Benefits of Overparameterized Convolutional Residual Networks: Function
Approximation under Smoothness Constraint

Hao Liu' Minshuo Chen? Siawpeng Er> Wenjing Liao®> Tong Zhang*> Tuo Zhao?

Abstract

Overparameterized neural networks enjoy great
representation power on complex data, and more
importantly yield sufficiently smooth output,
which is crucial to their generalization and ro-
bustness. Most existing function approximation
theories suggest that with sufficiently many pa-
rameters, neural networks can well approximate
certain classes of functions in terms of the func-
tion value. The neural network themselves, how-
ever, can be highly nonsmooth. To bridge this gap,
we take convolutional residual networks (Con-
vResNets) as an example, and prove that large
ConvResNets can not only approximate a target
function in terms of function value, but also ex-
hibit sufficient first-order smoothness. Moreover,
we extend our theory to approximating functions
supported on a low-dimensional manifold. Our
theory partially justifies the benefits of using deep
and wide networks in practice. Numerical experi-
ments on adversarial robust image classification
are provided to support our theory.

1. Introduction

Deep neural networks of enormous sizes have achieved
remarkable success in various applications. Some well-
known examples include ViT-Huge of 632 million parame-
ters (Dosovitskiy et al., 2020), BERT-Large of 336 million
parameters (Devlin et al., 2018), and the gigantic GPT-3
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of 175 billion parameters (Brown et al., 2020). In addition
to outstanding testing accuracy, there has been evidence
that large neural networks favor smoothness and yield good
robustness (Madry et al., 2017; Bubeck & Sellke, 2021).

Among vast literature on explaining the success of neural
networks, universal approximation theories analyze how
well neural networks can represent complex data models
(see literature in related work section). These works focus
on approximating a target function in terms of its function
value (i.e., in function L, norm). However, other impor-
tant properties, espcifically the smoothness of the neural
networks, are less investigated. A few early results pro-
vide asymptotic results on two-layer networks with smooth
activation for approximating both function value and deriva-
tives (Hornik et al., 1990; Cardaliaguet & Euvrard, 1992).
Recently, Giihring et al. (2020); Hon & Yang (2021) estab-
lished nonasymptotic approximation theory of feedforward
networks in terms of Sobolev norms.

In real-world applications, on the other hand, practitioners
empirically demonstrated a close tie between the smooth-
ness of a trained neural network to its adversarial robustness
(Gu & Rigazio, 2014; Hein & Andriushchenko, 2017; Weng
et al., 2018; Miyato et al., 2018). The intuition behind is
relatively clear. Consider, for instance, adding some adver-
sarial perturbation to an input. A network of small (local)
Lipschitz constant produces less deviation to the original
output, and therefore, is often resilient to adversarial at-
tackes. On the contrary, a network that is vulnerable to
adversarial attacks usually has a large Lipschitz constant.
Over the years, many computational methods are proposed
and extensively tested in experiments for promoting network
smoothness (Goodfellow et al., 2014; Madry et al., 2017;
Miyato et al., 2018; Zhang et al., 2019). Apart from these
explicit training methodologies, the size of a network is
also recognized as a critical factor to its generalization and
robustness (Zagoruyko & Komodakis, 2016; Madry et al.,
2017; Wu et al., 2020). Yet, theoretical understanding is
largely missing.

In this paper, we investigate universal approximation ability
of neural networks with smoothness guarantees. We con-
sider the convolutional residual networks (ConvResNet, see
a description in Section 2.2) with ReLU activation as an
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example. We measure the approximation error of ConvRes-
Net in terms of not only the function value, but also higher
order smoothness. Specifically, suppose given a target func-
tion f belonging to a Sobolev space in a D-dimensional
hypercube. We provide an approximation error estimate in
terms of Sobolev norm as a function of the size of ConvRes-
Net. We also extend our theory to functions supported on a
d-dimensional Riemannian manifold (d < D). We summa-
rize our main results in the following informal theorem.

Theorem 1.1 (informal). Consider a ConvResNet architec-
ture with M residual blocks and each convolutional filter
having at most J channels. Let o« > 2 and 1 < p < 00 be
positive integers. Then

o (Euclidean) for any target function in a Sobolev space
WP ((0,1)P) with Sobolev norm | f||we.s(0,1yp) < 1,

there exists f vielded by the ConvResNet architecture, such
that

If = fllwer < const - (Mj)*% for
with the constant depending on D, a, p;

s €[0,1]

o (Manifold) given M C RP a d-dimensional Rieman-
nian manifold satisfying mild regularity conditions, for
any target function in a Sobolev space W (M) with
| fllwe.oay < 1, there exists fyielded by the ConvRes-
Net architecture, such that

I = fllwne < const - (Mj)*‘%k for

with the constant depending on o, p, M.

ke {0,1}

Our theory restricts to s < 1, since only first-order weak
derivatives exist for ReLU networks. Moreover, setting
s = 0 or s = 1is of particular interest, as s = 0 recovers the
function value approximation guarantee and s = 1 extends
the guarantee to first-order derivatives. As can be seen, to
achieve the same function value approximation error, s =
1 requires a larger network, but enjoys good smoothness.
This can partially explain that larger networks are often
more robust. We refer readers to Corollary 3.3 for more
discussion.

Theorem 1.1 implies that as the number of residual blocks
increases or each filter having more channels, ConvRes-
Net gives better approximation of the target function. In
order to achieve an e-error, we may set M.J = O(ef%)
(O(e™ a=+) for the manifold case), while there is no scaling
restriction between M and J. See an explicit conﬁgura—
tion of ConvResNet architecture depending on M and J
in Theorem 3.2 and Theorem 4.5. (Although the rate in
the manifold case is independent of D, the network size
inevitably weakly depends on D.)

Our result on Euclidean spaces is related to Giihring et al.
(2020); Hon & Yang (2021), nonetheless, they focus on ap-
proximation guarantees of feedforward networks in terms of

WP norm. It is also worth mentioning that our results are
complementary to Bubeck & Sellke (2021), which provides
a lower bound on network Lipschitz continuity. Bubeck &
Sellke (2021) suggest that small network suffers from bad
Lipschitz continuity, in fitting isoperimetric random data.
However, whether large network enjoys good smoothness
is questionable. Our result proves that large network in-
deed yields appealing Lipschitz continuity from a function
approximation perspective.

The manifold case draws motivation from the fact that data
in real applications are often governed by a small num-
ber of free parameters (Tenenbaum et al., 2000; Roweis &
Saul, 2000; Coifman et al., 2005; Allard et al., 2012). As a
concrete example, Pope et al. (2021) estimate the intrinsic
dimension of many benchmark data sets, including MNIST,
CIFAR-10/100, and ImageNet. A striking finding is that the
intrinsic dimension of ImageNet is merely around 43, in a
sharp contrast to its 224 x 224 x 3 total pixels. Therefore,
it is reasonable to model data as a low-dimensional Rieman-
nian manifold, and we show ConvResNet can adapt to data
geometric structures and does not suffer from the curse of
ambient dimensionality.

Related work Approximation theories of feedforward
neural network have been studied for a long time, most
of which dedicate to function value approximation. The
earliest literature dates back to late 1980s. For example,
Irie & Miyake (1988); Funahashi (1989); Cybenko (1989);
Hornik (1991); Chui & Li (1992); Leshno et al. (1993) inves-
tigated the approximation power of two-layer feedforward
neural networks with sigmoidal activation for square inte-
grable functions and established some asymptotic results,
where the number of neurons goes to infinity. Barron (1993);
Mhaskar (1996) established nonasymptotic results for the so-
called “Barron” function space. For multi-layer feedforward
neural networks with ReLU activation, Yarotsky (2017) an-
alyzed the approximation of Sobolev W *°° functions in a
D-dimensional hypercube, and proved nonasymptotic re-
sults that given a pre-specified approximation error ¢, the
depth and width of neural networks need to be at most of
the order O(¢~P/®) and O(log(1/e)), respectively. More
recently, Suzuki (2019); Suzuki & Nitanda (2019); Liu et al.
(2021) extended to more general function classes such as
Besov spaces.

Approximation theories for convolutional networks are
established by Zhou (2020b;a); Petersen & Voigtlaender
(2020). In Zhou (2020b), the authors consider CNN with
ReLU activation whose width increases linearly from the
first layer to the last. They show that such a CNN can ap-
proximate functions in Sobolev W2 space with arbitrary
accuracy for integer « > 2 + D/2. To have a better control
on the width of the network, the authors of Zhou (2020a)
studied downsampled CNNs, and show that the downsam-
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pled CNN can approximate Lipschitz ridge functions with
an arbitrary accuracy. In Petersen & Voigtlaender (2020),
the authors show that any approximation bounds of FNN
can be achieved by CNNs. The results in Oono & Suzuki
(2019); Liu et al. (2021) dedicate to convolutional residual
networks. In Oono & Suzuki (2019), the authors show that
ConvResNets is able to approximate Holder functions with
an arbitrary accuracy.

Theoretical results on approximating or learning functions
on low-dimensional manifold can be found in Shaham et al.
(2018); Chui & Mhaskar (2018); Schmidt-Hieber (2019);
Chen et al. (2019a;b; 2020); Nakada & Imaizumi (2019);
Cloninger & Klock (2020); Shen et al. (2019); Montanelli
& Yang (2020); Liu et al. (2021; 2022). These works show
that when the target function is defined on or around a low-
dimensional manifold, to achieve an approximation error e,
the network size mainly depends on the intrinsic dimension
and weakly depends on the ambient dimension.

Notations: We use lower case letters to denote scalars, bold
lower case letters to denote vectors, upper case letters to de-
note matrices, and calligraphic letters to denote tensors and
sets. For x = [z1,...,xp]",v = [v1,...,vp] ", we denote
XV = 2V .29 (if well-defined) and |v| = 22, |u,].
Let a = [ay,...,ap]’ € NP be a multi-index and f be a

ol
52T 02D Let Q2 be a subset

in RP, we denote Q as its closure and ch(€2) as its convex
hull. We use B,.(c) to denote the closed Euclidean ball with
radius  and centered at c.

function, we denote D™ f =

2. Preliminary
2.1. Sobolev Functions

We focus on studying neural networks for approximat-
ing Sobolev functions. We provide a formal definition of
Sobolev functions in both Euclidean spaces and on mani-
folds. We begin with Sobolev functions in Euclidean spaces
(Brezis & Brézis, 2011, Chapter 8).

Definition 2.1 (Sobolev spaces). Leta > 0,1 < p < o0
be integers, and domain  C R”. We define Sobolev space
WeP(Q) as

WeP(Q) = {f € LP(Q) : D*f € LP(Q) for all || < o},
where « is a multi-index.

For f € W*P(Q)), we define its Sobolev norm as

1/
W llwesir = (32 1D FIney)

|l <o

In the special case of p = oo, the Sobolev norm can be
rewritten as || f||ye. () = Max|q|<q [|[D |1 ). In
this case, | f|wo, < oo implies the function value is

bounded, and || f|lw: o < oo implies both the function
value and its gradient are bounded.

Our later approximation theories will provide error estimate
in terms of Sobolev norms. To allow more flexibility, we
define fractional Sobolev norms, which can be viewed as
a generalization of Sobolev norms to non-integer o. The
fractional Sobolev functions are defined as follows.

Definition 2.2 (Sobolev—Slobodeckij spaces (Slobodeckij,
1958)). For0 < s < land 1 < p < oo, we define W*?(Q)
as

WP(Q) = {f € L) : | fllwese) < o0}
with

[ Fllwenca) =
(15 + [, [ (LI gy

[x =yl
for 1 < p < oo and

[ fllweee (@) =
[f(x) = f(y)l
max < || fll Los (), €8S sup Tt I
{ e -y s
We restrict our attention to s < 1 for simplicity, as we focus
on approximation guarantees up to first-order continuity.

