volume 176. Springer Science & Business Media,

2006.

Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. Mul-

tilayer feedforward networks with a nonpolynomial ac-

tivation function can approximate any function. Neural

Networks, 6(6):861±867, 1993.

Liu, H., Chen, M., Zhao, T., and Liao, W. Besov function ap-

proximation and binary classification on low-dimensional

manifolds using convolutional residual networks. In In-

ternational Conference on Machine Learning, pp. 6770±

6780. PMLR, 2021.

Liu, H., Yang, H., Chen, M., Zhao, T., and Liao, W. Deep

nonparametric estimation of operators between infinite

dimensional spaces. arXiv preprint arXiv:2201.00217,

2022.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and

Vladu, A. Towards deep learning models resistant to

adversarial attacks. arXiv preprint arXiv:1706.06083,

2017.

Mhaskar, H. N. Neural networks for optimal approximation

of smooth and analytic functions. Neural Comput., 8(1):

164±177, 1996.

Miyato, T., Maeda, S.-i., Koyama, M., and Ishii, S. Vir-

tual adversarial training: a regularization method for su-

pervised and semi-supervised learning. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 41

(8):1979±1993, 2018.

Montanelli, H. and Yang, H. Error bounds for deep ReLU

networks using the Kolmogorov±Arnold superposition

theorem. Neural Networks, 129:1±6, 2020.

Nakada, R. and Imaizumi, M. Adaptive approximation and

estimation of deep neural network to intrinsic dimension-

ality. arXiv preprint arXiv:1907.02177, 2019.

Niyogi, P., Smale, S., and Weinberger, S. Finding the homol-

ogy of submanifolds with high confidence from random

samples. Discrete & Computational Geometry, 39(1-3):

419±441, 2008.

Oono, K. and Suzuki, T. Approximation and non-parametric

estimation of ResNet-type convolutional neural networks.

In International Conference on Machine Learning, pp.

4922±4931. PMLR, 2019.

Petersen, P. and Voigtlaender, F. Equivalence of approx-

imation by convolutional neural networks and fully-

connected networks. Proceedings of the American Math-

ematical Society, 148(4):1567±1581, 2020.

Pope, P., Zhu, C., Abdelkader, A., Goldblum, M., and Gold-

stein, T. The intrinsic dimension of images and its impact

on learning. arXiv preprint arXiv:2104.08894, 2021.

Roweis, S. T. and Saul, L. K. Nonlinear dimensionality

reduction by locally linear embedding. Science, 290

(5500):2323±2326, 2000.

Schmidt-Hieber, J. Deep ReLU network approxima-

tion of functions on a manifold. arXiv preprint

arXiv:1908.00695, 2019.

Shaham, U., Cloninger, A., and Coifman, R. R. Provable ap-

proximation properties for deep neural networks. Applied

and Computational Harmonic Analysis, 44(3):537±557,

2018.

Shen, Z., Yang, H., and Zhang, S. Deep network approxima-

tion characterized by number of neurons. arXiv preprint

arXiv:1906.05497, 2019.

Slobodeckij, L. Generalized Sobolev spaces and their appli-

cations to boundary value problems of partial differential

equations. Gos. Ped. Inst. Ucep. Zap, 197:54±112, 1958.

Spivak, M. A comprehensive introduction to differential

geometry. Bull. Amer. Math. Soc, 79:303±306, 1973.

Stein, E. M. Singular Integrals and Differentiability Proper-

ties of Functions, volume 2. Princeton University Press,

1970.

Suzuki, T. Adaptivity of deep ReLU network for learning

in Besov and mixed smooth Besov spaces: optimal rate

and curse of dimensionality. In International Conference

on Learning Representations, 2019.

Suzuki, T. and Nitanda, A. Deep learning is adaptive to in-

trinsic dimensionality of model smoothness in anisotropic

Besov space. arXiv preprint arXiv:1910.12799, 2019.

Tenenbaum, J. B., De Silva, V., and Langford, J. C. A

global geometric framework for nonlinear dimensionality

reduction. Science, 290(5500):2319±2323, 2000.

Tu, L. An Introduction to Manifolds. Universitext. Springer

New York, 2010. ISBN 9781441973993.



Benefits of Deep and Wide Convolutional Residual Networks

Uesato, J., O’donoghue, B., Kohli, P., and Oord, A. Ad-

versarial risk and the dangers of evaluating against weak

attacks. In International Conference on Machine Learn-

ing, pp. 5025±5034. PMLR, 2018.

Weng, T.-W., Zhang, H., Chen, P.-Y., Yi, J., Su, D., Gao,

Y., Hsieh, C.-J., and Daniel, L. Evaluating the robustness

of neural networks: An extreme value theory approach.

arXiv preprint arXiv:1801.10578, 2018.

Wu, B., Chen, J., Cai, D., He, X., and Gu, Q. Do wider

neural networks really help adversarial robustness? arXiv

preprint arXiv:2010.01279, 2020.

Yarotsky, D. Error bounds for approximations with deep

ReLU networks. Neural Networks, 94:103±114, 2017.

Zagoruyko, S. and Komodakis, N. Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016.

Zhang, H., Yu, Y., Jiao, J., Xing, E. P., Ghaoui, L. E., and

Jordan, M. I. Theoretically principled trade-off between

robustness and accuracy. In International Conference on

Machine Learning, 2019.

Zhao, Z., Zuo, S., Zhao, T., and Zhao, Y. Adversarially regu-

larized policy learning guided by trajectory optimization.

arXiv preprint arXiv:2109.07627, 2021.

Zhou, D.-X. Theory of deep convolutional neural networks:

Downsampling. Neural Networks, 124:319±327, 2020a.

Zhou, D.-X. Universality of deep convolutional neural net-

works. Applied and Computational Harmonic Analysis,

48(2):787±794, 2020b.



Benefits of Deep and Wide Convolutional Residual Networks

Appendix

A. A Brief Introduction to Manifold

We introduce some concepts and quantities that characterize a low-dimensional Riemannian manifold. (Some are restate-

ments of the main text for completeness.) These concepts and quantities are used in our theorems and proofs. We refer

readers to Lee (2006); Tu (2010) for more details.

Let M be a d-dimensional manifold embedded in R
D with d ≤ D. The first concept related to manifolds is chart, which

defines a local coordinate neighborhood of a manifold.

Definition A.1 (Chart). A chart on M is a pair (U, ϕ) where U ⊂ M is open and ϕ : U → R
d, is a homeomorphism (i.e.,

bijective, ϕ and ϕ−1 are both continuous).

In a chart (U, ϕ), U is called a coordinate neighborhood and ϕ is a coordinate system on U . A collection of charts which

covers M is called an atlas of M.

Definition A.2 (Ck Atlas). A Ck atlas for M is a collection of charts {(Uα, ϕα)}α∈A which satisfies
⋃

α∈A Uα = M, and

are pairwise Ck compatible, i.e.,

ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) and

ϕβ ◦ ϕ−1
α : ϕα(Uα ∩ Uβ) → ϕβ(Uα ∩ Uβ)

are both Ck for any α, β ∈ A. An atlas is called finite if it contains finitely many charts.

With the concept of atlas, we then define smooth manifolds:

Definition A.3 (Smooth Manifold). A smooth manifold is a manifold M together with a C∞ atlas.

Simple examples of smooth manifold include the Euclidean space, the torus and the unit sphere. Cs functions on a smooth

manifold M are defined as follows:

Definition A.4 (Cs functions on M). Let M be a smooth manifold and f : M → R be a function on M. We say f is a Cs

function defined on M, if for every chart (U, ϕ) on M, the function f ◦ ϕ−1 : ϕ(U) → R is a Cs function.

We next define the C∞ partition of unity which is an important tool for the study of functions on manifolds.

Definition A.5 (Partition of Unity). A C∞ partition of unity on a manifold M is a collection of C∞ functions {ρα}α∈A

with ρα : M → [0, 1] such that for any x ∈ M,

1. there is a neighbourhood of x where only a finite number of the functions in {ρα}α∈A are nonzero, and

2.
∑

α∈A

ρα(x) = 1.

An open cover of M is called locally finite if every x ∈ M has a neighbourhood that intersects with a finite number of sets

in the cover. For a locally finite cover of a smooth manifold M, there always exists a C∞ partition of unity subordinate to

the cover (Spivak, 1973, Chapter 2, Theorem 15).

Proposition A.6 (Existence of a C∞ partition of unity). Let {Uα}α∈A be a locally finite cover of a smooth manifold M.

There is a C∞ partition of unity {ρα}∞α=1 such that supp(ρα) ⊂ Uα.

Let {(Uα, ϕα)}α∈A be a C∞ atlas of M. Proposition A.6 guarantees the existence of a partition of unity {ρα}α∈A such

that ρα is supported on Uα.

