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Abstract

Inverse Reinforcement Learning (IRL) is a power-
ful way of learning from demonstrations. In this
paper, we address IRL problems with the avail-
ability of prior knowledge that optimal policies
will never violate certain constraints. Conventional
approaches ignoring these constraints need many
demonstrations to converge. We propose XOR-
Maximum Entropy Constrained Inverse Reinforce-
ment Learning (X-MEN), which is guaranteed to
converge to the global optimal reward function in
linear rate w.r.t. the number of learning iterations.
X-MEN embeds XOR-sampling – a provable sam-
pling approach which transforms the #-P complete
sampling problem into queries to NP oracles – into
the framework of maximum entropy IRL. X-MEN
also guarantees the learned IRL agent will never
generate trajectories that violate constraints. Em-
pirical results in navigation demonstrate that X-
MEN converges faster to the optimal rewards com-
pared to baseline approaches and always generates
trajectories that satisfy multi-state combinatorial
constraints.

1 INTRODUCTION

Inverse Reinforcement Learning (IRL) [Ng and Russell,
2000, Abbeel and Ng, 2004, Ziebart et al., 2008, Arora and
Doshi, 2021, Li, 2017] provides an important way to learn
from demonstrations. IRL assumes that the demonstrator
implicitly maximizes the cumulative reward of a Markov
Decision Process (MDP). The goal of IRL is to recover the
unknown reward function from the observed demonstrations.
Various IRL algorithms have been proposed, including Lin-
ear IRL [Ng and Russell, 2000, Abbeel and Ng, 2004] and
Large-Margin Q-Learning [Ratliff et al., 2006]. To differen-
tiate among multiple reward functions which lead to similar

behaviors, Maximum Entropy Inverse Reinforcement Learn-
ing (MaxEnt IRL) [Ziebart et al., 2008, Wulfmeier et al.,
2015, Finn et al., 2016, Ho and Ermon, 2016] assumes that
the demonstrator samples trajectories from a maximum en-
tropy distribution parameterized by the cumulative reward.

In this paper, we focus on IRL problems where certain con-
straints are known beforehand and hence do not need to
be rediscovered by the learning algorithm. The trajectories
from the demonstrator are known to satisfy these constraints
and we require the IRL agent to satisfy these constraints as
well. Indeed, standard IRL algorithms [Abbeel et al., 2007,
Vasquez et al., 2014, Scobee et al., 2018] can be applied
to this scenario without modifications and they eventually
discover the optimal reward function, which generates trajec-
tories satisfying all constraints. Nevertheless, it may require
a large amount of demonstrations to learn these constraints.
Worse still, it is still possible for the IRL agent to produce
trajectories which occasionally violate constraints even af-
ter many training epochs. This is especially problematic in
safety critical domains, such as autonomous driving, robotic
surgery, etc.

Recent work has attempted to embed constraints into IRL.
For example, the work of [Vazquez-Chanlatte et al., 2017,
Kalweit et al., 2020] uses demonstrations to learn a rich
class of possible specifications that can represent a task.
Others have focused specifically on learning constraints,
that is, behaviors that are expressly forbidden or infeasible
[Chou et al., 2018, Subramani et al., 2018, McPherson et al.,
2018, Scobee and Sastry, 2019, Anwar et al., 2020, McPher-
son et al., 2021]. Nevertheless, so far the attempts have
been focused on single-state constraints, where a handful of
actions are forbidden in certain states and these forbidden
actions have little impact for future state-action transitions.
Their approaches cannot address multi-state combinatorial
constraints, which limits a chain of actions spanning mul-
tiple time stamps. For example, Figure 1 (c) demonstrates
a navigation task where constraints require at least half of
the states in each trajectory is located in the shaded area.
With this constraint imposed, only trajectories passing the
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Figure 1: Examples of constrained IRL problems. The agent wants to move from the start state S0 (blue grid) to the goal
state SG (green grid). Ground truth demonstration is shown in the red line. The same initial reward function before learning
is used for all 3 situations, with one-step reward listed in each grid. Most likely trajectories under the initial reward function
(e.g.,those maximizing rewards and subject to constraints) are shown using blue dashed arrows. (a) When no constraint is
added to the MDP, the agent finds the shortest path directly upward from S0 to SG. (b) When single-state constraint C1,
which forbids the agent to to pass through the red grids, is imposed, the agent can detour from either the left or the right side.
(c) When there are an additional multi-state constraint C2 imposed, which constrains at least half of all passing states in the
shaded area, the optimal trajectory is to detour from the right side. Notice that this behavior aligns with the demonstration.

right-hand side are possible. Such constraints cannot be ad-
dressed with previous approaches, which mask out actions
from certain states.

