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Abstract

Min-max optimization is emerging as a
key framework for analyzing problems of
robustness to strategically and adversari-
ally generated data. We propose the ran-
dom reshuffling-based gradient-free Opti-
mistic Gradient Descent-Ascent algorithm
for solving convex-concave min-max prob-
lems with finite sum structure. We prove
that the algorithm enjoys the same conver-
gence rate as that of zeroth-order algorithms
for convex minimization problems. We de-
ploy the algorithm to solve the distribution-
ally robust strategic classification problem,
where gradient information is not readily avail-
able, by reformulating the latter into a finite-
dimensional convex concave min-max problem.
Through illustrative simulations, we observe
that our proposed approach learns models
that are simultaneously robust against adver-
sarial distribution shifts and strategic deci-
sions from the data sources, and outperforms
existing methods from the strategic classifica-
tion literature.

1 INTRODUCTION

The deployment of learning algorithms in real-world
scenarios necessitates versatile and robust algorithms
that operate efficiently under mild information
structures. Min-max optimization has been used
as a tool ensure robustness in variety of domains

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

e.g. robust optimization [Ben-Tal et al., 2009],
robust control [Hast et al., 2013], to name a few.
Recently, min-max optimization has emerged
as a promising framework for framing problems
of algorithmic robustness against adversaries
[Goodfellow et al., 2014, Steinhardt et al., 2017,
Madry et al., 2017], strategically generated data
[Dong et al., 2018, Brown et al., 2020], and distribu-
tional shifts in dynamic environments [Yu et al., 2021].

Despite this, recent works in machine learning
and robust optimization on designing and analyz-
ing stochastic algorithms for min-max optimiza-
tion problems have largely operated on a num-
ber of assumptions that preclude their applica-
tion to a broad range of real-world problems
e.g., access to first-order oracles that provide ex-
act gradients [Yang et al., 2020, Nouiehed et al., 2019,
Jin et al., 2020] or restrictive structural assump-
tions such as strong convexity [Liu et al., 2020,
Wang et al., 2020, Sadiev et al., 2021]. Moreover, the
developed theory is often not well-aligned with the
practical implementation of these algorithms in real-
world machine learning applications. For example,
[Beznosikov et al., 2020] propose zeroth-order methods
for convex-concave problems but the proposed algo-
rithm may not be suitable for machine learning ap-
plications where the objective function is a sum of
large numbers of component functions (depending on
the size of dataset). Indeed, in order to compute the
gradient estimate at any iteration Beznosikov et al re-
quires perturbing all the functions which might not
be suitable/possible for many applications. Further-
more, stochastic gradient methods are often used with
random reshuffling (without replacement) in practice,
yet their theoretical performance is usually character-
ized under the assumption of uniform sampling with
replacement [Bottou, 2009, Jain et al., 2019].

In this work, we do away with these assumptions
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and formulate a gradient-free (zeroth-order), random
reshuffling-based algorithm with non-asymptotic con-
vergence guarantees under mild structural assumptions
on the underlying min-max objective. Our conver-
gence guarantees are established by balancing the bias
and variance of the zeroth-order gradient estimator
[Bravo et al., 2018], using coupling-based arguments
to analyze the correlations between iterates due to the
random reshuffling procedure [Jain et al., 2019], and
exploiting the recent connections between the Opti-
mistic Gradient Descent Ascent (OGDA) and Proximal
Gradient algorithms [Mokhtari et al., 2020b].

One of the primary problem areas in which such
an algorithm becomes necessary is in learning from
strategically generated or decision-dependent data,
a classical problem in operations research (see,
e.g., [Hellemo et al., 2018] and references therein).
This problem has garnered a lot of attention of
late in the machine learning community under the
name “performative prediction” [Perdomo et al., 2020,
Miller et al., 2021, Brown et al., 2020] due to the grow-
ing recognition that learning algorithms are increasingly
dealing with data from strategic agents. In such prob-
lems, assuming access to the response map of strategic
agents is often too restrictive, and the introduction of
agent’s strategic responses into a convex loss function
can often result in non-convex objectives.

As an example of such a decision-dependent problem,
consider a scenario in which a ride-sharing platform
seeks to devise an adaptive pricing strategy which is
responsive to changes in supply and demand. The
platform observes the current supply and demand in
the environment and adjusts the price to increase the
supply of drivers (and potentially decrease the demand)
as needed. Drivers, however, have the ability to adjust
their availability, and can strategically create dips in
supply to trigger price increases. Such gaming has
been observed in real ride-share markets (see, e.g.,
[Hamilton, 2019, Youn, 2019]) and results in negative
externalities like higher prices for passengers. Impor-
tantly, in this situation, the platform does not observe
precisely the decision making process of the drivers,
only their strategically generated availability, and must
learn to optimize through these agents’ responses. This
lack of precise knowledge regarding the data generation
process, and the reactive nature of the data, motivate
the use of game theoretic abstractions for the decision
problem, as well as algorithms for finding solutions in
the absence of full information.

Previous work analyzing this problem studies this phe-
nomenon through the lens of risk minimization in which
the data distribution is decision-dependent, and seeks
out settings in which the decision maker can optimize
the decision-dependent risk [Miller et al., 2021]. These

works, however, do not account for model misspeci-
fication in their analysis. In particular, if the data
generation model is incorrect, the performance of the
optimal solution returned by their training methods
may potentially degrade rapidly, something we explore
in our experiments.

We show that the decision-dependent learning (perfor-
mative prediction) problem can be robustified by taking
a distributional robustness perspective on the original
problem. Moreover, we show that, under mild assump-
tions, the distributionally robust decision-dependent
learning problem can be transformed to a min-max
problem and hence our zeroth-order random reshuffling
algorithm can be applied. The gradient-free nature of
our algorithm is important for applications where data
is generated by strategic users that one must query; in
these scenarios, the decision-maker is unlikely to access
the best response map (data generation mechanism) of
the strategic users, and hence will lack access to precise
gradients.

Contributions. In this paper, we analyze the class
of convex-concave min-max problems given by

min
x∈X

max
y∈Y

L(x, y), (1)

where X ⊂ Rdx , Y ⊂ Rdy , and L : Rdx × Rdy → R
has the finite-sum structure given by L := 1

n

∑n
i=1 Li,

where L1, . . . , Ln : Rdx × Rdy → R denote n individ-
ual loss functions. This formulation is ubiquitous in
machine learning applications, where the overall loss
objective is often the average of the loss function eval-
uated over each data point in a dataset.

The contributions of this paper can be summarized as
follows.

I) We propose an efficient zeroth-order random
reshuffling-based OGDA algorithm for a convex-
concave min-max optimization problem, without
assuming any other structure on the curvature
of the min-max loss (e.g., strong convexity or
strong concavity). We provide (to our knowl-
edge) the first non-asymptotic analysis of OGDA
algorithm with random reshuffling and zeroth-
order gradient information.

II) As an important application, we formulate
the Wasserstein distributionally robust learn-
ing with decision-dependent data problem as a
constrained finite-dimensional, smooth convex-
concave min-max problem of the form (1). In par-
ticular, we consider the setting of learning from
strategically generated data, where the goal is to
fit a generalized linear model, and where an am-
biguity set is used to capture model misspecifica-
tion regarding the data generation process. This
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setting encapsulates a distributionally robust
version of the recently introduced problem of
strategic classification [Hardt et al., 2016]. We
show that this problem, under mild assumptions
on data generation model and the ambiguity set,
can be transformed into a convex-concave min-
max problem to which our algorithm applies.

III) We complement the theoretical contributions of
this paper by presenting illustrative numerical
examples.

2 RELATED WORK

Our work draws upon the existing literature on zeroth-
order methods, random reshuffling-based methods,
decision-dependent learning, and distributionally ro-
bust optimization.

Zero-Order Methods for Min-Max Optimiza-
tion. Zeroth-order methods provide a computation-
ally efficient method for applications in which first-order
or higher-order information is inaccessible or impracti-
cal to compute, e.g., when generating adversarial ex-
amples to test the robustness of black-box machine
learning models [Liu et al., 2020, Chen et al., 2017,
Ilyas et al., 2018, Tu et al., 2019]. Recently, Liu et
al. (2020) and others [Gao et al., 2018] provided
the first non-asymptotic convergence bounds for
zeroth-order algorithms, based on analysis meth-
ods for gradient-free methods in convex optimiza-
tion [Nesterov and Spokoiny, 2017]. However, these
works assume that the min-max objective is ei-
ther strongly concave in the maximizing variable
[Liu et al., 2020, Wang et al., 2020] or strongly con-
vex [Gidel et al., 2017] in the minimizing variable, an
assumption that fails to hold in many applications
[Dong et al., 2018, Yu et al., 2021]. In contrast, the
zeroth-order algorithm presented in this work provides
non-asymptotic guarantees under the less restrictive as-
sumption that the objective function is convex-concave.

Random reshuffling of data sets. In single-
variable optimization problems, first-order stochastic
gradient descent algorithms are empirically ob-
served to converge faster when random reshuffling
(RR, or sampling without replacement) is de-
ployed, compared to sampling with replacement
[Recht and Ré, 2011, Bottou, 2009]. Although con-
siderably more difficult to analyze theoretically,
gradient-based RR methods have recently been shown
to enjoy faster convergence when the underlying objec-
tive function is convex [Shamir, 2016, Jain et al., 2019,
HaoChen and Sra, 2019, Safran and Shamir, 2019].
Recently, these theoretical results have been extended
to first-order methods for convex-concave min-max

optimization problems [Yu et al., 2021].

Distributionally Robust Optimization. Dis-
tributionally Robust Optimization (DRO) seeks
to find solutions to optimization problems (e.g.,
supervised learning tasks) robust against changes in
the data distribution between training and test time
[Madry et al., 2017, Yu et al., 2021]. These distribu-
tional differences may arise due to imbalanced data,
sample selection bias, or adversarial perturbations
or deletions [Candela et al., 2009, Madry et al., 2017],
and are often modeled as min-max optimization
problems, in which the classifier and an adversarial
noise component are respectively modeled as the
minimizer and maximizer of a common min-max
loss objective [Bagnell, 2005, Bertsimas et al., 2010,
Rahimian and Mehrotra, 2019]. In particular, the
noise is assumed to generate the worst possible loss
corresponding to a bounded training data distri-
bution shift, with the bound given by either the
f -divergence or Wasserstein distance. [Yu et al., 2021,
Ben-Tal et al., 2013, Namkoong and Duchi, 2016,
Hu et al., 2018, Shafieezadeh-Abadeh et al., 2015].
While these works consider adversarial noise in
generated data, largely in a worst-case context, it has
yet to capture strategically generated data wherein
a data source generates data via a best response
mapping.

Strategic Classification and Performative Pre-
diction. Strategic classification [Hardt et al., 2016,
Dong et al., 2018, Sessa et al., 2020] and performative
prediction [Perdomo et al., 2020, Miller et al., 2021,
Drusvyatskiy and Xiao, 2020] concern supervised
learning problems in which the training data distri-
bution shifts in response to the deployed classifier or
predictor more generally. This setting naturally arises
in machine learning applications in which the selection
of the deployed classifier either directly changes the
training data (e.g., decisions based on credit scores,
such as loan approvals, themselves change credit
scores), or prompts the data source to artificially
alter their attributes (e.g. withdrawals during bank
runs spur worried clients to make more withdrawals)
[Perdomo et al., 2020, Miller et al., 2021]. Here, the
learner accesses only perturbed features representing
the strategic agents’ best responses to a deployed
classifier, and not the true underlying features
[Dong et al., 2018]. This is a recently introduced for-
mulation to machine learning; the results in this body
of literature (to our knowledge) have not introduced
the concept of robustness to model misspecification or
the data generation process, in the same manner as we
capture in this work.
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3 PRELIMINARIES

Recall that in this paper, we consider the class of
convex-concave min-max problems given by:

min
x∈X

max
y∈Y

L(x, y), (2)

where X ⊂ Rdx , Y ⊂ Rdy , and L := 1
n

∑n
i=1 Li, where

L1, . . . , Ln : Rdx × Rdy → R denote n individual loss
functions. For convenience, we denote d := dx + dy.
Assumption 3.1. The following statements hold:

(i) The sets X ⊂ Rdx and Y ⊂ Rdy are convex and
compact.