B. Convolutional neural networks and multi-layer perceptions

Our proofs are based on approximation theories of convolutional neural networks (CNN) and their relations to multi-layer

perceptions (MLP). In this section, we introduce related notations and definitions. For the convenience of notation, we use ·
to denote ⊗, the sum of entrywise product.
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We consider CNNs in the form of

f(x) =W · ConvW,B(x), (10)

where ConvW,B(Z) is defined in (1), W is the weight matrix of the fully connected layer, W,B are sets of filters and biases,

respectively. We define the class of CNNs as

FCNN(L, J,K, κ1, κ2) =
{
f |f(x) in the form (10) with L layers.

Each convolutional layer has filter size bounded by K.

The number of channels of each layer is bounded by J.

max
l

∥W(l)∥∞ ∨ ∥B(l)∥∞ ≤ κ1, ∥W∥∞ ≤ κ2
}
.

For MLP, we consider the following form

f(x) =WL · ReLU(WL−1 · · ·ReLU(W1x+ b1) · · ·+ bL−1) + bL, (11)

where W1, . . . ,WL and b1, . . . ,bL are weight matrices and bias vectors of proper sizes, respectively. The class of MLP is

defined as
FMLP(L, J, κ) =

{
f |f(x) in the form (11) with L-layers and width bounded by J.

∥Wi∥∞,∞ ≤ κ, ∥bi∥∞ ≤ κ for i = 1, . . . , L
}
.

In some cases it is necessary to enforce the output of the MLP to be bounded. We define such a class as

FMLP(L, J, κ,R) =
{
f |f(x) ∈ FMLP(L, J, κ) and ∥f∥∞ ≤ R

}
.

In some case we do not need the constraint on the output, we denote such MLP class as FMLP(L, J, κ).

C. Proof of Theorem 3.2

Before we prove Theorem 3.2, we define the Sobolev semi-norm:

Definition C.1. For any integers 0 ≤ k ≤ α, 1 ≤ p <∞ and function f ∈Wα,p(Ω), we define its Sobolev semi-norm as

|f |Wk,p(Ω) =
( ∑

|α|=k

∥Dαf∥pLp(Ω)

)1/p
,

|f |Wk,∞(Ω) = max
|α|=k

∥Dαf∥L∞(Ω),

Now we prove Theorem 3.2.

Proof of Theorem 3.2. We prove Theorem 3.2 in four steps.

Step 1: Decompose (0, 1)D using locally supported functions. We define

ψ(x) =





1 |x| < 1,

0 2 < |x|,
2− |x| 1 ≤ |x| ≤ 2

and

ϕm(x) =

D∏

k=1

ψ
(
3N
(
xk − mk

N

))

with m = (m1,m2, ...,mD) ∈ {0, ..., N}D. We have
∑

m
ϕm = 1 on (0, 1)D and ϕm is supported on B 2

3
N,∥·∥∞

(mN ) ⊂
B1/N,∥·∥∞

(mN ). We denote SN = {0, 1, ..., N}D. The following lemma shows that each ψ
(
3N
(
xk − mk

N

))
can be

realized by a CNN (see a proof in Appendix G.3).
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Lemma C.2. There exists a CNN architecture FCNN(L, J,K, κ1, κ2) such that for any N,m, such an architecture yields a

CNN ψ̃ with

ψ̃m,N (x) = ψ
(
3N
(
xk − m

N

))
, (12)

∥ψ̃m,N∥Wk,∞(0,1) ≤ (3N)k. (13)

Such an architecture has

L = 2, J = 16, K = 2, κ1 = κ2 = O(N).

Further more, the weight matrix in the fully connected layer of FCNN has nonzero entries only in the first row.

We then decompose f as

f =
∑

m

ϕmf.

Step 2: Approximate each ϕmf using averaged Taylor polynomials. On each B1/N,∥·∥∞
(mN ), we approximate ϕmf

by an averaged Taylor polynomial. The averaged Taylor polynomial is defined as follows:

Definition C.3 (Averaged Taylor polynomials). Let α > 0, 1 ≤ p ≤ +∞ be integers and f ∈ Wα−1,p(Ω). For

x0 ∈ Ω, r > 0 such that Br,∥·∥(x0) is compact in Ω, the corresponding Taylor polynomial of order α of f averaged over

Br,∥·∥(x0) is defined as

Qα
x0
f(x) =

∫

Br,∥·∥(x0)

Tαf(x, z)ϕ(z)dz

with

Tαf(x,y) =
∑

|v|≤α−1

1

v
∂vf(z)(x− z)v

and ϕ being arbitrary cut-off function satisfying

ϕ ∈ C∞
c (RD) with ϕ(x) ≥ 0 for all x ∈ R

D,

supp(ϕ) = Br,∥·∥(x0) and

∫

RD

ϕ(x)dx = 1,

where C∞
c (RD) denotes the space of infinitely differentiable functions on R

D with compact support.

Under proper assumptions, the averaged Taylor polynomial can approximate f and its partial derivatives well. We first

define the star-shaped sets and chunkiness parameter, which are used in the error estimation result.

Definition C.4 (Star-shaped sets, Definition 4.2.2 of (Brenner et al., 2008)). Let Ω, Ω̃ ⊂ R
D. Then Ω is called star-shaped

with respect to Ω̃ if for all x ∈ Ω, we have

ch({x} ∪ Ω̃) ⊂ Ω.

Definition C.5 (Chunkiness parameter, Definition 4.2.16 of (Brenner et al., 2008)). Let Ω ⊂ R
D be bounded. Define

R =
{
r > 0 : there exists x ∈ Ω such that Ω is star-shaped with respect to Br,|·|(x)

}
.

For R ≠ ∅, we define

r∗max = supR and γ =
diam(Ω)

r∗max

,

where γ is called the chunkiness parameter of Ω.
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The following lemma gives an error estimation of averaged Taylor polynomials:

Lemma C.6 (Bramble-Hilbert, Lemma 4.3.8 of (Brenner et al., 2008)). Let Ω ⊂ R
D be open and bounded, x ∈ Ω and

r > 0 such that Ω is star-shaped with respect to Br,∥·∥(x0) and r > 1
2r

∗
max, with r∗max defined in Definition C.5. Let

n > 0, 1 ≤ p ≤ +∞ be integers and γ be the chunkiness parameter of Ω. Then we have

|f −Qα
x0
f |Wα,p(Ω) ≤ Chα−k|f |Wα,p(Ω)

for k = 0, 1, ..., α, where h = diam(Ω) and C is a constant depending on D,α, γ.

Lemma C.7 below shows that Qαf can be written as a weighted sum of polynomials.

Lemma C.7 (Lemma B.9 of (GÈuhring et al., 2020)). Let α > 0, 1 ≤ p ≤ +∞ be integers and f ∈ Wα−1,p(Ω). Let

x0 ∈ Ω, r > 0 such that Br,∥·∥(x0) is compact in Ω, and there exists r̃ > 0 with Br,∥·∥(x0) ⊂ Br̃,∥·∥∞
(0). Then the

averaged Taylor polynomial Qα
x0
(f) can be written as

Qα
x0
f(x) =

∑

|v|≤α−1

cvx
v (14)

for x ∈ Ω. There exists a constant C depending on α,D, r̃ such that

|cv| ≤ Cr−D/p∥f∥Wα−1,p(Ω)

for all |v| ≤ α− 1.

Using averaged Taylor polynomials, we approximate ϕmf by

ϕmf ≈ (ϕmQ
α
m/Nf)(x) = ϕm

∑

|v|≤α−1

cm,vx
v =

∑

|v|≤α−1

cm,vϕmxv. (15)

Define

f̂ =
∑

m∈SN

∑

|v|≤α−1

cm,vϕmxv, (16)

where cm,v’s are the coefficients in (14). Then f̂ is an approximation of f . The following lemma gives an upper bound on

the approximation error

Lemma C.8 (Lemma C.4 of (GÈuhring et al., 2020)). Let α ≥ 2 be an integer and 1 ≤ p ≤ ∞. For any s ∈ [0, 1] and

f ∈Wα,p((0, 1)D), one has

∥f̂ − f∥W s,p((0,1)D) ≤ C

(
1

N

)α−s

∥f∥Wα,p((0,1)D),

where C is a constant depending on α, p,D. Furthermore, the coefficients in f̂ satisfies

|cm,v| ≤ C1N
D/p∥f∥Wα,p((0,1)D)

for some constant C1 depending on D,α, p.

Step 3: Network approximation Note that f̂ is a sum of functions in the form of ϕmxv with weights cm,v’s. We next

approximate each ϕmxv by a CNN.

Lemma C.9. For any 0 < ε < 1,x ∈ (0, 1)D, N > 0,m ∈ {0, 1, ..., N}D, |v| < α, there exists a CNN architecture

FCNN(L, J,K, κ, κ) that yields a CNN g̃ with

∥g̃m,v(x)− ϕmxv∥Wk,∞((0,1)D ≤ C2N
kε, (17)

g̃m,v(x) = 0 if ϕmxv = 0 (18)
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for k = 0, 1, where C2 is a constant depending on α, k. Such an architecture has

L = O

(
D log

1

ε

)
, J = O(D), κ = 3N.