Next, we extend Sobolev spaces to Riemannian manifolds.
We provide a brief introduction to manifold; a more detailed
description can be found in Appendix A. Roughly speaking,
a Riemannian manifold M is a collection of local neighbor-
hoods, each of which is diffeomorphic to a low-dimensional
Euclidean space. These local neighborhoods are termed
charts, and a collection of which is an atlas. We provide a
formal definition.

Definition 2.3 (Atlas). A smooth atlas for a d-dimensional
manifold M C RP is a collection of charts {(Us, ¢a ) }ac 4
which verifies |, 4 Us = M and ¢, : U, — R? being
diffeomorphic and pairwise compatible, i.e.,

$a © ¢/§1 2 93(Ua NUB) = ¢o(Us NUg) and
$50 ¢y : da(Ua NUp) = ¢3(Us NUg)

are both smooth for any «, 5 € A. An atlas is called finite
if it contains finitely many charts.

To define Sobolev spaces on a manifold M, we shall con-
sider function regularity on each chart, as charts are geomet-
rically “akin” to a Eulidean space through the chart mapping
¢«- One caveat, however, is that the chart mapping ¢, can
be arbitrarily rescaled, which results in potential unbound-
edness. We therefore, fix an atlas on M to mitigate this
issue. We are ready to define Sobolev spaces on a manifold
(Driver, 2003, Definition 48.17).
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Definition 2.4 (Sobolev spaces on manifold). Let M be
a compact Riemannian manifold of dimension d. Let
{(Ui, ¢:) Y24 be a finite atlas on M and {p;} 2 be a par-
tition of unity on M such that supp(p;) C U;. For integers
k>0and 1 < p < oo, afunction f : M — R is in the
Sobolev space Wk-P(M) if

Cm
I fllwer gy = Z 1(fpi) © b7 Hlwna(gi(usy) < 00

i=1

Since M is compact, a finite altas exists on M. Besides,
we introduce the partition of unity p; to follow the standard
definition in Tu (2010, Definition 13.4). The existence of
a smooth partition of unity is shown in Appendix A. From
Definition 2.4, we observe that a Sobolev function on M is
locally Sobolev on each chart.

2.2. Convolutional Residual Networks

We consider one-sided stride-one convolution in our net-
work. Let W = {W); 1} € R *K*C e a filter where C”
is the output channel size, K is the filter size and C'is the
input channel size. For Z € RP*¢ the convolution of W
with Z gives Y = W x Z € RP*" with

K C
Yij= Z Z Wi ki Zitk—1,1

k=11=1

where we set Z;;p—1; = 0Ofori+k—1 > D. Seea
graphical demonstration in Figure 1(a).

In this paper, we study convolutional residual networks
(ConvResNets) equipped with the rectified linear unit
(ReLU) activation function (ReLU(z) = max(z,0)).
The ConvResNet we consider consists consecutively of a
padding layer, several residual blocks, and finally a fully
connected output layer.

Given an input vector x € RP, the network first applies a
padding operator P : RP — RP*¢ for some integer C' > 1
such that

Z=Px)=[x 0 0] € RP*C.

Then the matrix Z is passed through M residual blocks.
To ease the notation, we denote the input matrix to the
m-th block as Z,, and its output as Z,, 41 (Consequently,
Zy = 2).

In the m-th block, let W,, = {W, ..., W1 and
By = {Bﬁ,} )., B )} be a collection of filters and bi-
ases of proper sizes. The m-th residual block maps its input
matrix Z,, from RP*¢ to RP*C by the operator

Convy,, 5, +id,

where id is the identity mapping (also known as the shortcut

connection) and

Conv,, 8, (Zm) = ReLU(WE) ...

... % ReLU (W}g) * Lo +B§,P) ~--+B§nL”))7 (D

with ReL U applied entrywise. We denote the mapping from
input x to the output of the M -th residual block as

Q(x) = (Convyy,, 5,, +id) o -

.-+ 0 (Convyy, g, +1id) o P(x). (2)
c j-th column :
T X =
"WxZ + D Convyy,(x)
B —
T (x+ Convyyp(x)

(b) A residual block.
Figure 1: (a) Convolution of W * Z, where the input is
Z € RP*C and the output is W % Z € RP*C". Here
W = (W)} € REXEXC ig g filter where C” is the
output channel size, K is the filter size and C' is the input
channel size. W; . . is a D x C matrix for the j-th output
channel. (b) A convolutional residual block.

(a) Convolution.

Given (2), a ConvResNet applies an additional fully con-
nected layer to () and outputs
fx) =W ®Q(x)+b,
where W € RP* and b € R are a weight matrix and a
bias, respectively, and ® denotes sum of entrywise product,
ie, W® Q(x) = >, Wi ;[Q(x)];;. To this end, we
define a class of ConvResNets of the same architecture as
C(M,L,J,K,k1,k2) =
{F 1) =W o Q(x) +bwith [ W]l V [b] < k2,
Q(x) in the form of (2) with M residual blocks.
The number of filters per block is bounded by L;
filter size is bounded by K;
the number of channels is bounded by J;

masc [ WD loo V | BY oo < 1} ®)

m m

Here ||| denotes the entrywise maximum norm, i.e., when
the input argument is a vector, it returns the vector /*°
norm; when the input is a matrix or a tensor, it returns the
maximum magnitude of its entries, e.g., for a 3-dimensional
tensor W, |W||oo = max; i1 [W; k.1l-

3. Approximation in Euclidean Space

Consider a Sobolev function class defined on a unit hyper-
cube (0,1)P. We aim to use convolutional residual net-
works for approximating functions in the target class in
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terms of the W*P norm. Here p is a positive integer and s
can vary in [0, 1]; in particular, s = 0 corresponds to func-
tion value approximation, and s = 1 resembles the result
Section 1. We formally define our target function class as a
Sobolev norm ball.

Assumption 3.1. Let « > 2,1 < p < +00 be integers.
Assume the target function f satisfies

Fewer((0,1)P) and ||fllwasonp) < 1.
We set the norm ball of radius 1 for the sake of simplicity,
while the results in the sequel hold for any constant radius.
We also let o > 2 for techincal convenience. In the follow-
ing theorem, we show that ConvResNets can approximate
any functions in a Sobolev norm ball in terms of W *'? norm
(s < 1). The approximation error is obtained as a function
of the network configuration.

Theorem 3.2. For any positive integers K € [2, D], M,
and J > 0, we choose

L =0(log(MJ)), J=0(J), k1 = O(MJ)'/P),
Ko = O((MJ)/P), M = O(M).
Then given s € [0,1], the ConvResNet architec-
ture C(M,L,J, K, Kk1,Kk2) can approximate any func-

tion f satisfying Assumption 3.1, i.e., there exists f €
C(M,L,J, K, k1, k) with

||J?— Fllwsr(0,1yp) < C’1(Mj)*%

for some constant C depending on D, «, p.

Theorem 3.2 says that the approximation power of Con-
vResNet amplifies as its width and depth increase. To better
interpret the result, we choose s = 1 and p = oo, which cor-
responds to simultaneously approximating function value
and first-order derivatives.

Corollary 3.3. In the setup of Theorem 3.2, taking
s = 1 and p = o0, the ConvResNet architecture
C(M,L,J, K, k1,k2) can approximate any [ satisfying
Assumption 3.1 up to first-order, i.e., there exists f €
C(M,L,J, K, ki, ko) with

||J?* flloo < CQ(]T/[/j)faTgl and

of  of

_ < M5
Ox; Oz; < Co(MJ) ’

oo

sup
i

where the constant Cs depends on D and «. In particular,
we have Lipschitz continuity bound

||f||Lip <1+ Cz\/ﬁ(ﬂf)—%.

Theorem 3.2 and Corollary 3.3 have rich implications.

Large network for smooth approximation. Taking s = 0
in Theorem 3.2 recovers function approximation in terms of

Lo, norm. The corresponding approximation error scales
as O((M J)~5). A quick comparison to Corollary 3.3
indicates that in order to additionally capture the first-order
information of a target function, large network is needed to
achieve the same function value error bound.

Arbitrary width and depth. Giihring et al. (2020); Hon
& Yang (2021) provide approximation guarantees of feed-
forward networks in terms of WP norm. Despite different
network architectures, we remark that our theory covers
general networks with arbitrary width and depth. More
specifically, for a given approximation error €, Giihring et al.
(2020) set the network depth and width as O(log1/¢) and
O(e=P/(@=9)), respectively. Yet in our result, we only need
to ensure M.J = O(e~P/(@=5)) which does not require
any scaling relation between M and J.

Theorem 3.2 can be used as a tool to analyze the empirical
residual error. Specifically, assume the response in the data
set contains bounded zero—mean noise, we have the follow-
ing probability bound on the upper bound of the empirical
residual error (see a proof in Appendix D)

Theorem 3.4. Let {(x;,y:)}""_, be a given data set where
X;’s are i.i.d. samples from some distribution defined on

[0,1]P and

yi = [(xi) +&
with i.i.d. noise &;’s satisfying E[¢;] = 0 and |&;| < o forall
1 =1,...,n. Assume f satisfy Assumption 3.1 with p = +o0.
For 0 < ¢ < min{o,1}, let C = C(M,L,J, K, k1, k2)
be the network architecture in Theorem 3.2 with M.J =

(&)713/& = O(e=P/). We have

]P’(EIfEC:Hﬂ Lipgl—l—\/DemT_1 and
1~ 7 2 2 2
- i) —Yi)" <2
§ ) )t <22 ot
3ne?
>1—exp (_1040'4). 4)

Theorem 3.4 implies that with high probability, larger net-
work architectures ensure the existence of a network that has
small empirical residual error as well as certain smoothness,
i.e., a bounded Lipschitz constant whcih is close to that of
the underlying function. Our result is an upper bound coun-
terpart of Bubeck & Sellke (2021, Theorem 3), in which a
high probability lower bound of the Lipschitz constant is
derived.

Connection to adversarial robustness. Consider, for ex-
ample, the supervised learning scenario. Noisy or noiseless
response is generated by a ground truth function satisfying
Assumption 3.1. Corollary 3.3 then indicates the existence
of a properly large ConvResNet capable of smoothly ap-
proximating the data model, and the network’s Lipschitz
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constant is approximately that of the ground truth function.
Such Lipschitz continuity should be considered nearly op-
timal, in viewing of the smoothness of the ground truth
function. The network’s Lipschitz continuity closely relates
to adversarial risk (Uesato et al., 2018; Zhao et al., 2021)
defined as

Definition 3.5 (Adversarial risk). Given a data distribution
p, and a loss function (-, -), for a positive constant § > 0,
we define the adversarial risk of a network f as

sup ¢ (f(x’%y)] . ©)

R(f,0) = E(x,y)esupp(p) [
x'€Bs(x)

where B;(x) is the Euclidean ball with radius § centered at
X.