(ii) The functions L1, . . . , Ln : Rd → R are convex in
x ∈ Rdx for each y ∈ Rdy , concave in y ∈ Rdy for
each x ∈ Rdx , and G-Lipschitz and `-smooth in
(x, y) ∈ Rd (which implies that L : Rd → R, by
definition, also possesses the same properties).

For ease of exposition, we denote u := (x, y), ML :=
supu∈X×Y |L(u)|, D := supu,u′∈X×Y ‖u − u′‖2, and
define the operators F, Fi : Rd → Rd, for each i ∈ [n],
by:

F (u) :=

[
∇xL(u)
−∇yL(u)

]
, Fi(u) :=

[
∇xLi(u)
−∇yLi(u)

]
. (3)

Observe that under Assumption 3.1, ML, D <∞, and
F and each Fi are monotone1. Finally, we define the
gap function ∆ : Rd → [0,∞) associated with the loss
L by

∆(x, y) := L(x, y?)− L(x?, y) ≥ 0, (4)

where u? := (x?, y?) ∈ X × Y denotes the min-max
saddle point of the overall loss L(x, y), and (x, y) ∈ X×
Y denotes any feasible point. This gap function allows
us to measure the convergence rate of our proposed
algorithm. To this end, we define the ε-optimal saddle-
point of (2) as follows.
Definition 3.1 (ε-optimal saddle point solution).
A feasible point (x, y) ∈ X×Y is said to be an ε-optimal
saddle-point solution of (2) if

∆(x, y) = L(x, y?)− L(x?, y) ≤ ε.

4 ALGORITHMS & ANALYSIS

In this section we introduce a gradient-free version of
the well-studied Optimistic Gradient Descent Ascent
(OGDA) algorithm, and provide non-asymptotic rates
showing that it can efficiently find the saddle point in
constrained convex-concave problems.

1A function F : Rd → Rd is called monotone if
〈F (x)− F (y), x− y〉 ≥ 0 for all x, y ∈ Rd.

4.1 Zeroth-Order Gradient Estimates

In our zeroth-order, random reshuffling-based variant of
the OGDA algorithms, we use the one-shot randomized
gradient estimator [Spall, 1997, Flaxman et al., 2005].
In particular, given the current iterate u ∈ Rd and a
query radius R > 0, we sample a vector v uniformly
from unit sphere Sd−1 (i.e. v ∼ Unif(Sd−1)), and define
the zeroth-order estimator F̂ (u;R, v) ∈ Rd of the min-
max loss L(u) to be:

F̂ (u;R, v) :=
d

R
L(u+Rv)v (5)

Properties of this zeroth-order estimator are stated in
Proposition A.4 in supplementary material.

4.2 Optimistic Gradient Descent Ascent with
Random Reshuffling (OGDA-RR)

In this subsection, we formulate our main algo-
rithm, Optimistic Gradient Descent Ascent with Ran-
dom Reshuffling (OGDA-RR). In each epoch t ∈
{0, 1, · · · , T − 1}, the algorithm generates a uniformly
random permutation σt := (σt1, · · · , σtn) of [n] :=
{1, · · · , n} independently of any other randomness.
This is what is referred as random reshuffling (or sam-
pling without replacement) where within every epoch
we do not re-sample and this naturally gives rise to cor-
relations between different iterations within an epoch.
Furthermore, the algorithm fixes a query radius Rt > 0
and search direction vti ∈ Rd in every epoch t. Note that
query radii only depends on epoch indices t, and not
on sample indices {σti}ni=1. For each i ∈ [n], t ∈ [T − 1],
we compute the OGDA-RR update as follows:

uti+1 = ProjX×Y

(
uti − ηtF̂σti (u

t
i;R

t, vti)

− ηtF̂σti−1
(uti;R

t, vti) + ηtF̂σti−1
(uti−1;Rt, vti−1)

)
,

(6)
where the terms F̂σti and F̂σti−1

are the zeroth-order
estimators of gradients Fσti and Fσti−1

(defined in (3)).

After repeating this process for T epochs, the algorithm
returns the step-size weighted average of the iterates,
ũT := 1

n·
∑T−1
t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti. The following the-
orem states that if we run Algorithm 1 long enough
then ũT will be close to the saddle point.

Theorem 4.1. Let L(u) denote the objective function
in the constrained min-max optimization problem given
by (1), and let u? = (x?, y?) ∈ X ×Y denote any saddle
point of L(u). Fix ε > 0. Suppose Assumption 3.1
holds, and the number of epochs T , step sizes sequence
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Algorithm 1: OGDA-RR Algorithm
Input: stepsizes ηt, Rt, data points
{(xi, yi)}ni=1 ∼ D, u

(0)
0 , time horizon duration T ;

for t = 0, 1, · · · , T − 1 do
σt = (σt1, · · · , σtn)← a random permutation of
set [n];
for i = 0, . . . , n− 1 do

Sample vti ∼ Unif(Sd−1)
uti+1 ← (6)

end
u

(t+1)
0 ← utn
u

(t+1)
−1 ← utn−1

end
Output: ũT := 1

n·
∑T−1
t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti.

{ηt}T−1
t=0 , and query radius sequence {Rt}T−1

t=0 satisfy:

ηt := η0 · (t+ 1)−3/4+χ, ∀ t ∈ {0, 1, · · · , T − 1},
Rt := R0 · (t+ 1)−1/4, ∀ t ∈ {0, 1, · · · , T − 1},

T >
1

ε4

(
3

16n
D +

5

4
C ·max

{
R0, η0, η0R0,

η0

R0
,
η0

(R0)2

}
(

1 +
1

χ

)) 4
1−4χ

,

for some initial step size η0 ∈
(

0, 1
2`

)
, initial query

radius R0 > 0, parameter χ ∈ (0, 1/4), and constant
C = O(nd2D). Then the iterates {uti} generated by the
OGDA-RR Algorithm (Alg. 1) satisfy:

E
[
∆(ũT )

]
< ε.

There are three main components to the proof of The-
orem 4.1: First, we bound the bias introduced due to
random reshuffling (or sampling without replacement)
by Wasserstein distance between two appropriate dis-
tributions that characterize the correlations introduced
between iterates because of random reshuffling. Sec-
ond, we bound the aforementioned Wasserstein distance
by constructing an appropriate coupling between iter-
ates generated with and without random reshuffling
[Jain et al., 2019]. The coupled iterates thus obtained
are then bounded by exploiting the recent connections
between OGDA method and proximal point methods
[Mokhtari et al., 2020a], which is one of the main con-
tributions of our proof technique. Third, we balance
the bias and variance introduced due to zeroth-order
gradient estimator by suitably choosing the step size
sequence {ηt} and the perturbation radius sequence
{Rt}. The details of the proof of Theorem 4.1 are
deferred to Appendix A.2.

Remark. Note that one can obtain better convergence
rates if we use a multi-point zeroth-order estimator as
opposed to the single-point zeroth-order estimator (5).
For instance, if we use the following two-point gradient
estimator:

F̂ (u;R, v) =
d

2R
(L(u+Rv)− L(u−Rv))v

then it follows easily from our analysis that the epochs
required to obtain an ε−optimal saddle point decreases
from Õ

(
n4d8

ε4

)
to Õ

(
n2d4

ε2

)
. But we restrict our pre-

sentation to single point estimators, as the application
presented in Sec. 5 demands that we query the objec-
tive function as minimally as possible. It is an interest-
ing future research direction to study the OGDA-RR
algorithm with more advanced zeroth-order methods.
Remark. The analysis of OGDA algorithm with ran-
dom reshuffling and exact gradient information is an
immediate feature of our proof technique. For such
algorithms, the number of epochs required to obtain an
ε−optimal saddle point is Õ

(
n2

ε2

)
. Note that there is

no dependence on d with exact gradient based methods.
Remark. Note that the OGDA-RR algorithm is com-
putationally more efficient than Alg. 2 in Yu et. al.
(2021), if one replaces the gradient estimates with true
gradient values. This is because that algorithm re-
quires O(log(n)) inner loop iterations to approximate a
proximal point update. Here, we overcome extra com-
putations by exploiting the recent perspective that the
OGDA update is a perturbed proximal point update
[Mokhtari et al., 2020b].

5 APPLICATIONS TO
DECISION-DEPENDENT DRO

In this section we discuss a novel convex-concave min-
max reformulation of a class of decision-dependent dis-
tributional robust risk minimization problems, which
reflects the need for learning classifiers that are simulta-
neously robust to strategic data sources and adversarial
model-specification. In particular, we present a distri-
butionally robust formulation of strategic classification
[Dong et al., 2018] with generalized linear loss, a semi-
infinite optimization problem that can be reformulated
to a finite-dimensional convex-concave min-max prob-
lem.

Strategic classification is an emerging paradigm in ma-
chine learning which attempts to “close the loop"— i.e.,
account for data (user) reaction at training time—while
designing classifiers to be deployed in strategic environ-
ments in the real world, where deploying naïve classifier
(designed ignoring the distribution shift) can be catas-
trophic. Modeling the exact behavior of such strategic
interactions is very complex, since the decision-maker
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(learner) does not have access to the strategic users’
preferences and hence lacks access to their best re-
sponse function. To overcome this difficulty, we use a
natural model for these strategic behaviors that has
been exploited in Dong et. al.(2018), and then impose
robustness conditions (in the form of an ambiguity set
on the decision-dependent data distribution) to capture
model misspecification. To facilitate the discussion, we
provide a primer on decision-dependent DRO in the
next subsection.

5.1 Primer on decision-dependent
distributionally robust optimization

Consider a generalized linear problem, where the goal
is to estimate the parameter θ ∈ Θ, which is assumed
to be a compact set, by solving the following convex
optimization program:

inf
θ∈Θ

ED [φ (〈x̄, θ〉)− ȳ 〈x̄, θ〉]

where φ : R→ R is a smooth convex function and the
tuple (x̄, ȳ) ∈ Rd × {−1,+1} is sampled from an un-
known distribution D, often approximated by the empir-
ical distribution of a set of observed data. The general-
ized linear model encompasses a wide range of machine
learning formulations [McCullagh and Nelder, 2019].

A distributionally robust generalized linear problem, on
the other hand, minimizes the worst case expectation
over an uncertainty set P in the space of probability
measures. This setup can be envisioned as a game
between a learning algorithm and an adversary. Based
on parameters chosen by the learning algorithm, the
adversary then picks a probability measure from the
uncertainty set which maximizes the risk for that choice
of parameter:

inf
θ

sup
P∈P

EP [φ (〈x̄, θ〉)− ȳ 〈x̄, θ〉] ,

where (x̄, ȳ) ∼ P ∈ P. Typically P is chosen as
a Wasserstein ball around the empirical distribution
D̃n of a set of n observed data points, {(x̃i, ỹi) ∈
Rd×{−1, 1}}ni=1, sampled independently from the data
distribution D. Then, for any δ > 0 the uncertainty
set P is given by Bδ(D̃n) = {P :W(P, D̃n) ≤ δ}.

A critique of the above problem formulation is that
the underlying data distribution D is considered fixed,
while in many strategic settings underlying data dis-
tribution will depend on the classifier parameter θ.
Decision-dependent supervised learning aims to tackle
such distribution shifts. When specialized to the gener-
alized linear model, the problem formulation becomes:

inf
θ
ED(θ) [φ (〈x̄, θ〉)− ȳ 〈x̄, θ〉] ,

where (x̄, ȳ) ∼ D(θ). In this work, we take a step for-
ward and work with the distributionally robust decision-
dependent generalized linear model, defined as:

inf
θ

sup
P∈P(θ)

EP [φ (〈x̄, θ〉)− ȳ 〈x̄, θ〉] , (7)

where (x̄, ȳ) ∼ P ∈ P(θ) and P(θ) = Bδ(D̃n(θ)). Here,
the dependence of P on the choice of classifier θ is
captured by its inclusion in P(θ) = Bδ(D̃n(θ)). To
describe decision-dependent distribution shifts D̃n(θ),
we restrict our focus to the setting of strategic classifi-
cation. The following subsection formalizes our setting.

5.2 Model for strategic response

Below, we denote the data points sampled from true
distribution by (x̃i, ỹi) ∼ D where D is a unknown,
underlying distribution. For ease of presentation, we
associate each data point index i with an agent. For
each agent i ∈ [n], let ui(x; θ, x̃i, ỹi) ∈ R denote its
utility function that a strategic agent seeks to maximize.
In other words, when a classifier parametrized by θ ∈
Rd is deployed, the agent i ∈ [n] responds by reporting
bi(θ, x̃i, ỹi), defined as:

bi(θ, x̃i, ỹi) ∈ arg max
x

ui(x; θ, x̃i, ỹi).