The constants hidden in O depends on α, k. Further more, the weight matrix in the fully connected layer of FCNN has

nonzero entries only in the first row.

Lemma C.9 is proved in Appendix G.4. By Lemma C.9, each ϕmxv can be approximated by a CNN. Denote the network

approximation of ϕmxv by g̃m,v(x). We approximate f̂ by f̃ defined as

f̃ =
∑

m

∑

|v|≤α−1

cm,vg̃m,v(x). (19)

The following lemma gives an upper bound of the approximation error of f̃ (see a proof in Appendix G.6).

Lemma C.10. Let α ≥ 2 and 1 ≤ p ≤ ∞ be integers. For any f ∈ Wα,p((0, 1)D), let ϕmQ
α
m/Nf(x) be the averaged

Taylor approximation of ϕmf defined in (15). For any 0 < η < 1, let g̃m,v be the CNN approximation of ϕmQ
α
m/Nf(x)

constructed in Lemma C.9 with accuracy η. For 0 ≤ s ≤ 1, we have

∥
∑

m∈SN

ϕmQ
α
m/Nf −

∑

m∈SN

∑

|v|≤α−1

cm,vg̃m,v∥W s,p((0,1)D) ≤ C3∥f∥Wα,p((0,1)D)N
sη, (20)

where cm,v’s are coefficients defined in (15), C3 is a constant depending on D,α, s, p.

Note the f̃ is the sum of no more than ND(D + 1)α−1 CNNs of which the width is of J = O(D). The following lemma

shows that under appropriate conditions, the sum of n0 CNNs with width in the same order can be realized by the sum of n1
CNNs with a proper width (see a proof in Appendix G.8):

Lemma C.11. Let {fi}n0

i=1 be a set of CNNs with architecture FCNN(L0, J0,K0, κ0, κ0). For any integers 1 ≤ n ≤ n0
and J̃ satisfying nJ̃ = O(n0J0) and J̃ ≥ J0, there exists a CNN architecture FCNN(L, J,K, κ, κ) that gives a set of CNNs

{gi}ni=1 such that

n∑

i=1

gi(x) =

n0∑

i=1

fi(x).

Such an architecture has

L = O(L0), J = O(J̃),K = K0, κ = κ0.

Furthermore, the fully connected layer of f has nonzero elements only in the first row.

By Lemma C.11, for any M̃, J̃ satisfying M̃J̃ = O(ND), there exists a CNN architecture FCNN(L, J,K, κ, κ) that gives

rise to {gi}ni=1 with

f̃ =
M̃∑

i=1

gi,

where

L = O

(
log

1

η

)
, J = O(J̃), κ = 3N.

The following lemma shows that the sum of CNNs can be realized by a ConvResNet:
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Lemma C.12 (Lemma 18 in (Liu et al., 2021)). Let FCNN(L, J,K, κ1, κ2) be any CNN architecture from R
D to R.

Assume the weight matrix in the fully connected layer of FCNN(L, J,K, κ1, κ2) has nonzero entries only in the first

row. Let M be a positive integer. There exists a ConvResNet architecture C(M,L, J, κ1, κ2(1 ∨ κ−1
1 )) such that for any

{fi(x)}Mi=1 ⊂ FCNN(L, J,K, κ1, κ2), there exists f̃ ∈ C(M,L, J, κ1, κ2(1 ∨ κ−1
1 )) with

f̃(x) =

M∑

i=1

fi(x).

By Lemma C.12, there exits a ConvResNet architecture C(M,L, J,K, κ1, κ2) with

L = O(log 1/η), J = O(J̃), κ1 = O(3N), κ2 = O(3N), M = O(M̃) (21)

and J̃ , M̃ satisfying

M̃J̃ = O(ND), (22)

that yields a ConvResNet realizing f̃ .

Step 4: Error estimation. We compute

∥f − f̃∥W s,p((0,1)D)

≤
∥∥∥∥∥f −

(
∑

m

ϕmQ
α
m/Nf

)∥∥∥∥∥
W s,p((0,1)D)

+

∥∥∥∥∥

(
∑

m

ϕmQ
α
m/Nf

)
− f̃

∥∥∥∥∥
W s,p((0,1)D)

≤C4

(
1

N

)α−s

∥f∥Wα,p((0,1)D) + C5N
sη∥f∥Wα,p((0,1)D)

≤(C4 + C5)N
−(α−s), (23)

where C4, C5 are two constants depending on D,α, s, p, R. In the second inequality, we use Lemma C.8 and C.10 for the

first and second term, respectively. In the third inequality, we set η = N−α to balance the two terms. Using the relation

(22), we have

N = (M̃J̃)1/D, η = (M̃J̃)−
α
D . (24)

Substituting (24) into (23) gives rise to

∥f − f̃∥W s,p((0,1)D) ≤ C6(M̃J̃)−
α−s
D (25)

for some constant C6 depending on D,α, s, p, R. Substituting (24) into (21) and (22) gives rise to the network architecture

L = O(log(M̃J̃)), J = O(J̃), κ1 = O((M̃J̃)1/D), κ2 = O((M̃J̃)1/D), M = O(M̃).

D. Proof of Theorem 3.4

Proof of Theorem 3.4. By Theorem 3.2 and the choice of M̃J̃ , there exits f̃ ∈ C so that ∥f̃ − f∥∞ ≤ ε and

max
j

∥∥∥∥∥
∂f̃

∂xj
− ∂f

∂xj

∥∥∥∥∥ ≤ ε
α−1

α , (26)

which implies

∥∥∥f̃
∥∥∥
Lip

≤ 1 +
√
Dε

α−1

α . (27)
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We have

E

[
(f̃(x1)− y1)

2
]

≤E

[
(f̃(x1)− f(x1))

2
]
+ E

[
(f(x1)− y1)

2
]

≤ε2 + σ2. (28)

Denote Xi =
1
n (f̃(xi)− yi)

2 − E

[
(f̃(xi)− yi)

2
]
. We have

|Xi| ≤
2(ε2 + σ2)

n
, E[Xi] = 0, (29)

and

E[X2
i ] ≤

8(ε4 + σ4)

n2
. (30)

By Bernstein inequality, we deduce

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
−

1
2 t

2

8(ε4+σ4)
n + 2(ε2+σ2)

3n t

)

=exp

(
− 3nt2

48(ε4 + σ4) + 4(ε2 + σ2)t

)
. (31)

Therefore

P

(
1

n

n∑

i=1

(f̃(xi)− yi)
2 ≥ ε2 + σ2 + t

)

≤P

(
1

n

n∑

i=1

(f̃(xi)− yi)
2 ≥ E

[
(f̃(x1)− y1)

2
]
+ t

)

≤ exp

(
− 3nt2

48(ε4 + σ4) + 4(ε2 + σ2)t

)
. (32)

Setting t = ε2 gives rise to

P

(
1

n

n∑

i=1

(f̃(xi)− yi)
2 ≥ 2ε2 + σ2

)

≤ exp

(
− 3nε2

104σ4

)
. (33)

E. Proof of Theorem 3.6

Proof of Theorem 3.6. By Theorem 3.2 and the choice of M̃J̃ , there exits f̃ ∈ C so that ∥f̃ − f∥∞ ≤ ε and

max
j

∥∥∥∥∥
∂f̃

∂xj
− ∂f

∂xj

∥∥∥∥∥ ≤ ε
α−1

α . (34)

Since ∥f∥Wα,∞ ≤ 1, we have

∥f̃∥Lip ≤ 1 +
√
Dε

α−1

α . (35)
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We have

R(f̃ , δ)−R(f̃ , 0)

=E(x,y)∈supp(ρ)

[
sup

x′∈Bδ(x)

ℓ
(
f̃(x′), y

)]
− E(x,y)∈supp(ρ)

[
ℓ
(
f̃(x′), y

)]

≤E(x,y)∈supp(ρ)

[
sup

x′∈Bδ(x)

∣∣∣ℓ
(
f̃(x′), y

)
− ℓ

(
f̃(x), y

)∣∣∣
]

≤E(x,y)∈supp(ρ) sup
x′∈Bδ(x)

LLip|f̃(x′)− f̃(x)|

≤E(x,y)∈supp(ρ) sup
x′∈Bδ(x)

LLip∥f̃∥Lip∥x′ − x∥2

≤LLip(1 +
√
Dε

α−1

α )δ (36)

F. Proof of Theorem 4.5

Proof of Theorem 4.5. We prove Theorem 4.5 in three steps.