In the case § = 0, the adversarial risk R(f,0) reduces
to the population risk E(x ) csupp(p) [Z (f(x), y)] . Based

on Theorem 3.2 and Corollary 3.3, we have the following
theorem on adversarial risk (see a proof in Appendix E):

Theorem 3.6. Let p be a data distribution defined on
[0,1]P x [~R, R] for some constant R and l(-,-) be a loss
Sfunction with Lipschitz constant Ly;,. Denote the popula-
tion risk minimizer by f:

f = argmin E(x,y)esupp(p)l(g(x)7 y) (6)
9

Assume [ satisfies Assumption 3.1 with p = +o0o. For 0 <
e <1, letC(M,L,J, K, k1, ko) be the network architecture

— —D/«
in Theorem 3.2 with MJ = (C%) = O(g*D/a)_

Then there exists fe C(M,L,J, K, k1, ks) so that
ra a—1
1f = flleo <, Hf”L <14+VDe= (D)
ip

and

R(f,6) < R(f,0) + Ly (1 n \/55‘%1) 5. (®)

In Theorem 3.6, the difference between the adversarial risk
and population risk depends on the Lipschitz constant of the
network f, the Lipscthiz constant of the loss function and
the adversarial parameter §. It implies that large networks
can give rise to smooth functions with a small adversarial
risk, i.e., adversarially robust. This partially explains the
empirical observation that large networks are often smooth
with respect to input, and hence, tend to have better robust-
ness. However, how to use practical training algorithms to
find such networks remains curiously unclear.

4. Approximation on Manifold

Theorem 3.2 indicates a curse of data dimensionality: When
data dimension D is large, such as image data, Theorem

3.2 converges extremely slowly and becomes less attrac-
tive. Motivated by applications, we model data as a low-
dimensional Riemannian manifold M and extend our ap-
proximation theory to functions defined on M. We will
show that ConvResNet is adaptable to manifold structures.
We first impose some mild regularity conditions.

Assumption 4.1. M is a d-dimensional compact Rieman-
nian manifold isometrically embedded in R”. It’s range is
bounded by B, i.e., there exists a constant B > 0 such that
for any x € M, we have ||x||o < B.

Besides boundedness, we characterize the curvature of man-
ifold by the following geometric notion.

Definition 4.2 (Reach (Federer, 1959; Niyogi et al., 2008)).
Define the set

G = {x € RP : Jdistinct p, q € M such that
d(x, M) = [|x = pll2 = Ix — ql|2}.
Then the reach of M is defined as
reach(M) = inf

inf [|x — v/
nf ylrelGllX yll2

To roughly put, a large reach implies that the manifold is
flat. While a manifold with a small reach can be highly
zigzagging. Therefore, the reach is highly relevant to the
difficulty of capturing the local structures on a manifold.
We assume a positive reach on M.

Assumption 4.3. The reach of M is 7 > 0.

Similar to Section 3, we consider a Sobolev norm ball on
M as target function class.

Assumption 4.4. Let o > 2 be an integer. Assume the
target function f satisfies

FEW™™ (M) and | f|wese < 1.

‘We now present a counterpart of Theorem 3.2, showing an
efficient approximation of functions in a Sobolev norm ball

on M.

Theorem 4.5. For any positive integers K € [2, D], M,
and J > 0, we choose

L =0(log(MJ))+ D, J=0(DJ),
k1 = O((MJI)YY), ky = O(MJI)Y?), M = O(M).

Then given k € {0,1}, the ConvResNet architec-
ture C(M,L,J,K,k1,Kk2) can approximate any func-
tion f satisfying Assumption 4.4, i.e., there exists f €
C(M,L,J, K, ki, k) with

If - Fllwr.ce () < C3(MJ)~ "7,

where constant C3 depends on d, «, B, T, and the surface

area of M.
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As can be seen, the approximation error decays at a rate
only depending on intrinsic data dimension d, which is
a significant improvement over Theorem 3.2 given d <
D. We also note that the size of ConvResNet has a weak
dependence on D, yet it is inevitable due to the residual
connection preserves input dimensionality.

Theorem 4.5 can be viewed as further results of recent ad-
vances on the adaptability of neural networks for approxi-
mating functions on low-dimensional structures. In particu-
lar, Chen et al. (2019a) and Schmidt-Hieber (2019) share a
very similar setup as Theorem 4.5, and established function
value approximation theories.

5. Numerical Experiments

We verify our theory by numerical experiments. Due to
the complex structure of convolutional residual networks,
directly estimating the Lipschitz constant is rather difficult.
We instead testing the adversarial robustness as an indication
of the network smoothness.

We consider the TRADES model which uses a data driven
smoothness regularization and encourages model smooth-
ness. By keeping the same clean testing accuracy, we can
compare model smoothness through the robust testing accu-
racy. We follow the setup in TRADES (Zhang et al., 2019),
and report the performance of WideResNet (Zagoruyko &
Komodakis, 2016) with different widening factor (WF) and
number of convolutional layers per residual block (we term
as “depth” in the sequel). We use the CIFAR-10 data set.
Hyperparameters in training are set as follows: perturbation
diameter € = 0.031 under the ¢, norm, step size for gener-
ating perturbation 0.007, number of iterations 10, learning
rate 0.1, batch size b = 128 and run 76 epochs on the train-
ing dataset. We run the White-box attacks by applying PGD
attack with 20 iterations (PGD-20) and the step size is 0.003.
We report the robust accuracy Ay and the natural accuracy
Anat on the test data set.

The training objective is

R(f(x), f (X)) /A,

where L is the cross entropy loss, R is the KL-divergence,
x is the clean input, X is the adversarial input, ¥ is the label,
A is the tuning parameter controlling the strength of the
regularizer, and D denotes the training dataset {x;, y; }7;.

mfin E(x,y)NDﬁ(f(x)7 y) + max

X —x]o0 <€

For a fair comparison, we tune A such that networks of
different sizes achieve approximately the same natural accu-
racy. This can be understood as achieving approximately the
same L, approximation error to the data model. As can be
seen in Table 1, A,,,; of different models about matches the
performance in Zhang et al. (2019), indicating the network
has been sufficiently trained. By comparing the robust accu-
racy A,op, we observe that wider and deeper WideResNet

attains better robustness. When fixing the depth, a wider net-
work can achieve a higher robust accuracy. Similarly, when
fixing the widening factor, a deeper network can achieve a

higher robust accuracy.

Table 1: Performance of Wide Residual Networks with
different widening factors and depths under PGD-20 attacks.

Depth WF Anat -Arob
1 78.87 + 0.47% 34.31 + 0.45%
16 2 79.34 + 0.28 % 46.14 + 0.21%
4 79.97 £+ 0.04% 51.40 £+ 0.16%
1 78.51 £+ 0.25% 41.47 +0.11%
22 2 79.49 £+ 0.48% 49.63 + 0.07%
4 80.81 +0.44% 53.36 = 0.21%
1 79.46 £ 0.06% 43.33 £ 0.57%
28 2 79.01 £0.11% 50.85 4+ 0.07%
4 80.90 + 0.71% 54.45 4+ 0.14%
1 78.58 &+ 0.09% 46.14 + 0.16%
34 2 79.29 4+ 0.35% 51.63 £ 0.28%
4 80.79 + 0.71% 55.28 + 0.35%
6. Proof Sketch

We highlight key steps in establishing Theorem 3.2 and 4.5
in this section. Full proofs are deferred to Appendix C and
F, respectively.

6.1. Proof Sketch of Theorem 3.2

The main idea consists of two stages: 1) Approximating
target function f in terms of W*P norm using a sum of
averaged Taylor polynomials; 2) Implementing the sum of
averaged Taylor polynomials by a given width and depth
ConvResNet up to a certain error. In stage 1), we rely on
tools from the finite element anaylsis to quantify approxima-
tion error. In stage 2), we first represent polynomials using
convolutional networks, and then assemble them according
to the specified width and depth as a ConvResNet. We dive
into the following four steps.

Step 1: Decompose [ using a partition of unity. Given the
network size parameter M and J, we define a partition of
unity {(ﬁj}é\g on (0,1)? foran integer N = O((MJ)*/P),
so that each ¢; is supported on a small hypercube of
edge length %. The function f is decomposed into

f= Z;V:Dl f; with f; = f¢;. See Figure 2(a) for an il-
lustration.

Step 2: Averaged Taylor polynomial approximation.
Each f; is a Sobolev function, which may not have classical
derivatives but weak derivatives. Similar to approximating
differentiable functions by Taylor polynomials, we approx-
imate f; by an averaged Taylor polynomial fj, which is
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defined in an integral form and indeed is a polynomial. The
approximation error of averaged Taylor polynomial is simi-
lar to that of using Taylor polynomial, and can be found in
Lemma C.6.

Step 3: Network implementation. As shown in Lemma
G.6 and C.9, CNN can approximate multiplication and com-
positions of muliplications well. Since a polynomial is a
sum of compositions of multiplication, each ﬁ can be ap-

proximated by a sum of O(1) CNNs, and therefore Zf\g fi
is approximated by a sum of O(NP) CNNs, each of which
has width of O(1). We prove in Lemma C.11 that such
a sum can be realized by a sum of M CNNs with width
J. The new sum can be realized by a ConvResNet with
M residual blocks (Lemma C.12), where each summand
corresponds to a residual block and the sum is realized using
skip-layer connections.

Step 4: Error estimation. To estimate the approximation
error of f, we decompose the error as

ND

If = fllwsr,)r < Z i = fillwer(o0,1)P)

j=1

ND
+ Y 5 = Fllwerop)- ©)
j=1

On the right-hand side of (9), the second term is the approx-
imation error of averaged Taylor polynomial, whose upper
bound is given by Lemma C.8.

The first term is the network implementation error. We de-
rive an upper bound of it in Lemma C.10. In the proof of
Lemma C.10, we first derive an upper bound with respect
to the W*? norm for & = 0,1. The case k = 0 corre-
sponds to the error of function value approximation, and
the case k = 1 corresponds to the error of first order weak
derivative approximation. Note that each f/; is a polynomial,
and each f] consists of compositions of %, the network
approximation of multiplication x. The error indeed is the
approximation error of compositions of x. We first derive
the W*°° approximation error of X and then show that
compositions of x have W* approximation errors of the
same order. After the upper bounds of W%? and WP er-
rors are derived, these upper bounds are generalized to W *-P
errors using an argument on interpolation spaces, which is
discussed in Appendix G.2.

Combining the upper bounds of both terms in (9) gives rise
to the total approximation error as a function of V. Utilizing
the relation M.J = O(NP), we can further express the
approximation error in terms of number of blocks and width
of the ConvResNet.

fi-i i fim
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(b) Partition of unity on M.

! !
(a) Partition of unity on (0,1)%.

Figure 2: (a) Illustration of ¢;’s and f;’s in Step 1 of the
proof of Theorem 3.2. (b) Illustration of the construction
of charts and paritition of unity in Step 1 of the proof of
Theorem 4.5. The red curve represents a cross section of p;.

6.2. Proof Sketch of Theorem 4.5

We exploit the geometric nature of manifold M and Sobolev
functions on it to prove Theorem 4.5. By an explicit con-
struction of a finite atlas on M based on the curvature con-
dition in Assumption 4.3, we first restrict ourselves to a
single chart on M. Recall Definition 2.4 that a Sobolev
function f on M is locally Sobolev on a chart. We are thus,
able to locally approximate f on each chart by the results
in Theorem 3.2. However, the main challenge stems from
combining these local approximations to obtain a global
guarantee. This requires to determine which charts a given
input belongs to. We develop a chart determination sub-
network for approximating indicator functions of charts,
nonetheless, its Lipschitz continuity is troublesome due to
the sharp jump on the boundary of a chart. We resolve
such an issue by carefully constructing a partition of unity
vanishing at a neighborhood of the boundary of charts. We
provide more details in the following four steps.

