Detecting the Locations and Predicting the
Maintenance Costs of Compound Architectural
Debts

Lu Xiao, Yuanfang Cai, Rick Kazman, Ran Mo, and Qiong Feng

Abstract—Architectural Technical Debt (ATD) refers to sub-
optimal architectural design in a software system that incurs high
maintenance “interest” over time. Previous research revealed that
ATD has significant negative impact on daily development. This
paper contributes an approach to enable an architect to precisely
locate ATDs, as well as capture the trajectory of maintenance cost
on each debt, based on which, predict the cost of the debt in a
future release. The ATDs are expressed in four typical patterns,
which entail the core of each debt. Furthermore, we aggregate
compound ATDs to capture the complicated relationship among
multiple ATD instances, which should be examined together
for effective refactoring solutions. We evaluate our approach
on 18 real-world projects. We identified ATDs that persistently
incur significant (up to 95% of) maintenance costs in most
projects. The maintenance costs on the majority of debts fit into
a linear regression model—indicating stable “interest” rate. In
five projects, 12.1% to 27.6% of debts fit into an exponential
model, indicating increasing ‘“‘interest” rate, which deserve higher
priority from architects. The regression models can accurately
predict the costs of the majority of (82% to 100%) debts in the
next release of a system. By aggregating related ATDs, architects
can focus on a small number of cost-effective compound debts,
which contain a relatively small number of source files, but
account for a large portion of maintenance costs in their projects.
With these capabilities, our approach can help architects make
informed decisions regarding whether, where, and how to refactor
for eliminating ATDs in their systems.

Index Terms—software architecture, technical debt, software
maintenance, debt quantification and prioritization

I. INTRODUCTION

Technical Debt (TD) is a metaphor that describes the
shortcuts taken in software development for achieving im-
mediate goals but compromising the long-term benefits [1].
Architectural TD (ATD), a subset of TD, refers to sub-optimal
architectural design decisions in a software system [2]-[4].
Previous research revealed that ATD has the most significant
negative impact on the long-term success of a project [2],
[3], [5], compared to other types of TD. Architects have a
compelling need for an effective approach to detect and manage
architectural 7D [6]. This paper contributes an approach to
1) detect compound architectural 7D that are composed of
multiple, related architectural flaws, whose elimination should
be treated together; and 2) quantify the “interest” and predict
the future “cost” of different instances of ATD to help architects
make informed refactoring decisions.

Although ATD has received significant attention [7]-[13],
existing approaches suffer from several limitations. First,
existing approaches identify usually architectural smells and

anti-patterns [4], [14]-[18], which are not true “debts” if they do
not generate maintenance “interest”. In addition, architectural
smells/anti-patterns usually contain focused groups of files with
flawed architectural connections. However, multiple instances
of anti-patterns may aggregate to form more complicated debts,
i.e. we call them the “compound” ATDs, that should be treated
together for eliminating the flaws. For instance, Unstable
Interface [14] is featured by a change-prone “interface”,
changes to whom frequently propagate to its dependents. It is
possible that one of the dependents is an unstable “interface’
with respect to another group of files. Thus, they should be
treated together for eliminating the “unstableness”. Another
main challenge in managing ATD is to quantify the “interest”
for making informed refactoring decisions [19]-[21]. Currently,
this relies heavily on architects’ estimation and experience [22]—
[25]. Architects need a predictive and repeatable approach to
quantify the current and future cost on debts [19]-[21].

To overcome the above challenges, this paper propose a new
approach to detect ATDs that incur high maintenance costs over
time. We define an ATD as a tuple consisting of: 1) a group of
architecturally connected files, and 2) a model describing the
trajectory of maintenance cost on this group of files. Based
on this definition, we contribute an approach to automatically
locate ATDs. Once we locate each debt we model its growth
using regression models. Our ATD detection has two parts. We
first create a novel history coupling probability (HCP) matrix
to manifest the probability of changing one file when another
file is changed. Then we index file groups through the lens of 4
patterns of prototypical architectural flaws that have been shown
to correlate with reduced software quality [26], namely hub,
anchor-submissive, anchor-dominant, and modularity violation.