Step 1: Decomposition of f
• Construct an atlas on M. According to Assumption 4.1, M is bounded. Therefore, for any given 0 < r < τ/2, we can

find a finite collection of points {ci}CM
i=1 ⊂ M such that

M ⊂
CM⋃

i=1

Br(ci).

Denote Ui = Br(ci) ∩M. Then {Ui}CM
i=1 form an open cover of M and each Ui is diffeomorphic to an open subset of Rd.

The total number of partitions if bounded by CM ≤
⌈
SA(M)

rd
Td

⌉
, where SA(M) is the surface area of M and Td is the

average number of Ui’s that contain a given point on M.

On each Ui, we define a transformation ϕi that projects any x ∈ Ui to Tci
(M), the tangent space of M at ci. Let

Vi ∈ R
D×d be an orthogonal matrix whose columns form an orthonomal basis of Tci

(M). Define

φi(x) = aiV
⊤
i (x− ci) + bi for x ∈ Ui, (37)

where ai ∈ R is a scaling factor and b)i ∈ R
d is a shifting vector that ensure φi(Ui) ⊆ [0, 1]d. Then {(Ui, φi)}CM

i=1 form an

atlas of M.

•Decomposition of f by a partition of unity. The following lemma shows that under proper assumption, there exists a

partition of unity {ρi}CM
i=1 subordinate to {(Ui, φi)}CM

i=1 (see Appendix H.1 for a proof).

Lemma F.1. Let {(Ui, φi)}CM
i=1 be the atlas of M defined above with r < τ/4. There exist a finite number CM and a C∞

partition of unity {ρi}CM
i=1 satisfying

(i) supp(ρi) is compact in Ui.

(ii)
∑CM

i=1 ρi(x) = 1 for any x ∈ M.

(iii) There exists a constant c > 0 depending on r such that for any i, we have

inf
x∈supp(ρi), x̃∈∂Ui

∥x− x̃∥2 ≥ c.

Here CM depends on the surface area of M and the average number of Ui’s that contain a given point on M.



Benefits of Deep and Wide Convolutional Residual Networks

Let {ρi}CM
i=1 be the partition of unity from Lemma F.1. Since for each i, φi is a bijection from Ui to a subset of [0, 1]d, φ−1

exists and is a linear operator. We decompose f as

f =

CM∑

i=1

fi with fi = (fρi).

Here each fi is compactly supported on Ui and each fi ◦φ−1
i is compactly supportedin φi(Ui) ⊆ [0, 1]d. We extend fi ◦φ−1

i

by 0 on [0, 1]d\φi(Ui). The extended function is in Wα,k([0, 1]d). To simplify the notation, we still use fi ◦ φ−1
i to denote

the extended function. For each i, we use averaged Taylor polynomials to approximate fi ◦ φ−1 on [0, 1]d as in (16):

fi ◦ φ−1
i ≈ f̂i =

∑

m,v

ci,m,vϕmxv.

Step 2: Network approximation

•Approximate f̂i by CNNs. Since each f̂i is the averaged Taylor polynomial approximation of fi ◦ φ−1
i , by Lemma C.9, it

can be approximated by a sum of (d+ 1)α−1Nd CNNs. Denote the approximation accuracy by η as in Lemma C.9, each

CNN has depth O(log(1/η)), width O(1), all weight parameters are of O(N).

•Chart determination For any input x, to determine the chart it belongs to, we are going to construct an indicator function.

With our construction of charts, we have x ∈ Ui if and only if ∥x− ci∥22 ≤ r2. Define the indicator function

1[0,r2](a) =

{
1 if a ≤ r2,

0 otherwise,

and the squared distance function

d2i (x) = ∥x− ci∥22 =

D∑

j=1

(xj − ci,j)
2, (38)

where we used the expression x = [x1, ..., xD]⊤ and ci = [ci,1, ..., ci,D]⊤. The composition 1i = 1[0,r2] ◦ d2i outputs 1 if

x ∈ Ui and outputs 0 otherwise. We are going to construct a CNN to approximate 1i.

In (38), the function d2i is a sum of D square functions. By Lemma G.6, For any 0 < θ < 1/2, x ∈ [−B,B], and K ≥ 2,

there is a CNN architecture FCNN(L, J,K, κ, κ) that yields a CNN, denoted by d̃2, such that

∥d̃2(x)− x2∥W 1,∞([−B,B]) < θ, d̃(0) = 0.

Such a network has

L = O

(
log

1

θ

)
, J = 24, κ = 1.

Furthermore, one has

∥d̃2∥W 1,∞((−B,B)) ≤ C7B (39)

for some absolute constant C7. We approximate di by

d̃2i (x) =

D∑

j=1

d̃2(xj − ci,j).

According to Lemma C.11, d̃i can be realized by a CNN with O
(
log 1

θ

)
layers, O(D) width and all weight parameters of

O(1). The approximation error is bounded as

∥d̃2i − d2i ∥L∞ ≤ 4B2Dθ.

The following Lemma shows that 1[0,r2] can be approximated by a CNN:
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Lemma F.2 (Lemma 9 of Liu et al. (2021)). For any 0 < θ < 1 and ∆ ≥ 8B2Dθ, there exists a CNN 1̃∆ approximating

1[0,ω2] with

1̃∆(x) =





1, if a ≤ (1− 2−w)(r2 − 4B2Dθ),

0, if a ≥ r2 − 4B2Dθ,

2w((r2 − 4B2Dθ)−1a− 1), otherwise

for x ∈ M, where w =
⌈
log(r2/∆)

⌉
such that (1 − 2−k)(ω2 − 4B2Dθ) ≥ ω2 − ∆ + 4B2Dθ. Such a CNN has⌈

log(r2/∆)
⌉
+D layers, 2 channels. All weight parameters are of O(1).

Let 1∆ be the CNN defined in Lemma F.2. We have

∂1̃∆(a)

∂a
=

{
0, if a ≤ (1− 2−w)(r2 − 4B2Dθ) or a ≥ r2 − 4B2Dθ,

C8/∆, otherwise
(40)

for some constant C8 depending on r.

The function 1i is approximated by

1̃i(x) = 1̃∆ ◦ d̃2i (x).

Combining (40) and (39) gives rise to

∣∣∣∣∣
∂1̃i

∂xj

∣∣∣∣∣ =

∣∣∣∣∣∣
∂1̃∆

a

∣∣∣∣∣
d̃2

i (x)

∣∣∣∣∣∣

∣∣∣∣∣
d̃i
∂xj

∣∣∣∣∣ ≤
{
0, if di(x)

2 ≥ r2 or d2i (x) ≤ r2 −∆,

CB/∆, otherwise.

Step 3: Error analysis. Our network approximation of f is

f̃ =

CM∑

i=1

f̃i with f̃i(x) =
∑

m,v

ci,m,v(g̃m,v ◦ φi(x))×̃1̃i(x), (41)

where g̃m,v is the CNN approximation of ϕmzv for z ∈ [0, 1]d as in (19). We decompose the error as

∥f̃ − f∥Wk,∞(M) ≤
CM∑

i=1

∥f̃i − fi∥Wk,∞(Ui)

=

CM∑

i=1

∥f̃i ◦ φ−1
i ◦ φi − fi ◦ φ−1

i ◦ φi∥Wk,∞(Ui)

≤
CM∑

i=1

∥f̃i ◦ φ−1
i (z)− fi ◦ φ−1

i (z)∥Wk,∞(φi(Ui)) (set z = φi(x))

≤
CM∑

i=1

∥f̃i ◦ φ−1
i (z)− fi ◦ φ−1

i (z)∥Wk,∞(φi(Ui))

≤
CM∑

i=1

∥f̃i ◦ φ−1
i (z)− f̂i(z)∥Wk,∞(φi(Ui)) + ∥f̂i(z)− fi ◦ φ−1

i (z)∥Wk,∞([0,1]d). (42)
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The second term can be bounded using Lemma C.8. We next focus on the first term

∥f̃i ◦ φ−1
i (z)− f̂i(z)∥Wk,∞(φi(Ui))

≤
∥∥∥∥∥
∑

m,v

ci,m,v

[
(g̃m,v(z))×̃(1̃i ◦ φ−1

i (z))− ϕm(z)zv
]∥∥∥∥∥

Wk,∞(φi(Ui))

≤
∥∥∥∥∥
∑

m,v

ci,m,v

[
(g̃m,v(z))×̃(1̃i ◦ φ−1

i (z))− (g̃m,v(z))× (1̃i ◦ φ−1
i (z))

]∥∥∥∥∥
Wk,∞(φi(Ui))

+

∥∥∥∥∥
∑

m,v

ci,m,v

[
(g̃m,v(z))× (1̃i ◦ φ−1

i (z))− (g̃m,v(z))× (1i ◦ φ−1
i (z))

]∥∥∥∥∥
Wk,∞(φi(Ui))