Step 1: Decompose f using an atlas and partition of unity
of M. We first construct an atlas and a partition of unity
of M so that each function in the partition of unity is com-
pactly supported in a chart (Lemma F.1). To construct an
atlas of M, we use a set of D-dimensional Euclidean balls
{B, )2 (ci)}<¥ with centers {c;}S C M and radius r/2
satisfying 0 < r < 7/4 to cover M. Since M is compact,
C is finite. The collection of intersections between each
ball and M, denoted by {U; }$* with U; = Byja(ci)NM,
forms an open cover of M. It is guaranteed that there exists
a C' partition of unity {p; };; so that p; is supported in
U; (Lemma H.1). We then double the radius and denote
U; = B,.(c;) N M. The collection {U; } ¢ is also an open
cover of M. Since U; C U;, p; 1s compactly supported in
U; and the distance between the support of p; and OU; is
at least r /2. For each U;, an orthogonal projection ¢; with
proper scaling and shifting, which projects any x € U, to a
tangent plane, is constructed so that ¢;(U;) C (0,1)4. See
the proof of Lemma F.1 for details. With this construction,
we illustrate U; and p; in Figure 2(b). We then focus on
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the atlas {U;, ;}S4 and partition of unity {p;},. We
decompose f as | = S (f, 0 o1 1) o o, with f,  fp,.

Step 2: Averaged Taylor polynomial approximation. In
the decomposition in Step 1, each f; o <pi_1 is a Sobolev
function compactly supported in ;(U;) C (0,1)?. Extend
fiop; 1 to (0,1)? by 0. The extended function has the same
smoothness as f; o <p;1, and can be approximated by a sum

of local averaged Taylor polynomials Zilidl ﬁ j» as what
has been done in the proof of Theorem 3.2.

Step 3: Network implementation. Each polynomial ﬁ j
can be approximated by a CNN ﬁ e
interested in the value of ﬁj o p;(x) when x € U;, we
need to determine the chart it belongs to. We accomplish
this by introducing a chart determination function 1,(x) =
Ljg,r2) 0 d?(x), where ]150 Tz] ) is a step function which
outputs 1 When a € [0,72] and outputs 0 otherwise, d?(x)
computes the squared Euchdean distance between x and
c;. The squared distance function d? can be approximated
by a CNN with high accuracy. To approximate the step
function 1o 2}, we construct a CNN which outputs 1 on
[0,72 — A], 0 on [r?, 00) and is linear on [r? — A, 7?] for
some small A. The CNN approximation of 1; , denoted by
1;, is illustrated in Figure 3(a). Our network approximation
of f is constructed as

Since we are only

Cym N

:E:: :E:: j% j° 991

=1 j=1

il (X))a

where x denotes the CNN approximation of multiplica-
tion. By Lemma C.11 and C.12, fcan be realized by a
ConvResNet with M blocks and width of O(J) as long as
MJ = O(N9).

Step 4: Error estimation. We decompose the error into
two parts: 1) the error between f and its averaged Taylor
polynomial approximation, and 2) the error between the
averaged Taylor polynomial and its network approximation,
see (42) in Appendix F. The first part can be bounded using
Lemma C.8. The second part is characterized by the approx-
imation error of x for multiplication, of f:] for averaged
Taylor polynomials, and of 1; for chart determination 1.
The first two errors can be bounded using techniques similar
to those in the proof of Theorem 3.2.

For the approximation error of 1;, bounding its W1:°° norm
is the most challenging task. To derive an upper bound,
one needs to bound \(ﬁ] 0 @i) x ((1; 0 ;1) /02| for
l=1,..,dand z € ;(U;). In our network construction,
ii o (p; * is linear on a narrow band, denoted by €2; 2, with
width of O(A). Its weak derivative on the narrow band is of
O(1/A), which blows up as A — 0 and causes problems.
To eliminate the effect of A, we show that the value of ﬁ jo
¢; is small enough so that its product with d(1; 0 ;1) /dz;

Hyper|

i (0U;)

(a) Chart determination. (b) Projected region in (0, 1)<,
Figure 3: (a) [llustration of an element of a chart and parti-
tion of unity. The red curve represents a cross section of p;.
(b) Ilustration of the chart determination network 1. The
black curve represents a cross section of iiz (c) Hlustration
of the projected regions in (0, 1)

does not blow up as A — 0. Specifically, thanks to the
fact that f; is compactly supported on U;, we have f; o !
is compactly supported on ;(U;). Therefore there exists
another band €2; 1 adjacent to ¢;(9U;) so that f; 0 o=t =0
on ;1. We choose A small enough so that Q; o C €, 1,
and ﬁ 4 and all of its first order weak derivatives vanish on
Q; 2, see Figure 3(a) and (b) for illustrations. Note that f”
is an approximation of ﬁj We can show that ﬁ = 0on
©;(0U;), and all of its first order weak derivatives on 2; o
are in the same order of other error terms. Since the width of
Q2 is of O(A), by Taylor’s theorem, | f; ; o ¢;| is bounded
by a linear function of A on §; 5. With such a construction
and proper choice of A, the resulting upper bound is in the
same order of those of other terms. See Lemma F.3 for
details.

Combining all of the error bounds, we can express the error
in terms of N. Substituting the relation MJ = O(N?)
proves Theorem 4.5.

7. Conclusion

We provide universal approximation theories of Convolu-
tional Residual Networks in terms of Sobolev norms. Our
theory applies to Sobolev function spaces defined on a high-
dimensional hypercube or low-dimensional Riemannian
manifold. We demonstrate that deep and wide ConvResNets
can provide approximation with good first-order smoothness
properties. This partially justifies why using large networks
in practice often leads to better performance and robustness.
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Appendix
A. A Brief Introduction to Manifold

We introduce some concepts and quantities that characterize a low-dimensional Riemannian manifold. (Some are restate-
ments of the main text for completeness.) These concepts and quantities are used in our theorems and proofs. We refer
readers to Lee (2006); Tu (2010) for more details.

Let M be a d-dimensional manifold embedded in R? with d < D. The first concept related to manifolds is chart, which
defines a local coordinate neighborhood of a manifold.

Definition A.1 (Chart). A chart on M is a pair (U, $) where U C M is open and ¢ : U — R?, is a homeomorphism (i.e.,
bijective, ¢ and ¢! are both continuous).

In a chart (U, ¢), U is called a coordinate neighborhood and ¢ is a coordinate system on U. A collection of charts which
covers M is called an atlas of M.

Definition A.2 (C* Atlas). A C* atlas for M is a collection of charts {(Uy, ¢« ) } e Which satisfies Uaca Ua = M, and
are pairwise C* compatible, i.e.,

¢ 005" p(Ua NUs) = ¢po(Ua NUs) and
$p0 by pa(Ua NUg) = ¢p(Us NUp)

are both C* for any o, 3 € A. An atlas is called finite if it contains finitely many charts.

With the concept of atlas, we then define smooth manifolds:
Definition A.3 (Smooth Manifold). A smooth manifold is a manifold M together with a C*° atlas.

Simple examples of smooth manifold include the Euclidean space, the torus and the unit sphere. C* functions on a smooth
manifold M are defined as follows:

Definition A.4 (C* functions on M). Let M be a smooth manifold and f : M — R be a function on M. We say f isa C*
function defined on M, if for every chart (U, ¢) on M, the function f o ¢~ : ¢(U) — R is a C* function.

We next define the C'*° partition of unity which is an important tool for the study of functions on manifolds.

Definition A.5 (Partition of Unity). A C°° partition of unity on a manifold M is a collection of C'* functions {pq }aca
with p, : M — [0, 1] such that for any x € M,

1. there is a neighbourhood of x where only a finite number of the functions in {p, } oc 4 are nonzero, and

2. Z Pa(x) = 1.

acA

An open cover of M is called locally finite if every x € M has a neighbourhood that intersects with a finite number of sets
in the cover. For a locally finite cover of a smooth manifold M, there always exists a C°° partition of unity subordinate to
the cover (Spivak, 1973, Chapter 2, Theorem 15).

Proposition A.6 (Existence of a C*° partition of unity). Let {Uy, }aca be a locally finite cover of a smooth manifold M.
There is a C*° partition of unity {pq }32, such that supp(pa) C U,.

Let {(Uy, ¢o) }aca be a C atlas of M. Proposition A.6 guarantees the existence of a partition of unity {p, }ac.4 such
that p,, is supported on U,,.

B. Convolutional neural networks and multi-layer perceptions

Our proofs are based on approximation theories of convolutional neural networks (CNN) and their relations to multi-layer
perceptions (MLP). In this section, we introduce related notations and definitions. For the convenience of notation, we use -
to denote ®, the sum of entrywise product.
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We consider CNNs in the form of
f(x) =W - Convyy g(x), (10)

where Convyy p(Z) is defined in (1), W is the weight matrix of the fully connected layer, W, B are sets of filters and biases,
respectively. We define the class of CNNs as

FONN(L,J, K, Ky, ko) = {f | f(x) in the form (10) with L layers.
Each convolutional layer has filter size bounded by K.

The number of channels of each layer is bounded by J.

0 WO oo V [BOog < s, [W]lao < 2}

For MLP, we consider the following form
f(X) = WL . ReLU(WL_1 c -ReLU(Wlx + bl) B bL—l) + bL, (11)

where W1, ..., W and by, ..., by are weight matrices and bias vectors of proper sizes, respectively. The class of MLP is
defined as
FMEP(L, J, k) = { f |f(x) in the form (11) with L-layers and width bounded by .J.

(Willoo,co < Ky ||Billoo < & fori = 1,...,L}.

In some cases it is necessary to enforce the output of the MLP to be bounded. We define such a class as
FMEE(L, g6, B) = {f |f(x) € P (L, J, k) and || fllo < R}

In some case we do not need the constraint on the output, we denote such MLP class as FMLP (L, J, k).

C. Proof of Theorem 3.2

Before we prove Theorem 3.2, we define the Sobolev semi-norm:

Definition C.1. For any integers 0 < k < «, 1 < p < oo and function f € W*P(Q), we define its Sobolev semi-norm as

1/
oy = (3 1D 0)

|| =k

|flwn.o ) = max 1D fll o (),

lex|
Now we prove Theorem 3.2.
Proof of Theorem 3.2. We prove Theorem 3.2 in four steps.

Step 1: Decompose (0, 1)? using locally supported functions. We define

1 lz] < 1,
P(x) = {0 2 < ||,
2—|z] 1<|z| <2

and

o) = [T (33 (o1 - 22)
k=1

with m = (mq, ma,...,mp) € {0,..., N}P. We have " ¢m = 1 on (0,1)” and ¢y, is supported on B%MIH\DC(%) C
Bi/n| | (2). We denote Sy = {0,1,..., N}P. The following lemma shows that each ¢ (3N (zj, — %)) can be
realized by a CNN (see a proof in Appendix G.3).
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Lemma C.2. There exists a CNN architecture F CNN(L, J, K, K1, ko) such that for any N, m, such an architecture yields a
CNN 1 with

~ m
(@) = (3N (azk - N)) , (12)
[Vm e 0,1) < (BN)™. (13)

Such an architecture has
L=2 J=16, K =2, kK1 = ky = O(N).

Further more, the weight matrix in the fully connected layer of FNN has nonzero entries only in the first row.

We then decompose f as

F=Y émf

Step 2: Approximate each ¢, f using averaged Taylor polynomials. On each By .| (3 ), We approximate ¢m f
by an averaged Taylor polynomial. The averaged Taylor polynomial is defined as follows:

Definition C.3 (Averaged Taylor polynomials). Let « > 0,1 < p < +oo be integers and f € W 1P(Q). For
Xo € Q,7 > 0 such that B, .|| (x0) is compact in €2, the corresponding Taylor polynomial of order « of f averaged over
B,.).||(%0) is defined as

wof (X) = Tf(x,2)p(z)dz
fo0 = | Tt

with

1
T — ~av _5\V
fxy) = Y L0 a)x—2)
[v|<a-—1
and ¢ being arbitrary cut-off function satisfying

¢ € C°(RP) with ¢(x) > 0 for all x € RP,

supp(¢) = B, . (xo) and /D P(x)dx = 1,
R
where C2°(RP) denotes the space of infinitely differentiable functions on R? with compact support.

