
Efficient Learning of Sparse and Decomposable PDEs using Random Projection

Md Nasim1 Xinghang Zhang2 Anter El-Azab2 Yexiang Xue1

1Department of Computer Science, Purdue University, West Lafayette, IN, USA
2School of Materials Engineering, Purdue University, West Lafayette, IN, USA

Abstract

Learning physics models in the form of Partial Dif-

ferential Equations (PDEs) is carried out through

back-propagation to match the simulations of the

physics model with experimental observations.

Nevertheless, such matching involves computation

over billions of elements, presenting a significant

computational overhead. We notice many PDEs in

real world problems are sparse and decomposable,

where the temporal updates and the spatial fea-

tures are sparsely concentrated on small interface

regions. We propose RAPID-PDE, an algorithm to

expedite the learning of sparse and decomposable

PDEs. Our RAPID-PDE first uses random pro-

jection to compress the high dimensional sparse

updates and features into low dimensional repre-

sentations and then use these compressed signals

during learning. Crucially, such a conversion is

only carried out once prior to learning and the

entire learning process is conducted in the com-

pressed space. Theoretically, we derive a constant

factor approximation between the projected loss

function and the original one with poly-logarithmic

number of projected dimensions. Empirically, we

demonstrate RAPID-PDE with data compressed

to 0.05% of its original size learns similar models,

compared with uncompressed algorithms in learn-

ing a set of phase-field models, which govern the

spatial-temporal dynamics of nano-scale structures

in metallic materials.

1 INTRODUCTION

Learning physics models in the form of Partial Differential

Equations (PDEs) have numerous applications in the field of

physics, engineering and life sciences. Examples include the

heat and wave equations, Schrodinger’s equation, Navier-

Stokes equation, etc. These PDEs are essential descriptors

of many complex dynamic processes and physical phenom-

ena. Identifying PDEs automatically from experiment data

has attracted great interest recently in the field of AI driven

scientific discovery (Xue et al. [2021], Long et al. [2018],

Sirignano and Spiliopoulos [2018], Qian et al. [2020], Lager-

gren et al. [2020]). PDEs can be learned via minimizing the

mismatch between the ground-truth dynamics reflected in

the experiment data and the predicted dynamics, which is

typically simulated using a neural network with the current

PDE parameters (Xue et al. [2021], Long et al. [2018]).

Back-propagation is then used to minimize such differences

by updating the PDE parameters. Despite its empirical suc-

cess, back-propagating the loss function typically involves

operations over billions of mutually interacting elements,

hence yielding a heavy computational overhead.

We propose a novel randomized algorithm to speed up the

learning of PDEs from experiment data. In particular, we

notice the sparse and decomposable nature of many real-

world PDE systems. More precisely, we find the temporal

updates of many PDE systems can be decomposed into

parameter functions of several sparse features. This is not

a coincidence - the sparsity and decomposability of PDEs

are natural consequences of the interface problems, where

PDE solution updates are concentrated in small interface

regions, where components of different physical properties

meet each other. Outside of the interface regions, the updates

are almost all zero, resulting in rather sparse updates.

We propose Random Projection Based Efficient Learning

of Sparse and Decomposable PDEs (RAPID-PDE), exploit-

ing the sparse nature of the learning problems. Our method

is inspired from the idea of compressed sensing (Donoho

[2006], Candes and Tao [2006], Candès et al. [2006]), rely-

ing on the intuition that as the system changes are sparse,

therefore the change in high dimensional state vectors can

be represented in an efficient manner by projecting into a

lower dimensional space. Different from compressed sens-

ing, which consists of the compression and recovery phases,

RAPID-PDE compresses the updates and features into a

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

Figure 1: High-level idea of RAPID-PDE. Step 1: from the extracted PDE trajectories from data, we compute a number of

features and also the difference between consecutive PDE trajectories. Step 2: we use random projection to project the high

dimensional features and trajectory changes to low dimensional space. Step 3: Backpropagation is used to minimize the

difference between the predicted and the ground-truth changes in the compressed space.

reduced space once as a pre-processing step before learn-

ing. The entire learning process is then carried out in the

compressed space with no need for converting back to the

original space.

The high-level idea of RAPID-PDE is shown in Figure 1.

From the PDE trajectories obtained from observations, we

first extract a number of sparse features and also the updates

from experiment data. In the second step, we compress both

the features and the updates using random projection into

low dimensional space. The third step is the final learning

step, where back-propagation is used to minimize the dif-

ference between the predicted updates and the ground-truth

updates in the compressed space.

Theoretically, we show the loss function optimized by

RAPID-PDE is at most (1 + δ)2, a constant approxima-

tion factor times the original loss function, with proba-

bilities scales in the order of 1 − Ω((1/δ)2k exp(−nδ2)).
Here, n is the projected dimensionality and k is the num-

ber of non-zero elements in the updates. This ensures

O(k/δ2 log(1/δ)) of projected dimensions are sufficient

for (1 + δ)2 approximations.