+

∥∥∥∥∥
∑

m,v

ci,m,v

[
(g̃m,v(z))× (1i ◦ φ−1

i (z))− ϕm(z)zv
]
∥∥∥∥∥
Wk,∞(φi(Ui))

= ∥A1∥Wk,∞(φi(Ui))
+ ∥A2∥Wk,∞(φi(Ui))

+ ∥A3∥Wk,∞(φi(Ui))
(43)

with

A1 =
∑

m,v

ci,m,v

[
(g̃m,v(z))×̃(1̃i ◦ φ−1

i (z))− (g̃m,v(z))× (1̃i ◦ φ−1
i (z))

]
, (44)

A2 =
∑

m,v

ci,m,v

[
(g̃m,v(z))× (1̃i ◦ φ−1

i (z))− (g̃m,v(z))× (1i ◦ φ−1
i (z))

]
, (45)

A3 =
∑

m,v

ci,m,v [g̃m,v(z)− ϕm(z)zv] . (46)

Denote the W 1,∞ error of ×̃ by δ. We first derive an upper bound for A1. We can show that ∥g̃m,v∥∞ ≤ α+ d (see (69))

and ∥1̃i ◦ φ−1
i ∥L∞ = 1. Therefore by Lemma G.7, we have for k = 0

|A1|W 0,∞([−α−d,α+d]) ≤
∑

m,v

ci,m,v|×̃(a, b)− ab|W 0,∞([−α−D,α+D])

≤C9N
dδ, (47)

and for k = 1

|A1|W 1,∞([−α−d,α+d])

≤
∑

m,v

ci,m,vC
′|×̃(a, b)− ab|W 1,∞([−α−D,α+D])|g̃m,v|W 1,∞(φi(Ui))

∣∣∣1̃i ◦ φ−1
i

∣∣∣
W 1,∞(φi(Ui))

≤C10N
d+1δ/∆ (48)

for some constants C9, C10, C
′ depending on r, α, d, where we used Lemma C.8 and (65) in the last inequality. Combining

(47) and (48) gives rise to

∥A1∥Wk,∞([−α−d,α+d]) ≤ C11N
d+kδ/∆ (49)

for k = 0, 1 and a constant C11 depending on d, α, r.

Before we derive upper bounds for A2 and A3, we define some sets which will be used in our following proof.

Define the set

Ω̃i,1 =

{
x ∈ Ui : min

x̃∈∂Ui

∥x− x̃∥2 ≤ c

}
,
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where c is the constant from Lemma F.1. Denote Ωi,1 = φi(Ω̃i,1). According to Lemma F.1, we have fi|Ω̃i,1
= fi◦ϕi|Ωi,1

=

0. Since φi is a bijection, both Ωi,1 and Ω̃i,1 have two disjoint boundaries. Denote the two boundaries of Ωi,1 by λi,1,1 and

λi,1,2. We define the thickness of Ωi,1 as

χi,1 = min
z∈λi,1,1, z̃∈λi,1,2

∥z− z̃∥2.

Since each φi is a bijection, there exists a constant c1 depending on c and the atlas such that χi,1 ≥ c1 for all i’s. Again

since ϕi is a linear bijection, its inverse exists and is linear, and there exists a constant c2 such that

∥φ−1
i (z)− φ−1

i (z̃)∥2 ≥ c2∥z− z̃∥2. (50)

We will choose θ and ∆ small enough such that

8B2Dθ

c2
≤ ∆

c2r
≤ c1

2
. (51)

Define the region

Ωi,2 =

{
z ∈ φi(Ui) : min

z̃∈ϕi(∂Ui)
∥z− z̃∥2 ≤ ∆

c2r

}
. (52)

According to (50), (51) and the definition of Ωi,1, we have Ωi,2 ⊂ Ωi,1. For any z ∈ φi(Ui)\Ωi,2, denote z∗ =
argmin

z̃∈φi(∂Ui) ∥z− z̃∥2. We have

min
x̃∈∂Ui

∥φ−1
i (z)− x̃∥2 ≥ c2∥z− z∗∥2 ≥ ∆/r.

Therefore

∥φ−1
i (z)− ci∥22 ≤ (r −∆/r)2 = r2 +

(
∆

r

)2

− 2∆ ≤ r2 −∆

when ∆ ≤ r2 and

1̃i ◦ φ−1(z) = 1,
∂1̃i ◦ φ−1

zj

∣∣∣∣∣
φi(Ui)\Ωi,2

= 0

for j = 1, ..., d, where we used the notation z = [z1, ..., zd]
⊤.

Note that each g̃m,v and ϕmzv is supported on B1/N,∥·∥∞
(m/N), a hyper cube with edge length 2/N . We will choose N

large enough such that
2

N
≤ ∆

4c2r
≤ c1

8
.

Such a choice of N ensures that along any directions of zj for j = 1, ..., d, there are at least 2 hypercubes that entirely locate

inside Ωi,2. Since any z ∈ [0, 1]d is only covered by 2 hypercubes along each coordinate direction, we have

{ci,m,v : there exits z ∈ φi(∂Ui) such that z ∈ B1/N,∥·∥∞
(m/N)} = 0 (53)

and f̃i ◦ φi(z) = 0 for any z ∈ φi(∂Ui). See Figure 4 for an illustration.

We have the following lemma on the bound of ∥A2∥Wk,∞(φi(Ui)) (see Appendix H.2 for a proof):

Lemma F.3. Let A2 be defined as in (45). Assume ∆ ≤ r2. We have

∥A2∥W 1,∞(φi(Ui)) ≤ C12Nη∆
1−k (54)

for k = 1, 2.
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Hyper cubes

Figure 4: Illustration of the relations of Ωi,1, Ωi,2 and φi(Ui).

The term A3 can be bounded using Lemma C.10:

∥A3∥Wk,∞(φi(Ui)) =

∣∣∣∣∣
∑

m,v

ci,m,v [g̃m,v(z)− ϕm(z)zv]

∣∣∣∣∣
Wk,∞(φi(Ui))

≤
∣∣∣∣∣
∑

m,v

ci,m,v [g̃m,v(z)− ϕm(z)zv]

∣∣∣∣∣
Wk,∞([0,1]d)

≤C13N
kη (55)

for some constant C13 depending on d, α,R. Substituting (49), (54) and (55) into (43) gives rise to

∥f̃i ◦ φ−1
i (z)− f̂i(z)∥Wk,∞(φi(Ui)) ≤ C11N

d+kδ/∆+ C12N
kη + C13Nη∆

1−k. (56)

The second term in (42) can be bounded by Lemma C.8 as

∥f̂i(z)− fi ◦ φ−1
i (z)∥Wk,∞([0,1]d) ≤ C14N

−(α−k). (57)

Substituting (56) and (57) into (42) gives rise to

∥f̃ − f∥Wk,∞(M) ≤ CMC11N
d+kδ/∆+ CMC12N

kη + CMC13Nη∆
1−k + CMC14N

−(α−k).

Setting

η = N−α, ∆ = 8c2rN
−1, δ = N−(α+d+1), θ = (8B2D)−1∆,

we have

∥f̃ − f∥Wk,∞(M) ≤ C15N
−(α−k) (58)

for k = 0, 1 and a constant C15 depending on d, α, τ and the surface area of M.

•Network size We analyze the network size for each f̃i:

• 1̃i: The chart dermination network is the composition of d̃i and 1̃∆, where d̃i has O(log 1
θ ) = O(logN + logD)

layers and O(D) width, 1̃∆ has O(log 1
δ ) + D = O(logN) + D layers and O(1) width. In both subnetworks, all

parameters are of O(1). By Lemma G.2, the chart dermination network has O(logN + logD) + D layers, O(D)
width and all weight parameters are of O(1).

• ×̃: The multiplication network has O(log 1
δ ) = O(logN) layers, O(1) width. All weight parameters are bounded by

2(α+ d+ 1).

• φi: the projection φi can be realized by a single layer with width d. All parameters are of O(1).
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• g̃i,m,v: By Lemma C.9, each g̃i,m,v has O(logN) layers and O(d) width. All parameters are of O(N).

• ci,m,v: By Lemma C.8 with p = ∞, each ci,m,v is of O(1).

By Lemma G.2, each ci,m,v(g̃m,v ◦ φi(x))×̃1̃i(x) is a CNN with O(logN + logD) + D layers, O(D) width and all

parameters of O(N). According to (41), f̃ can be written as a sum of CMNd(d+ 1)α CNNs

f̃ =

CM∑

i=1

∑

m,v

ci,m,v(g̃m,v ◦ φi(x))×̃1̃i(x). (59)

By Lemma C.11, for any M̃, J̃ satisfying M̃J̃ = O(Nd), there exists a CNN architecture FCNN(L, J,K, κ, κ) that gives

rise to {gi}ni=1 with

f̃ =
M̃∑

i=1

gi

and

L = O (logN + logD) +D, J = O(DJ̃), κ = O(N).