Given an ATD, we quantify the maintenance costs spent on
the files involved in the debt. The actual maintenance costs in
a software project—time and money—are almost never directly
measurable. Thus, we approximate maintenance costs by bug-
related churn—the lines of code committed to fix bugs. From
the costs incurred in each release, we can model the growth
trend using various regression models: linear, logarithmic,
exponential or polynomial. These models represent scenarios
of stable, reducing, increasing, and fluctuating maintenance
interest rates respectively. This ensures that the identify file
groups form true “debts” that incur maintenance “interests”.
As we will show in the evaluation, architects can use the debt
model to predict the cost of a debt in a future release.

Finally, we aggregate ATD instances to form compound debts

l

with more complicated connections. Through the lens of the
four debt patterns, each ATD instance is composed of an anchor
file, which is the core of the debt, and a group of member files,
which form the respective pattern centered around the anchor
file. We aggregate compound ATDs through two criteria: 1)
Transitive Anchors, where the anchor file of a debt is a member
file of another debt. This reveals the hierarchical pattern in a
compound debt; and 2) Compound Anchors, where the anchors
files of two debts share overlapping members. Architects
need to examine the complicated connections aggregated in
compound debts for developing effective refactoring solutions.

We aim to evaluate the effectiveness of our approach
in identifying and quantifying ATDs in software projects.
Specifically, we evaluate whether the proposed approach can
provide useful insights for software architects to make informed
decisions regarding whether, where, and how to refactor to
reduce ATDs in their software projects. We therefore focus on
three questions.

e RQIl: Can significant ATDs in software projects be
identified using a systematic approach?

o RQ2: Is it possible to quantify and accurately predict the
future cost of an ATD?

o RQ3: Are compound ATDs common in software projects,
and do they form cost-effective refactoring candidates?

As shown in our evaluation results, our approach has the
potential to enable an architect to precisely locate architectural
debts, in terms of identifying the source files and how they are
involved in ATDs. Our approach also captures the trajectory
of maintenance costs for each ATD. Based on this an architect
can estimate the cost of a debt in a future release. Furthermore,
the debt patterns described in this paper identify design flaws—
architectural connections that incur high maintenance costs
in a project—which should be analyzed and, if the debt is
high enough, refactored. The ATD detection and quantification
approach in this paper can be fully automated through mining a
software repository. Architects can repeat this approach through
the life-cycle of a software project, and thus make informed
decisions to managed ATD.

The key contributions and novelty of our approach are

« An automatic approach to identify and quantify ATDs by
mining project repositories. We are the first to combine
structural and evolutionary connections to identify patterns
that lead to true ATDs with significant maintenance costs.

o Four atomic ATDs patterns—hub, anchor submissive,
anchor dominant, and modularity violation—that are
potentially refactoring targets.

o The adoption of regression models to capture the mainte-
nance cost trajectory of each ATD, to estimate their future
costs. This provides an objective means for architects to
prioritize debts based on predictions of a debt’s future
costs. To the best of our knowledge, we are the first to
leverage regression models to estimate future debt costs.

o The compound ATD aggregation approach, which captures
the connections among atomic patterns. This work is the
first to consider the connections that form compound

ATDs.

o A quantitative evaluation of the effectiveness of our
approach on 18 large-scale software projects with varying
characteristics.

The rest of this paper is organized as follows. Section II
introduces the background of this paper. Section III provides
the formal definition of ATD in the scope of this paper.
Section IV introduces our ATD identification and quantification
approach. Section V introduces the research questions and
evaluation subjects. Section VI presents the evaluation results.
Section VII discusses how architects can benefit from the
proposed approach and the factors that may impact the results
of our approach. Section VIII discuss related work. Section IX
discuss the threads to validity and limitations of our approach.
Section X concludes this paper.

II. BACKGROUND

We now introduce the key concepts our work is based on.

Design Rule Space. In our prior work [27] we proposed
a novel architectural model—Design Rule Space(DRSpace)—
based on the Baldwin and Clark’s design rules [28]. Building
upon existing definitions of software architecture [29], we
characterize a software architecture as a set of overlapping
DRSpaces, each reflecting a unique aspect of the architecture.
Each DRSpace is a subset of a system’s source files and some
kind of relationships (dependencies) among these files. Each
DRSpace has one or more “leading file(s)”, which all other files
in the DRSpace depend on, directly or indirectly. The leading
files are usually the files with architectural importance, such
as interfaces or abstract classes, which we call Design Rules.
The relations within a DRSpace may be structural—such as
“Implement”, “Extend”, “Call”’—or relations may be based on
history coupling between source files—indicating the number
of times two files changed together as recorded in the project’s
revision history.