Our RAPID-PDE algorithm is used to speed up the learn-

ing of nano-structure evolution in engineering materials

in action. In particular, we focus on learning the physics

rules which govern the dynamics of void defect evolution

(Figure 2I) and the grain growth (Figure 2II). Experimental

results show that, compared to a baseline method with no

compression, RAPID-PDE can reduce the training times for

learning the phase-field models while preserving the qual-

ity of learned models. RAPID-PDE can reduce the training

times by as much as 70% for grain growth model and by

nearly 50% for void evolution dynamics, when the data is

compressed to 0.05% of the original size. Testing with a

separate test set, we find the mean squared error (MSE) for

both applications after 100 steps of simulation to be very

small, suggesting little to no loss in learning performance

after compression. Upon simulation, we find that the simu-

lated output with trained model parameters matches closely

with the outputs simulated with ground truth physics model.

Our contribution is as follows: 1) We introduce sparse and

decomposable PDEs as a special class of PDEs and show the

sparse and decomposable nature of many real-world PDEs,

2) we propose RAPID-PDE, an efficient method based on

random projection to learn model parameters of sparse and

decomposable PDEs, 3) we provide a theoretic analysis on

the effect of compression on the loss function used to update

model parameter, 4) we show the efficacy of our proposed

solution for two cases - learning the PDE-based phase-field

model parameters for void defect evolution and grain growth

in materials science.

2 BACKGROUND

2.1 DYNAMIC SYSTEMS REPRESENTED IN

PARTIAL DIFFERENTIAL EQUATIONS

Partial Differential Equations (PDEs) are mathematical
equations involving partial derivatives of multi-variable
functions. Multi-variable PDEs are ubiquitous in physics

(I) Nanovoid Defects in Crystalline Materials

(II) Grain growth in Materials during Annealing (Niu et al. [2021])

Figure 2: Void defect evolution and grain growth in engi-

neering materials are real world phenomena learnable by

RAPID-PDE. (I) Void shaped defects in a Cu specimen at

350◦. These defects are dynamic and evolve as such size and

position change, as shown by change of α to α′ between

voids 1,2 and 3, and disappearance of void 4. (II) Grain

growth in Cu/Fe 100 nm multilayer upon annealing at dif-

ferent temperatures. XTEM micrographs and EDS maps

show the microstructure evolution at temperatures 200°C

(a-b), 400°C (c-d), 500°C (e-f), 600°C (g-h). Grooving and

grain growth are observed at 500°C, while layer pinch-off

occurred after 600°C annealing.

and engineering disciplines, and usually involve time and
space. The order of a PDE is the order of the highest par-
tial derivative term in the equation. In practice, we mostly
encounter first or second order differential equations. In gen-
eral, a second order PDE has the following general form:

∂u(p⃗, t)

∂t
=

∑

i

Mi(u)∇
2
Fi(u) +

∑

j

Nj(u)∇Gj(u) +D(u)

(1)

Here, u(p⃗, t) represents state of the system and is a function

of both spatial coordinate p⃗ ∈ R
d and time t. ∇ represents

the first order spatial derivative, while ∇2 = ∇.∇ repre-

sents the second order spatial derivative Laplace operator.

The functions M,N,F,N,G,D can be either linear or non-

linear in u.

2.2 PHASE-FIELD MODELING

We focus on phase-field models as motivating examples in

this paper, where the state of a physical system is described

using a set of phase-field variables. We point out that our

computational approaches based on random projection gen-

eralize to other PDE systems as well. In phase-field models,

the phase-field variables vary rapidly along phase bound-

aries. In this paper, we consider two example phase-field

modeling for real world application - grain growth and

nanovoid defect evolution in crystalline materials.

2.2.1 Case Study 1: Grain Growth

Polycrystalline materials used in many engineering applica-

tions often contain multiple grains with different crystal ori-

entations. These grains evolve over time, some grow bigger

and some shrink, thus changing their interface boundaries.

The understanding of the grain growth dynamics is of high

interest to physicists, as the dynamics affect the physical

and mechanical properties of the material.

Many models have been proposed to model this grain growth

phenomenon. For this study, we focus on the phase-field

model proposed in Fan and Chen [1997]. In this phase-

field model of grain growth, each grain i is represented by

ηi, which takes the value of 1 inside i-th grain, 0 outside

the grain and lies in [0, 1] at the grain boundary. The evo-

lution of ηi is described by the Allen-Cahn equation for

non-conserved variables:

∂ηi
∂t

= L
∂F

∂ηi
, i = 1, 2, 3, . . . , N (2)

Here, L is the mobility coefficient and F is the free energy.

Writing out the expression for F and taking derivatives, this

governing equation can be written as follows:

∂ηi
∂t

= L(1− ηi
2 − 2

∑

i ̸=j

ηj
2)ηi + Lκ∇2ηi. (3)

Here, κ represents the gradient coefficient. These scalar

parameters L, κ affect the way grain volume and shape

change over time and are the parameters to be learned in

this paper. Fitting into the general form given in Equation

1, ηi is the variable u. D(.) takes the form L(1 − ηi
2 −

2
∑

i ̸=j ηj
2)ηi. M1(.) is Lκ and F1(.) is ηi.