In this work, we propose XOR-Maximum ENtropy (X-
MEN) Constrained Inverse Reinforcement Learning, which
provably converges to the optimal reward function for
MaxEnt IRL in linear number of training steps, even in
the presence of hard combinatorial constraints. X-MEN also
guarantees to produce trajectories which satisfy multi-state
combinatorial constraints. X-MEN is based on the Maxi-
mum Entropy IRL learning [Ziebart et al., 2008, Boular-
ias et al., 2011]. Distinctively, X-MEN harnesses XOR-
sampling to estimate the gradient of the expected reward
from the current model distribution. The recently proposed
XOR-Sampling [Gomes et al., 2007a, Ermon et al., 2013a,b]
reduces the sampling problem into queries of NP oracles
via hashing and projection, and guarantees a constant factor
approximation for the expectation estimation. To maximize
the likelihood of the demonstrated behavior, X-MEN uses
Stochastic Gradient Descent (SGD) to maximize the differ-
ence between expected reward from the demonstration and
that from the trajectories sampled from the current model
distribution, a procedure closely resembling contrastive di-
vergence learning. Theoretic analysis reveals that X-MEN
provably converges to the global optimum of the likelihood

function in linear number of SGD iterations. In addition,
X-MEN can handle rewards parameterized either in a linear
form or in the representation of a neural network. During
testing, the policy learned by X-MEN can also be adapted
to satisfying additional constraints without retraining.

In experiments, we compare the performance of X-MEN
against MaxEnt IRL [Ziebart et al., 2008] and additional
baselines such as Reletive Entropy IRL (RE-IRL) [Boular-
ias et al., 2011] and recently proposed maximum likelihood
constraint inference (MLCI) [Scobee and Sastry, 2019] on
several grid world environments and in an imitation learning
environment with human data to navigate around obstacles.
All these environments require the agent to follow con-
straints. Our experiment shows after learning, the generated
trajectories of X-MEN 100% satisfy constraints, while a
majority of trajectories produced by competing approaches
do not (≥ 60% violate constraints). Also X-MEN produces
trajectories that closely imitate demonstrations. In summary,
our contributions are as follows:

• We propose X-MEN, an algorithm that provably con-
verges to the optimal reward function for MaxEnt IRL
in linear number of training steps, even in the presence
of multi-state combinatorial constraints.

• X-MEN is guaranteed to produce trajectories which
satisfy combinatorial constraints, beyond the capability



of previous approaches.

• Experimental results reveal that X-MEN produces tra-
jectories that closely resemble demonstration while
satisfying constraints, outperforming a series of con-
strained IRL baselines.

2 INVERSE REINFORCEMENT
LEARNING

Here we present a brief overview of IRL. M =
{S,A, T,R, γ} is a Markov Decision Process (MDP),
where S denotes the space of all states s, A denotes the
set of possible actions a, T denotes the transition probabil-
ity function, R denotes the reward function, and γ ∈ [0, 1]
is the discount factor. Given an MDP, an optimal policy π∗

is the one to maximize the expected cumulative reward. IRL
considers the case where the reward function is unknown.
Instead, a set of expert demonstrations D = {τ1, . . . , τN}
is provided. Each demonstration consists of a series of state-
action pairs τi = {(si1, ai1), . . . , (siLi , aiLi)}, where Li

denotes the length of the trajectory. The goal of IRL is to
uncover the hidden reward R from the demonstrations.

2.1 MAXIMUM ENTROPY IRL

A number of approaches have been proposed to tackle the
IRL problem [Ng and Russell, 2000, Abbeel and Ng, 2004,
Ratliff et al., 2006]. One crucial problem to address for IRL
is to differentiate among multiple reward functions that lead
to the same demonstrations. An influential formulation is
Maximum Entropy IRL [Ziebart et al., 2008], which can also
be viewed as a special case of Relative Entropy IRL (RE-
IRL) [Boularias et al., 2011, Snoswell et al., 2020]. In this
formulation, the probability that the demonstrator chooses a
given trajectory is proportional to the exponent of the reward
along the path. Denote Rθ1(τ) =

∑L
t=1 γ

tRθ1(st, at) as
the discounted cumulative reward parameterized by θ1. The
probability of choosing trajectory τ is proportional to:

Pchoice(τ |θ1) ∝ eRθ1
(τ). (1)

Let d0 as the probability distribution of the initial state.
D(τ) = d0(s1)

∏L
t=1 T (st+1|st, at) is the probability of

state action transitions which leads to the trajectory τ . Fol-
lowing the standard setup for (inverse) reinforcement learn-
ing, we assume D(τ) is unknown and needs to be learned
from the interactions with the IRL system. For this paper,
we parameterize D(τ) in the form of edθ2

(τ), where θ2 is
the parameter to be learned. Hence, the overall probability
of observing trajectory τ from demonstrations is propor-
tional to the product of the choice probability and the state
transition probability:

P (τ |θ, T ) ∝ eRθ1
(τ)D(τ) = eRθ1

(τ)+dθ2
(τ) = eRθ(τ).

where θ = [θ1, θ2] is overall parameters to learn. We use
Rθ(τ) to represent Rθ1(τ) + dθ2(τ) with a slight overload
of notations.

2.2 IRL WITH MULTI-STATE COMBINATORIAL
CONSTRAINTS

Despite the success of many IRL models, many real world
tasks require additional constraints to be satisfied when
learning from demonstrations. In this work, we restrict our-
selves to dealing with hard combinatorial constraints, as
shown in Figure 1. Note that this is not particularly restric-
tive since, for example, safety constraints and/or constraints
imposed by physical laws are often hard. Different from
previous work that only defines constraints as a set of forbid-
den state-action pairs, which we call single-state constraints,
here we consider more general cases of combinatorial con-
straints that span multiple states. Denote C(τ) = {ci(τ)}
as the set of constraints that each trajectory must satisfy, and
IC(τ) the indicator function of whether constraints C(τ)
are satisfied. Formally,

IC(τ) =

{
1, if τ satisfies the constraints set C(τ)

0, otherwise

We augment the MDP into the constrained MDP:MC =
{S,A, T,R,C}. In this case, the probability of observing a
trajectory τ now becomes:

P (τ |θ, T ) = 1

Zθ
eRθ(τ)IC(τ), (2)

Here Zθ is a normalization constant to ensure P (τ |θ, T ) is
a probability distribution. Given the set of expert demon-
strations D, we want to find the best reward function by
maximizing the log likelihood function L(θ).

argmaxθL(θ) = argmaxθ

1

|D|
∑
τ∈D

Rθ(τ)− logZθ.

Notice only the terms related to the optimization variable θ
are included in the rightmost equation.

3 XOR MAXIMUM ENTROPY IRL

In this section we propose XOR-Maximum ENtropy Con-
strained Inverse Reinforcement Learning (X-MEN), to solve
the inverse reinforcement learning problem with multi-state
combinatorial constraints. We develop X-MEN based on
maximum entropy inverse reinforcement learning [Ziebart
et al., 2008, Boularias et al., 2011, Finn et al., 2016]. Specifi-
cally, the model assumes that the expert samples the demon-
strated trajectories {τi} from the distribution P (τ |θ, T ) in
Equation 2, where Rθ(st, at) = θT f(st, at) is represented
by a linear combination of feature vector f(st, at). f(st, at)



can be hand-crafted or generated by a deep neural network.
Forward-backward dynamic programming can hardly solve
this problem even if the state-transition function is given,
due to the presence of the hard combinatorial constraints
IC(τ). Our X-MEN has the ability to solve this problem
by leveraging XOR sampling to estimate P (τ |θ, T ). After
learning, X-MEN will only take actions that lead to trajecto-
ries satisfying constraints.

We use Stochastic Gradient Descent (SGD) to optimize the
objective, where in each iteration we compute the gradient
of the log likelihood as follows:

∇θL(θ) =
1

|D|
∑
τ∈D
∇θRθ(τ)−∇θ logZθ

=
1

|D|
∑
τ∈D
∇θRθ(τ)−

∑
τ

P (τ |θ, T )∇θRθ(τ). (3)

The first term in Equation 3 represents the expectation of
∇θRθ(τ) over all the trajectories in the training dataset,
i.e., ED[∇θRθ(τ)]. The second term is the expectation
of ∇θRθ(τ) over trajectories drawn from P (τ |θ, T ), i.e.,
EP [∇θRθ(τ)]. To approximate∇θL(θ) in Equation 3, we
sample M1 trajectories from the dataset of demonstrations
to form the set DM1

. Then we sample M2 trajectories from
P (τ |θ, T ), to form DP

M2
. We use gθ in the following Theo-

rem 1 to approximate∇θL(θ):

Theorem 1. Let the model distribution P (τ |θ, T ) defined
in Equation 2 and Rθ(st, at) = θT f(st, at). The gradient
of the likelihood function defined in Equation 3. Let gθ be

gθ =
1

M1

∑
τ∈DM1

f(τ)− 1

M2

∑
τ∈DP

M2

f(τ), (4)

where DM1 , DP
M2

are defined above. We must have gθ is an
unbiased estimation of∇θL(θ), ie., E[gθ] = ∇θL(θ).

