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Abstract
We propose a metric—Projection Norm—to pre-
dict a model’s performance on out-of-distribution
(OOD) data without access to ground truth la-
bels. Projection Norm first uses model predic-
tions to pseudo-label test samples and then trains
a new model on the pseudo-labels. The more
the new model’s parameters differ from an in-
distribution model, the greater the predicted OOD
error. Empirically, our approach outperforms ex-
isting methods on both image and text classifica-
tion tasks and across different network architec-
tures. Theoretically, we connect our approach to
a bound on the test error for overparameterized
linear models. Furthermore, we find that Pro-
jection Norm is the only approach that achieves
non-trivial detection performance on adversar-
ial examples. Our code is available at https:
//github.com/yaodongyu/ProjNorm.

1. Introduction
To reliably deploy machine learning models in practice, we
must understand the model’s performance on unseen test
samples. Conventional machine learning wisdom suggests
using a held-out validation set to estimate the model’s test-
time performance (Hastie et al., 2001). However, this fails
to account for distribution shift. For deep neural networks,
even simple distribution shifts can lead to large drops in
performance (Quiñonero-Candela et al., 2008; Koh et al.,
2021). Thus, it is crucial to understand, especially in safety-
critical applications, how a model might perform on out-
of-distribution (OOD) data. Finally, understanding OOD
performance helps shed light on the structure of natural
covariate shifts, which remain poorly understood from a
conceptual standpoint (Hendrycks et al., 2021a).

To this end, we propose Projection Norm, which uses unla-
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beled test samples to help predict the OOD test error. Let θ̂
be the model whose test error we aim to predict. At a high
level, the Projection Norm algorithm pseudo-labels the test
samples using θ̂ and then uses these pseudo-labels to train
a new model θ̃. Finally, it compares the distance between
θ̂ and θ̃, with a larger distance corresponding to higher test
error. We formally present this algorithm in Section 2.

Empirically, we demonstrate that Projection Norm predicts
test error more accurately than existing methods (Deng et al.,
2021; Guillory et al., 2021; Garg et al., 2022), across several
vision and language benchmarks and for different neural
network architectures (Section 3.1). Moreover, while the
errors of existing methods are highly correlated with each
other, the errors of Projection Norm are nearly uncorrelated
with those of existing methods (Section 3.3), so combining
Projection Norm with these methods results in even better
prediction performance. Finally, we stress test our method
against adversarial examples, an extreme type of distribution
shift, and we find that Projection Norm is the only method
that achieves non-trivial performance (Section 5).

Projection Norm also has a natural theoretical motivation.
We show for overparameterized linear models that Projec-
tion Norm measures the projection (hence the name) of a
“ground truth model” onto the overlap of the training and
test data (Section 4). In this linear setting, many common
methods focus only on the logits and thus cannot capture
information that is orthogonal to the training manifold. In
contrast, Projection Norm can, which explains why it pro-
vides information complementary to that of other methods.
We also connect Projection Norm to a mathematical bound
on the test loss, based on assumptions backed by empirical
studies on vision data (Section 4.3).

In summary, we propose a new metric for predicting OOD
error that provides a more accurate and orthogonal signal in
comparison to existing approaches. Our method is easy to
implement and is applicable to a wide range of prediction
tasks. In addition, our method connects naturally to the
theory of high-dimensional linear models and attains non-
trivial performance even for adversarial examples.

2. Our Method: Projection Norm
In this section, we formulate the problem of predicting OOD
performance at test time and then present the Projection
Norm algorithm.

https://github.com/yaodongyu/ProjNorm
https://github.com/yaodongyu/ProjNorm


Figure 1. How to compute Projection Norm on unlabeled OOD data. (Left) Given a classifier θ̂, we first pseudo-label the OOD data
x̃1:m using the predictions of θ̂. Next, we obtain a new network θ̃ that is initialized with θ0 and trained on the pseudo-labeled OOD data.
Finally, we train a reference network θ̂ref on the training data (with the same initialization θ0) and output the ProjNorm(Dtrain, x̃1:m) =
∥θ̂ref − θ̃∥2. (Right) Schematic of θ̃ and θ̂ref are obtained. See Algorithm 1 for details on computing ProjNorm.

Problem formulation. Consider solving a K-class clas-
sification task using a neural network parameterized by θ.
Let f1, . . . , fK be functions representing the last layer of
the neural network and C(x; θ) = argmaxi fi(x; θ) be
the corresponding classifier. Given a training set Dtrain =
{(xi, yi)}i=1,...,n, we use a pre-trained network, denoted by
θ0, for initialization and fine-tune the network on Dtrain by
approximately minimizing the training loss (e.g. via SGD).
We denote the parameters of the fine-tuned network by θ̂.

At test time, the fine-tuned classifier C(·; θ̂) is then tested
on m (out-of-distribution) test samples x̃1:m with corre-
sponding unobserved labels ỹ1:m. The test error on OOD
data x̃1:m is defined as

TestError(x̃1:m, ỹ1:m, θ̂) =
1

m

m∑
j=1

1
{
C(x̃j ; θ̂) ̸= ỹj

}
.

Our goal is to propose a quantity, without access to the test
labels ỹ1:m, that correlates well with the test error across
different distribution shifts.

2.1. Projection Norm

To this end, we introduce the Projection Norm metric, de-
noted by ProjNorm(Dtrain, x̃1:m), which empirically corre-
lates well with the test error. At a high level, our method
consists of three steps (illustrated in Figure 1):

• Step 1: Pseudo-label the test set. Given a classi-
fier C(·; θ̂) and test samples x̃1:m, compute “pseudo-
labels” ỹ p

j = C(x̃j ; θ̂).

• Step 2: Fine-tune on the pseudo-labels. Initialize
a fresh network with pre-trained parameters θ0, then
fine-tune on the m pseudo-labeled OOD data points to
obtain a model θ̃.

• Step 3: Compute the distance to a reference model.
Finally, we define the Projection Norm as the Euclidean
distance to a reference model θ̂ref:

ProjNorm(Dtrain, x̃1:m) = ∥θ̂ref − θ̃∥2. (1)

We can take θ̂ref = θ̂; however, θ̂ may be trained on many
more samples than θ̃, so an intuitive choice for θ̂ref is to
instead fine-tune θ0 on m samples from the training set,
using the same fine-tuning procedure as Step 2. We find
that both choices yield similar performance (Section 3.2),
and use the latter for our mainline experiments. Fine-tuning
θ̂ref and θ̃ requires m to be reasonably large to achieve
meaningful results (see Section 3.2).

We will see in Section 4 that Steps 1 and 2 essentially per-
form a “nonlinear projection” of θ̂ onto the span of OOD
samples x̃1:m, which is where the name Projection Norm
came from. Intuitively, θ̃ has a subset of the information
in θ̂ (since it is trained on the latter model’s pseudo-labels).
The smaller the overlap between train and test, the less this
information will be retained and the further θ̃ will be from
the reference model.

