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Abstract. Deep Reinforcement Learning (RL) agents often overőt the
training environment, leading to poor generalization performance. In this
paper, we propose Thinker, a bootstrapping method to remove adver-
sarial effects of confounding features from the observation in an unsu-
pervised way, and thus, it improves RL agents’ generalization. Thinker
őrst clusters experience trajectories into several clusters. These trajecto-
ries are then bootstrapped by applying a style transfer generator, which
translates the trajectories from one cluster’s style to another while main-
taining the content of the observations. The bootstrapped trajectories
are then used for policy learning. Thinker has wide applicability among
many RL settings. Experimental results reveal that Thinker leads to
better generalization capability in the Procgen benchmark environments
compared to base algorithms and several data augmentation techniques.

Keywords: Deep Reinforcement Learning · Generalization in Reinforcement
Learning.

1 Introduction

Deep reinforcement learning has achieved tremendous success. However, deep
neural networks often overőt to confounding features in the training data due to
their high ŕexibility, leading to poor generalization [14,33,7,6]. These confound-
ing features (e.g., background color) are usually not connected to the reward;
thus, an optimal agent should avoid focusing on them during the policy learn-
ing. Even worse, confounding features lead to incorrect state representations,
which prevents deep RL agents from performing well even in slightly different
environments.

Many approaches have been proposed to address this challenges including
data augmentation approaches such as random cropping, adding jitter in image-
based observation [7,21,27,20,22],random noise injection [17], network random-
ization [25,4,23], and regularization [7,20,17,32] have shown to improve general-
ization. The common theme of these approaches is to increase diversity in the
training data so as the learned policy would better generalize. However, this per-
turbation is primarily done in isolation of the task semantic, which might change
an essential aspect of the observation, resulting in sub-optimal policy learning.
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environments, hence assisting the agent in adapting to the unseen scenarios. De-
sign of our method is motivated by the counterfactual thinking nature of human -
łwhat if the background color of the image observation was Red instead of Blue?";
thus the name is Thinker. This imagination-based thinking often beneőcial for
decision-making on similar scenarios in the future events [28,8].

Our method uses a similar mechanism to disentangled confounding features.
Figure 1 shows an overview of the Thinker module. It maintains a set of distribu-
tions (cluster of sample observations) of experience data, which can be learned
using a clustering algorithm.

Our proposed approach consists of a style transfer-based observation transla-
tion method that considers content of the observation. Trajectory data from the
agent’s replay buffer is clustered into different categories, and then observation
is translated from one cluster style to another cluster’s style. Here the style is
determined by the commonality of observation features in a cluster. Thus this
style translation is targeted toward non-generalizable features. The agent should
be robust toward changes of such features. Moreover, the translated trajectories
correspond to those that possibly appear in testing environments, assisting the
agent in adapting to unseen scenarios.

Thinker learns generators between each pair of clusters using adversarial loss
[12] and cycle consistency loss [35,5]. The generator can translate observations
from one cluster to another; that means changing style to another cluster while
maintaining the semantic of the observation in the underlying task. After train-
ing, all generators are available to the RL agent to use during its policy learning
process.

During policy training, the agent can query the Thinker module with new
observations and get back the translated observations. The agent can then use
the translated observation for policy training. Here, the Thinker module boot-
straps the observation data and tries to learn better state representation, which
is invariant to the policy network’s unseen environment. Intuitively, the obser-
vation translation process is similar to asking the counterfactual question; what
if the new observation is coming from a different source (visually different dis-
tribution)?

Note that, Thinker works entirely in an unsupervised way and does not re-
quire any additional environment interactions. Thus the agent can learn policy
without collecting more data in the environment, potentially improving sample
efficiency and generalization in unseen environments.

We evaluated the effectiveness of Thinker module on Procgen [6] bench-
mark environments. We evaluated the usefulness of Thinker on the standard on-
policy RL algorithm, Proximal Policy Optimization (PPO) [30]. We observe that
Thinker often can successfully transfers style from one cluster to another, gen-
erating semantically equivalent observation data. Moreover, our agent performs
better in generalization to unseen test environments than PPO. We further evalu-
ate our method with two popularly used data augmentation approaches: random
cropping and random cutout [21]. We demonstrate that these data augmentation
method sometimes worsen the base PPO algorithm while our proposed approach
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improve the performance in both sample efficiency (Train Reward) and general-
ization (Test Reward).

In summary, our contributions are listed as follows:

ś We introduce Thinker, a bootstrapping method to remove adverse effects of
confounding features from the observation in an unsupervised way.