By Lemma C.12, there exits a ConvResNet architecture C(M,L, J,K, κ1, κ2) with

L = O(logN) +D, J = O(DJ̃), κ1 = κ2 = O(N),M = O(M̃) (60)

and J̃ , M̃ satisfying

M̃J̃ = O(Nd), (61)

that yields a ConvResNet realizing f̃ . Setting N = O((M̃J̃)1/d) in (58) and (60) gives rise to

∥f̃ − f∥Wk,∞(M) ≤ C15(M̃J̃)−
α−k

d (62)

and the network size

L = O
(
log(M̃J̃) + logD

)
+D, J = O(DJ̃), κ = O((M̃J̃)1/d).

G. Definitions, Lemmas and their proofs used in Section C

G.1. Existing lemmas on CNNs

Lemma G.1 shows that any MLP can be realized by a CNN.

Lemma G.1 (Theorem 1 in Oono & Suzuki (2019)). Let D be the dimension of the input. Let L, J be positive integers

and κ > 0. For any 2 ≤ K ′ ≤ D, any MLP architectures FMLP(L, J, κ) can be realized by a CNN architecture

FCNN(L′, J ′,K ′, κ′1, κ
′
2) with

L′ = L+D, J ′ = 4J, κ′1 = κ′2 = κ.

Specifically, any f̄MLP ∈ FMLP(L, J, κ) can be realized by a CNN f̄CNN ∈ FCNN(L′, J ′,K ′, κ′1, κ
′
2). Furthermore, the

weight matrix in the fully connected layer of f̄CNN has nonzero entries only in the first row.

Lemma G.2 shows that the composition of two CNNs can be realized by a CNN.

Lemma G.2 (Lemma 13 in Liu et al. (2021)). Let FCNN
1 (L1, J1,K1, κ1, κ1) be a CNN architecture from R

D → R and

FCNN
2 (L2, J2,K2, κ2, κ2) be a CNN architecture from R → R. Assume the weight matrix in the fully connected layer

of FCNN
1 (L1, J1,K1, κ1, κ1) and FCNN

2 (L2, J2,K2, κ2, κ2) has nonzero entries only in the first row. Then there exists a

CNN architecture FCNN(L, J,K, κ, κ) from R
D → R with

L = L1 + L2, J = max(J1, J2), K = max(K1,K2), κ = max(κ1, κ2)

such that for any f1 ∈ FCNN(L1, J1,K1, κ1, κ1) and f2 ∈ FCNN(L2, J2,K2, κ2, κ2), there exists f ∈
FCNN(L, J,K, κ, κ) such that f(x) = f2 ◦ f1(x). Furthermore, the weight matrix in the fully connected layer of

FCNN(L, J,K, κ, κ) has nonzero entries only in the first row.



Benefits of Deep and Wide Convolutional Residual Networks

G.2. Interpolation spaces

Definition G.3 (Interpolation spaces). Let (B0, B1) be an interpolation couple. For any u ∈ B1, define

K(t, u,B0, B1) = inf
v∈B1

(∥u− v∥B0
+ t∥v∥B1

)

and the norm

∥u∥(B0,B1)θ,p =

{(∫∞

0
t−θpK(t, u,B0, B1)

p dt
t

)1/p
, for 1 ≤ p <∞,

sup0<t<∞ t−θK(t, u,B0, B1), for p = ∞.

Then the interpolation space (B0, B1)θ,p is defined by

(B0, B1)θ,p =
{
u ∈ B0 : ∥u∥(B0,B1)θ,p <∞

}
.

The following lemma shows that the fractional Sobolev space is an interpolation space:

Lemma G.4 (Theorem 14.2.3 of Brenner et al. (2008)). Let Ω ∈ R
D be an Lipschitz domain. Then for any 0 < s < 1 and

1 ≤ p ≤ ∞, we have

W s,p(Ω) = (Lp(Ω),W 1,p(Ω))s,p.

The following lemma shows that the norm of the interpolation space of (B0, B1)θ,p can be bounded using ∥ · ∥B0
and ∥ · ∥B1

:

Lemma G.5. Let (B0, B1) be an interpolation couple. Moreover, let 0 < θ < 1 and 1 ≤ p ≤ ∞. Then there exists a

constant C depending on θ and p such that for all u ∈ B1, we have

∥u∥Bθ,p
≤ C∥u∥1−θ

B0
∥u∥θB1

.

In particular, when p = ∞, we have C = 1.

G.3. Proof of Lemma C.2

Proof of Lemma C.2. Note that ψ(x) can be realized by a two-layer MLP

ψ(x) = ReLU(A2 · ReLU (A1x+ b1))

with

A1 =




1
1
1
1


 , b1 =




2
1
−1
−2


 , A2 =

[
1 −1 −1 1

]
.

According to Lemma G.1, for any 2 ≤ K, such an MLP can be realized by a CNN in FCNN(2, 16, 2, 2, 2). According to

the expression of the right-hand-side of (12), we have ψ̃m,N (x) ∈ FCNN(2, 16, 2, 3N, 3N).

To prove (13), the case k = 0 follows by the definition of ψ. For k = 1, we have

dψ̃m,N (x)

dx
=
dψ
(
3N
(
xk − m

N

))

dx
= 3N.

G.4. Proof of Lemma C.9

Proof of Lemma C.9. For any given m and v, ϕmxv is a product of at most α+D quantities each of which can be realized

by a CNN. The following lemma shows that the multiplication operator × can be well approximated by a CNN (see a proof

in Appendix G.5):
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By applying Lemma G.2 α+D − 2 times, we have g̃m,v ∈ FCNN(L, J,K, κ, κ) with

L = O

(
D log

1

ε

)
, J = O(D), κ = 3N.

We next prove (17) and (18). First note that we can express

ϕmxv = gn ≡
n∏

i=1

hi(x),

g̃m,v(x) = g̃n ≡ ×̃(×̃(· · · ×̃(h1(x), h2(x)), ...), hn(x))

for some n ≤ α+D, where each hi can be realized by one layer and satisfies

∥hi(x)∥Wk,∞(0,1) ≤ (3N)k.

To prove (17) and (18), it is enough to show

∥g̃n(x)− gn(x)∥Wk,∞((0,1)D ≤ n1−kcknN
kε (63)

g̃n(x) = 0 if gn(x) = 0, (64)

|g̃n(x)|W 1,∞((0,1)D) ≤ C16N
k (65)

for any 1 ≤ n ≤ α+D − 1, where {cn}α+D−1
n=1 and C16 are constants depending on D and α.

For n = 1, we have

|g̃n − gn|Wk,∞((0,1)D) = |×̃(h1, 1)− h1|Wk,∞((0,1)D).

By Lemma G.6 with B = α+D + 1, we have for k = 0,

|×̃(h1, 1)− h1|W 0,∞((0,1)D) ≤ ε.

For k = 1, by Lemma G.6, we deduce

|×̃(h1, 1)− h1|W 1,∞((0,1)D) ≤ C ′|×̃(x, y)− x · y|W 1,∞([0,1]2)|h1|W 1,∞([0,1]2) ≤ 3C ′Nε,

where C ′ is a constant depending on D. We set c1 = 3C ′. Furthermore,

|g̃1(x)|W 1,∞((0,1)D) = |×̃(h1, 1)|W 1,∞((0,1)D) ≤ C4|×̃(x, y)− x · y|W 1,∞((0,1)2)|h1|W 1,∞((0,1)2) ≤ C5N,

where C17, C18 are constants depending on D,α.

Therefore, the inequalities (63) and (65) hold for n = 1.

For (64), if g1(x) = 0, then h1(x) = 0. By Lemma G.6, g̃1(x) = 0.

Assume (63)±(65) hold for any 1 ≤ n ≤ t for some integer t satisfying 1 ≤ t ≤ α+D− 2, i.e., for any 1 ≤ n ≤ t, we have

|g̃n − gn|Wk,∞((0,1)D) ≤ n1−kcknN
kε, (66)

g̃n = 0 if gn = 0, (67)

|g̃n|W 1,∞((0,1)D) ≤ C19N. (68)

We also deduce that

|g̃t|W 0,∞((0,1)D) = |g̃t − gt|W 0,∞((0,1)D) + |gt|W 0,∞((0,1)D) ≤ tε+ 1 ≤ t+ 1. (69)

For n = t+ 1, we have

|g̃t+1 − gt+1|Wk,∞((0,1)D) = |×̃(g̃t, ht+1)− gt · ht+1|Wk,∞((0,1)D)

≤ |×̃(g̃t, ht+1)− g̃t · ht+1|Wk,∞((0,1)D) + |g̃t · ht+1 − gt · ht+1|Wk,∞((0,1)D). (70)
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Consider the first term in (70). For k = 0, we have

|×̃(g̃t, ht+1)− g̃t · ht+1|W 0,∞((0,1)D) ≤ |×̃(x, y)− x · y|W 0,∞([−t−1,t+1]2) ≤ ε. (71)

For k = 1, we have

|×̃(g̃t, ht+1)− g̃t · ht+1|W 1,∞((0,1)D)

≤C ′|×̃(x, y)− x · y|W 1,∞([−t−1,t+1]2)|g̃t|W 1,∞([−t−1,t+1]2) ≤ 3C ′ctNε, (72)

where (66) with k = 1 is used in the last inequality, C ′ is a constant depending on D.