As we will show in Section 4, an advantage of our method is
that it captures information orthogonal to the training mani-
fold (in contrast to other methods) and can be connected to
a bound on the test error. Before diving into theoretical anal-
ysis, we first study the empirical performance of ProjNorm
to demonstrate its effectiveness.

3. Experimental Results
We evaluate the ProjNorm algorithm on several out-of-
distribution datasets in the vision and language domains.
We first compare our method with existing methods and
demonstrate its effectiveness (Section 3.1). Next, we study
the sensitivity of ProjNorm to hyperparameters and data
set size (Section 3.2). Finally, we show that the errors
of ProjNorm are nearly uncorrelated with those of existing
methods (Section 3.3), and use this to construct an ensemble
method that is even more accurate than ProjNorm alone.
Datasets. We evaluate each method we consider on the im-
age classification tasks CIFAR10, CIFAR100 (Krizhevsky
et al., 2009) and the natural language inference task MNLI



Table 1. Summary of prediction performance on CIFAR10, CIFAR100, and MNLI. We compute coefficients of determination (R2)
and rank correlations (ρ) for existing methods and ProjNorm to compare prediction performance (higher is better). The highest R2 and ρ
quantities in each row are in bold.

Dataset Network Rotation ConfScore Entropy AgreeScore ATC ProjNorm

R2 ρ R2 ρ R2 ρ R2 ρ R2 ρ R2 ρ

CIFAR10

ResNet18 0.839 0.953 0.847 0.981 0.872 0.983 0.556 0.871 0.860 0.983 0.962 0.992
ResNet50 0.784 0.950 0.935 0.993 0.946 0.994 0.739 0.961 0.949 0.994 0.951 0.991
VGG11 0.826 0.876 0.929 0.988 0.927 0.989 0.907 0.989 0.931 0.989 0.891 0.991

Average 0.816 0.926 0.904 0.987 0.915 0.989 0.734 0.940 0.913 0.989 0.935 0.991

CIFAR100

ResNet18 0.903 0.955 0.917 0.958 0.879 0.938 0.939 0.969 0.934 0.966 0.978 0.989
ResNet50 0.916 0.963 0.932 0.986 0.905 0.980 0.927 0.985 0.947 0.989 0.984 0.993
VGG11 0.780 0.945 0.899 0.981 0.880 0.979 0.919 0.988 0.935 0.986 0.953 0.993

Average 0.866 0.954 0.916 0.975 0.888 0.966 0.928 0.981 0.939 0.980 0.972 0.992

MNLI

BERT - - 0.516 0.671 0.533 0.734 0.318 0.524 0.524 0.699 0.585 0.664
RoBERTa - - 0.493 0.727 0.498 0.734 0.499 0.762 0.519 0.734 0.621 0.790

Average - - 0.505 0.699 0.516 0.734 0.409 0.643 0.522 0.717 0.603 0.727
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Figure 2. Generalization prediction versus test error on CIFAR100 with ResNet50. Compare out-of-distribution prediction perfor-
mance of ConfScore (left), ATC (middle), and ProjNorm (right) on CIFAR100. We plot the actual test error and the method prediction on
each OOD dataset. Each point represents one InD/OOD dataset, and points with the same color and marker shape are the same corruption
but with different severity levels.

(Williams et al., 2017). To generate out-of-distribution
data, for the CIFAR datasets we use the “common corrup-
tions” of Hendrycks & Dietterich (2019), CIFAR10-C and
CIFAR100-C, spanning 18 types of corruption with 5 sever-
ity levels. For MNLI, we use BREAK-NLI (Glockner et al.,
2018), EQUATE (Ravichander et al., 2019), HANS (McCoy
et al., 2019), MNLI-M, MNLI-MM, SICK (Marelli et al.,
2014), SNLI (Bowman et al., 2015), STRESS-TEST (Naik
et al., 2018), and SICK (Marelli et al., 2014) as out-of-
distribution datasets, with STRESS-TEST containing 5 sub-
datasets. These OOD datasets include shifts such as swap-
ping words, word overlap, length mismatch, etc. (More
comprehensive descriptions of these datasets can be found
in Zhou et al. (2020).)

Methods. We consider five existing methods for predicting
OOD error: Rotation Prediction (Rotation) (Deng et al.,
2021), Averaged Confidence (ConfScore) (Hendrycks &
Gimpel, 2016), Entropy (Guillory et al., 2021), Agree-
ment Score (AgreeScore) (Madani et al., 2004; Nakkiran &

Bansal, 2020; Jiang et al., 2021), and Averaged Threshold
Confidence (ATC) (Garg et al., 2022). Rotation evaluates
rotation prediction accuracy on test samples to predict test
error. AgreeScore measures agreement rate between two
independently trained classifiers on unlabeled test data. Con-
fScore, Entropy, and ATC predict test error on OOD data
based on softmax outputs of the model. See Appendix A.1
for more details of these existing methods.
Pre-trained models and training setup. We use pre-
trained models and fine-tune on the in-distribution train-
ing dataset. For image classification, we use ResNet18,
ResNet50 (He et al., 2016), and VGG11 (Simonyan &
Zisserman, 2014), all pre-traineded on ImageNet (Deng
et al., 2009). We consider BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019) for the natural language in-
ference task, fine-tuned on the MNLI training set. For
the CIFAR datasets, we fine-tune using SGD with learn-
ing rate 10−3, momentum 0.9, and cosine learning rate
decay (Loshchilov & Hutter, 2016). For MNLI, we use
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Figure 3. Evaluation of ProjNorm as training progresses on CIFAR100. We visualize how the ProjNorm changes as the number of
training iterations increases for (a) ResNet18, (b) ResNet50, and (c) VGG11 on CIFAR100. We show results on three corruptions (snow,
pixelate, and motion blur) as well as the in-distribution dataset (InD). For complete results, see Appendix B.

Table 2. Hyperparameter sensitivity of ProjNorm. We vary the number of “pseudo-label projection” training iterations (T ) and the
number of test samples (m) of ProjNorm, and evaluate the R2 statistic. We use T to denote the number of iterations in Step 2 of
ProjNorm. The performance of ProjNorm is relatively stable, but decreases for sample sizes below 1000.

Dataset Training iterations (m=1000) Test samples (set T=m/10)

T=1000 T=500 T=200 m=5000 m=2000 m=1000 m=500 m=100

CIFAR10 0.962 0.985 0.983 0.973 0.977 0.980 0.946 0.784

CIFAR100 0.978 0.980 0.959 0.972 0.942 0.942 0.903 0.466

AdamW (Loshchilov & Hutter, 2017) with learning rate
2 · 10−5 and linear learning rate decay. For computing Pro-
jNorm, we apply the same optimizer as fine-tuning on each
dataset and use the pre-trained model weights as the initial-
ization θ0. The default number of training iterations for
ProjNorm is 1000. For further details, see Appendix A.

Metrics. To evaluate performance, we compute the correla-
tion between the predictions and the actual test accuracies
across the OOD test datasets, using R2 and rank correlation
(Spearman’s ρ). We also present scatter plots to compare
different methods qualitatively.