ś Thinker can be used with existing deep RL algorithms where experience
trajectory is used for policy training. We provide an algorithm to leverage
Thinker in different RL settings.

ś We evaluate Thinker on Procgen environments where it often successfully
translates the visual features of observations while keeping the game seman-
tic intact. Overall, our Thinker agent performs better in sample efficiency
and generalization than the base PPO [30] algorithm and and two data
augmentation-based approaches: random crop and random cutout [21].

The source code of our Thinker module is available at https://github.com/
masud99r/thinker.

2 Background

Markov Decision Process (MDP). An MDP can be denoted as M = (S,A,P, r)
where S is a set states, A is a set of possible actions. At every timestep t, from
an state st ∈ S, the agent takes an action at ∈ A and the environment proceed
to next state. The agent then receives a reward rt as the environment moves to
a new state st+1 ∈ S based on the transition probability P (st+1|st, at).
Reinforcement Learning. In reinforcement learning, the agent interacts with
the environment in discrete timesteps that can be deőned as an MDP, denoted by
M = (S,A,P, r), P is the transition probability between states after agent takes
action, and r is the immediate reward the agent gets. In practice, the state (S)
is unobserved, and the agent gets to see only a glimpse of the underlying system
state in the form of observation (O). The agent’s target is to learn a policy (π),
which is a mapping from state to action, by maximizing collected rewards. In
addition, to master skills in an environment, the agent needs to extract useful
information from the observation, which helps take optimal actions. In deep
reinforcement learning (RL), the neural network architecture is often used to
represent the policy (value function, Q-function). In this paper, we use such a
deep RL setup in image-based observation space.
RL Agent Evaluation. Traditionally, RL agent trained in an environment
where it is evaluated how quickly it learns the policy. However, the evaluation is
often done on the same environment setup. While this evaluation approach can
measure policy learning efficiency, it critically misses whether the agent actually
learned the necessary skill or just memorized some aspect of the environment to
get the maximum reward in training. In this setup, the agent can often overőt to
the scoreboard or timer in a game which can lead to the best reward; however, the
agent can completely ignore other parts of the environment [34,31]. The agent can
even memorize the training environment to achieve the best cumulative reward
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[34]. In contrast, in this paper, we use a zero-shot generalization [31] setup where
the agent is trained and tested on different environment instances. Furthermore,
the agent’s performance is evaluated on unseen environment instances; thus, the
agent must master skills during training to perform better in generalization.
Generalization Issue in Deep RL. The agent’s goal is to use necessary infor-
mation from the observation and learn behavior that maximizes reward. How-
ever, due to the lack of variability in observations, the agent might focus on
spurious features. This problem becomes commonplace in RL training, espe-
cially if the observation space is large, such as the RGB image. In such cases,
the agent might memorize the trajectory without actually learning the under-
lying task. This issue might be undetected if the agent trains and evaluates in
the same environment. The agent trained in such a task (environment) might
overőt to the trained environment and fail to generalize in the same task but
with a slightly different environment. For example, background color might be
irrelevant for a game, and the game might have different backgrounds at different
episodes, but the game logic will remain the same. These unimportant features
are the confounder that might mislead agents during training. The issue might
be severe in deep reinforcement learning as the agent policy is often represented
using high-capacity neural networks. If the agent focuses on these confounder
features, it might overőt and fails to generalize.
Style Transfer with Generative Adversarial Network. The task of style
transfer is to change particular features of a given image to another, where gen-
erative adversarial network (GAN) has achieved enormous success [19,18,35,5].
This setup often consists of images from two domains where models learn to
style translate images from one domain to another. The shared features then
deőne the style among images in a domain. A pairing between two domains
images is necessary to make many translation methods work. However, such in-
formation is not available in the reinforcement learning setup. Nevertheless, an
unpaired image-to-image translation method can be used, which does not require
a one-to-one mapping of annotated images from two domains. In this paper, we
leverage StarGAN [5] that efficiently learns mappings among various domains
using a single generator and discriminator. In the RL setup, we apply a clus-
tering approach which őrst separates the trajectory data into clusters. Then we
train the StarGAN on these clusters that learn to style translate images among
those clusters.