Under proper assumptions, the averaged Taylor polynomial can approximate f and its partial derivatives well. We first
define the star-shaped sets and chunkiness parameter, which are used in the error estimation result.

Definition C.4 (Star-shaped sets, Definition 4.2.2 of (Brenner et al., 2008)). Let €2, Q C RP. Then Q is called star-shaped
with respect to €2 if for all x € €2, we have

ch({x}UQ) c Q.
Definition C.5 (Chunkiness parameter, Definition 4.2.16 of (Brenner et al., 2008)). Let Q C R” be bounded. Define

R ={r>0: there exists x € 2 such that { is star-shaped with respect to B,. . (x)}.

For R # (), we define
diam(Q
Thax =SUpR  and = &(),

*
Tmax

where + is called the chunkiness parameter of 2.
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The following lemma gives an error estimation of averaged Taylor polynomials:

Lemma C.6 (Bramble-Hilbert, Lemma 4.3.8 of (Brenner et al., 2008)). Let Q C R be open and bounded, x € Q) and
r > 0 such that ) is star-shaped with respect to B, . (xo) and r > %rrﬁlax, with 1}, defined in Definition C.5. Let
n > 0,1 < p < 400 be integers and vy be the chunkiness parameter of 2. Then we have

|f — Q% flwer) < Ch | flwan(q)
Sfork =0,1,...,«, where h = diam(Q) and C is a constant depending on D, «, 7.

Lemma C.7 below shows that Q f can be written as a weighted sum of polynomials.

Lemma C.7 (Lemma B.9 of (Giihring et al., 2020)). Let o > 0,1 < p < 400 be integers and f € W 1P(Q). Let
Xo € Q,7 > 0 such that B, .| (xo) is compact in Q, and there exists 7 > 0 with B,.).;(X0) C By,|.|.(0). Then the
averaged Taylor polynomial Q3 (f) can be written as

SFE) = > axt (14)
[v|[<a—1
for x € Q. There exists a constant C' depending on o, D, 7 such that
el < Cr P/ fllya10(2)

Sforall|lv| < a—1.
Using averaged Taylor polynomials, we approximate ¢, f by

Smf R (PmQun ) (X) = bm Y CmyX = Y CmymX’. (15)

vi<a-1 lvi<a-1

Define

]?: Z Z cm,v¢mxva (16)

meSy |v|<a—1

where ¢y, s are the coefficients in (14). Then fis an approximation of f. The following lemma gives an upper bound on
the approximation error

Lemma C.8 (Lemma C.4 of (Giihring et al., 2020)). Let o > 2 be an integer and 1 < p < oo. For any s € [0,1] and
f € W*P((0,1)P), one has

- 1 a—S
If = fllwsro,ry <C (N) I fllwero,1)P)s

where C'is a constant depending on o, p, D. Furthermore, the coefficients in f satisfies

lem| < CLNPP| fllwas(0,1)0)

for some constant C depending on D, «, p.
Step 3: Network approximation Note that fis a sum of functions in the form of ¢,,x" with weights ¢y, ’s. We next
approximate each ¢, x¥ by a CNN.
Lemma C.9. Forany0 < e < 1,x € (0,1)°, N > 0,m € {0,1,..., N} |v| < a, there exists a CNN architecture
FONN(L, J, K, k, k) that yields a CNN § with

190, (%) = $mXY [lwr.= (0,10 < CaN"e, (17)

Jmy(X) = 0if prmx¥ =0 (18)
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for k = 0,1, where Cs is a constant depending on o, k. Such an architecture has
1
L=0 (Dloga) , J =0(D), Kk =3N.

The constants hidden in O depends on «, k. Further more, the weight matrix in the fully connected layer of FNN has
nonzero entries only in the first row.

Lemma C.9 is proved in Appendix G.4. By Lemma C.9, each ¢, x" can be approximated by a CNN. Denote the network
approximation of ¢m,x" by gm v(x). We approximate f by f defined as

F=>0 > cmvimv(x). (19)

m |v|<a—1

The following lemma gives an upper bound of the approximation error of f(see a proof in Appendix G.6).

Lemma C.10. Let o > 2 and 1 < p < oo be integers. For any f € W*P((0,1)P), let d)on‘m/Nf(x) be the averaged
Taylor approximation of ¢m [ defined in (15). For any 0 < 1 < 1, let gm v be the CNN approximation of ¢m Q> IN f(x)
constructed in Lemma C.9 with accuracy 1. For 0 < s < 1, we have

| Z P QN[ — Z Z cmvImvllwer(0,1)p) < Csll fllwar(0,1)p) N0, (20)

meSy meSy |v|<a—1

where cm s are coefficients defined in (15), C3 is a constant depending on D, a, s, p.

Note the f is the sum of no more than N (D + 1)®~! CNNs of which the width is of J = O(D). The following lemma
shows that under appropriate conditions, the sum of g CNNs with width in the same order can be realized by the sum of n;
CNNs with a proper width (see a proof in Appendix G.8):

Lemma C.11. Let {f;}°, be a set of CNNs with architecture F*NN(Lg, Jo, Ko, ko, ko). For any integers 1 < n < ng
and J satisfying nJ = O(noJo) and J > Jy, there exists a CNN architecture FENN(L, J, K, k, k) that gives a set of CNNs
{9:}1— such that

Zgz‘(x) = Zfi(x)~

Such an architecture has

L= O(Lo),J = O(J),K = Ko,lﬁ = K.

Furthermore, the fully connected layer of f has nonzero elements only in the first row.

By Lemma C.11, for any M, J satisfying MJ = O(NP), there exists a CNN architecture FNN(L, J, K, k, x) that gives
rise to {g; }*_; with

_ M
f = Zglv
i=1
where

L:O<log:]>, J=0(J), k= 3N.

The following lemma shows that the sum of CNNs can be realized by a ConvResNet:
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Lemma C.12 (Lemma 18 in (Liu et al., 2021)). Let FONN(L, J, K, k1, ko) be any CNN architecture from RP to R.
Assume the weight matrix in the fully connected layer of F°NN(L, J, K, k1, ko) has nonzero entries only in the first
row. Let M be a positive integer. There exists a ConvResNet architecture C(M, L, J, ri1, ko(1V k7)) such that for any

{fi(x)}M, € FONN(L, J, K, k1, ko), there exists FeC(M,L,J Ky, ka(1V ki 1)) with
N M
f) =D filx).
i=1

By Lemma C.12, there exits a ConvResNet architecture C(M, L, J, K, k1, k2) with
L =0(log1/n), J =0(J), k1 = OB3N), ko = O(3N), M = O(M) 1)
and J, , M satisfying
MJ = O(NP), (22)
that yields a ConvResNet realizing f
Step 4: Error estimation. We compute

ILf = fllwerc0,1)P)

f- (Z ¢mQ;/Nf> | (Z ¢mQ;;/Nf> - fﬂ
m m Ws,p((()’l)D)

1 a—S
<Cy () | fllwer(o,0y0) + CsN*nl| fllwe.r(0,1)P)

< +

Wer((0,1)P)

N
<(Cy+ C5)N~ (=) (23)

where Cy, C5 are two constants depending on D, a, s, p, R. In the second inequality, we use Lemma C.8 and C.10 for the
first and second term, respectively. In the third inequality, we set n = N~ to balance the two terms. Using the relation
(22), we have

N=(MJHYP, n=(MJ)~

ol

(24)

Substituting (24) into (23) gives rise to

~ _a—s

I1f = Fllwer(o.nypy < Co(MJ)™"D (25)

for some constant C's depending on D, «, s, p, R. Substituting (24) into (21) and (22) gives rise to the network architecture

L =0(log(MJ)), J=0(J), k1 = O(MJI)''P), ky = O(MJ)"'P), M = O(M).

O
D. Proof of Theorem 3.4
Proof of Theorem 3.4. By Theorem 3.2 and the choice of M.J, there exits f € C so that If = flloo < € and
of  of a1
I | RGP 26
e o (20)

which implies

L <14+VDR 27)
ip
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We have

E[(F(x1) = 91)?]
<E|(F(x1) = £x))?] +E [(FGx1) = 3)?]

<e? + o2 (28)
Denote X; = & (F(xi) = s)* — B [(F(x:) - 9:)*]. We have
2 2 2
x| < 2517 gix) -, (29)
n
and
8 4 4
E[x2) < SC e ) (30)
n
By Bernstein inequality, we deduce
n %t2
P Xi>t]<exp|-— BEroh) | 2(2to7);
i=1 n 3n
3nt?
= — . 31
P ( A8(e* + o) + 4(2 + 02)25) G
Therefore
1+
pl2 D — )2 > &2 2y
<n;(f(x) yi)? > e+ 0% +
1 e, ~ ~
<p|= ) -y >E| — )]+t
< <n ;(f(x) yi)" 2 E |(f(x1) —y1)°| +
3nt?
< — . 32
=P ( A8(e* + o%) + 4(2 + 02)t> (32)
Setting ¢ = £2 gives rise to
1 o, ~
el D — )2 > 222 2
(n;mx) b > 2 +o)
3ne?
< - .
<exp ( 10404) (33)
O
E. Proof of Theorem 3.6
Proof of Theorem 3.6. By Theorem 3.2 and the choice of M J, there exits f € C so that ||f— flloo < eand
of  of "
R 34
max az; " om;|| S € (34)

Since || f|lwe. < 1, we have

I FllLip < 1+ VD5 (35)
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We have
R(f,8) = R(f,0)
:]E(x,y)ESupp(p) [ sup 14 (f(xl)>y> - E(x,y)ésupp(p) {E (f(xl)vy>}
x'€Bs(x)
<Efx gyeon sup|¢ (Fx), ) = £ (Fx).0)|
oty | [6(710) <1 (7.0)
<E(x,y)esupp(p) SUP Lyip| f(x) = f(x)]
x'€Bs(x)
SE(x,y)Esupp(p) sup LLiP”f”LiP”X/ - X||2
x'E€Bs(x)
<Lyip(14+ VD)5 (36)
O
F. Proof of Theorem 4.5

Proof of Theorem 4.5. We prove Theorem 4.5 in three steps.

Step 1: Decomposition of f

e Construct an atlas on M. According to Assumption 4.1, M is bounded. Therefore, for any given 0 < r < 7/2, we can
find a finite collection of points {c; }<* C M such that

Cm
Mc | B.(ci).
i=1

Denote U; = B,-(c;) N M. Then {Uz}fj:"f form an open cover of M and each U is diffeomorphic to an open subset of R9.
The total number of partitions if bounded by Cnq < [%Td—‘ , where SA (M) is the surface area of M and T} is the
average number of U;’s that contain a given point on M.

On each U;, we define a transformation ¢; that projects any x € U, to T, (M), the tangent space of M at c;. Let
V; € RP*4 be an orthogonal matrix whose columns form an orthonomal basis of T, (M). Define

0i(x) = a;V;' (x — ¢;) + b; forx € Uj, (37)

where a; € R is a scaling factor and b)i € R is a shifting vector that ensure @;(U;) C [0, 1]%. Then {(U;, ;) } 2 form an
atlas of M.

eDecomposition of f by a partition of unity. The following lemma shows that under proper assumption, there exists a
partition of unity { pl}?:/‘f subordinate to {(U;, cpl)}lczj‘f (see Appendix H.1 for a proof).