3.1. Main results: comparison of all methods

We summarize results for all methods and datasets in Table 1.
We find that ProjNorm achieves better performance than ex-
isting methods in most settings. On CIFAR100, ProjNorm
achieves an averaged R2 of 0.972, while the second-best
method (ATC) only obtains 0.939. The prediction perfor-
mance of ProjNorm is also more stable than other methods.
For Spearman’s ρ on CIFAR10/100, ATC varies from 0.966
to 0.994 and AgreeScore varies from 0.871 to 0.989. In
contrast, ProjNorm achieves ρ > 0.989 in all settings.

We also provide scatter plots on CIFAR100 in Figure 2.
ProjNorm’s better performance primarily comes from bet-
ter predicting harder OOD datasets. While all methods do
well when the test error is below 40%, ConfScore and ATC
often underpredict the larger test errors. In contrast, Pro-
jNorm does well even for errors of 90%. In Section 4, we

argue that this is because ProjNorm better captures direc-
tions “orthogonal” to the training set. Scatter plots on other
methods/datasets can be found in Appendix B.

3.2. Sensitivity analysis and ablations

We investigate the following four questions for ProjNorm:
(1) To improve computational efficiency, can we use fewer
training iterations to compute ProjNorm while still achiev-
ing similar prediction performance? (2) How many test sam-
ples m are needed for ProjNorm to perform well? (3) How
important is the choice of reference model? (4) What role
do the pseudo-labels play in ProjNorm’s performance?
Training iterations. We first visualize how ProjNorm
changes with respect to the number of training iterations.
We evaluate ProjNorm at training steps from 1 to 1000 and
display results for snow, pixelate, and motion blur corrup-
tions in Figure 3 (see Figure 15 for results on all corruptions).
For most corruptions in CIFAR10-C and CIFAR100-C, we
find that ProjNorm initially decreases with more training
iterations, then slowly increases and before converging. Im-
portantly, from Figure 3 we see that the iteration count
usually does not affect the ranking of different distribution
shifts. Table 2 displays R2 values for different iteration
counts T , and shows that ProjNorm still achieves good
performance with as few as 200 training iterations.
Sample size. We next consider the effect of the number of
test samples m, varying m from 5000 to 100 (from a default
size of 10000). Results are shown in Table 2, where we ob-



Table 3. Correlation of residuals of regressing test error against
different measurements with CIFAR100 and ResNet18. The corre-
lation analysis is based on Pearson correlation.

Ent. ConfS. ATC Rota. Proj.
Agree.S. 0.85 0.87 0.84 0.80 0.05
Ent. - 0.98 0.93 0.67 -0.07
ConfS. - - 0.98 0.67 -0.14
ATC - - - 0.65 -0.19
Rota. - - - - 0.03

serve that ProjNorm achieves reasonable performance down
to around 1000 to 2000 samples, but performs poorly below
that. In general, we conjecture that ProjNorm performs well
once the number of samples is large enough for fine-tuning
to generalize well.

Reference model. We consider directly using θ̂ as the
reference model, rather than fine-tuning a new one. As
shown in Table 7 and Figure 16 in the appendix, using
θ̂ref = θ̂ achieves similar performance compared to the
default version of ProjNorm on CIFAR10.

Pseudo-labels. Finally, we investigate the role of pseudo-
labels in our method. We modify Step 2 of ProjNorm by
training θ̃ using the ground truth labels of the OOD data.
From Table 8 and Figure 17, we find that ProjNorm with
pseudo-label performs much better than ProjNorm with
ground truth label, which suggests that pseudo-labeling is
an essential component in ProjNorm.

3.3. Correlation analysis

In this section, we provide a short statistical analysis of using
different measurements to predict test error. We focus on
the CIFAR100 dataset and Resnet18 architecture. We show
that ProjNorm captures signal that existing methods fail
to detect, so that ensembling with the existing approaches
leads to even better performance.

For each method, we first compute residuals when predicting
the test error by performing simple linear regression. Then
we compute the correlation between the residual errors for
each pair of methods.

We see from Table 3 that the correlation among all existing
methods is high: strictly larger than 0.6. The correlations
among ConfScore, ATC and Entropy are especially high
(> 0.9) suggesting they are almost equivalent approaches.
This high correlation is unsurprising since these methods
are all different ways of manipulating the logits.

In contrast, the correlation between ProjNorm and existing
methods is always less than 0.05, and often negative. In-
triguingly, while the correlations among existing methods
are positive, ProjNorm sometimes has negative correlation

with existing methods. This means ProjNorm underesti-
mates the test error when other methods overestimate it.

The low correlation implies that ProjNorm provides very
different signal compared to existing methods and suggests
a natural ensembling approach for improving performance
further. Indeed, if we average ProjNorm and ATC (the
second best method), normalized by standard deviation, we
further improve R2 from 0.978 (using ProjNorm only) to
0.982 (averaging ProjNorm and ATC).

4. Insights from an Overparameterized Linear
Model

In this section, we provide some insights for Projection
Norm by studying its behavior on high-dimensional linear
regression models. We demonstrate an extreme example
where Projection Norm has a qualitative advantage over
other methods such as Confidence Score. We also show that
Projection Norm is tied to an upper bound on the test loss
under certain assumptions, which we empirically validate
on the CIFAR10 dataset.

We consider a linear model with covariates x ∈ Rd and
response y ∈ R. Let X ∈ Rn×d and y ∈ Rn denote
the training set Dtrain = {(xi, yi)}i=1,...,n. We focus on
the d ≫ n regime and take θ̂ to be the minimum-norm
interpolating solution,

θ̂ = argmin
Xθ=y

∥θ∥2 = XT(XXT)−1y. (2)

Let X̃ ∈ Rm×d denote the out-of-distribution test covari-
ates and ỹ ∈ Rm the corresponding ground truth response
vector. Our goal is to estimate the test loss

TestLoss =
1

m
∥X̃θ̂ − ỹ∥22 (3)

using only X , y, and X̃—that is, without having access to
the ground truth response ỹ.

Note that most existing methods in Section 3 (such as the
Confidence Score) only look at the outputs of the model
θ̂. In this linear setting, this corresponds to the vector X̃θ̂.
We show (Section 4.1) that any method with this property
has severe limitations, while the linear version of Projection
Norm overcomes these. Then we present results connect-
ing this linear version of Projection Norm to the test loss
(Section 4.2).

4.1. Motivating the Projection Norm

To analyze the linear setting, we assume that the responses
y and ỹ are noiseless and differ only due to covariate shift:

Assumption 4.1 (Covariate shift). There exists a ground
truth θ⋆ ∈ Rd relating the covariates and responses such that



Xθ⋆ = y and X̃θ⋆ = ỹ, i.e., for both the in-distribution
training data and out-of-distribution test data.