3 Bootstrap Observations with Thinker

Our proposed method, Thinker, focuses on removing the adverse confounding
features, which helps the deep RL agent to learn invariant representations from
the observations, which eventually help to learn generalizable policy. Figure
2 shows an overview of our method. Thinker maintains a set of distributions
achieved by clustering observation data that come from the experience trajec-
tory. We implemented our method on a high-dimensional RGB image observation
space.
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The adversarial loss is calculated as the Wasserstein GAN [3] objective with
gradient penalty [13] which stabilize the training compared to regular GAN
objective [12]. This loss is deőned as

Ladv = Ex[Dsrc]− Ex,c[Dsrc(G(x, c))]− λgpEx̂[(||∇x̂Dsrc(x̂)|| − 1)2], (1)

where x̂ is sampled uniformly along a straight line between a pair of real and
generated fake images and λgp is a hyperparameter. The cluster classiőcation
loss is deőned for real and fake images. The classiőcation loss of real image is
deőned as

Lr
cls = Ex,c′ [− logDcls(c

′|x)], (2)

where Dcls(c
′|x) is the probability distribution over all cluster labels. Similarly,

the classiőcation loss of fake generated image is deőned as

Lf
cls = Ex,c[− logDcls(c|G(x, c))], (3)

The full discriminator loss is

LD = −Ladv + λclsL
r
cls, (4)

which consists of the adversarial loss Ladv, and domain classiőcation loss Lr
cls

and λcls is a hyperparameter. The discriminator detects a fake image generated
by the generator G from the real image in the given class data.

To preserve image content during translation a reconstruction loss is applied

Lrec = Ex,c,c′ [||x−G(G(x, c), c′)||1], (5)

where we use the L1 norm.
The Lrec is the reconstruction loss which makes sure the generator preserves

the content of the input images while changing the domain-related part of the
inputs. This cycle consistency loss [5,35] Lrec makes sure the translated input
can be translated back to the original input, thus only changing the domain
related part and not the semantic. Thus, the generator loss is

LG = Ladv + λclsL
f
cls + λrecLrec, (6)

where Ladv is adversarial loss, and Lf
cls is the loss of detecting fake image and

the λrec is a hyperparameter.
Train Agent with Thinker. During policy training, the agent can query the
generator module with a new observation and get back translated observation
(Algorithm 1). The agent can then use the translated observation for policy
training. Intuitively, the observation translation process is similar to asking the
counterfactual question; łwhat if the new observation is coming from a visually
different episode distribution)?" The Thinker method can be applied to existing
deep RL algorithms where experience data is used to train policy networks. In
this paper, we evaluate Thinker with on-policy PPO [30]. Intuitively, Thinker
maintains a counterfactual-based visual thinking component, which it can invoke
at any learning timestep and translate the observation from one distribution to
another. Algorithm 1 describes detailed steps of training deep RL agents with
Thinker.
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Algorithm 1 Thinker

Get PPO for policy learning RL agent
Collect observation trajectory D using initial policy
Cluster dataset D into n clusters using GMM
Train Generator G with the n clusters by optimizing equation 4, and 6
for each iteration do

for each environment step do

at ∼ πθ(at|xt)
xt+1 ∼ P (xt+1|xt, at)
rt ∼ R(xt, at)
B ←− B ∪ {(xt, at, rt, xt+1)}
Translate all obs x ∈ B to get B′ using Generator G

Train policy πθ on B′ with PPO
end for

end for

4 Experiments

4.1 Implementation

We implemented Thinker using Ray framework: Tune, and RLlib [24], which
supports simple primitive and uniőed API to build scalable applications.
Clustering. We use Gaussian Mixture Model (GMM) implementation available
in Scikit-learn [26]. We őrst pass observation through the pre-trained ResNet18
[15] model which is trained on ImageNet dataset [29]. The ResNet18 model 1

converts the RGB image into a 1000 dimensional vector. We use the layer just
before the őnal softmax layer to get this vector. This dimensionality reduction
step drastically reduces the training and inference time of the Gaussian mixture
model. Given the number of cluster n, this model train on n clusters. These
n clusters data are stored by the agent, which is later used for the generator
training. The inference module takes input an observation, and it returns the
cluster-ID to which it belongs, which is used to identify the target cluster for
the style translation. The number of clusters is the hyperparameter, which can
depend on the diversity of environment levels. However, for our method to be ef-
fective, at least two clusters are required. Therefore, unless otherwise mentioned,
we reported comparison results using the number of clusters n = 3 (better per-
forming in ablation).
Learning Generator. After clustering, all data is then feed to the generator
module which learns a single generator that style translate between any pair of
clusters. The agent can choose various cluster numbers (hyperparameter) during
training time. Each time the clustering is trained, the generator must be updated
with the new cluster samples. In our experiments, we train the generator once
and at the beginning of the training. Note that the collected trajectory data
should be representative enough to train a good generator. Thus initially, the

1 https://pytorch.org/hub/pytorch_vision_resnet/
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interaction with the environment and optimizing a surrogate objective function,
enabling multiple epochs of minibatch updates using stochastic gradient ascent.