Note that we allow different agent to have different
utility function.

We now impose the following assumptions on the utility
functions; these are crucial for ensuring guaranteed
convergence of our proposed algorithms.

Assumption 5.1. For each agent i ∈ [n], define
ui(x; θ, x̃i, ỹi) := 1−ỹi

2 〈x, θ〉 − gi(x − x̃i), where gi :
Rd → R satisfies:

(i) gi(x) > 0 for all x 6= 0;
(ii) gi is convex on Rd;
(iii) gi is positive homogeneous2 of degree p > 1;
(iv) Its convex conjugate g∗i (θ) := supx∈Rd 〈x, θ〉−gi(x)

is Gi-Lipschitz and Ḡi-smooth on Θ.

As is pointed out in Dong et. al. (2018), a large
class of functions g(·) satisfy the requirements posited
in Assumption 5.1. For example, for any arbitrary
norm and any p > 1 the function g(x) = 1

p‖x‖
p is

a candidate. Note that these assumptions are not
very restrictive and capture a large variety of practical
scenarios [Dong et al., 2018]. A natural consequence of
the above modeling paradigm is that bi(θ, x̃i,+1) = x̃i.
To wit, the agents act strategically only if their true
label is −1. This is a reasonable setting for many real

2A function f : Rd → R is positive homogenous of degree
r if for any scalar α > 0 and x ∈ Rd we have f(αx) = αrf(x)
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world applications [Dong et al., 2018]. We now present
a technical lemma which will be helpful in subsequent
presentation.

Lemma 5.2 (Dong et. al. (2018)). Under Assump-
tion 5.1, for each agent i ∈ [n], the set of best re-
sponses arg maxx ui(x; θ, x̃i, ỹi) is finite and bounded.
The function θ 7→ 〈bi(θ, x̃i, ỹi), θ〉 is convex. To wit,
for any i ∈ [n]: 〈bi(θ, x̃i, ỹi), θ〉 = 〈x̃i, θ〉+ 1−ỹi

2 qg∗i (θ)
where 1

p + 1
q = 1

Against the preceding backdrop, we now present the
convex-concave min-max reformulation of the Wasser-
stein Distributionally Robust Strategic Classification
(WDRSC) problem.

5.3 Reformulation of the WDRSC Problem

The WDRSC problem formulation contains two main
components—the strategic component that accounts
for a distribution shift D(θ) in response to the choice
of classifier θ, and the adversarial component that
accounts for the uncertainty set P(θ). As per the mod-
eling assumptions described in Section 5.2, we have
(x̃i, ỹi) ∼ D and (bi(θ, x̃i, ỹi), ỹi) ∼ D(θ) for all i ∈ [n].
We now impose certain restrictions on the adversar-
ial component that would enable us to reformulate
the WDRSC problem as a convex-concave min-max
optimization problem. Crudely speaking, we allow ad-
versarial modifications on features for all data points,
but adversarial modifications on labels only when the
true label is +1.

For the distributionally robust strategic classifica-
tion problem, we consider a specific form of uncer-
tainty set P(θ) that allows us to reformulate the
infinite-dimensional optimization problem as a finite-
dimensional convex-concave min-max problem. As
described above, in our formulation, the features of
a given data point i can be perturbed strategically if
ỹi = −1, but not if ỹi = +1. On top of the strategic
perturbations we also consider the adversarial pertur-
bations to the data points. Specifically, we also assume
that the adversary can perturb both the features and
label of a data point i if ỹi = 1, but can only per-
turb the features and not the label if ỹi = −1. A
rigorous exposition of this restriction is deferred to Ap-
pendix B.1. Under these assumptions, we now present a
convex-concave min-max reformulation of the WDRSC
problem.

Theorem 5.3. Let the strategic behavior of the agents
be governed in accordance with Assumption 5.1. Sup-
pose φ is convex and β-smooth. In addition, suppose
R 3 x 7→ φ(x) + x ∈ R is non-decreasing. Then the
WDRSC problem (7) can be reformulated into the fol-

lowing convex-concave min-max problem:

min
(θ,α)

max
γ∈Rn

{
α(δ − κ) +

1

n

∑
i

1 + ỹi
2

(φ (〈bi(θ), θ〉))

(8)

+ γi (〈bi(θ), θ〉 − ακ)

+
1

n

∑
i

1− ỹi
2

(φ(〈bi(θ), θ〉) + 〈bi(θ), θ〉)

}
s.t.‖θ‖ ≤ α/(β + 1), ‖γ‖∞ ≤ 1

where for any i ∈ [n], we have concisely written
bi(θ, x̃i, ỹi) as bi(θ).

The proof of Theorem 5.3 is presented in Appendix
B.2.

Remark. The non-decreasing assumption on the map
R 3 x 7→ φ(x) + x ∈ R is not overly restrictive; in
fact, it is satisfied by the logistic regression model in
supervised learning (see Appendix C).

Remark. Note that we can convert the smooth convex-
concave minmax problem (8) into a non-smooth convex
minimization problem by explictly taking maximiza-
tion over γ. But we refrain from doing as it has been
observed [Yu et al., 2021] that solving the smooth min-
imax optimization problem is faster than solving the
non-smooth problem. In fact, we have presented an
experimental study in Appendix C which corroborates
this observation.

Throughout the rest of this paper, we denote the min-
max objective in (8) by L(α, θ, γ).

6 EMPIRICAL RESULTS

In this section we deploy zeroth-order OGDA algorithm
with random reshuffling to solve the convex concave
reformulation of WDRSC as presented in (8). We
point out that in order to solve (8), the zeroth-order
method should only be applied to estimate the gradient
with respect to θ. This is because the gradient with
respect to other variables, namely (α, γ), can be exactly
computed. Specifically, to compute derivative with
respect to θ the designer must know the best response
function which is often not available and it can only
be queried.

We now present some illustrations of the empirical
performance of our proposed algorithm, as well as em-
pirical justification for solving the WDRSC problem
over existing prior approaches to strategic classifica-
tion.
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6.1 Experimental Setup

Our first set of empirical results uses synthetic data
to illustrate the effectiveness of our algorithms. The
datasets used in this section are constructed as fol-
lows: the ground truth classifier θ? and features x̃i
are sampled as θ? ∼ N (0, Id) and x̃i ∼ i.i.d. N (0, Id),
for each i ∈ [n], while the ground truth labels ỹi are
given by ỹi = sign(〈x̃i, θ?〉+ zi) for each i ∈ [n], where
zi ∼ i.i.d. N (0, 0.1 · Id). We use n ∈ {500, 1000} with
d = 10. The first five of the d = 10 features are chosen
to be strategic. In all experiments, we take κ = 0.5
and δ = 0.4. Each strategic agent i ∈ [n] has a utility
function given by:

ui(x; θ, x̃i, ỹi, ζi) =
1− ỹi

2
〈x, θ〉 − 1

2ζi
‖x− x̃i‖2, (9)

where ζi denote the perturbation “power" of agent i.
For simplicity, we assume all agents are homogeneous,
in the sense that ζi = ζ > 0 for all i ∈ [n]; in practice,
one need not impose this assumption. Given this utility
function, the best response of agents takes the form:

bi(θ, x̃i, ỹi; ζ) =

{
x̃i if ỹi = +1,

x̃i + ζθ if ỹi = −1
(10)

where, in our simulations, we fix ζ = 0.05. We reem-
phasize that our algorithm does not use the value of
ζ in any of its computations. For purposes of illus-
tration, we focus on the performance of the following
algorithms:

(A-I) Zeroth-order optimistic-GDA with random
reshuffling (see Algorithm 1),

(A-II) Zeroth-order optimistic-GDA without random
reshuffling (see Appendix C),

(A-III) Zeroth-order stochastic-GDA with random
reshuffling (see Appendix C),

(A-IV) Zeroth-order stochastic-GDA without random
reshuffling (see Appendix C).

and we evaluate the proposed algorithms and model
formulation on two criteria:

(i) Suboptimality : To measure suboptimality, we
use the gap function ∆(α, θ, γ) = L(α, θ, γ?) −
L(α?, θ?, γ) (Def. 4) where (α?, θ?, γ?) is a so-
lution of the min-max reformulation (8) of the
WDRSC problem. If the objective L(·) is convex-
concave, ∆(·) is non-negative, and equals zero at
(and only at) saddle points.

(ii) Accuracy : Given a data set {(x̃i, ỹi)}i∈[n],
the accuracy of a classifier θ is measured as
1
n

∑
i∈[n] ỹi 〈bi(θ, x̃i, ỹi; ζ), θ〉. Under this crite-

rion we compare the accuracy under different
perturbations for different classifiers θ;

To compute suboptimality, we first compute a true min-
max saddle point (α?, θ?, γ?) via a first order gradient
based algorithm (namely, GDA). All experiments were
run using Python 3.7 on a standard MacBook Pro
laptop (2.6 GHz Intel Core i7 and 16 GB of RAM).

6.2 Results

Simulation results presented in Figure (1a)-(1b) show
that our proposed algorithm (i.e. (A-I)) outperforms
algorithms without reshuffling (i.e. (A-II) and (A-IV)).
However, its performance resembles that of zeroth-
order stochastic-GDA with random reshuffling. More
experimental studies need to be conducted to more
conclusively determine whether (A-I) outperforms (A-
III), or vice versa. In fact , there has been no theoretical
investigations even for the first order stochastic-GDA
algorithm with random reshuffling; this is an interesting
future direction to explore.

In Figure 1, we also compare the robustness of the
classifier obtained by using Algorithm (A-I) with that
obtained from prior work on solving probems of strate-
gic classification trained with ζ = 0.05 (referred as
LogReg SC in Figure 1). As expected, due to the for-
mulation, the performance of the classifier obtained via
(A-I) degrades gracefully even when subject to large
perturbations, while the performance of existing ap-
proaches to strategic classification degrades rapidly.
Further numerical results on synthetically generated
and real world datasets are given in Appendix C.

7 CONCLUSION AND FUTURE
WORK

7.1 Summary

This paper presents the first non-asymptotic conver-
gence rates for a gradient-free optimistic min-max opti-
mization algorithm with random reshuffling. Our theo-
retical results, established for smooth convex-concave
min-max objectives, do not require any additional, re-
strictive structural assumptions to hold. As a concrete
application, we reformulate a distributionally robust
strategic classification problem as a convex-concave
min-max optimization problem that can be iteratively
solved using our method. Empirical results on syn-
thetic and real datasets demonstrate the efficiency and
effectiveness of our algorithm, as well as its robustness
against adversarial distributional shifts and strategic
behavior of the data sources.

7.2 Current Limitations and Future Work

Potential directions for future work include establishing
convergence results for the random reshuffling-based



Chinmay Maheshwari, Chih-Yuan Chiu, Eric Mazumdar, Shankar Sastry, Lillian Ratliff

(a) n = 500

(b) n = 1000

Figure 1: Experimental results for a synthetic dataset
with n = 500 and n = 1000. (Left panes of (1a),
(1b))) Suboptimality iterates generated by the four
algorithms (A-I), (A-II), (A-III), (A-IV), respectively
denoted as Z-OGDA w RR, Z-OGDA w/o RR, Z-SGDA
w RR, Z-SGDA w/o RR. (Right panes of (1a), (1b)))
Comparison between decay in accuracy of strategic
classification with logistic regression (trained with ζ =
0.05) and Alg. (A-I) with change in perturbation.

Stochastic Gradient Descent Ascent (SGDA-RR) algo-
rithm, as well as performing more extensive experimen-
tal studies to better understand the empirical perfor-
mance of our algorithm. In addition, the assumptions
posited on the uncertainty set in WDRSC problem
formulation, in Section 5, could be relaxed.
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Supplementary Material:
Zeroth-Order Methods for Convex-Concave Minmax Problems:

Applications to Decision-Dependent Risk Minimization

A RESULTS FOR THE PROOF OF THEOREM 4.1

A.1 Lemmas for Theorem 4.1

First, we list some fundamental facts regarding projections onto convex, compact subsets of an Euclidean
space. Below, for any fixed convex, compact subset Ω ⊂ Rd, we denote the projection operator onto Ω by
ProjΩ(x) := argminz∈Ω‖x− z‖2 for each x ∈ Rd. Note that ProjΩ(x) is well-defined (i.e., exists and is unique)
for each x ∈ Rd, if Ω ⊂ Rd were convex and compact.