For the second term in (70), we first consider k = 0:

|g̃t · ht+1 − gt · ht+1|W 0,∞((0,1)D) ≤ |ht+1|∞|g̃t − gt|∞ ≤ tε, (73)

where (66) with k = 0 is used.

For k = 1, we have

|g̃t · ht+1 − gt · ht+1|W 1,∞((0,1)D)

=|ht+1(g̃t − gt)|W 1,∞((0,1)D)

≤C20|ht+1|W 1,∞((0,1)D)∥g̃t − gt∥∞ + C20∥ht+1∥∞|g̃t − gt|W 1,∞((0,1)D)

≤3C20Ntε+ C20ctNε ≤ C21Nε, (74)

where C20, C21 are constants depending on D and α. In (74), (66) with k = 0 and k = 1 are used in the second inequality.

Combining (71)±(74) and setting ct+1 = 3C20ct + C21 gives rise to

|g̃t+1 − gt+1|Wk,∞((0,1)D) ≤ (t+ 1)1−kckt+1N
kε.

Therefore, (63) holds for n = t+ 1.

To prove (64), note that if gt+1 = 0, then either ht+1 = 0, or gt = 0. By our induction assumption, when gt = 0, we have

g̃t = 0. Since g̃t+1 = ×̃(g̃t, ht+1), by Lemma C.9, we have g̃t+1 = 0 and (64) holds for n = t+ 1.

For (65), we deduce

|g̃t+1(x)|W 1,∞((0,1)D)

=|×̃(g̃t, ht+1)|W 1,∞((0,1)D)

≤C ′|×̃(x, y)− x · y|W 1,∞((−t−1,t+1)2) max
{
|g̃t|W 1,∞((0,1)2), |ht+1|W 1,∞((0,1)2)

}

≤C22N,

where C22 is a constant depending on D and α.

Therefore, (63)±(65) hold for n = t+ 1. By mathematical induction, (63)±(65) hold for any 1 ≤ n ≤ D + α+ 1, and (17)

and (18) are proved.

G.5. Proof of Lemma G.6

Proof of Lemma G.6. The proof of Lemma G.6 is based on the following lemma.

Lemma G.7 (Proposition C.2 in GÈuhring et al. (2020)). For any 0 < η < 1/2, x, y ∈ [−B,B]. There is an MLP, denoted

by ×̃(·, ·), such that

∥×̃(x, y)− xy∥W 1,∞[−B,B]2 < η, ×̃(x, 0) = ×̃(y, 0) = 0.

Such a network has O
(
log 1

η

)
layers and parameters. The width of each layer is bounded by 6 and all parameters are

bounded by 2. Furthermore, we have

∥×̃(x, y)∥W 1,∞((−B,B)2) ≤ CM,

for some absolute constant C.
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Combing Lemma G.7 and G.1, for any ε > 0, K ≥ 2, there exits a CNN ×̃ ∈ FCNN(L, J,K, κ, κ) such that for any

|x| ≤ B, |y| ≤ B, we have

|×̃(x, y)− xy| < ε, ×̃(x, 0) = ×̃(y, 0) = 0,

∥×̃(x, y)∥W 1,∞((−B,B)2) ≤ C23B,

where C23 is an absolute constant. Such an architecture has

L = O

(
log

1

ε

)
, J = 24, κ = 1.

G.6. Proof of Lemma C.10

Proof of Lemma C.10. Denote Ωm,N = B 1

N
,∥·∥∞

(
m

N

)
. We have

∥
∑

m∈SN

ϕmQ
α
m/Nf −

∑

m∈SN

∑

|v|≤α−1

cm,vg̃m,v∥Wk,p((0,1)D)

=

∥∥∥∥∥∥

∑

m∈SN

∑

|v|≤α−1

cm,vϕmxv −
∑

m∈SN

∑

|v|≤α−1

cm,vg̃m,v

∥∥∥∥∥∥

p

Wk,p((0,1)D)

=

∥∥∥∥∥∥

∑

m∈SN

∑

|v|≤α−1

cm,v (ϕmxv − g̃m,v)

∥∥∥∥∥∥

p

Wk,p((0,1)D)

≤
∑

m̃∈SN

∥∥∥∥∥∥

∑

m∈SN

∑

|v|≤α−1

cm,v (ϕmxv − g̃m,v)

∥∥∥∥∥∥

p

Wk,p(Ω
m̃,N∩(0,1)D)

, (75)

where the first equality follows from (15), the last inequality holds since (0, 1)D ⊂ ∪m̃∈SN
Ωm̃,N .

For each m̃, we have
∥∥∥∥∥∥

∑

m∈SN

∑

|v|≤α−1

cm,v (ϕmxv − g̃m,v)

∥∥∥∥∥∥
Wk,p(Ω

m̃,N∩(0,1)D)

≤
∑

m∈SN

∑

|v|≤α−1

|cm,v| ∥ϕmxv − g̃m,v∥Wk,p(Ω
m̃,N∩(0,1)D)

≤C24N
d/p

∑

m∈SN

∑

|v|≤α−1

∥f̄∥Wα−1,p(Ωm,N ) ∥ϕmxv − g̃m,v∥Wk,p(Ω
m̃,N∩(0,1)D) , (76)

where C21 is the constant in Lemma C.7, f̄ is the extension of f to R
D from Stein (1970, Theorem VI.3.1.5), which satisfies

∥f̄∥Wα,p(RD) ≤ C25∥f∥Wα,p((0,1)D) (77)

for some constant C25 depending on D, p, α.

We next derive an upper bound of the summand of (76). We first deduce that

∥ϕmxv − g̃m,v∥Wk,p(Ω
m̃,N∩(0,1)D)

≤
∣∣Ωm̃,N ∩ (0, 1)D

∣∣1/p (D + 1)1/p ∥ϕmxv − g̃m,v∥Wk,∞(Ω
m̃,N∩(0,1)D)

≤C26

(
1

N

)d/p

∥ϕmxv − g̃m,v∥Wk,∞(Ω
m̃,N∩(0,1)D)

≤C27

(
1

N

)d/p

Nkη, (78)
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where
∣∣Ωm̃,N ∩ (0, 1)D

∣∣ denotes the volume of Ωm̃,N ∩ (0, 1)D, C26, C27 are constants depending on D,α and p. We used

Lemma C.9 in the last inequality. Substituting (78) into (76) gives rise to
∥∥∥∥∥∥

∑

m∈SN

∑

|v|≤α−1

cm,v (ϕmxv − g̃m,v)

∥∥∥∥∥∥
Wk,p(Ω

m̃,N∩(0,1)D)

=C24

∑

m∈SN

∥m−m̃∥∞≤1

∑

|v|≤α−1

∥f̄∥Wα−1,p(Ωm,N ) ∥ϕmxv − g̃m,v∥Wk,p(Ω
m̃,N∩(0,1)D)

≤C24C27N
kη

∑

m∈SN

∥m−m̃∥∞≤1

∑

|v|≤α−1

∥f̄∥Wα−1,p(Ωm,N )

≤C28N
kη

∑

m∈SN

∥m−m̃∥∞≤1

∥f̄∥Wα−1,p(Ωm,N ), (79)

where C28 = C24C27(D + 1)α−1. By HÈolder’s inequality, we have
∑

m∈SN

∥m−m̃∥∞≤1

∥f̄∥Wα−1,p(Ωm,N )

=
∑

m∈SN

∥m−m̃∥∞≤1

∥f̄∥Wα−1,p(Ωm,N ) · 1

≤




∑

m∈SN

∥m−m̃∥∞≤1

∥f̄∥pWα−1,p(Ωm,N )




1

p



∑

m∈SN

∥m−m̃∥∞≤1

1q




1

q

≤3
D
q




∑

m∈SN

∥m−m̃∥∞≤1

∥f̄∥pWα−1,p(Ωm,N )




1

p

, (80)

where q = 1/(1− 1/p). Substituting (79), (80) into (75) gives rise to

∥
∑

m∈SN

ϕmQ
α
m/Nf −

∑

m∈SN

∑

|v|≤α−1

cm,vg̃m,v∥pWk,p((0,1)D)

≤
(
C283

D
q Nkη

)p


∑

m̃∈SN

∑

m∈SN

∥m−m̃∥∞≤1

∥f̄∥pWα−1,p(Ωm,N )




≤
(
C283

D
q Nkη

)p
3D


 ∑

m̃∈SN

∥f̄∥pWα−1,p(Ω
m̃,N )




≤
(
C283

D
q Nkη

)p
3D2D∥f̄∥pWα−1,p(∪

m̃∈SN
Ω

m̃,N )

≤C29N
kpηp∥f∥Wα−1,p((0,1)D),

where C29 is a constant depending on D,α, p. In the above, we used (77) in the last inequality. Lemma C.10 is proved for

s = 0 and s = 1. For any 0 < s < 1 and 1 ≤ p ≤ ∞, by Lemma G.5, we have
∥∥∥∥∥∥

∑

m∈SN

ϕmQ
α
m/Nf −

∑

m∈SN

∑

|v|≤α−1

cm,vg̃m,v

∥∥∥∥∥∥

p

Wk,p((0,1)D)

≤C30N
kpηp∥f∥Wα−1,p((0,1)D)

≤C30N
spηp∥f∥Wα,p((0,1)D)
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for some constant C30 depending on D,α, s, p. The proof is finished.