Assumption 4.1 allows the covariate distribution to change
arbitrarily from train to test, and a ground truth θ⋆ only
requires that E[y|x] not change. By Assumption 4.1, the
minimum-norm solution reduces to

θ̂ = XT(XXT)−1Xθ⋆ = Pθ⋆, (4)

where P is defined as the orthogonal projection matrix onto
the row space of X , i.e., P = XT(XXT)−1X . Similarly,
let P̃ be the projection matrix for the row space of X̃ . Using
the fact that θ̂ = Pθ∗ and ỹ = X̃θ∗, the test loss in (3)
can be written as

TestLoss =
1

m
∥X̃(I − P )θ⋆∥22. (5)

From Eq. (5), we see that the test loss depends on the portion
of θ⋆ that is orthogonal to X—i.e., in the span of X̃ but
not X . Now consider any method that depends only on
the model output X̃θ̂ = X̃Pθ⋆—such a method is not
sensitive to this orthogonal component at all! We can see
this concretely through the following setting with Gaussian
covariates:

xi
i.i.d.∼ N

(
0,

[
Id1 0
0 0

])
, i = 1, . . . , n, (6)

x̃j
i.i.d.∼ N

(
0,

[
Id1

0
0 σ2Id2

])
, j = 1, . . . ,m. (7)

Here we decompose the d-dimensional covariate space into
two orthogonal components d = d1 + d2, where the last d2
components appear only at test time. We display empirical
results for this distribution in Figure 4 (see Appendix C for
full experimental details). Methods that depend only on the
model outputs—such as the confidence score—are totally
insensitive to the parameter σ.

Advantage of projection norm. We next define a linear
version of the Projection Norm:

ProjNormLinear = ∥θ̂ − P̃ θ̂∥2. (8)

This computes the difference between the reference model
θ̂ and a projected model P̃ θ̂. Before justifying ProjNorm-
Linear as an adaptation of ProjNorm, we first examine its
performance on the example introduced above.

In particular, we show that ProjNormLinear has the right
dependence on σ whereas ConfScore does not. In Pro-
jNormLinear, the less overlap X̃ has with X , the smaller
P̃ θ̂ will be, so the quantity in Eq. (8) does track the or-
thogonal component of X̃ . Results for ProjNormLinear,
also shown in Figure 4, confirm this. In contrast to the
confidence score, ProjNormLinear does vary with σ, better
tracking the test error.
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Figure 4. A synthetic binary classification experiment with data
distributions defined in Eq. (6) and Eq. (7). The test error increases
with σ, and the linearized version of ProjNorm tracks this, but the
confidence score does not.

We next explain why ProjNormLinear is the linear version
of ProjNorm as defined in Eq. (1) (Section 2). To draw
the connection, first note that the projection step P̃ θ̂ is
equivalent to finding the minimum ℓ2-norm solution of

min
θ

∥X̃θ − X̃θ̂∥22. (9)

In the linear setting, the minimum-norm solution can be
obtained by initializing at θ0 = 0 and performing gradient
descent to convergence (Wilson et al., 2017; Hastie et al.,
2020). If we write fLin(x; θ) = ⟨x, θ⟩, then Eq. (9) can be
equivalently written as

min
θ

m∑
j=1

(
fLin(x̃j ;θ)− fLin(x̃j ; θ̂ )

)2

. (10)

In other words, it minimizes the squared loss relative to the
pseudo-labels fLin(x̃j , θ̂). The metric ProjNormLinear is
thus the squared difference between the original (θ̂) and
pseudo-labeled model (θ̃ = P̃ θ̂) in parameter space, akin
to the ProjNorm in the non-linear setting. Note that in this
linear setting, there is no distinction between θ̂ref and θ̂ as
in Section 2.

4.2. Analyzing the Projection Norm

To further explain why ProjNormLinear performs well, we
connect it to an upper bound on the test loss, under assump-
tions that we will empirically investigate in Section 4.3.
Our first assumption states that θ⋆ has the same complexity
when projected onto the train and OOD test distributions.

Assumption 4.2 (Projected norm). We assume that
∥Pθ⋆∥2 = ∥P̃ θ⋆∥2.

Our second assumption is on the spectral properties of the
covariance matrices:

Assumption 4.3 (Spectral properties). Write the eigende-
composition of the empirical training and test covariance as



Σ =
1

n
XTX =

1

n

n∑
i=1

µiuiu
T
i , (11)

Σ̃ =
1

m
X̃

T
X̃ =

1

m

m∑
i=1

λjvjv
T
j , (12)

where µ1 ≥ · · · ≥ µn and λ1 ≥ · · · ≥ λm. We assume
there exists some constant 0 < k < min(m,n) such that

Span{u1, . . . ,uk} = Span{v1, . . . , vk} (13)

and

Span{uk+1, . . . ,un} ∩ Span{vk+1, . . . , vm} = 0. (14)

In other words, we assume the large eigenvectors of the
train and OOD test covariates span a common subspace,
while the small eigenvectors are orthogonal. Under these
assumptions, we show that the TestLoss is bounded by a
(constant) multiple of ProjNormLinear.

Proposition 4.4. Under Assumptions 4.1, 4.2, and 4.3,

λm

m
≤ TestLoss

ProjNormLinear 2 ≤ λk+1

m
,

where λm, λk+1 are the m-th and (k + 1)-th eigenvalue of

the covariance matrix X̃
T
X̃/m.

This offers mathematical intuition for the effectiveness of
Projection Norm that we observed in Section 3. We defer
the proof of Proposition 4.4 to Appendix F.

4.3. Checking assumptions on linearized representations

In this subsection, we check Assumptions 4.2 and 4.3 on
linear representations derived from the CIFAR datasets. To
construct the linear representation, consider an image in-
put ximg and a neural network f( · ;θ). The behavior of
the network can be locally approximated by its linearized
counterpart (Jacot et al., 2018; Lee et al., 2019), i.e.,

f(ximg;θ) ≈ f(ximg;θ0) + ⟨∇θf(ximg;θ0), θ − θ0⟩.

Under this approximation, we can replace the neural net-
work training on the raw data ximg by linear regression on
its Neural Tangent Kernel (NTK) representation xntk:

xntk = ∇θf(ximg;θ0) ∈ Rd. (15)

We therefore test the assumptions from Section 4.2 on these
NTK representations.

In the most of our experiments, we derive NTK represen-
tations from a pretrained ResNet18, which has dimension
d = 500, 000 (we randomly subsample 500,000 parameters
from a total of 11,177,025 parameters). See Appendix D for
more details.

Justification of Assumption 4.2 and 4.3. We first compute
the NTK representations of the training data and OOD data
on CIFAR10 with sample size n = m = 5, 000. Then we
evaluate ∥P̃ θ⋆∥2 on each OOD datasets in CIFAR10-C and
compare with ∥Pθ⋆∥2. As shown in Figure 19, ∥P̃ θ⋆∥2
and ∥Pθ⋆∥2 are within a multiplicative factor of 2 on most
of the OOD datasets.