XOR-Sampling is used to obtain samples from P (τ |θ, T )
such that the probability of drawing a sample is sandwiched
between a constant multiplicative bound of the true proba-
bility. XOR-Sampling is the result of a rich line of research
[Ermon et al., 2013b, Gomes et al., 2006, 2007b], which
translates the #-P complete sampling problem into queries
to NP oracles with provable guarantees. The high level idea
of XOR sampling is as follows. Suppose one would like to
draw one ball uniformly at random from an urn, with access
to an oracle that returns one ball from the urn once queried
(implemented as an NP-oracle when sampling in a combi-
natorial space). Notice that the oracle will not return the
balls uniformly at random; i.e., it may return the same ball
every time. XOR-sampling removes the balls from the urn
by introducing additional XOR constraints. One can prove
that half of the balls are removed at random, each time when
one XOR constraint is introduced. Hence, one keeps adding
XOR constraints until there are only one ball remaining.

Then the last ball is returned. Since the balls are removed at
random, the last left must be a random one drawn from the
original set of balls. In practice, XOR-sampling also works
with weighted probability distributions. While giving strong
probabilistic guarantees, XOR-sampling requires solving
NP-complete problems during the sampling process. Hence
it introduces additional computational overhead compared
to conventional approaches, e.g., MCMC sampling, etc. Nev-
ertheless, recent advancements in constraint solvers allow
us to solve industrial-sized combinatorial problems within
reasonable amount of time. While we notice the trade-off
between the computational overhead and the sample quality,
we find the benefit of using XOR-sampling overweighs its
cost in solving IRL problems involving hard combinatorial
constraints.

Our paper uses the probabilistic bound of XOR-sampling
via Theorem 2. We refer the readers to Ermon et al. [2013b],
Ding et al. [2021], Ding and Xue [2021] for the details on
the discretization scheme and the choice of the parameters
of XOR-sampling to obtain the bound in Theorem 2.

Theorem 2. [Ermon et al., 2013b] Let δ > 1, 0 < γ < 1,
w : {0, 1}n → R+ be an unnormalized probability density
function. Q(τ |θ) ∝ w(τ) is the normalized distribution and
C(τ) is the set of hard combinatorial constraints. Then, with
probability at least 1−γ, XOR-Sampling(w,C(τ), δ, γ) suc-
ceeds and outputs a sample τ0 by querying O(−n log(1−
1/
√
δ) log(−n/γ log(1− 1/

√
δ))) NP oracles. Upon suc-

cess, each τ0 is produced with probability Q′(τ0). Let
ϕ : {0, 1}n → R+ be one non-negative function, then
the expectation of one sampled ϕ(τ) satisfies,

1

δ
EQ[ϕ(τ)] ≤ EQ′ [ϕ(τ)] ≤ δEQ[ϕ(τ)]. (5)

The detailed procedure of X-MEN is shown in Algorithm 1.
Here we demonstrate the version of X-MEN, where the only
parameter to optimize is θ. A variant of this algorithm can
be developed which back-propagate the gradient over the
feature vector f(s, a) as well, when f(s, a) is represented as
a neural network and is also updated during learning. Notice
when f(s, a) is represented as a neural network, the log
likelihood function is no longer concave. Hence the formal
guarantees stated in Theorem 3 do not apply. However, this
does not prevent X-MEN from being a useful algorithm in
practice.

X-MEN takes as inputs the feature vector f(s, a), transi-
tion probability D(τ), constraint set C(τ), training data
{τi}Ni=1, initial model parameter θ0, the learning rate η, the
number of SGD iterations K, XOR-Sampling parameters
(δ, γ), and batch sizes M1, M2, and outputs the averaged
learned parameter θK . To approximate EP [∇θRθ(τ)] at
the k-th iteration, X-MEN draws M2 samples τ ′1, . . . , τ

′
M2

from P (τ |θ, T ) using XOR-Sampling, where M2 is a user-
determined sample size. Because XOR-Sampling has a



Algorithm 1: XOR Maximum Entropy Constrained In-
verse Reinforcement Learning (X-MEN)
Input: θ0, f(s, a),K, η, δ, γ,D(τ), C(τ),M1,M2,D.