We begin by summarizing some fundamental properties of the projection operator ProjΩ(·).
Proposition A.1. Let Ω ⊂ Rd be compact and convex, and fix x, y ∈ Rd arbitrarily. Then:∥∥ProjΩ(x)− ProjΩ(y)

∥∥2

2
≤
(

ProjΩ(x)− ProjΩ(y)
)>

(x− y),

‖ProjΩ(x)− ProjΩ(y)‖2 ≤ ‖x− y‖2.

Proof. From [Nesterov, 2014], Lemma 3.1.4 (see also [Recht and Wright, 2021], Lemma 7.4), we have:(
ProjΩ(x)− ProjΩ(y)

)>(
x− ProjΩ(x)

)
≥ 0,(

ProjΩ(y)− ProjΩ(x)
)>(

y − ProjΩ(y)
)
≥ 0.

Adding the two expressions and rearranging terms, we obtain:(
ProjΩ(x)− ProjΩ(y)

)>(
(x− y)− (ProjΩ(x)− ProjΩ(y))

)
≥ 0,

⇒‖ProjΩ(x)− ProjΩ(y)‖22 ≤
(

ProjΩ(x)− ProjΩ(y)
)>

(x− y),

as given in the first claim. The Cauchy Schwarz inequality then implies:

‖ProjΩ(x)− ProjΩ(y)‖22 ≤
(

ProjΩ(x)− ProjΩ(y)
)>

(x− y)

≤ ‖ProjΩ(x)− ProjΩ(y)‖2 · ‖x− y‖2.

If ProjΩ(x) = ProjΩ(y), then the second claim becomes 0 ≤ ‖x− y‖2, which is clearly true. Otherwise, dividing
both sides above by ‖ProjΩ(x)− ProjΩ(y)‖2 gives the second claim.

Lemma A.2. Let Ω ⊂ Rd be a compact, convex subset of Rd, and consider the update zk+1 = ProjΩ(zk −
ηF (zk+1) + γk), where zk, zk+1, γk ∈ Rd. Then, for each z ∈ Ω:

〈F (zk+1), zk+1 − z〉

≤ 1

2η
‖zk − z‖2 −

1

2η
‖zk+1 − z‖2 −

1

2η
‖zk+1 − zk‖2 +

1

η
〈γk, zk+1 − z〉 .

Proof. Note that:

‖zk+1 − z‖2 = ‖zk+1 − zk + zk − z‖2

= ‖zk+1 − zk‖2 + ‖zk − z‖2 + 2 〈zk+1 − zk, zk − z〉
= ‖zk+1 − zk‖2 + ‖zk − z‖2 + 2 〈zk+1 − zk, zk − zk+1 + zk+1 − z〉
= ‖zk − z‖2 − ‖zk+1 − zk‖2 + 2 〈zk+1 − zk, zk+1 − z〉
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By definition of zk+1, and optimality conditions for the projection operator:

〈zk+1 − z, zk+1 − zk + ηF (zk+1)− γk〉 ≤ 0,

⇒ 〈zk+1 − zk, zk+1 − z〉 ≤ 〈γk, zk+1 − z〉 − η · 〈F (zk+1), zk+1 − z〉 .

Substituting back, we obtain:

‖zk+1 − z‖2 = ‖zk − z‖2 − ‖zk+1 − zk‖2 + 2 〈zk+1 − zk, zk+1 − z〉
≤ ‖zk − z‖2 − ‖zk+1 − zk‖2 + 2 〈γk, zk+1 − z〉 − 2η · 〈F (zk+1), zk+1 − z〉 .

Rearranging and dividing by η gives the claim in the lemma.

Next, we state the properties of the mean and variance of the zeroth-order gradient estimator defined in
Section 4.1 ([Bravo et al., 2018], Lemma C.1). Below, we define the R-smoothed loss function LR : Rd → R by
LR(u) := Ev∼Unif(Bd)[L(u+Rv)], where Sd−1 denotes the (d− 1)-dimensional unit sphere in Rd, Bd denotes the
d-dimensional unit open ball in Rd, and Unif(·) denotes the continuous uniform distribution over a set. Similarly,
we define LRi : Rd → R by LRi (u) := Ev∼Unif(Bd)[Li(u + Rv)], for each i ∈ [n] := {1, · · · , n}. We further define
R · Sd−1 := {Rv : v ∈ Sd−1} and R ·Bd := {Rv : v ∈ Bd}. Finally, we use vold(·) to denote the volume of a set
in d dimensions.

Proposition A.3. Let F̂ (u;R, v) = d
R · L(u+Rv)v and F (u) = ∇L(u). Then the following holds:

Ev∼Unif(Sd−1)

[
F̂ (u;R, v)

]
= ∇LR(u), (11)

‖∇LR(u)− F (u)‖2 ≤ `R, (12)

‖F̂ (u;R, v)‖2 ≤ dG+
dML

R
, (13)

‖F̂ (u;R, v)− F (u)‖ ≤ min

{
(d+ 1)G+

dML

R
, `R+ 2dG+

2dML

R

}
. (14)

Proof. First, to establish (11), observe that since LR(u) = Ev∼Unif(Bd)[L(u+Rv)] and F̂ (u;R, v) = d
R ·L(u+Rv)v

for each u ∈ Rd, R > 0, and v ∈ Sd−1:

∇LR(u) = ∇Ev∼Unif(Bd)

[
L(u+Rv)

]
= ∇Ev∼Unif(R·Bd)

[
L(u+ v)

]
=

1

vold(R ·Bd)
· ∇
(∫

R·Bd
L(u+ v)dv

)
=

1

vold(R ·Bd)
·
∫
R·Sd−1

L(u+ v) · v

‖v‖2
dv, (15)

Ev∼Unif(Sd−1)

[
F̂ (u;R, v)

]
=
d

R
· Ev∼Unif(Sd−1)

[
L(u+Rv)v

]
=
d

R
· Ev∼Unif(R·Sd−1)

[
L(u+ v) · v

‖v‖2

]

=
d

R
· 1

vold−1(R · Sd−1)
·
∫
R·Sd−1

L(u+ v) · v

‖v‖2
dv,

where (15) follows because Stokes’ Theorem (see, e.g., Lee, Theorem 16.11 [Lee, 2013]) implies that:

∇
∫
R·Bd

L(u+ v)dv =

∫
R·Sd−1

L(u+ v) · v

‖v‖2
dv.

The equality (11) now follows by observing that the surface-area-to-volume ratio of R ·Bd is d/R.
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Next, to establish (12), we note that:

‖∇LR(u)− F (u)‖2 =
∥∥∇Ev∼Unif(Bd)

[
LR(u)− L(u)

]∥∥
2

=
1

vold(Bd)
·

∥∥∥∥∥∇
(∫

Bd

[
L(u+Rv)− L(u)

]
dv

)∥∥∥∥∥
2

≤ 1

vold(Bd)
·

∥∥∥∥∥
∫
Bd

[
F (u+Rv)− F (u)

]
dv

∥∥∥∥∥
2

(16)

≤ 1

vold(Bd)
·
∫
Bd

∥∥F (u+Rv)− F (u)
∥∥

2
dv

≤ 1

vold(Bd)
·
∫
Bd
`R · ‖v‖2 dv

≤ `R,

where (16) follows by differentiating under the integral sign (see, e.g., Rudin, Theorem 9.42 [Rudin, 1976]), and
the remaining inequalities follow from the fact that F is `-Lipschitz.

Next, we establish (13) by using the triangle inequality and the ML-boundedness of L(·) on X × Y, and the
G-Lipschitzness of L(·):

|F̂ (u;R, v)| = d

R
|L(u+Rv)| · ‖v‖2

≤ d

R
·
(
|L(u)|+ |L(u+Rv)− L(u)|

)
· 1

≤ d

R
· (ML +RG).

We can then use (13) to establish (14) by observing that:

|F̂ (u;R, v)− F (u)| ≤ |F̂ (u;R, v)|+ |F (u)| ≤ (d+ 1)G+
dML

R
.

and, from (13):

|F̂ (u;R, v)− F (u)|
≤
∣∣F̂ (u;R, v)− Ev[F̂ (u;R, v)|u]

∣∣+
∣∣Ev[F̂ (u;R, v)|u]− F (u)

∣∣
≤
∣∣F̂ (u;R, v)− Ev[F̂ (u;R, v)|u]

∣∣+
∣∣∇LR(u)− F (u)

∣∣
≤2

(
dG+

dML

R

)
+ `R

This concludes the proof.

Below, we present technical lemmas that allow us to analyze the convergence rate of the correlated iterates {uti}
in our random reshuffling-based OGDA Algorithm (Alg. 1).

Let σ0, · · · , σt−1 denote the permutations drawn from epoch 0 to epoch t − 1, and let {uti(σt)}1≤i≤n and
{uti(σ̃t)}1≤i≤n denote the iterates obtained at epoch t, when the permutations σt and σ̃t are used for the epoch t,
respectively. Moreover, let Di,t denote the distribution of {uti(σt)}1≤i≤n under σt, and for 1 ≤ r ≤ n let D(r)

i,t

denote the distribution of {uti(σt)}1≤i≤n with σt conditioned on the event {σti−1 = r}.

We use the p-Wasserstein distance between probability distributions on Rd, defined below, to characterize the
distance between Di,t and D(r)

i,t . This is used in the coupling-based techniques employed to establish non-asymptotic
convergence results for our random reshuffling algorithm. Note the difference between the p-Wasserstein distance
for probability distributions on Rd, and the Wasserstein distance on Z := Rd×{+1,−1} associated with a metric
c : Z × Z → [0,∞), defined in Appendix B.2 (Definition B.1).



Chinmay Maheshwari, Chih-Yuan Chiu, Eric Mazumdar, Shankar Sastry, Lillian Ratliff

Definition A.1 (p-Wasserstein distance between distributions on Rd). Let µ, ν be probability distributions
over Rd with finite p-th moments, for some p ≥ 1, and let Π(µ, ν) denote the set of all couplings (joint distributions)
between µ and ν. The p-Wasserstein distance between µ and ν, denoted Wp(µ, ν), is defined by:

Wp(µ, ν) = inf
(X,X′)∼π∈Π(µ,ν)

(
Eπ
[
‖X −X ′‖p

])1/p

.

The following proposition characterizes the 1-Wasserstein distance as a measure of the gap between Lipschitz
functions of random variables.

Proposition A.4 (Kantorovich Duality). If µ, ν are probability distributions over Rd with finite second
moments, then:

W1(µ, ν) = sup
g∈Lip(1)

EX∼µ[g(X)]− EY∼ν [g(Y )],

where Lip(1) := {g : Rd → R : g is 1-Lipschitz}.

Using [Yu et al., 2021, Lemma C.2], we now bound the difference between the unbiased gap E[∆(uti)] and the
biased gap E[Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)] using the Wasserstein metric.

Lemma A.5. Let u? := (x?, y?) ∈ Rdx × Rdy = Rd denote a saddle point of the min-max optimization problem
(2). Then, for each t ∈ [T ] and i ∈ [n], the iterates {uti} = {(xti, yti)} of the OGDA-RR algorithm satisfy:

∣∣∣E[∆(uti+1)]− E
[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]∣∣∣ ≤ G

n

n∑
r=1

W2

(
Di+1,t,Dri+1,t

)
Proof. Since σt and σ̃t are independently generated permutations of [n], the iterates {uti}1≤i≤n = {uti(σt)}1≤i≤n
and {uti(σ̃t)}1≤i≤n are i.i.d. Thus, we have:

E[∆(uti+1)] = E
[
Lσti (x

t
i+1(σ̃t), y?)− Lσti (x

?, yti+1(σ̃t))
]
,

and thus: ∣∣∣E[∆(uti+1)]− E
[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]∣∣∣
=
∣∣∣E[Lσti (xti+1(σ̃t), y?)− Lσti (x

?, yti+1(σ̃t))
]
− E

[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]∣∣∣
=

∣∣∣∣∣ 1n
n∑
r=1

E
[
Lr(x

t
i+1(σ̃t), y?)− Lr(x?, yti+1(σ̃t))

]
(17)

− 1

n

n∑
r=1

E
[
Lr(x

t
i+1, y

?)− Lr(x?, yti+1)
∣∣σti = r

]∣∣∣∣∣
≤ 1

n

n∑
r=1

∣∣∣E[Lr(xti+1(σ̃t), y?)− Lr(x?, yti+1(σ̃t))
]
− E

[
Lr(x

t
i+1, y

?)− Lr(x?, yti+1)
∣∣σti = r

]∣∣∣
≤ 1

n

n∑
r=1

sup
g∈Lip(G)

(
E
[
g(xti+1(σ̃t), yti+1(σ̃t))

]
− E

[
g(xti+1, y

t
i+1)|σti = r

])
(18)

≤ 1

n

n∑
r=1

G · W1(Di+1,t,D(r)
i+1,t) (19)

≤ 1

n

n∑
r=1

G · W2(Di+1,t,D(r)
i+1,t), (20)

where (17) follows by properties of the conditional expectation on {σti = r} and the fact that σt and σ̃t are
independent, (18) follows from the fact that L is Lipschitz, (19) follows from Proposition A.4, and (20) follows
from the fact that W1(µ, ν) ≤ W2(µ, ν) for any two probability distributions µ, ν.
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The next lemma bounds the difference in the iterates {uti(σt)} and {uti(σ̃t)} (assuming, as before, that σ0, · · · , σt−1

were fixed and identical for both sequences.)
Lemma A.6. Denote, with a slight abuse of notation, uti := uti(σ

t) and ũti := uti(σ̃
t). Then:

‖uti+1 − ũti+1‖2 ≤

(
6nd+ 14n+ 2 ·

n∑
i=1

1{σti 6= σ̃ti}

)
G · ηt + 6ndML ·

ηt

Rt
.