G.7. Lemma G.8 and its proof

Lemma G.8. Let {fi}ni=1 be a set of CNNs with architecture FCNN(L0, J0,K0, κ0, κ0). Then there for any integer

1 ≤ w ≤ n, there exists a CNN architecture FCNN(Lw, Jw,Kw, κw, κw) that gives rise to a CNN gw such that

gw(x) =

w∑

i=1

fi(x).

Such an architecture has

L = O(L0), J = wJ0, K = K0, κ = κ0.

Furthermore, the fully connected layer of f has nonzero elements only in the first row.

Proof of Lemma G.8. The idea of the proof is similar to Liu et al. (2021, proof of Lemma 14). Following the proof of Liu

et al. (2021, Lemma 14), we can show that there exist a set of filters W and biases B such that

ConvW,B(x) =

[
(f1(x))+ (f1(x))− (f2(x))+ (f2(x))− · · · (fw(x))+ (fw(x))−

⋆ ⋆ ⋆ ⋆ · · · ⋆ ⋆

]
,

where ConvW,B has depth bounded by L0, number of channels bounded by wj0 and all weight parameters bounded by κ0.

We write gw as

gw =W1 · ConvW,B,

where W1 is given as

W1 =

[
1 −1 1 −1 · · · 1 −1
0 0 0 0 · · · 0 0

]
.

The proof is finished.

G.8. Proof of Lemma C.11

Proof of Lemma C.11. For any given J̃ , let c be the smallest integer such that J̃ ≤ cJ0. Then we set J = cJ0 and

n = ⌈n0/c⌉. By Lemma G.8, there exists a CNN architecture FCNN(L, J,K, κ, κ) with

L = O(L0), J = cJ0, K = K0, κ = κ0.

Such an architecture gives rise to CNNs {gj}⌈n0/c⌉
j=1 such that

gj =

min{cj,n}∑

i=c(j−1)+1

fi.

The lemma is proved.

H. Proof of lemmas in Appendix F

H.1. Proof of Lemma F.1

Proof of Lemma F.1. Following the construction in Step 1 of the proof of Theorem 4.5, for r̃ = r/2 < τ/8, there exists a

collection of points atlas of M denoted by {Ũi, φ̃i}C̃M
i=1 , where Ũi = Br̃(c̃i) for some c̃i ∈ M, and φ̃i is defined according

to (37). By Conway & Sloane (1988, Chapter 2 Equation (1)), the number of charts is bounded by

C̃M ≤
⌈
SA(M)

r̃d
Td

⌉
=

⌈
SA(M)

r/2
d
Td

⌉
.

The following lemma shows that for any locally finite cover of a smooth manifold, a C∞ partition of unity always exists:
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Lemma H.1 (Chapter 2 Theorem 15 of (Spivak, 1973)). Let {Uα}α∈A be a locally finite cover of a smooth manifold M.

There is a C∞ partition of unity {ρα}∞α=1 such that supp(ρα) ⊂ Uα.

Let {ρi}C̃M
i=1 be the partition of unity in Lemma H.1 with respect to {Ũi}CM

i=1 .

We set CM = C̃M and define Ui = Br(c̃i) and φi according to (37). Since r̃ < r, Ũi ⊂ Ui, we have Ũi ⊂ Ui and

M ⊆
C̃M⋃

i=1

Ũi ⊆
CM⋃

i=1

Ui.

Therefore {Ui}CM
i=1 is an open cover of M and {Ui, φi}CM

i=1 is an atlas of M. Since supp(ρi) ⊆ Ũi, we have supp(ρi) ⊂ Ui

and

inf
x∈supp(ρi), x̃∈∂Ui

∥x− x̃∥2 ≥ inf
x∈Ũi, x̃∈∂Ui

∥x− x̃∥2 = r/2.

The lemma is proved.

H.2. Proof of Lemma F.3

Proof of Lemma F.3. We deduce

|A2|Wk,∞(φi(Ui)) =

∣∣∣∣∣

(
∑

m,v

ci,m,vg̃m,v(z)

)
×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣∣∣
Wk,∞(φi(Ui))

=
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
Wk,∞(φi(Ui))

≤
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
Wk,∞(Ωi,2)

+
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
Wk,∞(φi(Ui)\Ωi,2)

=
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
Wk,∞(Ωi,2)

for k = 0, 1, where the last equality holds since

1̃i ◦ φ−1
i (z) = 1i ◦ φ−1

i (z) = 1

on φi(Ui)\Ωi,2.

According to (53), f̃i ◦ φ−1
i (z) = f̂i ◦ φ−1

i (z) = 0 for z ∈ φi(∂Ui). For any z ∈ Ωi,2, let

z∗ = argmin
z̃∈φi(∂Ui)

∥z− z̃∥2.

According to (52), we have ∥z− z∗∥2 ≤ ∆/(c2r).

By Lemma C.10 with some small η > 0 and for s = k = 0, 1, we have

∥f̃i ◦ φ−1
i − f̂i∥Wk,∞([0,1]d) ≤ C31N

kη, (81)

where C31 is a constant depending on d, α,R. Since ∥f̂i∥W 1,∞(Ωi,2) = 0, we have maxj

∣∣∣ ∂f̃i∂zj

∣∣∣ ≤ C31Nη for any z ∈ Ωi,2.

Therefore

|f̃i ◦ φ−1
i (z)| ≤f̃i ◦ φ−1

i (z∗) + C31Nη∥z− z∗∥2 ≤ C31

c2r
Nη∆ (82)

for any z ∈ Ωi,2.
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Using |1̃i ◦ φ−1
i (z)− 1i ◦ φ−1

i (z)| ≤ 1, we bound A2 as

|A2|W 0,∞(φi(Ui)) =
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
W 0,∞(Ωi,2)

≤
∣∣∣f̃i ◦ φ−1

i (z)
∣∣∣
W 0,∞(Ωi,2)

×
∣∣∣1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

∣∣∣
W 0,∞(Ωi,2)

≤C11

c2r
Nη∆ (83)

for k = 0 and

|A2|W 1,∞(φi(Ui)) =
∣∣∣f̃i ◦ φ−1

i (z)×
(
1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

)∣∣∣
W 1,∞(Ωi,2)

≤
∣∣∣f̃i ◦ φ−1

i (z)
∣∣∣
W 0,∞(Ωi,2)

×
∣∣∣1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

∣∣∣
W 1,∞(Ωi,2)

+
∣∣∣f̃i ◦ φ−1

i (z)
∣∣∣
W 1,∞(Ωi,2)

×
∣∣∣1̃i ◦ φ−1

i (z)− 1i ◦ φ−1
i (z)

∣∣∣
W 0,∞(Ωi,2)

≤C31C8

c2r
Nη∆/∆+ C11Nη

=C32Nη (84)

for k = 1, where C12 is a constant depending on α,R, τ . In the first inequality of (84), we used (82), the inequality

∣∣∣1̃i ◦ φ−1
i (z)− 1i ◦ φ−1

i (z)
∣∣∣
W 1,∞(Ωi,2)

=
∣∣∣1̃i ◦ φ−1

i (z)
∣∣∣
W 1,∞(Ωi,2)

≤ C8/∆

by (40) and the fact 1i ◦ φ−1
i (z) = 1 for z ∈ Ωi,2, and the inequality

∣∣∣f̃i ◦ φ−1
i (z)

∣∣∣
W 1,∞(Ωi,2)

=
∣∣∣f̃i ◦ φ−1

i (z)− 0
∣∣∣
W 1,∞(Ωi,2)

= ∥f̃i ◦ φ−1
i − fi ◦ φ−1

i ∥W 1,∞(Ωi,2) ≤ C31Nη

by (81).

Combining (83) and (84) gives rise to

∥A2∥W 1,∞(φi(Ui)) ≤ C32Nη∆
1−k (85)

for k = 0, 1.