There are numerous DRSpaces in any non-trivial software
system, e.g., each dependency type forms a DRSpace: files
connected by “Extend” and “Inherit” relationships form an
inheritance DRSpace, and files that are coupled in the project’s
revision history form an evolution DRSpace. We created
an architecture root detection algorithm that computes the
intersection between DRSpaces and the project’s “error space”—
the set of error-prone files in a system [27]. We showed that
the majority of the error-prone files are concentrated in just a
few DRSpaces, suggesting that these error-prone files are not
islands—they are architecturally connected [27]. Furthermore,
we showed that these DRSpaces frequently contain architectural
issues (flaws) that, we claim, are the root causes of error-
proneness.

In this paper, we capture the architecture of a software
system following the DRSpace modeling approach. The ATD
detection approach is based upon the DRSpace modeling as
we will introduce in detail in Section IV.

Design Structure Matrix (DSM). We use a DSM [28] to
represent a DRSpace. Each element in the DSM is a source
file, and each cell represents the relationships between the

1 2 3 4 5 6 7 8
1 AbstractType (1) |
2 UUIDSerializer ,100% |(2) ,50% ,100% ,50%
3 UUIDType ext,dp,33% dp, |(3) 33% ,50%
4 AbstractCell dp,50% (4)
5 TypeCast dp,33% ,33% (5) ,33% ,33%
6 IntegerSerializer ,100% ,100% ,50% (6) ,50%
7 LongType ext,dp,67% ,67% ,33% (7) dp,67%
8 DateType ext,dp,40% ,60% dp,40% (8)

Fig. 1: DSM Example

file on the row and the file on the column. For example,
Figure 1 is a DRSpace with leading file ColumnParent. Each
cell shows the structural dependencies — “implement”, or “dp”
— between the file on the row and the file on the column,
followed by the conditional probability of change propagation.
In the original DRSpace [27], we used the number of times
two files changed together in the project’s revision history to
represent their history dependency. In this paper, we replace
this count with a probability. For example, cell[6,2] contains
“Implement”’, meaning that the file on row 6, CassandraServer,
implements the interface on row 2, Cassandra; cell[2,6]
contains “48%”, meaning that when Cassandra changes, there
is a 48% probability that CassandraServer will change with it.

In this paper, we use DSMs to model source files and their
relationships. In addition, instead of capturing an ATD as one
snapshot using a DSM, we use a sequence of DSMs to reveal
the growth of ATDs over time. In section VII, we will show
an example ATD from an open source project, Camel, which
evolves and grows over 11 releases. The snapshot of this debt
in each release is represented in a separate DSM.

Architecture Issues. Our recent work [26] defined, imple-
mented, and validated an algorithm for detecting recurring
architectural issues in software systems, which we call hotspot
patterns, including: 1) unstable interface, where an influential
file changes frequently with its dependents in the revision
history; 2) modularity violation, where structurally decoupled
files frequently change together in the project’s revision history;
3) unhealthy inheritance, where a super-class depends on its
sub-class or where a client class depends on both a super-class
and its sub-class; 4) cyclic dependency, where a set of files
forms a dependency cycle. In the 9 projects we examined, we
observed a strong correlation between the number of flaws a
file has and: 1) the number of bugs reported and fixed in it, 2)
the number of changes made to it, and 3) the amount of cost
spent on it (in terms of committed lines of code to fix bugs
and to make changes).

The four ATD patterns identified in this paper are general-
izations of the four structural anti-patterns—namely, unstable
interfaces, modularity violations, unhealthy inheritance, and
cyclic dependency. In addition, to identify true ATD that incurs
high maintenance costs over time, we developed a novel
technique—the history coupling probability (HCP) matrix—
to capture historical coupling among source files based on
the evolution history. The identification of ATD relies on the
combination of structural anti-patterns and historical coupling
connections, as introduced in section IV.

1II. ATD DEFINITION

In this section, we formally define Architectural Debt (ATD)
and illustrates an ATD example.