Proof. Our proof strategy is to bound the differences between zeroth-order and first-order OGDA updates, and
between the OGDA and proximal point updates. To this end, we define:

uti+1 = ProjX×Y

(
uti − ηtF̂σti (u

t
i;R

t, vti)− ηtF̂σti−1
(uti;R

t, vti) + ηtF̂σti−1
(uti−1;Rt, vti−1)

)
,

ũti+1 = ProjX×Y

(
ũti − ηtF̂σ̃ti (ũ

t
i;R

t, vti)− ηtF̂σ̃ti−1
(ũti;R

t, vti) + ηtF̂σ̃ti−1
(ũti−1;Rt, vti−1)

)
,

vti+1 = ProjX×Y

(
uti − ηtFσti (u

t
i)− ηtFσti−1

(uti) + ηtFσti−1
(uti−1)

)
,

ṽti+1 = ProjX×Y

(
ũti − ηtFσ̃ti (ũ

t
i)− ηtFσ̃ti−1

(ũti) + ηtFσ̃ti−1
(ũti−1)

)
,

wti+1 = ProjX×Y

(
uti − ηtFσti (w

t
i+1)

)
,

w̃ti+1 = ProjX×Y

(
ũti − ηtFσ̃ti (w̃

t
i+1)

)
.

By the triangle inequality:

‖uti+1 − ũti+1‖2 ≤ ‖uti+1 − vti+1‖2 + ‖vti+1 − wti+1‖2 + ‖wti+1 − w̃ti+1‖2 (21)

+ ‖w̃ti+1 − ṽti+1‖2 + ‖ṽti+1 − ũti+1‖2.
Observe that bounding the fourth term is equivalent to bounding the second term, and bounding the fifth term is
equivalent to bounding the first term.

To bound the first term on the right hand side, we use Proposition A.3 to conclude that:

‖uti+1 − vti+1‖2 ≤ ηt · ‖F̂σti (u
t
i;R

t, vti)− Fσti (u
t
i)‖+ ηt · ‖F̂σti−1

(uti;R
t, vti)− Fσti−1

(uti)‖

+ ηt · ‖F̂σti−1
(uti−1;Rt, vti−1)− Fσti−1

(uti−1)‖

≤ 3(d+ 1)Gηt + 3dML ·
ηt

Rt
(22)

For the second term, we use the G-Lipschitzness of Lr, for each r ∈ [n] to conclude that:

‖vti+1 − wti+1‖2 ≤ ηt · |Fσti (u
t
i)|+ ηt · |Fσti−1

(uti)|+ ηt · |Fσti−1
(uti−1)|+ ηt · |Fσti (w

t
i+1)|

≤ 4G · ηt. (23)

For the third term, we observe that if σti 6= σ̃ti , then:

‖wti+1 − w̃ti+1‖2 ≤ ‖uti − ũti‖2 + ηt · ‖Fσti (w
t
i+1)− Fσ̃ti (w̃

t
i+1)‖2

≤ ‖uti − ũti‖2 + 2G · ηt. (24)

On the other hand, if σti = σ̃ti , then:

wti+1 = ProjX×Y

(
uti − ηtFσti (w

t
i+1)

)
,

w̃ti+1 = ProjX×Y

(
ũti − ηtFσti (w̃

t
i+1)

)
,

so we have:

‖wti+1 − w̃ti+1‖22
≤ (wti+1 − w̃ti+1)>

(
(uti − η · Fσti (w

t
i+1))− (ũti − η · Fσti (w̃

t
i+1))

)
(25)

= (wti+1 − w̃ti+1)>(uti − ũti)− η(wti+1 − w̃ti+1)>
(
Fσti (w

t
i+1))− Fσti (w̃

t
i+1))

)
≤ (wti+1 − w̃ti+1)>(uti − ũti) (26)

≤‖wti+1 − w̃ti+1‖2 · ‖uti − ũti‖2, (27)
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so ‖wti+1 − w̃ti+1‖2 ≤ ‖uti − ũti‖2. Here, (25) follows from the definitions of wti+1 and w̃ti+1, as well as Proposition
A.1, while (26) holds because the monotonicity of Fi, for each i ∈ [n], implies that (wti+1 − w̃ti+1)>

(
Fσti (w

t
i+1)−

Fσti (w̃
t
i+1)

)
≥ 0. Putting together (22), (23), (24), (27), we have:

‖uti+1 − ũti+1‖2 ≤ ‖uti − ũti‖2 + (6d+ 14)G · ηt + 6dML ·
ηt

Rt

+ 2G · 1{σti 6= σ̃ti} · ηt,

where the indicator 1(A) returns 1 if the given event A occurs, and 0 otherwise.

Since ut0 = ũt0, we can iteratively apply the above inequality to obtain that, for any and epoch t and i ∈ [n]:

‖uti+1 − ũti+1‖2 ≤ (6d+ 14)nG · ηt + 6ndML ·
ηt

Rt
+ 2ηtG ·

n∑
i=1

1{σti 6= σ̃ti},

Remark. In the theorems and lemmas below, we will be concerned with the case where σt and σ̃t have the
following specific relationship. Let Rn denote the set of all random permutations over the set [n]. For each
l,m ∈ [n], let Sl,m : Rn → Rn denote the map that swaps, for each input permutation σ, the l-th and m-th
entries. For each r, i ∈ [n], define the map ωr,i : Rn → Rn as follows:

ωr,i(σ) =

{
σ, if σi−1 = r,

Si−1,j(σ), if σj = r and j 6= i− 1.
.

Intuitively, ωr,i performs a single swap such that the (i− 1)-th position of the permutation is r. Clearly, if σt is a
random permutation (i.e., selected from a uniform distribution over Rn), then ωr,i(σs) has the same distribution
as σt|(σti−1 = r). Based on this construction, we have ui(σt) ∼ Di,t and ui(ωr,i(σt)) ∼ D(r)

i,t . This gives a coupling
between Ds,t and D(r)

s,t . Since σt and σ̃t differ by at most two entries, by iteratively applying Lemma A.6, we have:

‖uti+1 − ũti+1‖2 ≤ n

(
(6d+ 14)G · ηt + 6dML ·

ηt

Rt

)
+ 4G · ηt

= (6nd+ 14n+ 4)G · ηt + 6ndML ·
ηt

Rt
,

as claimed.

Lemma A.7. If ηt ≤ 1/(2`) for each t ∈ {0, 1, · · · , T − 1}, the iterates {uti} = {(xti, yti)} of the OGDA-RR
algorithm satisfy, for each u ∈ X × Y:

2ηt · E
[〈
Fσti (u

t
i+1), uti+1 − u

〉]
≤E

[
‖uti − u‖22

]
− E

[
‖uti+1 − u‖22

]
− 1

2
E
[
‖uti+1 − uti‖22

]
+

1

2
E
[
‖uti − uti−1‖22

]
+ 2ηt · E

[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉]
− 2ηt · E

[〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉]
+ 6C1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
,

where C1 := d2 max
{

6G`D, 18G2 + 6ML`D, 30MLG, 12M2
L

}
is a constant independent of the sequences {ηt} and

{Rt}.
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Proof. The iterates of the OGDA-RR algorithm are given by:

uti+1 = ProjX×Y

(
uti − ηtF̂σti (u

t
i;R

t, vti)− ηtF̂σti−1
(uti;R

t, vti)

− ηtF̂σti−1
(uti−1;Rt, vti−1)

)
= ProjX×Y

(
uti − ηtFσti (u

t
i+1) + ηt

(
γti + Eti,1 + Eti,2 + Eti,3

))
, (28)

where we have defined:

γti := Fσti (u
t
i+1)− Fσti (u

t
i)− Fσti−1

(uti) + Fσti−1
(uti−1),

Eti,1 := Fσti (u
t
i)− F̂σti (u

t
i;R

t, vti),

Eti,2 := Fσti−1
(uti)− F̂σti−1

(uti;R
t, vti),

Eti,3 := Fσti−1
(uti−1)− F̂σti−1

(uti−1;Rt, vti−1).

First, by applying Lemma A.2 we have:

2ηt · E
[〈
Fσti (u

t
i+1), uti+1 − u

〉]
(29)

≤E
[
‖uti − u‖22

]
− E

[
‖uti+1 − u‖22

]
− E

[
‖uti+1 − uti‖22

]
+ 2ηt · E

[〈
γti , u

t
i+1 − u

〉]
+

3∑
k=1

2ηt · E
[〈
Eti,k, u

t
i+1 − u

〉]
.

Below, we proceed to bound the inner product terms on the right-hand-side of (29). First, we bound
〈
γti , u

t
i+1−u

〉
:〈

γti , u
t
i+1 − u

〉
=
〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉
−
〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti+1 − u

〉
=
〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉
−
〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉
−
〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti+1 − uti

〉
≤
〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉
(30)

−
〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉
+

1

2
` · ‖uti − uti−1‖22 +

1

2
` · ‖uti+1 − uti‖22.

Note that the final inequality follows by applying Young’s inequality, and noting that F is `-Lipschitz. Next, we
bound 〈Eti,1, uti+1 − u〉:

E
[
〈Eti,1, uti+1 − u〉

]
=E

[〈
Fσti (u

t
i)− F̂σti (u

t
i, R

t, vti), u
t
i+1 − u

〉]
=E

[〈
Fσti (u

t
i)−∇LR

t

σti
(uti), u

t
i+1 − u

〉]
+ E

[〈
E
[
F̂σti (u

t
i;R

t, vti |uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i+1 − u

〉]
=E

[〈
Fσti (u

t
i)−∇LR

t

σti
(uti), u

t
i+1 − u

〉]
(31)

+ E
[〈

Ev
[
F̂σti (u

t
i;R

t, v|uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i − u

〉]
+ E

[〈
Ev
[
F̂σti (u

t
i;R

t, v|uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i+1 − uti

〉]
,



Chinmay Maheshwari, Chih-Yuan Chiu, Eric Mazumdar, Shankar Sastry, Lillian Ratliff

where the first equality above follows by applying Proposition A.3, (11), and we have used the shorthand
Ev := Ev∼Unif(Sd−1). (Recall that LR(u) := Ev∼Unif(Sd−1)

[
L(u+ Rv)

]
) Next, we upper bound each of the three

quantities in (31). First, by Proposition A.3, (12), we have:

E
[〈
Fσti (u

t
i)−∇LR

t

σti
(uti), u

t
i+1 − u

〉]
≤E

[
‖Fσti (u

t
i)−∇LR

t

σti
(uti)‖2 · ‖uti+1 − u‖2

]
≤ `D ·Rt, (32)

with C1 > 0 as given in Lemma A.7. Meanwhile, the law of iterated expectations can be used to bound the
second quantity:

E
[〈

Ev
[
F̂σti (u

t
i;R

t, v)|uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i − u

〉]
=E

[
Ev
[〈
F̂σti (u

t
i, R

t, vti), u
t
i − u

〉∣∣uti]]− E
[〈
F̂σti (u

t
i, R

t, vti), u
t
i − u

〉]
= 0, (33)

and we can upper-bound the third quantity as shown below. By using the compactness of X × Y and the
continuity of L, we have:

E
[〈

Ev
[
F̂σti (u

t
i;R

t, v)|uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i+1 − uti

〉]
≤
(∥∥Ev[F̂σti (uti;Rt, v)|uti

]∥∥
2

+ ‖F̂σti (u
t
i, R

t, vti)‖
)
· ‖uti+1 − uti‖2

≤2 · d
Rt
· sup

u∈X×Y
v∼Unif(Sd−1)

|L(uti +Rtv)| · ‖uti+1 − uti‖2,

≤2 · d
Rt
· (ML +RtG) · ‖uti+1 − uti‖2, (34)

and using (32) and the bound for each ‖F̂σti‖2 given in (34), we have:

‖uti+1 − uti‖2
≤ηt · ‖F̂σti (u

t
i;R

t, vti) + F̂σti−1
(uti;R

t, vti)− F̂σti−1
(uti−1;Rt, vti−1)‖

≤ηt · ‖Fσti (u
t
i) + Fσti−1

(uti)− Fσti−1
(uti−1)‖2

+ ηtd · ‖F̂σti (u
t
i;R

t, vti)− Fσti (u
t
i)‖2

+ ηtd · ‖F̂σti−1
(uti;R

t, vti)− Fσti−1
(uti)‖2

+ ηtd · ‖F̂σti−1
(uti−1;Rt, vti−1)− Fσti−1

(uti−1)‖2

≤3Gηt + 3ηtd ·

(
2(ML +GRt) · 1

Rt
+ `D ·Rt

)
. (35)

Substituting (35) back into (34), we have:

E
[〈

Ev
[
F̂σti (u

t
i;R

t, v)|uti
]
− F̂σti (u

t
i, R

t, vti), u
t
i+1 − uti

〉]
≤d2`D6ηtG ·Rt + 6d2ηt(3G2 +ML`D) + 30d2ηtMLG ·

1

Rt
+ 12d2ηtM2

L ·
(

1

Rt

)2

≤C1 ·
(
ηtRt + ηt +

ηt

Rt
+

ηt

(Rt)2

)
, (36)

where C1 := d2 ·max
{

6G`D, 18G2 + 6ML`D, 30MLG, 12M2
L

}
is a constant independent of the sequences {ηt}

and {Rt}. The quantities E
[
〈Eti,2, uti+1 − u〉

]
and E

[
〈Eti,3, uti+1 − u〉

]
can be similarly bounded. Substituting
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(32), (33), (36) back into (31), and substituting (31) and (30) into (29), we find that:

2ηt · E
[〈
Fσti (u

t
i+1), uti+1 − u

〉]
=E

[
‖uti − u‖22

]
− E

[
‖uti+1 − u‖22

]
− E

[
‖uti+1 − uti‖22

]
+ 2ηt · E

[〈
γti , u

t
i+1 − u

〉]
+ 2ηt ·

3∑
k=1

E
[〈
Eti,k, u

t
i+1 − u

〉]
≤E

[
‖uti − u‖22

]
− E

[
‖uti+1 − u‖22

]
− E

[
‖uti+1 − uti‖22

]
+ 2ηt · E

[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉]
− 2ηt · E

[〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉]
+ ηt` · E

[
‖uti − uti−1‖22

]
+ ηt` · E

[
‖uti+1 − uti‖22

]
+ 6C1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
,

In particular, since by assumption ηt ≤ 1/(2`) for each t ∈ {0, 1, · · · , T − 1}, then:

2ηt · E
[〈
Fσti (u

t
i+1), uti+1 − u

〉]
≤E

[
‖uti − u‖22

]
− E

[
‖uti+1 − u‖22

]
− 1

2
E
[
‖uti+1 − uti‖22

]
+

1

2
E
[
‖uti − uti−1‖22

]
+ 2ηt · E

[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉]
− 2ηt · E

[〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉]
+ 6C1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
,

Finally, to bound the step size terms above, we require the following lemma, which follows from standard calculus
arguments.

Lemma A.8.

T∑
t=1

t−β ≥ 1

1− β
T 1−β , ∀β < 1,

T∑
t=1

t−(1+β) ≤ 1

β
+ 1, ∀β > 0.

A.2 Proof of Theorem 4.1

Proof. (Proof of Theorem 4.1) By applying Lemma A.7 (note that ηt ≤ η0 ≤ 1
2` , for each t ∈ {0, 1, · · · , T −1})

and using convex-concave nature of Lr (refer Proposition 1 in [Mokhtari et al., 2020b]), for each r ∈ {1, · · ·n},
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we have:

2ηt · E
[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]
≤2ηt · E

[〈
Fσti (u

t
i+1), uti+1 − u?

〉]
≤E

[
‖uti − u?‖22

]
− E

[
‖uti+1 − u?‖22

]
− 1

2
E
[
‖uti+1 − uti‖22

]
+

1

2
E
[
‖uti − uti−1‖22

]
+ 2ηt · E

[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u?

〉]
− 2ηt · E

[〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u?

〉]
+ 6C1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
. (37)

Meanwhile, Lemma A.5, Proposition A.4 (Kantorovich Duality), and Lemma A.6 imply that:∣∣∣E[∆(uti+1)]− E
[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]∣∣∣ ≤ G

n

n∑
r=1

W2

(
Di+1,t,Dri+1,t

)
≤ G

n

n∑
r=1

√
E
[∥∥uti+1(σt)− uti+1(σ̃t)

∥∥2

2

]
≤ G ·

(
(6nd+ 14n+ 4)G · ηt + 6ndML ·

ηt

Rt

)
.

Substituting back into (37), we have:

2ηt · E
[
∆(uti)

]
≤2ηt · E

[
Lσti (x

t
i+1, y

?)− Lσti (x
?, yti+1)

]
+G ·

(
(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·

(ηt)2

Rt

)

≤E
[
‖uti − u?‖22

]
− E

[
‖uti+1 − u?‖22

]
− 1

2
E
[
‖uti+1 − uti‖22

]
+

1

2
E
[
‖uti − uti−1‖22

]
+ 2ηt · E

[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u

〉]
− 2ηt · E

[〈
Fσti−1

(uti)− Fσti−1
(uti−1), uti − u

〉]
+ 6C1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
+G ·

(
(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·

(ηt)2

Rt

)
. (38)

We can now sum the above telescoping terms across the t-th epoch, as shown below:

2 ·
n∑
i=1

ηt · E
[
∆(uti)

]
≤E

[
‖ut1 − u?‖22

]
− E

[
‖ut+1

1 − u?‖22
]

+
1

2
E
[
‖ut1 − ut0‖22

]
− 1

2
E
[
‖ut+1

1 − ut+1
0 ‖22

]
+ 2ηt · E

[〈
Fσt0(ut1)− Fσt0(ut0), ut1 − u?

〉]
− 2ηt · E

[〈
Fσt+1

0
(ut+1

1 )− Fσt+1
0

(ut+1
0 ), ut+1

1 − u?
〉]

+ 6nC1 ·
(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
+ nG ·

(
(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·

(ηt)2

Rt

)
.
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Meanwhile, we have for each t = 0, 1, · · · , T − 1, i ∈ [n]:

E
[〈
Fσti (u

t
i+1)− Fσti (u

t
i), u

t
i+1 − u?

〉]
≤E

[∥∥Fσti (uti+1)− Fσti (u
t
i)
∥∥ · ∥∥uti+1 − u?

∥∥]
= ` · E

[
‖uti+1 − uti‖

]
·D

≤ `D · E
[∥∥− ηtF̂σti (uti;Rt, vti)− ηtF̂σti−1

(uti;R
t, vti) + ηtF̂σti−1

(uti−1;Rt, vti−1)
∥∥]

≤3`D · ηt ·

(
dG+

dML

Rt

)

= 3`DdG · ηt + 3`DdML ·
ηt

Rt
,

where the final inequality follows from Proposition A.3, (13). We can upper bound E
[〈
Fσti−1

(uti)−Fσti−1
(uti−1), uti−

u
〉]

in a similar fashion. Substituting back into (38), we have:

2 ·
n∑
i=1

ηt · E
[
∆(uti)

]
≤E

[
‖ut1 − u?‖22

]
− E

[
‖ut+1

1 − u?‖22
]

+
1

2
E
[
‖ut1 − ut0‖22

]
− 1

2
E
[
‖ut+1

1 − ut+1
0 ‖22

]
+ 6nC1 ·

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
+ nG ·

(
(12nd+ 28n+ 8)G · (ηt)2 + 12ndML ·

(ηt)2

Rt

)

+ 6`DdG · (ηt)2 + 6`DdML ·
(ηt)2

Rt

≤E
[
‖ut1 − u?‖22

]
− E

[
‖ut+1

1 − u?‖22
]

+
1

2
E
[
‖ut1 − ut0‖22

]
− 1

2
E
[
‖ut+1

1 − ut+1
0 ‖22

]
(39)

+ 2C ·
(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
,

where C := max{3nC1, (6nd+ 14n+ 4)nG, 6ndML, 3`DdG, 3`DdML}.

Finally, summing the above telescoping terms over i ∈ [n] and t ∈ {0, 1, · · · , T − 1}, and removing non-positive
terms, we obtain:

∑T−1
t=0

∑n
i=1 η

t · E
[
∆(uti)

]∑T−1
t=0

∑n
i=1 η

t

≤ 1

2 ·
∑T−1
t=0

∑n
i=1 η

t

(
‖u0

0 − u?‖2 − E
[
‖uT−1

n − u?‖2
]

+
1

2
‖u0

1 − u0
0‖2 −

1

2
E
[
‖uT−1

n − uT−1
n−1‖2

])

+ C · 1∑T−1
t=0

∑n
i=1 η

t
·
T−1∑
t=0

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)

≤ 1∑T−1
t=0 ηt

· 3D

4n
+ C · 1

n
∑T−1
t=0 ηt

·
T−1∑
t=0

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)
, (40)
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By definition, ηt = η0 · (t+ 1)−3/4−χ and Rt = R0 · (t+ 1)−1/4, so by Lemma A.8, we have:

T−1∑
t=0

ηt = η0 ·
T∑
t=1

t−3/4−χ ≥ 4η0 · T 1/4−χ,

T−1∑
t=0

ηtRt = η0R0 ·
T∑
t=1

t−(1+χ) ≤ η0R0 ·

(
1 +

1

χ

)
,

T−1∑
t=0

(ηt)2 = (η0)2 ·
T∑
t=1

t−3/2−2χ ≤ (η0)2 ·

(
1 +

1
1
2 + 2χ

)
≤ 3 · (η0)2,

T−1∑
t=0

(ηt)2Rt = (η0)2R0 ·
T∑
t=1

t−7/4−2χ ≤ (η0)2R0 ·

(
1 +

1
3
4 + 2χ

)
≤ 7

4
· (η0)2ε0,

T−1∑
t=0

(ηt)2

Rt
=

(η0)2

R0
·
T∑
t=1

t−5/4−2χ ≤ (η0)2

R0
·

(
1 +

1
1
4 + 2χ

)
≤ 5 · (η0)2

ε0
,

T−1∑
t=0

(ηt)2

(Rt)2
=

(η0)2

(R0)2
·
T∑
t=1

t−1−2χ ≤ (η0)2

(R0)2
·

(
1 +

1

2χ

)
.

Substituting back into (40) and using the convexity of the gap function ∆(·), we have:

E
[
∆(uT )

]
≤
∑T−1
t=0

∑n
i=1 η

t · E
[
∆(uti)

]∑T−1
t=0

∑n
i=1 η

t

≤ 1∑T−1
t=0 ηt

· 3

4n
D + C · 1∑T−1

t=0 ηt
·
T−1∑
t=0

(
ηtRt + (ηt)2Rt + (ηt)2 +

(ηt)2

Rt
+

(ηt)2

(Rt)2

)

≤

(
3

16n
D +

47

4n
· C max

{
R0, η0, η0R0,

η0

R0
,
η0

(R0)2

}(
1 +

1

χ

))
T−1/4+χ

≤R.

where the final inequality follows by definition of T .
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B WASSERSTEIN DISTRIBUTIONALLY ROBUST STRATEGIC
CLASSIFICATION

B.1 Model of Adversary

In this subsection, we formally define our model for the adversary, and the uncertainty set of distributions for the
resulting strategically and adversarially perturbed data. For better exposition, in this section we summarize the
various distributions used in the main article in Table 1 below.