2.2.2 Case Study 2: Nanvoid Defect Evolution

Nano-sized void defects and dislocation loops are common

phenomena in materials under extreme condition - high heat

and irradiation. Over time, these void defects cause signifi-

cant microstructure evolution and consequently degradation

of materials. The evolution of these void defects is of high

interest to physicists, for designing materials that can better

withstand the extreme environments.

In this paper, we focus on a simplified version of the promi-

nent and widely used void defect evolution model as de-

scribed in Millett et al. [2011]. In this model, the state of the

material is represented by three phase-field variables cv, ci
and η. These phase-field variables are continuous, lie in

range [0, 1] and vary rapidly at the interfaces. cv represents

the percentage of void defects in crystal lattice, resulting

from the absence of atoms at certain crystal lattice locations.

cv takes the value of 1 inside void regions, 0 outside void

regions and values in range [0, 1] at the interface of void

regions. Similarly, ci represents the percentage of interstitial,

another type of crystal defect that results from the presence

of atoms in a normally unoccupied location in the lattice.

ci is 1 inside interstitial region, 0 outside and [0, 1] at the

interface boundary. The phase-field variable η is also con-

tinuous, differentiating the two phases - solid (η = 0) and

void (η = 1). The evolution of the phase-field variables

minimizes the total free energy F :

F = N

∫

V

[

h(η)fs(cv, ci) + j(η)fv(cv, ci)+

κv

2
|∇cv|+

κi

2
|∇ci|+

κη

2
|∇η|

]

dV.

The standard equation for temporal updates to cv, ci and η
are as follows:

∂cv
∂t

=∇ · (Mv∇
1

N

δF

δcv
),

∂ci
∂t

=∇ · (Mi∇
1

N

δF

δci
),

∂η

∂t
=− L

δF

δη
.

Here, Mv,Mi are diffusivities of voids and interstitials de-

pendent upon material property, L is the mobility coefficient.
∂F
∂cv

, ∂F
∂ci

∂F
∂η

are functional derivatives of total free energy

F of the system. All of these above expressions for the

temporal updates of the phase-field variables can be rear-

ranged and written in the form as Equation 1. We leave

such derivations to the supplementary materials. The scalar

parameters Mv,Mi, L, κv, κi, κη and parameters included

in fs, fv control system dynamics, and these are the param-

eters we learn from experiment data.

2.2.3 Finite Difference for PDE Simulation

Finite difference method is a widely used technique to simu-

late PDEs in discrete form. Using this technique, we divide

space into meshes, and replace the derivatives with finite dif-

ference quotients. For example, the derivative with respect

to time
∂u(p⃗,t)

∂t
can be approximated using

u(p⃗,t+dt)−u(p⃗,t)
dt

,

where dt is a small constant. The spatial derivative can be

approximated similarly. For example, ∂u
∂x

(x, y, t) can be

approximated by
u(x+ds,y,t)−u(x,y,t)

ds

.

3 SPARSE DECOMPOSABLE PDES

Our RAPID-PDE algorithm is based on an interesting ob-

servation that the governing equations of many real-world

PDE systems can be written in the following sparse and

decomposable form, i.e., as a linear combination of sparse

features times coefficient terms:

∂u(p⃗, t)

∂t
= [ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]











W1(u)
W2(u)

...

Wn(u)











(4)

We would like to point out two aspects of this formulation:

(i) separation of learning parameters from observational fea-

tures: in this form, θ are the parameters to be learned. Only

ϕ1(θ), . . . , ϕn(θ) depend on θ, while W1, . . . ,Wn, only de-

pends on the current system state u. (ii) sparse nature of ob-

servational features: We observe that observational features

W1, . . . ,Wn are sparse in nature, with very few non-zero

entries. This is actually not a coincidence. Rather, it is be-

cause of the nature of our interface problems, where most

of the updates are around the interfaces of different material

compositions. Such interfaces, by nature, only account for a

small region of the entire space.

Sparse Decomposition for Grain Growth. For example,

in the phase-field model of grain growth in materials with

d-grains, the temporal evolution of the phase-field variable

describing the i-th grain ηi is described by Equation 3:

∂ηi
∂t

= L(1− ηi
2 − 2

∑

i ̸=j

ηj
2)ηi + Lκ∇2ηi

Comparing this with Equation 4, we can write the following:

ϕi,1 = L, ϕi,2 = Lκ,

Wi,1 = (1− ηi
2 − 2

∑

i ̸=j

ηj
2)ηi, Wi,2 = ∇2ηi.

We use subscript i to indicate this equation holds for evolu-

tion of the i-th grain. Inside grain i, only ηi is 1, the rest are

0. Hence, Wi,1 is zero because the terms inside the summa-

tion is just the sum of 0s, while the η2i cancels out the 1 at

the beginning. The multiplication with ηi ensures that Wi,1

is 0 outside the i-th grain as well. The other feature Wi,2

is 0 both inside and outside grain i, because second order

Laplacian is 0 when applied to a region of the same value.

We can see a visual representation of these Wi,1,Wi,2 fea-

tures for grain growth in Figure 3I. In summary, we can see

that the computed features are all sparse and only non-zero

at the interface boundaries of the grains.