On the other hand, RAD is a data augmentation technique [21] which shows
effective empirical evidence in complex RL benchmarks including some Procgen
environments. In particular, the Cutout Color augmentation technique which has
shown better results in many Procgen environments compared in [21] thus we
compare with this data augmentation technique. Additionally, we experimented
on random crop augmentation. However, this augmentation fails to achieve any
reasonable performance in the experimented environments. Thus, we do not
report the results for random crop here in our experiments.

We used RLlib [24] to implement all the algorithms. For all the agents
(Thinker, PPO, and RAD), to implement the policy network (model), we use a
CNN architecture used in IMPALA [9], which also found to work better in the
Procgen environments [6]. To account for the agents’ performance variability,
we run each algorithm with 5 random seeds. Policy learning hyperparameter
settings (RLlib’s default[24]) for Thinker, PPO, and RAD are set the same for
a fair comparison. The hyperparameters are given in Table 1.

Table 1. Hyperparameters for Experiments - RLlib

Description Hyperparameters Description Hyperparameters
Discount factor 0.999 The GAE(lambda) 0.95

Learning rate 5.0e − 4 Epochs per train batch 3

SGD batch 2048 Training batch size 16384

KL divergence 0.0 Target KL divergence 0.01

Coeff. of value loss 0.5 Coeff. of the entropy 0.01

PPO clip parameter 0.2 Clip for the value 0.2

Global clip 0.5 PyTorch Framework torch

Settings for Model IMPALA CNN Rollout Fragment 256

Evaluation Metric. It has been observed that a single measure in the form of
mean or median can hide the uncertainty implied by different runs [2]. In this
paper, we report the reward distribution of all 5 random seed runs in the form
of a boxplot to mitigate the above issue.
Computing details. We used the following machine conőgurations to run our
experiments: 20 core-CPU with 256 GB of RAM, CPU Model Name: Intel(R)
Xeon(R) Silver 4114 CPU @ 2.20GHz, and an Nvidia A100 GPU. In our setup,
for each run of a training of 25M timesteps, Thinker took approx. 14 hours
(including approx. 2 hours of generator training), RAD-Random Crop took ap-
prox. 30 hours, RAD-Cutout Color took approx. 9 hours and PPO took approx.
8 hours.

4.3 Results

We now discuss the results of our experiments. We őrst discuss the general-
ization results and then sample efficiency. Further, we evaluate how our agents
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testing environments, aiming to prepare the agent for the unseen scenarios. A
closely related paper of our style transfer approach is [11]. They require access
to the annotated agent’s trajectory data in both source and target domains for
the GAN training. In our case, we do not need the information of levels and
their sample beforehand; instead, we automatically cluster the trajectory data
based on observation’s visual features. Thus, the style transfer happens between
learned clusters. Additionally, our approach uses visual-based clustering; thus,
one cluster may have data from multiple levels, potentially preventing GAN from
overőtting [11] to any particular environment levels.

6 Discussion

In conclusion, we proposed a novel bootstrapping method to remove the adverse
effects of confounding features from the observation in an unsupervised way. Our
method őrst clusters experience trajectories into several clusters; then, it learns
StarGAN-based generators. These generators translate the trajectories from one
cluster’s style to another, which are used for policy training. Our method can be
used with existing deep RL algorithms where experience trajectory is used for
policy training. Evaluating on visually enriched environments, we demonstrated
that our method improves the performance of the existing RL algorithm while
achieving better generalization capacity and sample efficiency.

The impacts of Thinker on policy learning depends on the quality of the
bootstrapped data generations. Thus our method is better suited for the cases
where different levels of an environment vary visually (e.g., changing background
color, object colors, texture). In the scenarios where different levels of an envi-
ronment vary due to mostly its semantic logic differences (e.g., the structural
difference in a maze), our method might face challenges. Lack of visual diversity
in the clustering might lead the generator to overőt, impacting the its translation
performance across these clusters. A possible alternative is to cluster observa-
tion data using other features that vary between clusters in addition to visual
aspects. A large number of the cluster might place less diverse observation in
individual cluster focusing on low-level objects’ details, which might cause the
generator to overőt. We suggest to reduce the number of clusters in such scenar-
ios. During policy learning, the agent requires some time to train and infer the
Thinker module. However, this additional time is negligible compared to deep
RL agents’ typical stretched running time. Additionally, as we are training a sin-
gle generator for all the cluster pairs, we őnd the overhead of Thinker training
time reasonable in the context of deep RL agent training.
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