A. Definition

We define an Architectural Debt (ATD) as a group of
architecturally connected files that persistently incur high
maintenance costs over time. Each ATD is defined as a tuple
of two elements:

ATD =< FileSetSequence, Debt Model > (1)

The first element, FileSetSequence, is a sequence of file
groups, each extracted from consecutive project releases:

FileSetSequence = (FileSety, FileSets..., FileSet,,)

2
where m is the number of releases that ATD impacts, m < R.
Note that R is the total number of releases in a project. The
FileSet,, where m = 1...m, is the snapshot of the involved
files in an ATD in release r. Note that the FileSet, changes
dynamically with the architecture evolution of a project in
different releases. However, the F'ileSet, in different releases
are all originated from a same core file, which is called the
Anchor File. We will explain the Anchor File in detail when we
introduce the different debt patterns. When viewed (statically)
in a release r, an ATD is a group of source files with flawed
architectural connections, denoted as F'ileSet,; when viewed
(dynamically) via the long-term evolution of a system, an ATD
is formed by the sequence of file groups in different releases,
namely FileSetSequence.

The second element, Debt M odel, is a regression model that
describes the trajectory of the maintenance costs associated
with each AT D. We use four representative regression models,
namely the Linear, Logarithmic, Exponential, and Polynomial
models to capture four general kinds of debt interests respec-
tively: stable, decreasing, increasing, and fluctuating. We will
discuss the details about how the DebtModel is calculated
later.

The first element F'ileSetSequence identifies the location
of a debt, in terms of which files are involved in different
releases; while the second element DebtM odel quantify the
maintenance interest of the debt over time.

IV. ATD DETECTION

There are hundreds and thousands of source files in a
project. As the project evolves from release to release, the
number of source files (in most cases) grows over time.
To identify an ATD, we need to identify the two elements,
namely FileSetSequence and DebtModel. We search for
FileSetSequence just like searching for web pages on the
Internet. Then we calculate the DebtM odel for each debt. The
overall flow of our approach is illustrated in Figure 2, with
the following five steps.

1) Crawling: this step collects the set of error-prone files

from each release r, r from 1 to R, similar to crawling
and collecting web pages.

2) Indexing: this step identifies (indexes) a specific file
group, FlileSet, starting from each error-prone file in
each release, then locates sequences of related FileSets
in different releases as a F'ileSetSequence.
Modeling: this step quantify the maintenance costs
associated with FileSet, in each time-stamp, release
r. An ATD is identified as a FileSetSequence whose
costs gradually increase over time.

Ranking: this step ranks the identified ATDs according to
the amount of maintenance costs they have accumulated
in the project’s evolution history.

Aggregating: this steps aggregates related ATDs into
compound ATDs based on their relationship to help
architects capture and examine the more complicated
connections among debts.

3)

4)

5)

Each of the above steps is fully automated by mining and
analyzing the project repository, including the issue tracking
system and revision history. In the following, we will elaborate
each step in a separate subsection.

A. Crawling: Select Design Rule Spaces

In this step, we crawl the architectural connections among the
error-prone files in a project, analogous to crawling web-pages
from the Internet.

Firstly, we capture the software architecture of a system at
release r as a set of overlapping design spaces:

SoftArch, = {DRSpacey, DRSpaces, ..., DRSpace, }

3)
where 7 is the number of files in a project in release r. Each
design space, namely DRSpace;, in SoftArch, is a subset
of the entire system in release r, composed of a leading source
file, and all the other files that structurally depend on it (directly
or indirectly). Thus each D RSpace reveals a different aspect
of the architecture [27].

Meanwhile, we retrieve the set of error-prone files, denoted as
ErrorSpace,, in each release r by mining the project revision
history. Formally, ErrorSpace,.={f1, f2,..., fn}. Each file
fi € ErrorSpace was revised to fix errors at least once
between release 1 and r. By the definition: ErrorSpace,
is a subset of ErrorSpace,1.

For each release r, we crawl DRSpaces from SoftArch,.,
which are led by the files from the ErrorSpace,. More specif-
ically, each selected space is led by a file in ErrorSpace,.

SelectedD RSpace, = Crawling(SoftArch,., ErrorSpace,.)
“4)
If there are n files in ErrorSpace,., there are n DRSpaces
in SelectedD RSpace, for each release as the output of this
Crawling step.