We leave the sparse decomposition of the nanovoid evolu-

tion to the supplementary materials. Despite a more com-

plex form, the PDEs describing nanovoid evolution can be

(I) Feature Extraction

(II) Relation between system state change and features

Figure 3: The PDEs for grain growth can be decomposed

into a couple of sparse features. We show such feature com-

putation for grain growth in materials with 3 grains, repre-

sented by 3 different colors. (I) Sparse features computed

from the system state variable η, (II) Change in η1 repre-

sented by sum of sparse features.

written in the sparse and decomposable form as well. All

observational features are also sparse.

4 LEARNING SPARSE DECOMPOSABLE

PDE WITH RANDOM PROJECTION

4.1 LEARNING VIA MATCHING EXPERIMENTS

AND SIMULATION

Data-driven scientific discovery attracted recent interest to

learn physics models automatically from data. The learn-

ing of physics systems can be achieved in the matching

of forward simulations of the current physics model with

data from physical experiments. In particular, the data col-

lected from physics experiments are typically in the form

of {ut1 , ut2 , . . . , utN+1
}, where uti is the system state at

time ti. For this paper, we assume the time lapse between

consecutive states, dt = ti+1 − ti, are all equal and very

small. Using finite difference form of Equation 4, we can

predict the system state change as:

∆u′
ti
= dt[ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]











W1(uti)
W2(uti)

...

Wn(uti)











.

On the other hand, we can obtain the true value ∆uti =
uti+1

−uti of the state changes from experiment data. Hence,

typically the learning algorithm minimizes the following

loss function to match the predicted changes with the ob-

served changes:

min
θ

L(θ) =
N
∑

i=1

||∆u′
ti
−∆uti ||22 (5)

Stochastic gradient descent is used to minimize the afore-

mentioned loss function.

4.2 RAPID-PDE: ACCELERATE LEARNING

WITH RANDOM PROJECTION

RAPID-PDE makes the loss function computation and back-

propagation more efficient by exploiting the sparsity of

changes. It compresses the temporal updates and sparse fea-

tures from a high dimensional space into a low dimensional

representation using random projection. As both the ex-

pected system change and ground truth changes are sparse,

the loss computation involves many redundant subtraction

in the form (0−0). Therefore, trivial implementation of loss

function computing loss for each point in space and then

summing them up introduces heavy redundant computation.

To illustrate RAPID-PDE, we assume each uti and their

associated W1(uti), . . ., WN (uti) are all represented as

vectors. In practice, these quantities are often represented

as matrices (or tensors) if the systems under consideration

are 2D (or 3D). Nevertheless, it is simple to vectorize such

matrices (or tensors). To avoid clutter of notations, we still

use uti and W1(uti), . . ., WN (uti) to represent the vector

form of these matrices (tensors).

Let P be a randomly initialized projection matrix. Instead

of minimizing the loss function in Equation 5, RAPID-

PDE minimizes the following projected loss using SGD:

min
θ

L′(θ) =

N
∑

i=1

||P∆u′
ti
− P∆uti ||22 (6)

One Time Projection Overhead. Our approach RAPID-

PDE only incurs projections as a one-time pre-processing

step before the beginning of training epochs. No additional

projections are needed during training. Notice that P∆uti

is observed dynamics from data, which does not change

during training. Hence P∆uti can be computed in a pre-

processing step. It is straightforward to verify that:

P∆u′
ti
= dt[ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]











PW1(uti)
PW2(uti)

...

PWn(uti)











(7)

Algorithm 1: RAPID-PDE: Learning Sparse and De-

composable PDE Models from Compressed Features

Input :PDE trajectories ut at times

t = 1, 2, 3, . . . (T + 1), Compression ratio r
Output :PDE model parameters θ

1: for t← 1 to T do

2: ∆ut ← ut+1 − ut

3: Wt ← EXTRACT_FEATURES(ut)

4: end

5: Initialize random projection matrix P of appropriate

dimension computed from original ut size and r
6: for t← 1 to T do

7: ∆ut(compressed) ← P∆ut

8: Wt(compressed) ← PWt

9: end

10: Initialize neural network (NN) PDE model parameters θ
11: repeat

12: ∆u′
t(compressed) = NN(Wt(compressed), θ)

13: Loss L′(θ) =
∑T

t=1 ||∆u′
t(compressed) −∆ut(compressed)||22

14: Update θ by backpropagating error gradients ∆θL
′

15: until converge

16: return θ

Luckily, due to the separation of learning parameters

with observational features, the only terms that are chang-

ing during training are [ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)]. Exploit-

ing this formulation, we can pre-compute PW1(uti),
. . ., PWn(uti) in a pre-processing step as well. Only

[ϕ1(θ), ϕ2(θ), . . . , ϕn(θ)] are updated during training.