Table 1: Table of notations

Notation Explanation
D Unknown underlying distribution
D(θ) Unknown underlying distribution strategically perturbed by θ
D̃n(θ) Empirical distribution of strategically perturbed data
P An element of uncertainty set P(θ)
Piθ Conditional distribution of adversarially generated data given ith data point

The WDRSL problem formulation contains two main components—the strategic component that accounts for the
distribution shift D(θ) in response to the choice of classifier θ, and the adversarial component, which accounts
for the uncertainty set P(θ). As per the modeling assumptions put forth in Section 5.2, we have (x̃i, ỹi) ∼ D
and (bi(θ, x̃i, ỹi), ỹi) ∼ D(θ) for all i ∈ [n]. For the sake of brevity, we shall use bi(θ) in place of bi(θ, x̃i, ỹi) for all
i ∈ [n].

As per the standard formulation of distributionally robust optimization, we restrict P(θ) to be a Wasserstein
neighborhood of D̃n(θ) (the empirical distribution of strategic responses {(bi(θ), ỹi)}ni=1), i.e., we set P(θ) ⊂
Bδ(D̃n(θ)) for some δ > 0. However, to ensure that the min-max problem reformulated from the WDRSC
problem is convex-concave, we further require the adversary to modify the label of an data point i in the empirical
distribution only when the true label ỹi is +1, although they are still always allowed to modify the feature bi(θ).
As a consequence, this imposes some restrictions on the conditional distribution Piθ of (dx, y), as generated by the
adversary, given a data point i in the empirical distribution. In particular:

Piθ(dx,+1|bi(θ),−1) = 0, ∀ i ∈ [n].

By definition of conditional distributions, we obtain that any distribution P can be expressed as the average of
the conditional distribution Piθ. That is,

P(dx, y) =
1

n

n∑
i=1

Piθ(dx, y|bi(θ), ỹi).

Below, we formally state the restriction described above.

Assumption B.1. We assume that P ∈ Bδ(D̃n(θ)) and Piθ(dx,+1|bi(θ),−1) = 0 for all i ∈ [n]. As a direct
result, the uncertainty set P(θ) is characterized as:

P(θ) = Bδ(D̃n(θ)) ∩

{
1

n

n∑
i=1

Piθ(dx, y|bi(θ), ỹi)

∣∣∣∣∣Piθ(dx,+1|bi(θ),−1) = 0, ∀ i ∈ [n]

}
. (41)

In the following subsection, we reformulate the WDRSC problem with a generalized linear model and with the
uncertainty set defined in (41).

B.2 Proof of Theorem 5.3

The proof takes inspirations from [Shafieezadeh-Abadeh et al., 2015, Theorem 1]. First, we define the Wasserstein
distance between distributions on Z with cost function c; note that this is different from the p-Wasserstein distance
between probability distributions on Rd defined in Appendix A.1.
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Definition B.1. (Wasserstein distance between distributions on Z with cost Function c) Let µ, ν be
probability distributions over Z := Rd × {+1,−1} with finite second moments, and let Π(µ, ν) denote the set of
all couplings (joint distributions) between µ and ν. Given a metric c : Z × Z → [0,∞) on Z, we define:

Wc(µ, ν) = inf
(Z,Z′)∼π∈Π(µ,ν)

Eπ
[
c(Z,Z ′)

]
.

In Theorem 7 and in our proof below, we use the cost function c(z, z′) := ‖x− x′‖22 + κ · |y − y′|, with a fixed
constant κ > 0, for each z := (x, y) ∈ Z and z′ := (x′, y′) ∈ Z.

Proof. (Proof of Theorem 5.3) Fix a θ ∈ Θ. Note that bi(θ, x̃i,+1) = x̃i. For any (x, y) ∈ Rd × {−1, 1}, let
`((x, y), θ) := φ(〈x, θ〉)− y 〈x, θ〉. We first analyze the inner supremum term, i.e.

sup
P∈P(θ)

EP[φ(〈x, θ〉)− y〈x, θ〉]

= sup
P∈P(θ)

∫
Z
`(z, θ)P(z)dz

=

 sup
πθ∈Π(P,D̃n(θ))

∫
Z `(z, θ)πθ(dz,Z)

s.t.
∫
Z×Z ‖z − z̃‖πθ(dz, dz̃) ≤ δ

Here, Π(P, D̃n(θ)) denotes the set of all joint distributions that couple P ∈ P(θ) and D̃n(θ). Since the marginal
distribution D̃n(θ) of z̃ is discrete, such couplings πθ are completely determined by the conditional distribution
Piθ of z given z̃i = (x̃i(θ), ỹi) for each i ∈ {1, . . . , n}. That is:

πθ(dz, dz̃) =
1

n

∑
i∈[n]

ϑ(bi(θ),ỹi)(dz̃)Piθ(dz)

where for any (x, y) ∈ Z, ϑ(x,y) is a Dirac delta distribution with its support at point (x, y).

We introduce some notations. Let I+1 = {i ∈ [n] : ỹi = +1} and I−1 = {i ∈ [n] : ỹi = −1}. Let’s introduce two
distributions µiθ and νiθ such that

Piθ =

{
µiθ if i ∈ I+1

νiθ if i ∈ I−1

Due to the constraint (41), we have νiθ(dx,+1) = 0 at every x. This implies:

πθ(dz, dz̃) =
1

n

 ∑
i∈I+1

ϑ(bi(θ),1)(dz̃)µ
i
θ(dz) +

∑
i∈I−1

ϑ(bi(θ),−1)(dz̃)νiθ(dz)


With a slight abuse of notation, we denote µiθ,+1(dx) = µiθ(dx,+1), µiθ,−1(dx) = µiθ(dx,−1) and νiθ(dx) =

νiθ(dx,−1). The optimization problem of concern then simplifies to:

sup
µiθ,±1,ν

i
θ

1

n

∑
i∈I+1

∫
Rd
`((x,+1), θ)µiθ,+1(dx) +

1

n

∑
i∈I+1

∫
Rd
`((x,−1), θ)µiθ,−1(dx)

+
1

n

∑
i∈I−1

∫
Rd
`((x,−1), θ)νiθ(dx)

s.t.
1

n

∑
i:ỹi=+1

∫
Rd
‖(x,+1)− (bi(θ), ỹi)‖µiθ,+1(dx)

+
1

n

∑
i:ỹi=+1

∫
Rd
‖(x,−1)− (bi(θ), ỹi)‖µiθ,−1(dx)∫

Rd
µiθ,+1(dx) +

∫
Rd
µiθ,−1(dx) = 1, ∀ i ∈ I+1∫

Rd
νiθ(dx) = 1, ∀ i ∈ I−1
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First, we rewrite the inequality constraint above as follows. Recall that:

2κ

n

∫
Rd

∑
i∈I+1

µiθ,−1(dx) +
1

n

∫
Rd

∑
i∈I+1

‖x− bi(θ)‖µiθ,+1(dx)

+
1

n

∫
Rd

∑
i∈I+1

‖x− bi(θ)‖µiθ,−1(dx) +
1

n

∫
Rd

∑
i∈I−1

‖x− bi(θ)‖νiθ(dx) ≤ δ.

Hence,

sup
µiθ,±1,ν

i
θ

1

n

∑
i∈I+1

∫
Rd
`((x,+1), θ)µiθ,+1(dx) +

1

n

∑
i∈I+1

∫
Rd
`((x,−1), θ)µiθ,−1(dx)

+
1

n

∑
ỹi=−1

∫
Rd
`((x,−1), θ)νiθ(dx)

s.t.
2κ

n

∫
Rd

∑
i∈I+1

µiθ,−1(dx) +
1

n

∫
Rd

∑
i∈I+1

‖x− bi(θ)‖µiθ,+1(dx)

+
1

n

∫
Rd

∑
i∈I+1

‖x− bi(θ)‖µiθ,−1(dx) +
1

n

∫
Rd

∑
i∈I−1

‖x− bi(θ)‖νiθ(dx) ≤ δ

∫
Rd
µiθ,+1(dx) +

∫
Rd
µiθ,−1(dx) = 1, ∀ i ∈ I+1∫

Rd
νiθ(dx) = 1, ∀ i ∈ I−1

Now, we can use duality to reformulate the infinite-dimensional optimization problem into a finite-dimensional
problem:

sup
P∈P(θ)

EP[φ(〈x, θ〉)− y〈x, θ〉]

=



infα,si αδ + 1
n

∑
i∈I+1

si + 1
n

∑
i∈I−1

ti

s.t. supx `((x,+1), θ)− α · 1+ỹi
2 ‖x− bi(θ)‖ ≤ si ∀ i ∈ I+1

supx `((x,−1), θ)− α · 1+ỹi
2 ‖x− bi(θ)‖ − ακ(1 + ỹi) ≤ si ∀ i ∈ I+1

supx `((x,−1), θ)− α · 1−ỹi
2 ‖x− bi(θ)‖ ≤ ti ∀ i ∈ I−1

α ≥ 0

which is equivalent to:

sup
P∈P(θ)

EP[φ(〈x, θ〉)− y〈x, θ〉]

=



infα,si αδ + 1
n

∑
i∈I+1

si + 1
n

∑
i∈I−1

ti

s.t. supx `((x,+1), θ)− α‖x− bi(θ)‖ ≤ si ∀ i ∈ I+1

supx `((x,−1), θ)− α‖x− bi(θ)‖ − 2ακ ≤ si ∀ i ∈ I+1

supx `((x,−1), θ)− α‖x− bi(θ)‖ ≤ ti ∀ i ∈ I−1

α ≥ 0

We now invoke [Yu et al., 2021, Lemma A.1], which claims that for any ỹ ∈ {+1,−1} and x̃ ∈ Rd:

sup
x
`((x, ỹ), θ)− α‖x− x̃‖ =

{
`((x̃, ỹ), θ) if ‖θ‖ ≤ α/(L+ 1)

−∞ otherwise.



Chinmay Maheshwari, Chih-Yuan Chiu, Eric Mazumdar, Shankar Sastry, Lillian Ratliff

We now have:

sup
P∈P(θ)

EP[φ(〈x, θ〉)− y〈x, θ〉]

=



infα,si αδ + 1
n

∑
i∈I+1

si + 1
n

∑
i∈I−1

ti

s.t. `((bi(θ),+1), θ) ≤ si ∀ i ∈ I+1

`((bi(θ),−1), θ)− 2ακ ≤ si ∀ i ∈ I+1

`((bi(θ),−1), θ) ≤ ti ∀ i ∈ I−1

α ≥ 0

‖θ‖ ≤ α/(L+ 1)

In the above presented optimization problem we can conclude that:

ti = φ(〈bi(θ), θ〉) + 〈bi(θ), θ〉 ∀i ∈ I−1

si = max{`((bi(θ),+1), θ), `((bi(θ),−1), θ)− 2ακ} ∀i ∈ I+1.

To further simplify the si expression, note that:

si = max{φ(〈bi(θ), θ〉)− 〈bi(θ), θ〉 , φ(〈bi(θ), θ〉) + 〈bi(θ), θ〉 − 2ακ}
= φ(〈bi(θ), θ〉)− 〈bi(θ), θ〉+ max{0, 2 〈bi(θ), θ〉 − 2ακ}
= φ(〈bi(θ), θ〉)− ακ+ max

γi:|γi|≤1
γi (〈bi(θ), θ〉 − ακ) ,

so the overall objective can be written as:

sup
P∈P(θ)

EP[φ(〈x, θ〉)− y〈x, θ〉]

=


infα maxγ:‖γ‖∞≤1 α(δ − κ) + 1

n

∑
i

1+ỹi
2 (φ(〈bi(θ), θ〉) + γi (〈bi(θ), θ〉 − ακ))

+ 1
n

∑
i

1−ỹi
2 (φ(〈bi(θ), θ〉) + 〈bi(θ), θ〉)

s.t. ‖θ‖ ≤ α/(L+ 1)

We claim that the minimax objective above is convex is θ. There are mainly two cases to analyze:

1. Case I (i ∈ I+1): We have bi(θ) = x̃i as per the strategic classification model. Therefore 〈bi(θ), θ〉 is a linear
function. For every γ, α, we claim that the mapping θ 7→ φ(〈bi(θ), θ〉) + γi(〈bi(θ), θ〉 − ακ) is convex. Indeed,
the assumption that φ is convex and the observation that 〈bi(θ), θ〉 is affine in θ ensures the convexity.