Next, we compute the eigenvalues and top-K (K =
300) eigenvectors of Σntk = XT

ntkXntk/n and Σ̃ntk =

X̃
T

ntkX̃ntk/m. As shown in Figure 5(a), the top-k (k ≤ 200)
eigenvectors of in-distribution and OOD covariance ma-
trices align well with each other. When k is large, the
in-distribution and OOD eigenvectors become more orthog-
onal to each other. This suggests that our assumptions on
covariance matrices (i.e., Assumption 4.3) approximately
align with real data.

We also visualize the eigenvalues of Σntk and Σ̃ntk in Fig-
ure 5(b). We find that the eigenvalues of both the in-
distribution and OOD covariance matrices approximately
follow power-law scaling relations with respect to the index
of the eigenvalue.

Linear representations predict nonlinear OOD error.
To check that our linear analysis actually captures nonlin-
ear neural network behavior, we use ProjNormLinear on
the NTK representation to predict the error of the original,
nonlinear neural network (i.e. fine-tuned Resnet18 on CI-
FAR10). We display the results in Figure 5(c). We find
that ProjNormLinear computed on NTK representations
predicts the OOD error of its nonlinear counterpart trained
by SGD (R2 = 0.914). Compared to results in the first
row of Table 1, ProjNormLinear is less accurate than Pro-
jNorm (R2 = 0.962), but still more accurate than all exist-
ing methods in terms of R2.

5. Stress Test: Adversarial Examples
Finally, we construct a “stress test” to explore the limits
of our method. We test our method against adversarial
examples, optimized to fool the network into misclassifying,
but not specifically optimized to evade detection.

In more detail, we consider white-box ℓ∞ attacks on the
CIFAR10 dataset, with adversarial perturbation budget ε
ranging from 0.25 to 8.0. We generate attacks using 20
steps of projected gradient descent (PGD), using the untar-
geted attack of Kurakin et al. (2017). The adversarial OOD
test distribution is obtained by computing an adversarial
example from each image in the CIFAR10 test set.

We present scatter plots of the performances of ProjNorm,
ATC, and ConfScore in Figure 6. For large adversarial
perturbation budgets, ATC and ConfScore perform trivially
(assigning a minimal score even though the test error is
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Figure 5. Experimental results on NTKs. (a) We visualize the alignment matrix H ∈ R300×300 between top-300 eigenvectors of
covariance matrices for in-distribution ({u1, · · · ,u300}) and OOD (snow) ({v1, · · · ,v300}) datasets, where Hij = |⟨vi,uj⟩| for
i, j ∈ [n]. (b) Eigenvalue decay of kernels on a log-log scale, including in-distribution train, in-distribution test, snow, pixelate, motion
blur, and Gaussian noise with severity 1 from CIFAR10-C. (c) Scatter plot of ProjNormLinear computed on NTK representations versus
true test error of model fine-tuned with SGD on CIFAR10-C (R2 = 0.914; ρ = 0.960). See Appendix D for more results on different
corruptions/severities on CIFAR10-C.
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Figure 6. Evaluation of ConfScore, ATC, and ProjNorm on predicting OOD error under adversarial attack. Blue circles are results
evaluated on CIFAR10-C (each point corresponds to one corrupted test dataset), and orange stars are results evaluated on adversarial
examples (each point corresponds to one perturbation radius ε).

maximal). While ProjNorm also struggles, underpredicting
the test error significantly, it stands apart by making non-
trivial predictions even for large budgets.

To quantify this numerically, we convert each method to an
OOD error estimate by calibrating on CIFAR10-C (i.e. run-
ning linear regression on the blue circles in Figure 6). For
ε = 8, ProjNorm predicts an error of 28.1% when the
true error is 100.0%, whereas predictions of other methods
are smaller than 0.0%. Full results for all methods are in
Table 10.

Such a stress test could be an interesting target for future
work. While detecting adversarial examples is notoriously
difficult (Carlini & Wagner, 2017), this setting may be more
tractable because an entire distribution of data points is
observed, rather than a single point.

6. Related Work
Predicting OOD generalization. Predicting OOD error
from test samples is also called unsupervised risk estima-

tion (Donmez et al., 2010). Balasubramanian et al. (2011)
address this task using Gaussian mixture models, Steinhardt
& Liang (2016) use conditional independence assumptions
and the method of moments, Platanios et al. (2016) present
a Bayesian approach, and Chen et al. (2021a) propose a self-
training-based ensemble framework. In a different direc-
tion, Chuang et al. (2020) propose using domain-invariant
representations (Ben-David et al., 2007) to estimate model
generalization. Deng & Zheng (2021) and Deng et al. (2021)
apply rotation prediction to estimate classifier accuracy on
vision tasks. Other works propose using the model’s (soft-
max) predictions on the OOD data (Elsahar & Gallé, 2019;
Guillory et al., 2021; Jiang et al., 2021; Garg et al., 2022).
Chen et al. (2021b) propose an importance weighting ap-
proach that leverages prior knowledge.

Robustness. Recent works develop benchmarks for evalu-
ating model performance under various distribution shifts,
including vision and language benchmarks (Geirhos et al.,
2018; Recht et al., 2019; Hendrycks & Dietterich, 2019;
Shankar et al., 2021; Hendrycks et al., 2021b; Santurkar



et al., 2021; Hendrycks et al., 2021a; Naik et al., 2018;
McCoy et al., 2019; Miller et al., 2020; Koh et al., 2021).
Several recent works (Taori et al., 2020; Allen-Zhu et al.,
2019) identify the “accuracy on the line” phenomenon—a
linear trend between in-distribution accuracy and OOD ac-
curacy. Taori et al. (2020) and Hendrycks et al. (2021a)
find that using larger models pre-trained on more (diverse)
datasets are two effective techniques for improving robust-
ness. Sun et al. (2020) propose a test-time-training method
to improve robustness.

OOD detection. The goal of OOD detection is to identify
whether a test sample comes from a different distribution
than the training data, which is closely related to the task
we study. Hendrycks & Gimpel (2016) and Geifman &
El-Yaniv (2017) use model softmax outputs to detect OOD
samples. Lee et al. (2018) propose to use a generative clas-
sifier for OOD detection. Liang et al. (2018) find that tem-
perature scaling (Guo et al., 2017) and adversarial perturba-
tions (Goodfellow et al., 2014) can improve detection perfor-
mance. Jiang et al. (2018) propose a density-based approach
for detecting suspicious. Other work utilizes pre-trained
models to improve OOD detection performance (Hendrycks
et al., 2020; Xu et al., 2021). Our method can potentially be
extended to perform OOD detection.

Domain adaptation. A large body of work studies how to
learn representations that transfer from a source domain to a
target domain during training (Ben-David et al., 2007; 2010;
Pan et al., 2010; Long et al., 2015; Ganin et al., 2016; Tzeng
et al., 2017; Zhao et al., 2019; Musgrave et al., 2021). The
goal of domain adaptation is to improve model performance
on a target (OOD) domain, whereas we focus on predicting
performance of a fixed model on OOD data. Sugiyama et al.
(2007); Zhong et al. (2010) propose cross-validation-based
approaches for selecting models under distribution shifts.
An interesting direction for future work would be to explore
the application of ProjNorm in domain adaptation.