Algorithm 1 shows the pseudocode of RAPID-PDE to learn

Sparse and Decomposable PDEs. With a given set of PDE

trajectories ut at times t = 1, 2, . . . , (T + 1), and given

compression ratio of the compressed new dimensions for

features, this algorithm outputs the model parameters θ that

minimizes the loss function defined in Equation 6. In line

1− 4, we compute the changes in PDE trajectory ∆ut and

features Wt for times t = 1, 2, . . . , T . In line 5-9, we initial-

ize a random matrix P of appropriate dimensions and then

compress the ∆ut and Wt by random projection with P . In

line 10-15, we randomly initialize PDE model parameters

θ, then update the parameters θ by backpropagating error

gradients of the loss function given in Equation 6.

5 THEORETICAL ANALYSIS

RAPID-PDE guarantees learning performance. We know

from the Johnson-Lindenstrauss lemma Johnson and Lin-

denstrauss [1984] that high dimensional points can be em-

bedded into lower dimensional space, while nearly preserv-

ing distance. For compressed sensing, restricted isometry

property as introduced in Candes and Tao [2005] provides

the necessary and sufficient condition for the compressed

sensing matrix, which transforms high dimensional sparse

vectors into low dimensional vectors. We can construct ran-

dom matrices in similar manner for our purposes as well and

we will show this in this section. Such analysis are available

for many other applications which also use dimensionality

reduction Clarkson and Woodruff [2017], Shi et al. [2009],

Razenshteyn et al. [2016]. In the following theoretic analy-

sis, we show a constant approximation guarantee between

the projected loss and the original one. Hence, an algorithm

optimizing for the surrogate loss function (Equation 6) in-

directly optimizes the original loss function (Equation 5).

First, it is easy to see:

Claim 5.1. For optimal parameter value θ∗ with L(θ∗) = 0,

we will also have L′(θ∗) = 0.

In practice, we may not be able to find a θ which reduces

the loss function to zero. However, a more careful theo-

retic derivation shows the projected loss function is only a

multiplicative factor away from the original loss function

(Theorem 5.1). Before introducing the theorem, we first

introduce the notion of sub-exponential random variables,

which are widely used in analyzing random projections, e.g.,

in Boucheron et al. [2003]:

Definition 5.1. X is a random variable, E(x) = µ.

Mx−µ(λ) = E[exp(λ(X − µ))] is the moment generat-

ing function of X −µ. X is sub-exponential with parameter

(σ2, b) if for all |λ| < 1/b, lnMx−µ(λ) ≤ λ2σ2/2.

Theorem 5.1. Suppose the projection matrix P =
(pi,j)n×d, pi,j = yi,j/

√
n. yi,j are sampled i.i.d. from

a given distribution. yTi = (yi,1, . . . , yi,d), Y =
(y1, . . . , yn)

T . E(yi,j) = 0, V ar(yi,j) = 1. For any x,

||yTi x||2/||x||22 is sub-exponential with parameter (σ2, b).
All ∆u′

ti
and ∆uti have at most k non-zero elements, 2k <

n. 0 < δ < min{1, σ2/b}. Suppose θ∗ is the optimal param-

eter which minimizes L(θ), i.e., θ∗ = argminL(θ). Then

with probability at least 1− 2(12/δ)2k exp(−nδ2/(8σ2)),
we have:

(1− δ)2L(θ∗) ≤ L′(θ∗) ≤ (1 + δ)2L(θ∗). (8)

On the opposite side, suppose θ′ is the local optimal solution

found by RAPID-PDE, with the same probability we have:

(1− δ)2L(θ′) ≤ L′(θ′) ≤ (1 + δ)2L(θ′). (9)

Theorem 5.1 guarantees that RAPID-PDE will find a so-

lution that is at most (1 + δ)2 times the optimal solution

L(θ∗), if stochastic gradient descent is not trapped in local

minima when optimizing for the surrogate loss function

L′(θ). Conversely, suppose RAPID-PDE finds a solution θ′,
if again we assume this solution is at the global minimum,

then the global minimum of the original loss function L(θ∗)
is at most a multiplicative factor away. The proofs of all

the theorems and corollaries are left to the supplementary

materials.

We can prove more concrete guarantees based on Theorem

5.1 when pi,j are sampled from a few well-known proba-

bilistic distributions. For example, when pi,j are sampled

i.i.d. from the Gaussian distribution N(0, 1/n), we have:

Corollary 5.1. Suppose the projection matrix P =
(pi,j)n×d, pi,j are sampled i.i.d. from N(0, 1/n). All ∆u′

ti

and ∆uti have at most k non-zero elements, k < n,

0 < δ < 1. θ∗ and θ′ are defined the same as in Theo-

rem 5.1, with probability 1− 2(12/δ)2k exp(−nδ2/32), we

have:

(1− δ)2L(θ∗) ≤ L′(θ∗) ≤ (1 + δ)2L(θ∗). (10)

With the same probability, we have:

(1− δ)2L(θ′) ≤ L′(θ′) ≤ (1 + δ)2L(θ′). (11)

Also, when pi,j are uniform i.i.d. distributed, we have:

Corollary 5.2. Suppose the projection matrix P =
(pi,j)n×d, pi,j are instead sampled i.i.d. from uniform dis-

tribution with mean µ and variance σ2. Let cd = d(5d+4)
5 −

1, bd = 3d − 1. Then, for 0 < δ < min{1, cd/bd} with

probability at least 1 − 2(12/δ)2k exp(−nδ2/(16cd)) we

have:

(σ(1− δ)− µ)2L(θ∗) ≤ L′(θ∗) ≤ (σ(1 + δ) + µ)2L(θ∗).