2. Case II (i ∈ I−1): We know from Lemma 5.2 that 〈bi(θ), θ〉 is convex in θ. Moreover, the convexity of φ
and the assumption that z 7→ φ(z) + z is non-decreasing ensures that φ(〈bi(θ), θ〉) + 〈bi(θ), θ〉 is convex for
every i.

This concludes the proof.
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C DETAILS ON THE EXPERIMENTAL STUDY AND ADDITIONAL
RESULTS

Code used to reproduce the results in the main paper is available at https://drive.google.com/drive/folders/
1spuB3R6vEU2AqaXxAxeeXo9z5QMVdtdl?usp=sharing

C.1 Algorithms

In our experiments, we compare the OGDA-RR algorithm (Alg. 1) with three other zeroth-order algorithms—
Optimistic Gradient Descent Ascent with Sampling with Replacement (OGDA-WR), Stochastic Gradient Descent
Ascent with Random Reshuffling (SGDA-RR), and Stochastic Gradient Descent Ascent with Sampling with
Replacement (SGDA-WR)—characterized by the update equations (43), (44), (45), respectively. For convenience,
we have reproduced (6), the update equation for the OGDA-RR algorithm (Algorithm 1), as (42) below:

uti+1 = ProjX×Y

(
uti − ηtF̂σti (u

t
i;R

t, vti)− ηtF̂σti−1
(uti;R

t, vti) + ηtF̂σti−1
(uti−1;Rt, vti−1)

)
, (42)

uti+1 = ProjX×Y

(
uti − ηtF̂jti (u

t
i;R

t, vti)− ηtF̂jti−1
(uti;R

t, vti) + ηtF̂jti−1
(uti−1;Rt, vti−1)

)
, (43)

uti+1 = ProjX×Y

(
uti − ηtF̂σti (u

t
i;R

t, vti)
)
, (44)

uti+1 = ProjX×Y

(
uti − ηtF̂jti (u

t
i;R

t, vti)
)
, (45)

where the indices σti and jti are as defined in Algorithms 2, 3, and 4.

Algorithm 2: OGDA-WR Algorithm

Input: stepsizes ηt, Rt, data points {(xi, yi)}ni=1 ∼ D, u
(0)
0 , time horizon duration T ;

for t = 0, 1, · · · , T − 1 do
for i = 0, . . . , n− 1 do

Sample jti ∼ Unif({1, · · · , n})
Sample vti ∼ Unif(Sd−1)
uti+1 ← (43)

end
u

(t+1)
0 ← utn
u

(t+1)
−1 ← utn−1

end
Output: ũT := 1

n·
∑T−1
t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti.

Algorithm 3: SGDA-RR Algorithm

Input: stepsizes ηt, Rt, data points {(xi, yi)}ni=1 ∼ D, u
(0)
0 , time horizon duration T ;

for t = 0, 1, · · · , T − 1 do
for i = 0, . . . , n− 1 do

Sample jti ∼ Unif({1, · · · , n})
Sample vti ∼ Unif(Sd−1)
uti+1 ← (44)

end
u

(t+1)
0 ← utn
u

(t+1)
−1 ← utn−1

end
Output: ũT := 1

n·
∑T−1
t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti.

https://drive.google.com/drive/folders/1spuB3R6vEU2AqaXxAxeeXo9z5QMVdtdl?usp=sharing
https://drive.google.com/drive/folders/1spuB3R6vEU2AqaXxAxeeXo9z5QMVdtdl?usp=sharing
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Algorithm 4: SGDA-WR Algorithm

Input: stepsizes ηt, Rt, data points {(xi, yi)}ni=1 ∼ D, u
(0)
0 , time horizon duration T ;

for t = 0, 1, · · · , T − 1 do
σt = (σt1, · · · , σtn)← a random permutation of set [n];
for i = 0, . . . , n− 1 do

Sample vti ∼ Unif(Sd−1)
uti+1 ← (45)

end
u

(t+1)
0 ← utn
u

(t+1)
−1 ← utn−1

end
Output: ũT := 1

n·
∑T−1
t=0 ηt

∑T−1
t=0

∑n
i=1 η

tuti.

Figure 2: Experimental results for a synthetic dataset with n = 4000. (Left pane)) Suboptimality iterates
generated by the four algorithms (A-I), (A-II), (A-III), (A-IV), respectively denoted as Z-OGDA w RR, Z-OGDA
w/o RR, Z-SGDA w RR, Z-SGDA w/o RR. (Right pane ) Comparison between decay in accuracy of strategic
classification with logistic regression (trained with ζ = 0.05) and Alg. (A-I) with changes in perturbation.

C.2 Additional Experimental Results

In this section, we present more experimental findings, on both synthetic and real-world datasets, that reinforces
the utility of the proposed algorithm. In all experimental results throughout this subsection, we take δ = 0.4,
κ = 0.5 and ζ = 0.05.

C.2.1 Experimental Study On Synthetic Datasets

Figure 2 compares the performance of (A-I)-(A-IV) on a synthetic dataset (whose generating process is the same
as that described in Section 6), with 4000 training points and 800 test points. Our proposed algorithm performs
better empirically compared to most of its counterparts. Moreover, the proposed classifier, (A-I), is significantly
more robust than a classifier obtained without considering adversarial perturbations. Note, however, that we
cannot make any conclusive claims yet, because of the inherent randomness in these algorithms. Indeed, even if
we fix the initialization, then there are two sources of randomness—the construction of the zeroth-order gradient
estimator, and the sampling process that generates the data points.

To illustrate the variability in these algorithms’ performance, we run each algorithm repeatedly on a data set
with 500 synthetically generated data points, using the same initialization, and present confidence interval plots
with ±2 standard deviations for the resulting performance (Figure 3). On average, our proposed algorithm
(A-I) outperforms the other algorithms (A-II)-(A-IV). It is also interesting to point out that the performance
of algorithms with random reshuffling is generally higher, and fluctuate less, compared to the performance of
algorithms without random reshuffling.
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Figure 3: Experimental results for a synthetic dataset with n = 500. Suboptimality iterates generated by the
four algorithms (A-I), (A-II), (A-III), and (A-IV) are respectively denoted as Z-OGDA w RR, Z-OGDA w/o RR,
Z-SGDA w RR, and Z-SGDA w/o RR.

We now illustrate the performance of our algorithm on two real-world data sets—the “GiveMeSomeCredit” dataset
3, and the “Porto Bank” data set4.

C.2.2 Experimental Study on Credit Dataset

In modern times, banks use machine learning to determine whether or not to finance a customer. This process
can be encoded into a classification framework, by using features such as age, debt ratio, monthly income to
classify a customer as either likely or unlikely to default. However, those algorithms generally do not account for
strategic or adversarial behavior on the part of the agents.

To illustrate the effect of our algorithm on datasets of practical significance, we deploy our algorithms on the
“GiveMeSomeCredit”(GMSC) dataset, while assuming that the underlying features are subject to strategic or
adversarial perturbations. We use a subset of the dataset of size 2000 with balanced labels. In Figure 4, we
compare the empirical performance of our algorithm (A-I) with that of (A-II)-(A-IV). The left pane shows that
(A-I) performs well, and the right pane illustrates that our classifier is significantly more robust to adversarial
perturbations in data, compared to the strategic classification-based logistic regression algorithm developed
recently in the literature [Dong et al., 2018].

C.2.3 Experimental Study on Porto-Bank Dataset

Next, we present empirical results obtained by applying our algorithm to the “Porto-Bank” dataset, which
describes marketing campaigns of term deposits at Portuguese financial institutions. The classification task in
this scenario aims to predict whether a customer with given features (eg. age, job, marital status etc.) would
enroll for term deposits.

In Figure 5, we present the performance of our proposed algorithm (A-I) on the Porto-Bank dataset. For ease of
illustration, we consider a subset of the dataset with 2000 training data points, 800 test data points, and balanced
labels. In Figure 5, we compare the empirical performance of our algorithm (A-I) with that of (A-II)-(A-IV).
The left pane shows that (A-I) performs well, while the right pane illustrates that our classifier is significantly
more robust to adversarial perturbations in data, compared to the strategic classification-based logistic regression
developed recently in the literature [Dong et al., 2018].

3This dataset can be found at https://www.kaggle.com/c/GiveMeSomeCredit
4This dataset can be found at https://archive.ics.uci.edu/ml/datasets/bank+marketing

https://www.kaggle.com/c/GiveMeSomeCredit
https://archive.ics.uci.edu/ml/datasets/bank+marketing
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Figure 4: Experimental results for a balanced GiveMeSomeCredit dataset with n = 2000. (Left pane) Suboptimality
iterates generated by the four algorithms (A-I), (A-II), (A-III), (A-IV), respectively denoted as Z-OGDA w RR,
Z-OGDA w/o RR, Z-SGDA w RR, Z-SGDA w/o RR. (Right pane) Comparison between decay in accuracy of
strategic classification with logistic regression (originally trained with ζ = 0.05) and Alg. (A-I) with changes in
perturbation.

Figure 5: Experimental results for a balanced PortoBank dataset with n = 2000. (Left pane) Suboptimality
iterates generated by the four algorithms (A-I), (A-II), (A-III), (A-IV), respectively denoted as Z-OGDA w RR,
Z-OGDA w/o RR, Z-SGDA w RR, Z-SGDA w/o RR. (Right pane) Comparison between decay in accuracy of
strategic classification with logistic regression (originally trained with ζ = 0.05) and Alg. (A-I) with change in
perturbation.
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Figure 6: Experimental results presenting the number of samples required to reach ε−suboptimality, with
ε = 0.1, for our algorithm (A-I) on synthetic dataset with varying values of n ∈ {500, 1000, 1500, 2000} and
d ∈ {10, 15, 20, 25}.

C.2.4 Effect of n, d on sample complexity

In this part, we demonstrate the empirical results that corroborates the theoretical dependence of sample
complexity on n, d. For this purpose, we use synthetic dataset which is generated as per the method described in
Section 6.1. Here we work in the setting where n ∈ {500, 1000, 1500, 2000} and d ∈ {10, 15, 20, 25}. We fix the
suboptimality to ε = 0.1 and compute the number of samples required in each of the settings of n and d so that
the iterates reach the ε−suboptimality. We present the results in Figure 6.

C.3 Logistic regression as a Generalized linear model

The goal in logistic regression is to maximize the log-likelihood of the conditional probability of y (the label) given
x (the feature). In this model, it is assumed that:

P (Y = 1|x, θ) =
1

1 + exp(−〈x, θ〉)

This implies that:

P (Y = −1|x, θ) =
exp(−〈x, θ〉)

1 + exp(−〈x, θ〉)

Given a data point (x, y) the logistic loss is log-likelihood of observing y given x. For any θ and y ∈ {−1, 1}:

P (Y = y|x; θ) = (P (Y = 1|x, θ))
1+y
2 (P (Y = −1|x, θ))

1−y
2
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Now, the log-likelihood is given by:

L(x, y; θ) = log(P (Y = y|x; θ))

=
1 + y

2
log

(
1

1 + exp(−〈x, θ〉)

)
+

1− y
2

log

(
exp(−〈x, θ〉)

1 + exp(−〈x, θ〉)

)
= −1− y

2
〈x, θ〉+

(
1 + y

2
+

1− y
2

)
log

(
1

1 + exp(−〈x, θ〉)

)
= −1− y

2
〈x, θ〉 − log(1 + exp(−〈x, θ〉))

=
y

2
〈x, θ〉 − 1

2
〈x, θ〉+ 〈x, θ〉 − log(1 + exp(〈x, θ〉))

=
y

2
〈x, θ〉+

1

2
〈x, θ〉 − log(1 + exp(〈x, θ〉))

The goal is to maximize the log likelihood, which is equivalent to minimizing the negative log likelihood. Thus
the logistic regression minimizes the following loss:

L̃(x, y; θ) = −L(x, y; θ) = −y
2
〈x, θ〉+ φ(〈x, θ〉)

where φ(β) = log(1 + exp(β))− β
2 . If y = 1, then the above loss becomes:

log(1 + exp(〈x, θ〉))− 〈x, θ〉 = log(1 + exp(−〈x, θ〉))

Otherwise, if y = −1, then the above loss becomes log(1 + exp(〈x, θ〉)). Thus, the above loss is equivalent to
log(1 + exp(−y 〈x, θ〉)).
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