Lemma F.1. Let {(U;, ;) } be the atlas of M defined above with < 7 /4. There exist a finite number Cnq and a O™
partition of unity {p; zC:/‘f satisfying

(i) supp(p;) is compact in Uj.
(ii) ZZC:"; pi(x) =1 foranyx € M.
(iii) There exists a constant ¢ > 0 depending on r such that for any i, we have

inf Ix —X|2 > c.
x€Esupp(p;), X€OU;

Here C'aq depends on the surface area of M and the average number of U;’s that contain a given point on M.
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Let { p,} 1 be the partition of unity from Lemma F.1. Since for each 4, ¢; is a bijection from Uj to a subset of [0, 1]¢, o~ *

exists and i 1s a linear operator. We decompose f as
Cnm
F=Y_fi with fi=(fp).
i=1

Here each f; is compactly supported on U; and each f; 0 ! is compactly supportedin ¢;(U;) C [0, 1]%. We extend f;0¢p; !
by 0 on [0, 1]%\;(U;). The extended function is in W*([0, 1]¢). To simplify the notation, we still use f; o ; * to denote
the extended function. For each i, we use averaged Taylor polynomials to approximate f; o ¢! on [0, 1] as in (16):

—1 ~
fi oY, = fi = Z Ci,m,v¢mxv-
m,v

Step 2: Network approximation

e Approximate fl by CNN:s. Since each fz is the averaged Taylor polynomial approximation of f; o ¢, ! by Lemma C.9, it
can be approximated by a sum of (d 4+ 1)1 N4 CNNs. Denote the approximation accuracy by 7 as in Lemma C.9, each
CNN has depth O(log(1/7)), width O(1), all weight parameters are of O(N).

eChart determination For any input x, to determine the chart it belongs to, we are going to construct an indicator function.
With our construction of charts, we have x € Uj if and only if ||x — ¢;||3 < r2. Define the indicator function

1 ifa<r?
1., = -7
[0, 2](a) {O otherwise,

and the squared distance function

D

A} (x) =[x —eill3 = > (5 — i), (38)

Jj=1

where we used the expression x = [z1,...,zp]" and ¢; = [¢; 1,...,¢; p] . The composition 1, = Tpo,r2) © d? outputs 1 if
x € U, and outputs 0 otherwise. We are going to construct a CNN to approximate 1,.

In (38), the function d? is a sum of D square functions. By Lemma G.6, Forany 0 < § < 1/2, 2 € [-B, B],and K > 2,
there is a CNN architecture FENN(L, J, K, k, ) that yields a CNN, denoted by d?, such that

|d*(x) — 2*|lwre(_p,B]) < 0, d(0) = 0.

Such a network has

1
L:O<10g9>, J=24 k=1.
Furthermore, one has
||l wi((— B,y < C7B (39)

for some absolute constant C7. We approximate d; by

D
E = Cij)-

According to Lemma C.11, d~1 can be realized by a CNN with O (log %) layers, O (D) width and all weight parameters of
O(1). The approximation error is bounded as

|d2 — d2|| L~ < 4B2D6.

The following Lemma shows that 1y 2 can be approximated by a CNN:



Benefits of Deep and Wide Convolutional Residual Networks

Lemma F.2 (Lemma 9 of Liu et al. (2021)). Forany 0 < 0 < 1 and A > 8B2D@, there exists a CNN 1 o approximating
L0027 with

1, ifa < (1—27")(r? — 4B2DY),
Ia(x) =40, ifa > 1% —4B2D6,
29 ((r? —4B?D0)"'a — 1), otherwise

for x € M, where w = [log(r?/A)| such that (1 — 27%)(w? — 4B>D@) > w? — A + 4B2D6. Such a CNN has
[log(r?/A)] + D layers, 2 channels. All weight parameters are of O(1).

Let 1 o be the CNN defined in Lemma F.2. We have

9la(a) o0, ifa < (1—-2"")(r?—4B%Df) ora > r? — 4B2 D6, “0)
da | Cs /A,  otherwise
for some constant Cs depending on 7.
The function 1; is approximated by
L(x) = Taod(x)
Combining (40) and (39) gives rise to
oL, |ola d; _Jo if di(x)2 > r2 or d2(x) < r2 — A,
ox;| | a 200 dz;| — |CB/A, otherwise.
Step 3: Error analysis. Our network approximation of f is
F=>F with fi(x) =" cimyGmv 0 0i(x)x1;(x), (41)
i=1 m,v
where G,y is the CNN approximation of ¢,z for z € [0, 1]% as in (19). We decompose the error as
1F = Fllwee gy <D NFi = Fillwee @
i=1
Cm
:Z Ifio @it owi— fiowit ogillwrew,
i=1
Cm
<Y _lfioei (@) = fio o (@) lwre(puwa) (set z = i(x))
i=1

Cm
< Z Ifio @i (z) = fio @fl(Z)HWW(soi(Ui))
=1

Cnm
< Z 1fi 0 071 (2) = fi(2)wroo (i (v + I1fi(2) = fi 0 05 (2) [we.oo ((0,1)2)- (42)
i=1
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The second term can be bounded using Lemma C.8. We next focus on the first term
i 07 (2) = fil@)llwr.os (o))

> cimy [ v(@)X {0 67 (2)) ~ dm(z)e”]

m,v

<

Wk22 (i (Us))

<

> iy |G (2) % (i 0 97 (2)) = (G (2)) % (L0 07 (2))] |

Wk (0 (Us))

+ Zci,m,v {(gm,v(z)) X (iz © (Pi_l(z)) - (Em,v(z)) X (]lz © @;l(z))}

‘Wk’oo(@i(Ui))

+

> i [ (@) % (10 9 (2)) = Gum(2)2"]

Wk (0 (Us))

= N Aullwr.oe (o)) + 1 A2llwrce o iy + 143 llwk 00 (43)
with
A=Y iy |G (@)X ([0 07 (2) — @inn(2)) x (Lo (@) 44)
A2= 3 cimy |(Gmv(2) x (L0 7 (2) = Gy (2) x (Lo g (2))] 45)
A3 =) cimy [Gmv(2) — dm(2)2"]. (46)

Denote the W1 error of X by §. We first derive an upper bound for A;. We can show that |gm,v]loo < @+ d (see (69))
and ||T; o ; !||p= = 1. Therefore by Lemma G.7, we have for k = 0

| A1 wo.00 ((—a—d,atd]) < Z Cismv| X (a,b) — ablyo.((—a—D,a+D))

m,v

<CyN4s, (47)
and fork =1

| A1|woe (—a—d,a+d)

< Z Ci,m,vcl|;(a> b) - ab|W1’°°([—a—D,o¢+D]) ‘§m7v|le°°(gpi(U,i))

m,v

<CioN*15/A (48)

1, fl‘
° i WLoo (i, (U))

for some constants Cy, C1g, C’ depending on 7, o, d, where we used Lemma C.8 and (65) in the last inequality. Combining
(47) and (48) gives rise to

[ A1llwroo (—a-data) < C1iNTFG/A (49)

for k = 0,1 and a constant C';; depending on d, o, 7.
Before we derive upper bounds for As and As, we define some sets which will be used in our following proof.

Define the set

Qg = {x €U;: min ||x—X|, < c},
x€eoU;
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where cis the constant from Lemma F.1. Denote ; 1 = ¢; (€2;.1). According to Lemma F.1, we have f; \5 L= fiogp;

Qi1 =
0. Since ¢; is a bijection, both 2; ; and SNIM have two disjoint boundaries. Denote the two boundaries of €2; 1 by A; 1,1 and
Ai1,2. We define the thickness of €; ; as

i1 = min z — Z||2.
Xi1 ZENi 1,1, ZENi 1,2 ” ||2

Since each ¢; is a bijection, there exists a constant ¢; depending on c and the atlas such that x; 1 > ¢; for all i’s. Again
since ¢; is a linear bijection, its inverse exists and is linear, and there exists a constant c such that

lei (2) — o7 ' @)ll2 > collz — 2. (50)

We will choose # and A small enough such that

2
Db L8 ca 51)
Co CoT 2
Define the region
Qo={zcoU):_min flza-i< > 52
i2 —1\Z \Ui) : min Z— 7 S — 7.
2 4 z€¢;(0U;) 2 Cor

According to (50), (51) and the definition of €; 1, we have ;5 C Q; 1. For any z € ¢;(U;)\Q; 2, denote z* =
argminge,. (ou,) |1z — zl|2. We have

min o7 (2) = X[z > e2lz — 2|2 > A/
X 6U1

Therefore

A 2
lp; H(z) —cill3 < (r— AJr)2 =1 + (r> _A< A

when A < 72 and

= 8ii o<p_1

]liogp_l(z> :1a =0

Zj
i (Ui)\Qi,2

for j = 1, ...,d, where we used the notation z = [21, ..., zq] | .

Note that each g v and ¢z" is supported on B /.| (m/N), a hyper cube with edge length 2/N. We will choose N
large enough such that

2 A C1
< —.
N — 4027” - 8

Such a choice of IV ensures that along any directions of z; for j = 1, ..., d, there are at least 2 hypercubes that entirely locate
inside €2; 5. Since any z € [0, 1]4 is only covered by 2 hypercubes along each coordinate direction, we have

{€im,v : there exits z € o;(OU;) such thatz € By /y .| (m/N)} =0 (53)

and f; o ;(z) = 0 for any z € ¢;(OU;). See Figure 4 for an illustration.

We have the following lemma on the bound of || Az ||y .0 (4, (1,)) (see Appendix H.2 for a proof):

Lemma F.3. Let A, be defined as in (45). Assume A < 2. We have
[As|lwro (g, (u)) < CraNnA—F (54)

fork =1,2.
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Hyper|cubes

N

it

171

(0,1)?

s i (Us)

©i(0U;)
T Qi,l

Figure 4: Illustration of the relations of §2; 1, €, 2 and ¢;(U;).
The term A3 can be bounded using Lemma C.10:

Z Ci,m,v [gm,v (Z) - (ybm(z)zv]

||A3||Wk'°°(%‘(U1:)) =

m,v Wk (¢;(Uy))
S Z Ci,m,v [gm,v(z) - (ybm(z)zv]
m,v Wk,oo([071]d)
<CizN* (55)

for some constant C3 depending on d, o, R. Substituting (49), (54) and (55) into (43) gives rise to
I1fi 005 (z) — ﬁ(Z)HW’“‘”(w(Ui)) < CuNY*§/A + C1oNFn + CisNpATF. (56)
The second term in (42) can be bounded by Lemma C.8 as
| fi(z) — fio 07 1 (2)|[wroe 0,170y < CraN L), (57)
Substituting (56) and (57) into (42) gives rise to
||J?* Fllws.co () < CmC1 NS /A + CpyCraNFn + CpCraNnATF + CpCryN~(@=h),
Setting
n=N"% A=8crN' =Nt g _ (8B2D)7 A,
we have
IF - Fliwro(py < Crs N~ (58)

for k = 0,1 and a constant C'y5 depending on d, «v, 7 and the surface area of M.

eNetwork size We analyze the network size for each ﬁ

« 1,: The chart dermination network is the composition of d; and 1 o, where d; has O(log 5) = O(log N + log D)
layers and O(D) width, T has O(log 1)+ D = O(log N) + D layers and O(1) width. In both subnetworks, all
parameters are of O(1). By Lemma G.2, the chart dermination network has O(log N + log D) + D layers, O(D)
width and all weight parameters are of O(1).