With the same probability, we have:

(σ(1− δ)− µ)2L(θ′) ≤ L′(θ′) ≤ (σ(1 + δ) + µ)2L(θ′).

6 RELATED WORKS

Learning PDEs and ODEs PDEs arise in diverse systems

and applications such as face recognition Fang et al. [2017],

turbulence prediction Portwood et al. [2019], sea surface

temperature forecasting de Bezenac et al. [2018] etc. Pre-

viously different approaches have been proposed to learn

differential equations via machine learning. Bar-Sinai et al.

[2019] proposed to replace classical fixed finite difference

formulae with data driven discretization to approximate so-

lution to PDEs. Our work is similar to Schaeffer [2017],

where spatial derivatives are computed and then fitted with

time derivatives using compressed sensing. Our method on

the other hand assumes prior knowledge about the PDE

terms, and does not need the signal recovery step via L1

optimization as in compressed sensing. Neural networks,

in different forms have also been explored to solve PDEs

in different dynamic systems (Sirignano and Spiliopoulos

[2018],Raissi et al. [2019], Lutter et al. [2018], Demeester

[2019], Long et al. [2018]). Besides learning PDEs, neural

networks have also been used for learning ODEs. Recent

work on Neural ODEs (Chen et al. [2018]) and their variants

as proposed in Kidger et al. [2020], Lee and Parish [2021],

Jia and Benson [2019], Chen et al. [2020], Yin et al. [2021]

aim to learn dynamics of a system using neural network.

Besides neural networks, Raissi and Karniadakis [2018] as-

sumes the PDE solution is gaussian distributed and proposes

using Gaussian process for solution. Other prominent works

in solving PDE systems include Han et al. [2018], Beck

et al. [2019]. All the aforementioned methods use the full

dimension of the data, while our algorithm first performs

compression and then uses the compressed data for learning.

Physics Learning There have been a significant research

effort in learning physics models from data such as Hamilto-

nian neural networks (Greydanus et al. [2019]), Lagrangian

neural networks (Cranmer et al. [2020]), Deep lagrangian

neural networks (Lutter et al. [2018]). Neural networks have

been used to analyze in-situ experiment data for materials

under extreme heat and irradiation (Niu et al. [2020]). Simi-

lar to our work, Xue et al. [2021] proposes to make physics

learning more efficient by combining 2 step PDE trajectory

extraction and model learning into a single learning method,

and Sima and Xue [2021] proposes to use locality sensitive

hashing to avoid redundant computations for similar data

points make forward simulation more efficient. In our work,

we assume that the PDE trajectories are already extracted,

and we do not presume any knowledge about similarity of

data points. Rather we only assume that the corresponding

PDE model can be decomposed into sparse features and

parameter functions.

Random Projections based Methods. Random projection

has a wide variety of applications and forms the basis of

techniques such as compressed sensing (Donoho [2006],

Candes and Tao [2006], Candès et al. [2006]) and locality

sensitive hashing (Indyk and Motwani [1998], Gionis et al.

[1999]). Random projection based method is also used for

classification Cannings and Samworth [2017], clustering

Dasgupta [1999] and regression Dobriban and Liu [2019] as

well. We only mention a few example of random projections

applications here, although the total number of such works

is pretty large.

7 EXPERIMENTS

We tested the efficacy of RAPID-PDE on learning the phase-

field models of grain growth and void defect evolution for

metallic materials. Overall, RAPID-PDE is able to learn

models of comparable quality with algorithms without com-

pression, even with data compressed to 0.05% of the original

size. In this way, RAPID-PDE reduces training times by as

much as 70% for the grain growth model and as much as

50% for the nanovoid evolution.

Dataset. We used synthetic data for experimenting on

both grain growth and nanovoid defect evolution in ma-

are shown in Figure 4I. For nanovoid defect evolution, the

training times are shown in Figure 4II. We used uniform

distribution U(1, 50) to sample the projection matrix P . As

the compressed data becomes smaller, the training times

become shorter.

High accuracy of learned model. To evaluate the accuracy

of learned models, we computed mean square error (MSE)

of the simulated output with ground truth data after 100 steps

of simulation. We also simulated the evolution dynamics

for 200 seconds using the learned model parameters for

both grain growth and void evolution. We can see the MSE

for grain growth in Figure 4III and for void evolution in

Figure 4IV. The simulation outputs are shown in Figure 5

and Figure 6. As we can see from these results, the MSE for

both baseline method and our method are reasonably small,

and the simulation results match closely with the actual

ground truth data. Our method however is more efficient as

it saves 50% to 70% computation time.