NTK and overparameterized linear models. A recent
line of theoretical work tries to connect deep neural network
training to neural tangent kernels (NTK) (Jacot et al., 2018;
Lee et al., 2019; Du et al., 2019; Allen-Zhu et al., 2019; Zou
et al., 2019), showing that infinite-width networks converge
to a limiting kernel. Several recent works study the be-
nign overfitting phenomenon in deep learning through over-
parameterized linear models (Bartlett et al., 2020; Tsigler
& Bartlett, 2020; Koehler et al., 2021). Tripuraneni et al.
(2021) computes the exact asymptotics of generalization
error for random feature models under certain assumptions
of distribution shift.

7. Discussion
Thus far, we have focused on the advantages of Projection
Norm in terms of empirical performance and theoretical

interpretability. We now briefly discuss limitations of Pro-
jection Norm and future directions. One limitation is that it
needs sufficiently many samples (because of the fine-tuning
step) to make accurate predictions on the OOD test dataset.
It would be useful to reduce the sample complexity of this
method, with the ideal being a one-sample version of Pro-
jNorm. Another issue is that ProjNorm sometimes does
poorly on “easy” shifts, as it looks for all differences be-
tween two distributions, including those that might make
the problem easier. We illustrate this in Figure 18 of the
appendix, where ProjNorm typically overpredicts the er-
ror under label shifts. A final limitation is ProjNorm’s
performance on adversarial examples, which suggests an
interesting avenue for future work.

Beyond predicting OOD error, ProjNorm provides a gen-
eral way to compute distances between distributions. For in-
stance, it could be used to choose sample policies for active
learning or exploration policies for reinforcement learning.
We see ProjNorm as a particularly promising approach for
addressing “novelty” in high-dimensional settings.
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A. Experimental Details
Details on ProjNorm. Algorithm 1 provides a detailed description of the ProjNorm algorithm.

Algorithm 1 ProjNorm

1: Input: Classifier C(·; θ̂) to be evaluated, initialization θ0, training data Dtrain = {(xi, yi)}ni=1, OOD unlabeled test
data x̃1:m = {x̃j}mj=1.

2: Parameters: Number of training steps T , initial learning rate η.
3: Step 1: Pseudo-label OOD data with C(·; θ̂), i.e., ỹ p

j = C(x̃j ; θ̂), j ∈ [m].
4: Step 2: From initialization θ0, train a new model θ̃ on pseudo-labeled OOD data {(x̃j , ỹ

p
j )}mj=1 by performing T steps

of stochastic gradient descent updates with learning rate η.
5: Step 2+: From initialization θ0, train a reference model θ̂ref on training data {(xi, yi)}ni=1 by performing T steps of

stochastic gradient descent updates with learning rate η.
6: Step 3: Output ProjNorm(Dtrain, x̃1:m) := ∥θ̂ref − θ̃∥2.

Additional implementation details. For the CIFAR datasets, we fine-tune the pre-trained model on in-distribution training
data for 20 and 50 epochs for CIFAR10 and CIFAR100, respectively. For MNLI, we fine-tune the pre-trained model for 4
epochs on in-distribution training data.

A.1. Details of existing methods

Rotation. The Rotation Prediction (Rotation) (Deng et al., 2021) metric is defined as

Rotation =
1

m

m∑
j=1

1

4

∑
r∈{0◦,90◦,180◦,270◦}

1 {Cr(x̃j ; θ̂) ̸= yr}

 , (16)

where yr is the label for r ∈ {0◦, 90◦, 180◦, 270◦}, and Cr(x̃j ; θ̂) predicts the rotation degree of an image x̃j .

ConfScore. The Averaged Confidence (ConfScore) is defined as

ConfScore =
1

m

m∑
j=1

max
k

Softmax(f(x̃j ; θ̂))k, (17)

where Softmax(·) is the softmax function.

Entropy. The Entropy metric is defined as

Entropy =
1

m

m∑
j=1

Ent (Softmax(f(x̃j ; θ̂))) , (18)

where Ent(p) = −
∑K

k=1 pk · log(pk).

AgreeScore. The Agreement Score (AgreeScore) is defined as

AgreeScore =
1

m

m∑
j=1

1 {C(x̃j ;θ1) ̸= C(x̃j ;θ2)} , (19)

where C(x̃j ;θ1) and C(x̃j ;θ2) are two classifiers that are trained on in-distribution training data independently.

ATC. The Averaged Threshold Confidence (ATC) (Garg et al., 2022) is defined as

ATC =
1

m

m∑
j=1

1 {s(Softmax(f(x̃j ; θ̂))) < t} , (20)



where s(p) =
∑K

j=1 pk log(pk), and t is defined as the solution to the following equation,

1

mval

mval∑
ℓ=1

1
{
s(Softmax(f(xval

ℓ ; θ̂))) < t
}
=

1

mval

mval∑
ℓ=1

1
{
C(xval

ℓ ; θ̂) ̸= yval
ℓ

}
, (21)

where (xval
ℓ , yval

ℓ ), ℓ = 1, . . . ,mval, are in-distribution validation samples.

B. Additional Experimental Results
Scatter plots of generalization prediction versus test error. We present the scatter plots for all methods (displayed in
Table 1) in Figures 7–14. More specifically, the figures plot results for the following models and datasets:

• CIFAR10: ResNet18 (Figure 7), ResNet50 (Figure 8), and VGG11 (Figure 9).

• CIFAR100: ResNet18 (Figure 10), ResNet50 (Figure 11), VGG11 (Figure 12).

• MNLI: BERT (Figure 13), RoBERTa (Figure 14).

Sensitivity analysis. We present more results on the sensitivity analysis of ProjNorm. We vary the number of iterations
T (Table 4), the number of test samples m (Table 5), and the learning rate η (Table 6).
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Figure 7. Generalization prediction versus test error on CIFAR10 with ResNet18. Compare out-of-distribution prediction performance
of all methods. We plot the actual test error and the method prediction on each OOD dataset. Each point represents one InD/OOD dataset,
and points with the same color and marker shape are the same corruption but with different severity levels.

Table 4. Hyperparameter sensitivity of ProjNorm (w.r.t. sample size T ). We vary the number of “pseudo-label projection” training
iterations (T ). We set the number of test samples m = 10, 000. The performance of ProjNorm is stable across different number of
training iterations.

Dataset T=1,000 T=500 T=200

R2 ρ R2 ρ R2 ρ

CIFAR10 0.962 0.992 0.985 0.987 0.983 0.986

CIFAR100 0.978 0.989 0.980 0.986 0.959 0.968
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Figure 8. Generalization prediction versus test error on CIFAR10 with ResNet50. Compare out-of-distribution prediction performance
of all methods. We plot the actual test error and the method prediction on each OOD dataset. Each point represents one InD/OOD dataset,
and points with the same color and marker shape are the same corruption but with different severity levels.