* X: The multiplication network has O(log ) = O(log N) layers, O(1) width. All weight parameters are bounded by
2(a+d+1).

* ;: the projection ¢; can be realized by a single layer with width d. All parameters are of O(1).
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* §im,: By Lemma C.9, each g; m v has O(log N) layers and O(d) width. All parameters are of O(NN').
* ¢, m,v: By Lemma C.8 with p = 00, each ¢; m v is of O(1).

By Lemma G.2, each ¢; m v (Jm.v © i(x))X1;(x) is a CNN with O(log N + log D) 4 D layers, O(D) width and all
parameters of O(N). According to (41), f can be written as a sum of Cy(N¢(d 4+ 1)* CNNs

Cm
f: Z Z Civmvv(gm,v o (pz(x));iL(X) (59)

=1 m,v

By Lemma C.11, for any M, J satisfying MJ = O(N?), there exists a CNN architecture FENN(L, J, K, , k) that gives
rise to {g; }7_; with

o
F=> g
=1

and

L=0(ogN +1logD)+ D, J=0(DJ), K = O(N).

By Lemma C.12, there exits a ConvResNet architecture C(M, L, J, K, k1, ko) with

L=0(ogN)+D,J=0(DJ),ky = ks =O(N), M = O(M) (60)
and J. , M satisfying
MJ = O(N%, (61)
that yields a ConvResNet realizing f. Setting N = O((M J)H/4) in (58) and (60) gives rise to
1F = Fllwssagy < Cas(MLT) =57 (62)
and the network size
L=0 (1og(z\7,7) +log D) + D, J=0(DJ), k= O((MJ)%).
O

G. Definitions, Lemmas and their proofs used in Section C

G.1. Existing lemmas on CNNs

Lemma G.1 shows that any MLP can be realized by a CNN.
Lemma G.1 (Theorem 1 in Oono & Suzuki (2019)). Let D be the dimension of the input. Let L, J be positive integers
and k > 0. For any 2 < K' < D, any MLP architectures FM'Y (L, J, k) can be realized by a CNN architecture
FONN(LJ' K K, kb)) with

L'=L+D,J =4J,k} = k) = k.
Specifically, any fM'P € FMLP(L, ] k) can be realized by a CNN fONN ¢ FONN(L/J' ' K' k!, Kb). Furthermore, the
weight matrix in the fully connected layer of f°NN has nonzero entries only in the first row.

Lemma G.2 shows that the composition of two CNNs can be realized by a CNN.

Lemma G.2 (Lemma 13 in Liu et al. (2021)). Let FCNN(Ly, Jy, K1, k1, k1) be a CNN architecture from RP — R and
FSNN(Lg, Jo, Ko, kg, ko) be a CNN architecture from R — R. Assume the weight matrix in the fully connected layer
offlcNN (L1, J1, K1, k1, k1) and .FQCNN (La, Jo, Ko, ko, ka) has nonzero entries only in the first row. Then there exists a
CNN architecture FENN(L, J, K, k, k) from RP — R with

L=1L1+ Ly, J=max(J1, o), K = max(K1, K3),x = max(k1, k2)

such that for any fi € FONN(Ly,Jy, Ky, k1,k1) and fo € FONN(Lo, Jo, Ky, ko, Ky), there exists f €
FONN(L J K, k, k) such that f(x) = fao o fi(x). Furthermore, the weight matrix in the fully connected layer of
FONN(L J, K, k, k) has nonzero entries only in the first row.
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G.2. Interpolation spaces

Definition G.3 (Interpolation spaces). Let (By, B1) be an interpolation couple. For any u € By, define

K(t,u, Bo, B1) = inf (|Ju—vl5, +tlv]z)
v 1

and the norm

(fooot_"”K(t,u,BO,Bl)p%)l/P7 for 1 < p < oo,
SUP<t< oo t=9K(t,u, By, B1), for p = oo.

Hu”(Bo,Bl)e,p = {

Then the interpolation space (By, B1)g,p is defined by

(Bo,B1)g,p = {U € By : ||UH(BO,Bl)e,p < OO} :

The following lemma shows that the fractional Sobolev space is an interpolation space:
Lemma G.4 (Theorem 14.2.3 of Brenner et al. (2008)). Let Q € R be an Lipschitz domain. Then for any 0 < s < 1 and
1 <p < o0, we have

WHP(Q) = (LP(), WLP(Q))s,p'

The following lemma shows that the norm of the interpolation space of (By, B1)s,;, can be bounded using || - || g, and || - || 5,

Lemma G.5. Let (By, B1) be an interpolation couple. Moreover, let 0 < 0 < 1 and 1 < p < co. Then there exists a
constant C depending on 0 and p such that for all u € By, we have

—6
ull o, < Cllullz,”llull, -

In particular, when p = oo, we have C = 1.

G.3. Proof of Lemma C.2
Proof of Lemma C.2. Note that ¢(x) can be realized by a two-layer MLP

Y(x) = ReLU(As - ReLU (412 + by))

with
1 2
1 1
Al = 1 , by = 1 ,A2=[1 -1 -1 1].
1 -2

According to Lemma G.1, for any 2 < K, such an MLP can be realized by a CNN in F°NN (2,16, 2,2, 2). According to
the expression of the right-hand-side of (12), we have ¥, n(x) € FNN(2,16,2,3N,3N).

To prove (13), the case k = 0 follows by the definition of ¥. For k = 1, we have

A () _ (3N (@~ 2))

= 3N.
dx dzx

G.4. Proof of Lemma C.9

Proof of Lemma C.9. For any given m and v, ¢, X" is a product of at most o + D quantities each of which can be realized
by a CNN. The following lemma shows that the multiplication operator x can be well approximated by a CNN (see a proof
in Appendix G.5):
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Lemma G.6. Forany 0 <n < 1/2, z,y € [-B, B, and K > 2, there is a CNN architecture FNN(L, J, K, k, k) that
yields a CNN, denoted by X (-, +), such that

H;Z(x,y) — xy||W1,oo[_B7B]2 <, Q(zc,O) = Q(y,()) =0.
Such a network has

1
LzO(log—), J=24, k=1.
n

Furthermore, one has
1% (@, y)llwr((~B,B)?) < CB

for some absolute constant C.

For simplicity, we denote ¢, (z) = v (3N (z — 2%)) for k = 1, ..., D. Then we construct gm, v (x) as

Genv (%) = X (X (X (X (B (%), Yoy (21)), Yy (22)), -3 )3 Y (2D))

where py, (x) is the network approximation of xV defined by

Dyv(x) = Q(...x(xl,xl), vy D).

The structure of gn, v is visualized in Figure 5. Here gp, v consists of no more than oo + D — 1 compositions of % and 2D
additional channels. These additional channels are used to pass the information x4 and x_.

%(z1,22) x, ~
X(X(x1,22),3) x4 x_

_—

;(’("';(;((El;wZ)vzfi)v‘”))7¢m1(zl)) X+ *-

| M
L__—+]

SZ('"%("';{(;(ml,zZ),mg),'--,1/1,,"(211)),...,1/),,,17,1(111)_1)) X+ X—
| ) |

Figure 5: Illustration of gy, v.
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By applying Lemma G.2 a + D — 2 times, we have g v € FENN(L, J, K, k, k) with

1
L:O(Dlogg), J=0(D), k =3N.

We next prove (17) and (18). First note that we can express

mx” = gn = [[ 1i(x),
=1

gm,V(X) =0n = ;(;( o Q(h‘l(x)a h2<x))7 ), hn(x))
for some n < a + D, where each h; can be realized by one layer and satisfies

17 (%) [lw.os (0,1) < (BN)*.

To prove (17) and (18), it is enough to show

1Gn (%) = gn () lwr.oe (0,12 < n'~Fck NPe (63)
gn (X) =0if 9n (X) = O> (64)
|90 (%) w1 ((0,1y2) < C16N* (65)

forany 1 <n < a+ D — 1, where {c, 2;{3 —1and C1¢ are constants depending on D and a.

For n = 1, we have
190 — gnlwrs(o,1yp) = [X (71, 1) = halwroe (0,1)P)-
By Lemma G.6 with B = o+ D + 1, we have for k = 0,
|§(h1, 1) - h1|WO,oc((0,1)D) <e.
For k = 1, by Lemma G.6, we deduce
|;(h1, 1) — h1|W1,oo((071)D) < C’/|;(x,y) —x- y|W1,(x>([O’1]2)|h1|W1,oo([0,1]2) < 3C/N€,
where C” is a constant depending on D. We set ¢; = 3C". Furthermore,
|§1 (X)lwl,oc((o,l)D) = |§(h1, 1)|W1,:>o((071)D) S 04‘;(1‘,:1]) — - y|W1,oo((0’1)2)|h1|W1,oo((0’1)2) S C5N,
where C7, C1g are constants depending on D, cv.
Therefore, the inequalities (63) and (65) hold for n = 1.
For (64), if g1(x) = 0, then hy(x) = 0. By Lemma G.6, g1 (x) = 0.
Assume (63)—(65) hold for any 1 < n < ¢ for some integer ¢ satisfying 1 <t < a+ D —2,i.e., forany 1 < n <t, we have

190 = gnlwr=(0,1yp) < 'R NTe, (66)
gn = 0if g, =0, (67)
|§n|W11‘X’((071)D) S ClgN. (68)
We also deduce that
‘gt‘WO'm((O,l)D) == |§t - gt|W0v°°((O71)D) + ‘gt‘wo,oo((o’l)D) S te + 1 S t + 1. (69)

Forn =t + 1, we have

|Gt — grralwro(0,)p) = X (Ges Puy1) = gt - Pugalwro(0,1)P)
<% (G, hus1) — G - hialwroe(0,1)p) +19¢ - hew1 — gt - Pegalwroo((0,1)P)- (70
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Consider the first term in (70). For k£ = 0, we have

1X(Ge, hes1) — Gt - st lwo.ce (0,1y2) < X (@) — @ Ylwooe (mi—1,041)2) < € (71)
For k = 1, we have
X (Gt hes1) = Gt - Pugalwroe (0,1)2)
<C'[X(z,y) —x- Ylwioo((—t—1,04112) [Gelwoo ((—t—1,041]2) < 3C" e Ne, (72)
where (66) with k = 1 is used in the last inequality, C’ is a constant depending on D.

For the second term in (70), we first consider k = 0:

19t - hir1 — gt - healwo.o0,1)P) < |hitiloolgt — gtloo < te, (73)
where (66) with k£ = 0 is used.
For k = 1, we have
Gt~ he1 — gt - hasalwo (0,1)P)

:|ht+1(§t - 9t)|W1:x((071)D)

<Clhit1lwr0,)2) 19t = gtlloo + Co0llhis1lloo |Gt — gelwr.((0,1)P)

SSCQ()fo + CgoCtNE < 021N€, (74)
where Cyg, Co; are constants depending on D and «. In (74), (66) with k = 0 and & = 1 are used in the second inequality.

Combining (71)—(74) and setting ¢; 1 = 3Cyc; + Ca1 gives rise to
|Ge+1 — Gt lwrss(0,1)p) < (E+ 1) "Fefy  NPe.
Therefore, (63) holds forn =t + 1.

To prove (64), note thal if g¢+1 = 0, then either h;41 = 0, or g, = 0. By our induction assumption, when g; = 0, we have
g+ = 0. Since gy+1 = X(gt, ht+1), by Lemma C.9, we have g1 = 0 and (64) holds forn = ¢ + 1.