8 CONCLUSION

In this paper, we introduced RAPID-PDE, an efficient al-

gorithm to learn Sparse and Decomposable PDEs from ex-

perimental data using random projection of features. Our

method takes advantage of the sparsity of updates to com-

press high dimensional PDE trajectories into low dimen-

sional representation, thus saving computation time while

preserving learning performance. Experiments with two

phase-field models - one for grain growth and another for

nanovoid defect evolution in materials prove that our method

leads to faster learning of underlying physics models, and

the learned model provides reasonable matches with the

ground truth observation when tested. We hope in the fu-

ture, we can explore the application of RAPID-PDE to other

exciting domains.

Author Contributions

Md Nasim played the main role in conceiving the idea, writ-

ing the code and writing the paper. Yexiang Xue contributed

during idea brainstorming, and theoretical analysis. Xing-

hang Zhang and Anter El-Azab contributed in writing, and

provided the data for Figure 2II.

Acknowledgements

This research was supported by NSF grant CCF-1918327.

We thank anonymous reviewers for their comments and

suggestions.

References

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and

Michael P Brenner. Learning data-driven discretizations

for partial differential equations. Proceedings of the Na-

tional Academy of Sciences, 116(31):15344±15349, 2019.

Christian Beck, Weinan E, and Arnulf Jentzen. Machine

learning approximation algorithms for high-dimensional

fully nonlinear partial differential equations and second-

order backward stochastic differential equations. Journal

of Nonlinear Science, 29:1563±1619, 2019.

Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet.

Concentration inequalities. In Summer school on machine

learning, pages 208±240. Springer, 2003.

Emmanuel J Candes and Terence Tao. Decoding by linear

programming. IEEE transactions on information theory,

51(12):4203±4215, 2005.

Emmanuel J Candes and Terence Tao. Near-optimal signal

recovery from random projections: Universal encoding

strategies? IEEE transactions on information theory, 52

(12):5406±5425, 2006.

Emmanuel J Candès, Justin Romberg, and Terence Tao.

Robust uncertainty principles: Exact signal reconstruc-

tion from highly incomplete frequency information.

IEEE Transactions on information theory, 52(2):489±509,

2006.

Timothy I Cannings and Richard J Samworth. Random-

projection ensemble classification. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 79

(4):959±1035, 2017.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and

David K Duvenaud. Neural ordinary differential equa-

tions. Advances in neural information processing systems,

31, 2018.

Ricky TQ Chen, Brandon Amos, and Maximilian Nickel.

Learning neural event functions for ordinary differential

equations. arXiv preprint arXiv:2011.03902, 2020.

Kenneth L Clarkson and David P Woodruff. Low-rank ap-

proximation and regression in input sparsity time. Journal

of the ACM (JACM), 63(6):1±45, 2017.

Miles Cranmer, Sam Greydanus, Stephan Hoyer, Peter

Battaglia, David Spergel, and Shirley Ho. Lagrangian

neural networks. arXiv preprint arXiv:2003.04630, 2020.

Sanjoy Dasgupta. Learning mixtures of gaussians. In 40th

Annual Symposium on Foundations of Computer Science

(Cat. No. 99CB37039), pages 634±644. IEEE, 1999.

Emmanuel de Bezenac, Arthur Pajot, and Patrick Gallinari.

Deep learning for physical processes: Incorporating prior

scientific knowledge. In International Conference on

Learning Representations, 2018.

Thomas Demeester. System identification with time-

aware neural sequence models. arXiv preprint

arXiv:1911.09431, 2019.

Edgar Dobriban and Sifan Liu. Asymptotics for sketching in

least squares regression. Advances in Neural Information

Processing Systems, 32, 2019.

David L Donoho. Compressed sensing. IEEE Transactions

on information theory, 52(4):1289±1306, 2006.

Danan Fan and L-Q Chen. Computer simulation of grain

growth using a continuum field model. Acta Materialia,

45(2):611±622, 1997.

Cong Fang, Zhenyu Zhao, Pan Zhou, and Zhouchen Lin.

Feature learning via partial differential equation with

applications to face recognition. Pattern Recognition,

69:14±25, 2017.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Sim-

ilarity search in high dimensions via hashing. In Vldb,

volume 99, pages 518±529, 1999.

Samuel Greydanus, Misko Dzamba, and Jason Yosinski.

Hamiltonian neural networks. Advances in Neural Infor-

mation Processing Systems, 32:15379±15389, 2019.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-

dimensional partial differential equations using deep

learning. Proceedings of the National Academy of Sci-

ences, 115(34):8505±8510, 2018.

Piotr Indyk and Rajeev Motwani. Approximate nearest

neighbors: towards removing the curse of dimensionality.

In Proceedings of the thirtieth annual ACM symposium

on Theory of computing, pages 604±613, 1998.

Junteng Jia and Austin R Benson. Neural jump stochastic

differential equations. Advances in Neural Information

Processing Systems, 32, 2019.

William B Johnson and Joram Lindenstrauss. Extensions of

lipschitz mappings into a hilbert space 26. Contemporary

mathematics, 26:28, 1984.

Patrick Kidger, James Morrill, James Foster, and Terry

Lyons. Neural controlled differential equations for ir-

regular time series. Advances in Neural Information

Processing Systems, 33:6696±6707, 2020.