Table 5. Hyperparameter sensitivity of ProjNorm (w.r.t. sample size m). We vary the number of test samples (m) of ProjNorm. We set
learning rate η=0.001 and number of training iterations T=m/10.

Dataset m = 10, 000 m = 5, 000 m = 2, 000 m = 1, 000 m = 500 m = 100

R2 ρ R2 ρ R2 ρ R2 ρ R2 ρ R2 ρ

CIFAR10 0.962 0.992 0.973 0.989 0.977 0.985 0.980 0.975 0.946 0.983 0.784 0.896

CIFAR100 0.978 0.989 0.972 0.983 0.942 0.966 0.942 0.981 0.903 0.972 0.466 0.789

Table 6. Hyperparameter sensitivity of ProjNorm (w.r.t. learning rate η). We vary the learning rate (η) and set T=1,000 and m=10,000.
The performance of ProjNorm is stable across different learning rates.

Dataset η=1e-3 η=5e-4 η=1e-4

R2 ρ R2 ρ R2 ρ

CIFAR10 0.962 0.992 0.984 0.991 0.986 0.988

CIFAR100 0.978 0.989 0.982 0.989 0.969 0.984
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Figure 9. Generalization prediction versus test error on CIFAR10 with VGG11. Compare out-of-distribution prediction performance
of all methods. We plot the actual test error and the method prediction on each OOD dataset. Each point represents one InD/OOD dataset,
and points with the same color and marker shape are the same corruption but with different severity levels.
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Figure 10. Generalization prediction versus test error on CIFAR100 with ResNet18. Compare out-of-distribution prediction perfor-
mance of all methods. We plot the actual test error and the method prediction on each OOD dataset. Each point represents one InD/OOD
dataset, and points with the same color and marker shape are the same corruption but with different severity levels.
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Figure 11. Generalization prediction versus test error on CIFAR100 with ResNet50. Compare out-of-distribution prediction perfor-
mance of all methods. We plot the actual test error and the method prediction on each OOD dataset. Each point represents one InD/OOD
dataset, and points with the same color and marker shape are the same corruption but with different severity levels.
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Figure 12. Generalization prediction versus test error on CIFAR100 with VGG11. Compare out-of-distribution prediction performance
of all methods. We plot the actual test error and the method prediction on each OOD dataset. Each point represents one InD/OOD dataset,
and points with the same color and marker shape are the same corruption but with different severity levels.
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Figure 13. Generalization prediction versus test error on MNLI with BERT. Compare out-of-distribution prediction performance of
all methods (except for Rotation). We plot the actual test error and the method prediction on each InD/OOD dataset.
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Figure 14. Generalization prediction versus test error on MNLI with RoBERTa. Compare out-of-distribution prediction performance
of all methods (except for Rotation). We plot the actual test error and the method prediction on each InD/OOD dataset.
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Figure 15. Evaluation of ProjNorm as training progresses on all corruptions in CIFAR100-C. We visualize how the ProjNorm changes
as the number of training iteration increases for ResNet50 on CIFAR100.



Comparing ∥θ̃ − θ̂∥2 and ∥θ̃ − θ̂ref∥2. We study the performance of ProjNorm when we use θ̂ as θ̂ref on CIFAR10.
We do not train a new reference model on the training dataset and use the fine-tuned model θ̂ to measure the difference
∥θ̃ − θ̂∥2. As shown in Figure 16, applying θ̂ref = θ̂ does not degrade the performance of ProjNorm.

Table 7. Comparing ProjNorm with different reference models on CIFAR10. We study the performance of ProjNorm when using
θ̂ref = θ̂ and compare it with the default version of ProjNorm. ProjNorm with θ̂ref = θ̂ achieves similar or even better performance
compared to the default version. We set T = 500 and η = 0.001.

Dataset ResNet18 ResNet50 VGG11

R2 ρ R2 ρ R2 ρ

Default 0.980 0.989 0.972 0.986 0.982 0.993

θ̂ref = θ̂ 0.989 0.991 0.980 0.987 0.982 0.994
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(a) ResNet18.
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(b) ResNet50.
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(c) VGG11.

Figure 16. Generalization prediction versus test error on CIFAR10 with ResNet18/ResNet50/VGG11. We plot the actual test error
and the prediction of ProjNorm (when θ̂ref = θ̂) on each OOD dataset. Each point represents one InD/OOD dataset, and points with the
same color and marker shape are the same corruption but with different severity levels.

Role of pseudo-labels. We investigate the role of pseudo-labels in ProjNorm. Specifically, we modify Step 2 of ProjNorm
by training θ̃ using the ground truth labels of the OOD data. We compare the performance of ProjNorm when using
pseudo-labels and ground truth labels. As shown in Figure 17, we find that ProjNorm with pseudo-label performs much
better than ProjNorm with ground truth label, which suggests that pseudo-labeling is an essential component of ProjNorm.

Table 8. Comparing ProjNorm with pseudo-labels and ground truth labels on CIFAR10. We study the performance of ProjNorm
when using ground truth labels of OOD data (in Step 2) and compare it with the default version of ProjNorm. ProjNorm with ground
truth labels achieves worse performance compared to the default version. We set T = 500 and η = 0.001.

Dataset ResNet18 ResNet50 VGG11

R2 ρ R2 ρ R2 ρ

Default 0.980 0.989 0.972 0.986 0.982 0.993

Ground truth labels 0.833 0.952 0.813 0.946 0.870 0.961



0.8 1.0 1.2 1.4 1.6

ProjNorm

10

20

30

40

50

60

70

80

Te
st

 E
rro

r
ProjNorm v.s. Test Error

ProjNorm-PseudoLabel
ProjNorm-TrueLabel

(a) ResNet18.

0.8 1.0 1.2 1.4 1.6 1.8

ProjNorm

10

20

30

40

50

60

70

Te
st

 E
rro

r

ProjNorm v.s. Test Error
ProjNorm-PseudoLabel
ProjNorm-TrueLabel

(b) ResNet50.
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(c) VGG11.
Figure 17. Comparing the performance of ProjNorm when using pseudo-labels and ground truth labels on CIFAR10. We plot the
actual test error and the prediction of ProjNorm on each OOD dataset. Blue circles are results when using pseudo-labels, and orange
circles are results when using ground truth labels.

Evaluation on label shift. We evaluate our method and existing methods on CIFAR100 under label shift. Specifically,
we measure the test error of each class from the in-distribution test dataset. Then, we rank the classes by the test error of
each class (in descending order), i.e., (cr1, c

r
2, . . . , c

r
100). Finally, we partition the test dataset into five datasets (D1, . . . , D5),

where Dj contains classes ((j − 1) · 20 + 1, . . . , j · 20)). The results are summarized in Figure 18. We find that
ProjNorm performs worse than existing methods.
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Figure 18. Generalization prediction versus test error on CIFAR100 with ResNet18. Compare out-of-distribution prediction perfor-
mance of all methods. We plot the actual test error and the method prediction on each InD/OOD dataset. Blue circles are results evaluated
on CIFAR100-C, and orange squares are results evaluated on 5 test datasets under label shift.