1 for k = 0 to K do
2 j ← 1 // M1 and M2 are batch size
3 while j ≤M2 do
4 τ ′ ← XOR-Sampling

(
eθk

T f(τ), C(τ), δ, γ
)

if
τ ′ ̸= Failure then

5 τ ′j ← τ ′; j ← j + 1

6 end
7 end
8 Get samples DM1

= {τj}M1
j=1 from D.

9 gk = 1
M1

∑
τ∈DM1

f(τ)− 1
M2

∑M2

j=1 f(τ
′
j)

10 Update the parameters θk+1 = θk + ηgk
11 end
12 return θK = 1

K

∑K
k=1 θk

failure rate, X-MEN repeatedly call XOR-Sampling un-
til all M2 samples are obtained successfully (line 3 – 8).
Then, X-MEN also draws M1 samples from the training set
{τi}Ni=1 uniformly at random to approximate ED[∇θR(θ)].
Once all the samples are obtained, X-MEN uses gk =
1

M1

∑
τ∈DM1

f(τ)− 1
M2

∑M2

j=1 f(τ
′
j) as an approximation

for the gradient of the negative log likelihood. θ is updated
following the rule θk+1 = θk + ηgk for K steps, where η is
the learning rate. Finally, the average of θ1, . . . , θK , namely
θK = 1

K

∑K
k=1 θk is the output of the algorithm. We show

in the next sections that X-MEN enjoys the property of
convergence to the global optimum of the log likelihood ob-
jective in linear number of iterations, and illustrate how to
incorporate XOR-Sampling into our framework for sample
generation with strict constraint satisfaction.

3.1 LINEARLY CONVERGE TO THE GLOBAL
OPTIMUM

Suppose the only parameter to learn is θ, in other words,
f(x, a) are fixed, the reward function Rθ(τ) is represented
by a linear combination of hand-crafted features, we can see
that the objective is concave with regard to θ. Under this
circumstance, X-MEN converges to the global optimum of
the log likelihood function in addition to a few vanishing
terms. Moreover, the speed of the convergence is linear with
respect to the number of stochastic gradient descent steps.
Denote V arD(f(τ)) = ED[||f(τ)||22]− ||ED[f(τ)]||22 and
V arP (f(τ)) = EP [||f(τ)||22] − ||EP [f(τ)]||22 as the total
variations of f(τ) w.r.t. the data distribution PD and model
distribution P (τ |θ, T ). The precise mathematical form of
the convergence theorem states:

Theorem 3. (main) Let P (τ |θ, T ) be defined in
Equation 2, Rθ(τ) = θT f(τ). Given trajectories

D = {τi}Ni=1 and the objective function L(θ), de-
note OPT = maxθ L(θ) and θ∗ = argmaxθL(θ). Let
V arD(f(τ)) ≤ σ2

1 , ||ED[f(τ)]||22 ≤ E2, ||θk − θ∗||2 ≤ R,
maxθ V arP (f(τ)) ≤ σ2

2 , ||EP [f(τ)
+]||22 ≤ G2, and

||EP [f(τ)
−]||22 ≤ G2. Suppose 1 ≤ δ ≤

√
2 is used in

XOR-sampling, the learning rate η ≤ 2−δ2

σ2
2δ

, and θK is the
output of X-MEN. We have:

E[L(θK)]−OPT ≤ δ||θ0 − θ∗||22
2ηK

+
ησ2

1

δM1
+

ησ2
2

δM2
+

2(δ2 − 1)(G+ E)R+ 2η(δ3 − δ)(G+ E)2.

X-MEN is the first provable algorithm which converges to
the global optimum of the likelihood function and several
tail terms for constrained inverse reinforcement learning
problems. Moreover, the rate of the convergence is linear
in the number of SGD iterations K. Previous approaches
for IRL problems with hard combinatorial constraints do
not have such tight bounds. In the bound stated above, the
first term is inversely proportional to the number of SGD
iterations K. The second and third terms can be minimized
by increasing M1 and M2, i.e., with more samples drawn.
The last two terms can be reduced by decreasing δ, i.e.,
using more precise version of XOR-sampling.