For (65), we deduce

Ge+1(x) w1 ((0,1)P)
=% (Gt> hes1) lwr(0,1))
SC’|§(x,y) - y|W1‘°°((ft71,t+1)2) max {|§t|W1‘°°((0,1)2)a |ht+1|W1v°°((0,1)2)}
<C2N,
where C; is a constant depending on D and .

Therefore, (63)—(65) hold for n = t 4+ 1. By mathematical induction, (63)—(65) hold forany 1 <n < D 4 o+ 1, and (17)
and (18) are proved. O]

G.5. Proof of Lemma G.6
Proof of Lemma G.6. The proof of Lemma G.6 is based on the following lemma.

Lemma G.7 (Proposition C.2 in Giihring et al. (2020)). Forany 0 < n < 1/2, z,y € [—B, B]. There is an MLP, denoted
by x(-,), such that
1% (2,y) — 2yllwr.ec—B,B12 <N, x(2,0) = x(y,0) = 0.

Such a network has O (log %) layers and parameters. The width of each layer is bounded by 6 and all parameters are

bounded by 2. Furthermore, we have
[ % (x, y) w1 ((—B,B)2) < CM,

for some absolute constant C.
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Combing Lemma G.7 and G.1, for any ¢ > 0, K > 2, there exits a CNN x € ]-"CNN(L, J, K, K, k) such that for any
|z] < B, |y| < B, we have

X (z,y) —wy| <e, X(z,0) = x(y,0) =0,
% (2, y)lwre((—B,By2) < CosB,

where Cs3 is an absolute constant. Such an architecture has

1
LzO(log),J:M,m:l.
€

G.6. Proof of Lemma C.10
Proof of Lemma C.10. Denote Qm n = B |1 (%2). We have

1D tmQuynf— D> Y. emvmllweeor)

meSy meSy |vi<a—1
p
v ~
= E g Cm,v(ﬁmX - § § Cm,vdm,v
meSy |v|<a—1 meSy |vi<a—1

Wkr((0,1)P)
p

Z Z Cm,v (¢mxv - gm,v)

meSy |[v[<a—1

WER((0,1)P)
p

S Z Z Z Cm,v ((bmxv - gm,v) ) (75)

meSy ||meSy |v|<a—1 W (Qm ~N(0,1)P)
where the first equality follows from (15), the last inequality holds since (0,1)” C Uges, Qm N

For each m, we have

Z Z Cm,v (¢mxv - gm,v)

mESN [vi<a-t Wr (g, n1(0,1)P)

<Y Y lemllomX = Gmsllwrsion voon)

meSy |v|<a—1

§024Nd/p Z Z HJ?HWQ—LP(Qm,N) HQmev - gm,VHWk,p(QﬁNQ(OJ)D) ) (76)

meSy |vi<a—1
where C5; is the constant in Lemma C.7, f is the extension of f to RP from Stein (1970, Theorem VI.3.1.5), which satisfies
[ fllwes@ey < Cosllf lwawr(0,1)2) (77)
for some constant Cs5 depending on D, p, c.

We next derive an upper bound of the summand of (76). We first deduce that

[Pmx" — Im,v ‘Wk,p(Qﬁ,Nm(O,l)D)

1/p v o~
<[ N O D[ (D + DY [[fmx” ~ Ganw i w002

1 d/p B
<C% (N) ||¢mXV — 9m,v

|W’°’°°(er.,Nﬁ(071)D)

1 d/P
<Cyy <N> N, (78)
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where |Qgz y N (0, 1)D| denotes the volume of Qg v M (0, 1), Ca6, Ca7 are constants depending on D, « and p. We used
Lemma C.9 in the last inequality. Substituting (78) into (76) gives rise to

Z Z Cm,v (¢mxv - gm,v)

mESN [v|ga—t WP (O v0(0,1))

=Cos ) Y Ilweto@m ) 19mXY = G lwes @n va0.1)2)

meSn [vi<a—1
[lm—m|lo <1

<CouCorN*n ) > I lwerr @

mgSN vi<a—1
[lm-—m|le <1

<CosN*n Y flwe-10(@m ) (79

mgSN
[[m—m|lo <1

where Cog = Co4Cor(D + 1)2~ 1. By Holder’s inequality, we have
> I llwerr (@)

SON
[m—mllo <1

= > Ilwero@ma -1

mgsN
[m—mlleo<1

=3 I D V1 >, I

mgSN mgSN
[[m—mllo <1 [lm—mlloo <1

. i
<374 Yo e ir@n | (80)

mgSN
[lm—m|lo <1

where ¢ = 1/(1 — 1/p). Substituting (79), (80) into (75) gives rise to
| Z ¢mQ;ln/Nf - Z Z Cm,vﬂgvm,V||§)/Vk,p((o’1)D)

meSy meSy |v|<a—1

§(0283%N’“n)p ) D SR ] [PR

meSy meSy
lm-—mlle <1

D p _
S <C2837Nk’r]> 3D Z Hf||€[/a—1,p(9’rTq N)
MESN '
Dk \P aDoD | 7P
S <C283 a N n) 372 ”fHW“_l’p(UaesNQa,N)

§C29Nkp77p||fHW”—LP((OJ)D)’

where Cyg is a constant depending on D, «, p. In the above, we used (77) in the last inequality. Lemma C.10 is proved for
s=0ands=1.Forany 0 < s < land 1 < p < oo, by Lemma G.5, we have
P

> bmQanf— D>, D CmvOmy <C3oN* PP || f |lwa-1.0((0,1)2)

meSy meSy |v|<a—1 Whp((0,1)P)

<C3o NP0 || fllwe.r((0,1)P)
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for some constant C3g depending on D, «, s, p. The proof is finished. O

G.7. Lemma G.8 and its proof

Lemma G.8. Ler {f;}!"_, be a set of CNNs with architecture .FCNN(LO, Jo, Ko, ko, ko). Then there for any integer
1 < w < n, there exists a CNN architecture fCNN(Lu,, Jw, K, Kw, Kw) that gives rise to a CNN g, such that

9u(x) = 3 1)

Such an architecture has
L= O(Lo), J = U)Jo, K = Ko, K = RQ.
Furthermore, the fully connected layer of f has nonzero elements only in the first row.
Proof of Lemma G.8. The idea of the proof is similar to Liu et al. (2021, proof of Lemma 14). Following the proof of Liu

et al. (2021, Lemma 14), we can show that there exist a set of filters YV and biases 5 such that

(1(x)+ (Ax)- (f2(x)+ (f2(x)- -+ (fux)s  (fulx))-

* * * * * *

)

Convyy g(x) =

where Convyy s has depth bounded by L, number of channels bounded by wj and all weight parameters bounded by .
We write g,, as

Juw = Wl . COHVW,Bv

where W1 is given as

Wi

The proof is finished. O

G.8. Proof of Lemma C.11

Proof of Lemma C.11. For any given J, let ¢ be the smallest integer such that J < cJy. Then we set J = cJy and
n = [ng/c]. By Lemma G.8, there exists a CNN architecture F“NN (L, J, K, s, k) with

L= O(L()), J = CJ()7 K= Ko, K = RQ.

Such an architecture gives rise to CNNs {g; }j[zol/ “! such that

min{cj,n}

95 = Z fi-
i=c(j—1)+1

The lemma is proved. O

H. Proof of lemmas in Appendix F
H.1. Proof of Lemma F.1

Proof of Lemma F.1. Following the construction in Step 1 of the proof of Theorem 4.5, for ¥ = r/2 < 7/8, there exists a

collection of points atlas of M denoted by {[71-, @}ic:/‘f, where U; = Bji(¢;) for some ¢; € M, and @; is defined according
to (37). By Conway & Sloane (1988, Chapter 2 Equation (1)), the number of charts is bounded by

Cpm < [SA(M)TJ = {SA(M)TJ .

7 7“/2d

The following lemma shows that for any locally finite cover of a smooth manifold, a C'* partition of unity always exists:
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Lemma H.1 (Chapter 2 Theorem 15 of (Spivak, 1973)). Let {U, }aca be a locally finite cover of a smooth manifold M.
There is a C*° partition of unity {pa }32 such that supp(pa) C U,.
Let { pl}g"f be the partition of unity in Lemma H.1 with respect to {(71}10:"1‘
We set Cphy = C~’M and define U; = B,.(c;) and ¢; according to (37). Since 7 < 7, 17,- C U;, we have [71 C U; and
c
M C

(2

<
Q
<

=

C U;.

1 %

Il
-

Therefore {U; }< is an open cover of M and {U;, ; }$ is an atlas of M. Since supp(p;) C U;, we have supp(p;) C U;
and

inf lx —X|l2 > inf |lx —X||2 =r/2.
xEsupp(pi), x€oU; XGﬁq‘,, x€oU;

The lemma is proved. O

H.2. Proof of Lemma F.3
Proof of Lemma F.3. We deduce

|A2‘Wk’°°(§0i(Ui)) = (Z Ci,m,vgm,v(z)> X (iz o @fl(z) - ]li © wzl(z))‘

Wk (;(Us))
=[fioer!@ x (Liow '@ — 10w (@)

<[fiow(2) x (Tiow (2) ~ Liow ' (2))

Wk (;(U;))

Wk.o0 (€ 5)

+

oo Y(z) x (ii o (z) — 1,0 ¢;1(Z)>

=|fiowr (@) x (Tio o7 (2) — Lio 6 (2)

Wk (3 (Us)\$2,2)

Wk (Q; 2)

for k = 0, 1, where the last equality holds since

on ¢; (Ui)\Q; 2.
According to (53), fi 0 ;' (z) = fi 0 @; '(z) = 0 for z € ;(dU;). For any z € €; 5, let

*

z* = argmin ||z — z||o.
z€p; (0U;)

According to (52), we have ||z — z*||2 < A/(car).

By Lemma C.10 with some small > 0 and for s = k = 0, 1, we have

I fi o oyt - fillwe.o0,174) < C31N*n, (81)

fs
é)z]-

where Cs; is a constant depending on d, o, R. Since ||‘]/C;||W1,00(Qi’2) = 0, we have max; ‘ < C31Nnfor any z € §; 5.

Therefore
- ~ . i} C.
fiow @) <fiow ! (2") + CauNnllz — 2"l < "Ny (82)

for any z € Q; 5.
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Using |T; 0 ¢; *(z) — 1, 0 p; *(2)| < 1, we bound Aj as

[Aslwos ooy = [T 007 (2) x (Ti0 07 (2) — L0 97 (2)) |

W02 (Q; 2)

<|fiopt ‘ 1007 (z) =100 !
<|fiow; (2) o, ) < 1O P (z) op; (2) o (6 a)
<CinpA (83)
CorT
for £ = 0 and
T T -1
sl ooy = [Frowr ) x (Tiowr ) ~Tiow @)
<|fiop:t ‘ T, 00 z)— 100"
<|fowr@),, o *[Leert@-towr@|,, _,
s T 1
i 0 P; L;0¢; —L;0¢; ‘
Hhoel @, * Lo @ - towl @),
C3C
§ﬂN77A/A+CnN17
CoT
=C33Nn (84)

for k = 1, where C4 is a constant depending on «, R, 7. In the first inequality of (84), we used (82), the inequality

Lo (2) < Cy/A

ii o (p;l(z) - ]]'l osoiil(z)‘ = Wleo(Q;5)

Wl,oo(QiQ)

by (40) and the fact 1; o <pi_1 (z) = 1forz € Q, 2, and the inequality

fio ¢;1(z)‘ = |ficp;'(z) - 0‘ = I fiop; ' = fiow Hlwre,,) < CaiNy

Wlheo (€ 2) WLoo (.0
by (81).

Combining (83) and (84) gives rise to

Azl (o, () < CaaNpA'* (85)

fork =0,1. O