Additional experiments on WILDS (Koh et al., 2021). We conduct experiments on FMoW-WILDS (with pre-trained
ResNet-50) and find that ProjNorm achieves good performance measured in R2 (R2=0.960).



C. Details for the Toy Experiments
We construct a synthetic classification task with x ∈ Rd with

Training coviarte distribution: N
(
0,

[
Id1 0
0 0

])
.

Test coviarte distribution: N
(
0,

[
Id1

0
0 σ2Id2

])
.

We set d1 = 1000 and d2 = 500. For both the training and test distributions, we assume class membership is given by

y|x = sign(x[1] + x[1500]).

Given the definition of the training and test distributions, we sample n = 500 training samples and m = 500 test samples.
Then, we perform the two-class linear regression to obtain Figure 4.

D. Details for NTK Experiments

As shown in Figure 19, we visualize the evaluations of (∥P̃ θ⋆∥ − ∥Pθ⋆∥)/∥Pθ⋆∥ for all corruptions in CIFAR10-C. We
present the eigenvalue decay results in Figure 20, which include all corruptions in CIFAR10-C.
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Figure 19. Evaluation of (∥P̃ θ⋆∥ − ∥Pθ⋆∥)/∥Pθ⋆∥ on all OOD datasets from CIFAR10-C. We empirically study Assumption 4.2
on CIFAR10-C. For each dataset in CIFAR10-C, we first randomly subsample 5,000 data points, (X̃ input, ỹ). Then we use the ImageNet
pre-trained ResNet18 to obtain NTK representations of the OOD data, i.e., X̃ . Then we set P̃ θ⋆ = argminθ∥X̃θ − ỹ∥22, and measure
∥P̃ θ⋆∥.
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Figure 20. Results on eigenvalue decay in log-log scale, including InD train, InD test, and all corruptions in CIFAR10-C.



E. More Experimental Results on Adversarial Examples
We provide additional experimental results for Section 5. The prediction performance results of existing methods and
ProjNorm are summarized in Table 9 (measured in MSE) and Table 10. We also present the scatter plots of prediction on
adversarial examples versus test error for existing methods in Figure 21.

Additional results of transfer-based attack. We conduct experiments on transfer-based attacks on CIFAR10. We use PGD-
20 and ResNet-18 to generate attacks and evaluate different methods on ResNet-50. We find that ProjNorm outperforms
existing methods under transfer-based attacks (ProjNorm: 0.299, best competing method: 0.436; measured in MSE).

Table 9. Prediction performance under adversarial attack of different methods measure in MSE. We first fir a linear regression
model on CIFAR10-C results, (Prediction(Dtest), TestError(Dtest, θ̂)), for each method. Then we use the learned linear model to predict
the OOD error of adversarial examples with perturbation size varying from 0.25 to 8.0. The prediction performance is measured by MSE.
Lower is better.

ConfScore Entropy AgreeScore ATC ProjNorm

CIFAR10 0.875 0.895 0.796 0.823 0.432

Table 10. Prediction performance under adversarial attack of different methods measure in MSE. We first fir a linear regression
model on CIFAR10-C results, (Prediction(Dtest), TestError(Dtest, θ̂)), for each method. Then we use the learned linear model to predict
the OOD error of adversarial examples with perturbation size varying from 0.25 to 8.0. For each perturbation ε, we present the actual test
error (“Test Error” in the table) and the predictions by ProjNorm and other methods.

ε = 0.0 ε = 0.25 ε = 0.5 ε = 0.75 ε = 1.0 ε = 1.5 ε = 2.0 ε = 2.5

Test Error 5.6 31.4 67.0 87.4 96.0 99.4 99.9 99.9
ConfScore 3.5 19.3 17.4 7.0 -0.3 -5.2 -6.2 -6.4

Entropy 3.0 17.4 15.1 5.5 -1.3 -6.1 -7.2 -7.4
AgreeScore 5.2 16.0 23.0 24.6 18.4 5.5 -0.3 -3.4

ATC 4.5 14.6 12.0 5.8 1.3 -1.4 -2.2 -2.4
ProjNorm 5.2 7.2 22.5 28.7 31.8 29.1 26.4 25.1

ε = 3.0 ε = 3.5 ε = 4.0 ε = 5.0 ε = 6.0 ε = 7.5 ε = 8.0

Test Error 100.0 100.0 100.0 100.0 100.0 100.0 100.0
ConfScore -6.4 -6.5 -6.5 -6.5 -6.5 -6.5 -6.5

Entropy -7.5 -7.5 -7.5 -7.5 -7.5 -7.5 -7.5
ATC -2.4 -2.4 -2.4 -2.4 -2.4 -2.4 -2.4

ProjNorm 24.4 24.5 25.0 25.2 25.8 27.0 28.1
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Figure 21. Evaluation of existing methods on predicting OOD error under adversarial attack. Blue circles are results evaluated on
CIFAR10-C (each point corresponds to one corrupted test dataset), and orange stars are results evaluated on adversarial examples (each
point corresponds to one perturbation radius ε).



F. Proof of Proposition 4.4
Proof. Recall that we decompose the empirical covariance of training and test set as

Σ =
1

n
XTX =

1

n

n∑
i=1

µiuiu
T
i ,

Σ̃ =
1

m
X̃

T
X̃ =

1

m

m∑
j=1

λjvjv
T
j .

Then given k from Assumption 4.3, we define the projection matrices

P 0 =
k∑

i=1

uiu
T
i =

k∑
j=1

vjv
T
j ,

P⊥ = P − P 0 =
n∑

i=k+1

uiu
T
i ,

P̃⊥ = P̃ − P̃ 0 =

m∑
j=k+1

vjv
T
j .

The test loss can be written as

TestLoss =
1

m
∥X̃(I − P )θ⋆∥22 =

1

m
∥X̃P̃ (I − P )θ⋆∥22.

Under Assumption 4.3,
P̃ (I − P ) = (P 0 + P̃⊥)(I − P 0 − P⊥) = P̃⊥.

This allows us to simply write the test loss as

TestLoss =
1

m
∥X̃P̃⊥θ⋆∥22 =

1

m

m∑
j=k+1

λj⟨vj ,θ⋆⟩2.

Since λj is a the decreasing sequence of eigenvalues

λm

m

m∑
j=k+1

⟨vj ,θ⋆⟩2 ≤ TestLoss ≤ λk+1

m

m∑
j=k+1

⟨vj ,θ⋆⟩2.

Note that with Assumption 4.2

m∑
j=k+1

⟨vj ,θ⋆⟩2 = ∥P̃⊥θ⋆∥22 = ∥P⊥θ⋆∥22 = ∥Pθ⋆∥22 − ∥P 0θ⋆∥22 = ∥Pθ⋆∥22 − ∥P̃Pθ⋆∥22 = ProjNormLinear2.

This completes the proof of Proposition 4.4.