John H Lagergren, John T Nardini, G Michael Lavigne,

Erica M Rutter, and Kevin B Flores. Learning partial dif-

ferential equations for biological transport models from

noisy spatio-temporal data. Proceedings of the Royal

Society A, 476(2234):20190800, 2020.

Kookjin Lee and Eric J Parish. Parameterized neural ordi-

nary differential equations: Applications to computational

physics problems. Proceedings of the Royal Society A,

477(2253):20210162, 2021.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong.

Pde-net: Learning pdes from data. In International Con-

ference on Machine Learning, pages 3208±3216, 2018.

Michael Lutter, Christian Ritter, and Jan Peters. Deep la-

grangian networks: Using physics as model prior for deep

learning. In International Conference on Learning Rep-

resentations, 2018.

Paul C Millett, Anter El-Azab, Srujan Rokkam, Michael

Tonks, and Dieter Wolf. Phase-field simulation of ir-

radiated metals: Part i: Void kinetics. Computational

materials science, 50(3):949±959, 2011.

T. Niu, M. Nasim, R. Annadanam, C. Fan, Jin Li, Zhongxia

Shang, Y. Xue, Anter El-Azab, H. Wang, and X. Zhang.

Recent studies on void shrinkage in metallic materials

subjected to in situ heavy ion irradiations. JOM, 72, 09

2020. doi: 10.1007/s11837-020-04358-3.

Tongjun Niu, Yifan Zhang, Jaehun Cho, Jin Li, Haiyan

Wang, and Xinghang Zhang. Thermal stability of immis-

cible cu-ag/fe triphase multilayers with triple junctions.

Acta Materialia, 208:116679, 2021.

Gavin D Portwood, Peetak P Mitra, Mateus Dias Ribeiro,

Tan Minh Nguyen, Balasubramanya T Nadiga, Juan A

Saenz, Michael Chertkov, Animesh Garg, Anima Anand-

kumar, Andreas Dengel, et al. Turbulence forecasting via

neural ode. arXiv preprint arXiv:1911.05180, 2019.

Elizabeth Qian, Boris Kramer, Benjamin Peherstorfer, and

Karen Willcox. Lift & learn: Physics-informed machine

learning for large-scale nonlinear dynamical systems.

Physica D: Nonlinear Phenomena, 406:132401, 2020.

Maziar Raissi and George Em Karniadakis. Hidden physics

models: Machine learning of nonlinear partial differential

equations. Journal of Computational Physics, 357:125±

141, 2018.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis.

Physics-informed neural networks: A deep learning

framework for solving forward and inverse problems in-

volving nonlinear partial differential equations. Journal

of Computational Physics, 378:686±707, 2019.

Ilya Razenshteyn, Zhao Song, and David P Woodruff.

Weighted low rank approximations with provable guaran-

tees. In Proceedings of the forty-eighth annual ACM sym-

posium on Theory of Computing, pages 250±263, 2016.

Hayden Schaeffer. Learning partial differential equations

via data discovery and sparse optimization. Proceedings

of the Royal Society A: Mathematical, Physical and Engi-

neering Sciences, 473(2197):20160446, 2017.

Qinfeng Shi, James Petterson, Gideon Dror, John Langford,

Alex Smola, Alex Strehl, and S. V. N. Vishwanathan.

Hash kernels. In David van Dyk and Max Welling, ed-

itors, Proceedings of the Twelth International Confer-

ence on Artificial Intelligence and Statistics, volume 5 of

Proceedings of Machine Learning Research, pages 496±

503, Hilton Clearwater Beach Resort, Clearwater Beach,

Florida USA, 16±18 Apr 2009. PMLR. URL https://

proceedings.mlr.press/v5/shi09a.html.

Chonghao Sima and Yexiang Xue. Lsh-smile: Locality

sensitive hashing accelerated simulation and learning.

Advances in Neural Information Processing Systems, 34,

2021.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A

deep learning algorithm for solving partial differential

equations. Journal of computational physics, 375:1339±

1364, 2018.

Yexiang Xue, Md Nasim, Maosen Zhang, Cuncai Fan, Xing-

hang Zhang, and Anter El-Azab. Physics knowledge

discovery via neural differential equation embedding.

In Joint European Conference on Machine Learning

and Knowledge Discovery in Databases, pages 118±134.

Springer, 2021.

Yuan Yin, Vincent Le Guen, Jérémie Dona, Emmanuel

de Bézenac, Ibrahim Ayed, Nicolas Thome, and Patrick

Gallinari. Augmenting physical models with deep net-

works for complex dynamics forecasting. Journal of

Statistical Mechanics: Theory and Experiment, 2021(12):

124012, 2021.

	Introduction
	Background
	Dynamic systems represented in Partial Differential Equations
	Phase-field Modeling
	Case Study 1: Grain Growth
	Case Study 2: Nanvoid Defect Evolution
	Finite Difference for PDE Simulation

	Sparse Decomposable PDEs
	Learning Sparse Decomposable PDE with Random Projection
	Learning via Matching Experiments and Simulation
	Rapid-PDE: Accelerate Learning with Random Projection

	Theoretical Analysis
	Related Works
	Experiments
	Conclusion