The main challenge to prove Theorem 3 lies in the fact that
we cannot ensure the unbiasedness of the gradient estima-
tor. Because the objective is concave with respect to θ and
smooth, a gradient descent algorithm can be proven to be lin-
early convergent towards the optimal value if the expectation
of the estimated gradient is unbiased, ie, E[gk] = ∇θL(θk).
However, even though we apply XOR-sampling, which has
a constant approximation bound in generating samples from
the model distribution, we still cannot guarantee the unbi-
asedness of gk. Instead, using the constant factor approxi-
mation of XOR-Sampling, which is formally stated in The-
orem 2, the bound for gk is in the following form

1

δ
[∇L(θk)]+ ≤ E[g+k ] ≤ δ[∇L(θk)]+, (6)

δ[∇L(θk)]− ≤ E[g−k ] ≤
1

δ
[∇L(θk)]−. (7)

Here, δ > 1 is a constant factor, [f ]+ means the positive part
of f , ie, [f ]+ = max{f,0}, and [f ]− means the negative
part of f , ie, [f ]− = min{f,0}.

The proof of Theorem 3 relies mainly on the following
Theorem 4 which bounds the errors of Stochastic Gradient
Descent (SGD) algorithms which only have access to con-
stant approximate gradient vectors. Theorem 4 was proved
in Ding et al. [2021], to help bound the errors of learn-
ing an exponential family model. Theorem 4 requires func-
tion f to be L-smooth. f(θ) is L-smooth if and only if
||f(θ1)−f(θ2)||2 ≤ L||θ1−θ2||2. Notice that the conditions
of Theorem 3 automatically guarantee the L-smoothness of
the objective and we leave the proof in the appendix.



Theorem 4. [Ding et al., 2021] Let f : Rd → R be
a L-smooth convex function and θ∗ = argminθf(θ). In
iteration k of SGD, gk is the estimated gradient, i.e., θk+1 =
θk − ηgk. If V ar(gk) ≤ σ2, ||E[g+k ]||2 ≤ G, ||E[g−k ]||2 ≤
G, ||θt − θ∗||2 ≤ R, and there exists 1 ≤ c ≤

√
2 s.t.

1
c [∇f(θk)]

+ ≤ E[g+k ] ≤ c[∇f(θk)]+ and c[∇f(θk)]− ≤
E[g−k ] ≤

1
c [∇f(θk)]

−, then for any K > 1 and step size
η ≤ 2−c2

Lc , let θK = 1
K

∑K
k=1 θk, we have

E[f(θK)]− f(θ∗) ≤ c||θ0 − θ∗||22
2ηK

+
ησ2

c
+

2(c− 1

c
)GR+ 2η(c− 1

c
)G2. (8)

The proof of Theorem 3 is to apply Theorem 4 on the objec-
tive L(θ) and noticing that L(θ) is L-smooth when the total
variation V arP (f(τ)) is bounded [Ding et al., 2021]. Theo-
rem 3 states that in expectation, the difference between the
output of X-MEN and the true optimum OPT is bounded
by a term that is inversely proportional to the number of
iterations K and several tail terms. In addition, to quantify
the computational complexity of X-MEN, we prove the fol-
lowing theorem in the supplementary materials detailing the
number of queries to NP oracles needed for X-MEN.

Theorem 5. Let |S| and |A| be the number of all
possible states and all possible actions, respectively,
then X-MEN in Algorithm 1 uses O(−K|S||A| log(1 −
1/
√
δ) log(−|S||A|/γ log(1− 1/

√
δ))+KM2) queries to

NP oracles.

4 RELATED WORK

Max-Ent IRL models were first proposed in [Ziebart et al.,
2008] to addresses the inherent ambiguity of possible reward
functions and induced policies for an observed behavior,
during the training of which a forward-backward dynamic
programming algorithm were used to exactly compute the
partition function and marginal probability [Snoswell et al.,
2020], assuming the knowledge of the transition probability.
Relative Entropy IRL [Boularias et al., 2011] extends this
work by leveraging an importance sampling approach to
estimate the partition function unbiasedly without knowing
the dynamics. Guided Cost Learning [Finn et al., 2016] fur-
ther learns a Max-Ent model with policy optimization. Later
work accommodates arbitrary nonlinear reward functions
such as neural networks [Finn et al., 2016, Kalweit et al.,
2020, Wulfmeier et al., 2015], instead of a linear combina-
tion of features. Recently proposed Generative Adversarial
Imitation Learning (GAIL) [Ho and Ermon, 2016] is an
imitation learning method that does not require estimating
likelihoods. However, while Markovian rewards do often
provide a succinct and expressive way to specify the objec-
tives of a task, they cannot capture all possible task specifica-
tions, especially additional constraints [Vazquez-Chanlatte

et al., 2017]. Recent work on constrained IRL only focuses
on local constraints of states, actions and features [Chou
et al., 2018, Subramani et al., 2018, McPherson et al., 2018],
which can hardly represent all the real world scenarios as
most constraints are trajectory long. Other methods focus on
learning constraints from the demonstrations, such as max-
imum likelihood constraint inference [Scobee and Sastry,
2019, Kalweit et al., 2020, Anwar et al., 2020, McPherson
et al., 2021]. Our approach differs from all the existing meth-
ods and addresses the open question of learning with hard
combinatorial constraints. We adapt the Max-Ent frame-
work to allow us to reason about all the trajectories that
satisfy the constraints during the contrastive learning pro-
cess. Here we only consider pre-defined constraints. One
should notice that even with the full knowledge of transition
probability, dynamic programming cannot work well under
trajectory-long constraints since it has no knowledge of any
hard combinatorial information. X-MEN was motivated by
the recent proposed probabilistic inference via hashing and
randomization technique for both sampling [Ermon et al.,
2013b, Ivrii et al., 2015], counting [Gomes et al., 2007a,
Ding et al., 2019], and marginal inference problems [Ermon
et al., 2013a, Kuck et al., 2019, Chakraborty et al., 2014,
2015, Belle et al., 2015] with constant approximation guar-
antees. Latest work also show the success of XOR-Sampling
[Ermon et al., 2013b] to boost stochastic optimization algo-
rithms [Ding and Xue, 2021] and improve machine learning
tasks on structure generation [Ding et al., 2021].

5 EXPERIMENTS

We conduct experiments similar to those in Scobee and
Sastry [2019], where we first show the superior performance
of X-MEN in a synthetic grid world set of benchmarks. We
also demonstrate the performance of X-MEN in mimicking
trajectories from human participants as they navigate around
obstacles and follow certain constraints on the floor. For
comparison, we compare with classic Max-Ent IRL [Ziebart
et al., 2008], RE-IRL [Boularias et al., 2011] and recently
proposed maximum likelihood constraint inference (MLCI)
Scobee and Sastry [2019] which can mask out the “not to go”
states in the transition distribution. We implement X-MEN
using IBM ILOG CPLEX Optimizer 12.63 for queries to NP
oracles and XOR-Sampling parameters are same as Ding
et al. [2021]. Experiments are carried out on a cluster, where
each node has 24 cores and 96GB memory.

5.1 GRID WORLD

We consider a 9×9 grid world. The state corresponds to the
location of the agent on the grid. The agent has three actions
for moving up, right, or diagonally to the upper right by one
cell. The objective is to move from the starting state in the
bottom-left corner s0 to the goal state in the up-right corner
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Figure 2: The superior performance of X-MEN against baselines in the grid world environment.(a) The ground truth reward
map of the 9 × 9 gridworld. The reward of each state is 0, except for SG which is 1. Red symbols denotes constraints,
where the red triangle denotes the state that must be passed through first among all the symbols, red crosses denote the
states that can never be passed through, and the agent must pass through only one red square and one red circle. (b)-(e)
The marginal probability of passing through each state of the ground truth demonstration and the distribution generated by
different learning algorithms. We can see distribution of trajectories from X-MEN matches with the demonstration the most.
Neither Maxent IRL nor RE-IRL can handle constraints. While MLCI knows “where not to go”, it has difficulty in knowing
“where must go” and we show in Figure 3 that it can not generate 100% trajectories satisfying constraints.

sG. Every state-action pair produces a distance feature, and
the cumulative reward is inverse proportional to distance,
which encourages short trajectories. There are additionally
three more types of constraints, denoted as red symbols
shown in Figure 2(a). The red triangle denotes the state that
must be passed through first among all the symbols, red
crosses denote the states that can never be passed through,
and the agent must pass through only one red square and
one red circle. The demonstration trajectories satisfies all
the constraints and have an inductive bias: 70% trajectories
move along the upper paths and 30% move along the lower
path.

Due to the presence of hard constraints, recovering the re-
ward map cannot be considered as the sole performance
metric for a learning algorithm. In fact, an IRL agent with
the groundtruth reward map may produce sub-optimal ac-
tions if he violates constraints. Therefore, we show in Figure

2(b)-2(f) the marginal distributions of passing each grid cell
generated by aggregating 100 trajectories produced by dif-
ferent learning algorithms and the groundtruth demonstra-
tions. We can see distribution of trajectories from X-MEN
matches the demonstrations the most. Neither Maxent IRL
nor RE-IRL can handle constraints. While MLCI knows
“where not to go”, it has difficulty in knowing “where must
go” as the probability of the state marked as triangle is not 1
(we constrain that the agent must go through the triangle).
Figure 3 further computes the percentage of valid trajecto-
ries generated by different algorithms varying the number
of demonstration trajectories (3(a)) and training time (3(b)).
X-MEN always generates 100% valid trajectories while the
competing methods satisfy no more than 50%. Moreover,
we can see from the trend that even we keep increasing the
number of demonstrations and the training time, the increase
in baseline performance is minimal. Figure 3(c) compares
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Figure 3: X-MEN outperforms competing approaches by producing 100% valid trajectories while capturing the inductive
bias in demonstration on a 9× 9 gridworld benchmark shown in Figure 2(a). (Left) The percentage of valid trajectories
generated by different algorithms, varying the number of demonstration trajectories. (Middle) The percentage of valid
trajectories generated by different algorithms varying training time. (Right) The dashed line shows the percentage of valid
trajectories generated from different algorithms. The bars show the distributions of these valid trajectories grouped by
different types of paths (upper paths or lower paths). X-MEN generates 100% valid trajectories. The distribution of the
trajectories has the minimal KL divergence 0.005 towards that of the demonstrations.

the recovered distribution of the trajectories, where we can
see X-MEN has the minimal KL divergence 0.005 towards
the ground truth distribution of demonstration. The other
baselines produce trajectories that significantly differ from
the demonstrations (with larger KL-divergence).

5.2 HUMAN OBSTACLE AVOIDANCE

In our second example, we analyze trajectories from human
beings as they navigate around obstacles on the floor and
follow certain constraints. We map these continuous trajecto-
ries in a grid world where each cell represents a a 1ft-by-1ft
area on the ground. The state corresponds to the location
of the agent in the grid. The human agents are attempting
to reach a fixed goal state SG from a given initial state S0,
as shown in Figure 4. The agent has only two actions for
moving up or moving right. The shaded regions represent
obstacles in the human’s environment that cannot be passed
through, and the red circle represent a “must pass” choke
point that every person has to walk through. Additional
hard constraints are that human cannot take the same action
consecutively for more than 3 times.

Demonstrations were collected from 10 volunteers, who
want to move from the start state to the goal state with-
out violating any constraints. Empirical observations re-
veal that volunteers tend to follow the shortest paths given
these constraints. We train both our model and the compet-
ing approaches using these demonstrations within the same
training time of 4 hours and use 16 trajectory samples in
each SGD iteration. Generated trajectories from X-MEN
are shown in Figure 4, where we can see X-MEN is able to
successfully avoid obstacles and pass the “must go” choke
point. The 10 generated trajectories shown in the figure are

indeed the shortest paths from the start state to the goal
(matching human demonstrations). Competing approaches
do not generate trajectories that satisfy constraints, while
the trajectories generated by X-MEN are 100% valid. What
worths noting is that X-MEN learns to go up first before
passing through the gap between two obstacles, because oth-
erwise the trajectory has to violate the constraint of taking
the same action consecutively for more than 3 times.

6 CONCLUSION

We proposed X-MEN, a novel XOR maximum entropy
framework for constrained Inverse Reinforcement Learning.
We showed theoretically that X-MEN converges in linear
speed towards the global optimum of the likelihood function
for solving IRL problems. Empirically, we demonstrated the
superior performance of X-MEN on two navigation tasks
with additional hard combinatorial constraints. In all tasks,
X-MEN generates 100% valid samples and the generated
trajectories closely match the distribution of the training set.
For future work, we would like to extend X-MEN to model-
free reinforcement learning while preserving the theoretical
guarantees. We also intend to test richer representations of
the reward function in form of deep networks on real-world,
large-scale constrained IRL tasks.
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Figure 4: Overlaid trajectories generated by X-MEN after
learning human preferences. The goal is to move from S0

to SG and the action space contains only going up and right.
The shaded regions represent obstacles in the human’s en-
vironment, and the red circle represent a “must pass” point.
Additional constraints are that human cannot take the same
action consecutively for 3 times. We can see the gener-
ated trajectories from X-MEN satisfy all the constraints and
follow the shortest possible paths, similar to what human
demonstrators’ actions.
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