B. Indexing: Identify ATD Candidates

Now that for each release we have crawled a set of design
spaces led by each error-prone file. In this step, we search for
the FileSetSequences which are the debt candidates from the
SelectedD RSpaces,., r = 1...n. The FileSetSequences is

a sequence of architecturally connected file set that persistently
accumulate higher maintenance cost across multiple releases of
a project. Thus, to identify the F'ileSetSequences, 1) we first
calculate a simple history coupling model—HCP matrix—to
capture the history evolution; and 2) then we match file groups
using four indexing patterns to capture different architectural
connection patterns in debts.

1) HCP Matrix: Previously, we used a symmetric DSM to
represent how source files co-change together in the revision
history [27]. Each cell in the DSM shows the number of times
two files changed together. That is the number of times on
cell[x,y] is identical to cell[y,x]. This model is not able to
capture the direction of change propagation among files. To
overcome this problem, we propose a new model: the history
coupling probability (HCP) matrix. In this model, each cell
records the conditional probability of changing the file on the
column, if the file on the row has been changed, i.e., the odds
of changes propagating from file to file.

Figure 3 shows an example of the creation of a HCP.
Part 1 shows that 4 files A, B, C, and D, that change in
4 commits: Commitl {A,B} (Commitl changes A and B),
Commit2{A,B}, Commit3{B,D}, and Commit4{A,C}. First,
we compute the pair-wise conditional change probabilities for
any pair of files. For example, the probability of changing file
A, given that file C has changed, denoted by Prob{A|C}, is
the number of times A and C change in the same commits
divided by the total number of changes to C. Similarly,
Prob{C|A} is the number of times A and C' change in the
same commits divided by the total number of changes to A.
Hence, Prob{A|C} is 1/1, indicating that A always changes
with C, and Prob{C|A} is 1/3, indicating a probability of 1/3
that C' changes with A. In this relation, we label C' as dominant
and A as submissive because Prob{A|C} > Prob{C|A}. We
compute the probabilities for every pair of files and get the
graph in part 2 of Figure 3. It is the graph-representation of
the HPC matrix.

For each release r of a project, we compute a HPC matrix
(HPC,.), consisting of files in ErrorSpace,., from the bug-
fixing revision history between release 1 to release 7.

2) Indexing Patterns: We search for the FileSet, in
each release r by matching four patterns of prototypical
architectural flaws. As mentioned earlier, the F'ileSect, of
a debt dynamically evolve with the architecture evolution of
a project. However, the FileSect, in different releases all
contain one source file, named the Anchor File, from which
the debt originate and accumulate over time. As an intuitive
example, a base class, which frequently change with its child
classes, could be the Anchor File and the child classes are the
Member Files in a FileSet,. We define FileSet, based on
the notion of Anchor File and Member Files as:

FileSet, = {a, M,|M, = {m; : i from 1 to n}|

VYm; € M,, m; architecturally connected with a in release r}

(&)

DCrawling: Select @indexing: Identify

(®Modeling: Compute

@Ranking: Identify ©®Aggregate: Merging

Code DRSpaces debt candidates debt model costly ATD related ATDs
Repo
_ 7| Crawling | /7| Indexing | _;I Modeling | | Ranking | ,| Merging |
nesless) T - / /
f und Y // v / | v f ;
| "'--SeQRSpace ya Candidate | | Ranked | Compoun
' R1'to Rn . Fi / ATD ' ATD
T | |
R1t | |
Rn | - ,
_/ 1
7T U] SoftArch
A Titan - ’ 4
- k R1to Rn
------ N, ATD_x
" ATD_x
_[[Revision 1 oep <Filesetsea,
log I DebtModel>
I I
Report
L P
____,_] Input file D New approach Ij Output files —= Input
. eyt .
- I nput files i I Prior approach 1_Und_ i commercial Tool = Output
Fig. 2: Approach Framework
1 2 3 4 5 6 7
Commit: A B . 1 PDA*Line (1) ,100% ,100% dp,100% ,100% ,100% ,100%
Commit2: A B 3 11 g 2 PDA*SquareCircle [,100% (2) ,100% dp,100% ,100% ,100% ,100%
Commit3: B, D <« 3 PDA*FileAtt* ,100% ,100% (3) dp,100% ,100% ,100% ,100%
Commita: A, C @%@ 4 PDA* dp,50% dp,50% dp,50% (AN dp,50% dp,50% dp,50%
13 5 PDA*Text ,100% ,100% ,100% dp,100% (5) ,100% ,100%
1 6 PDA*Link ,100% ,100% ,100% Extend,dp,100% ,100% (6) ,100%

3 B 3 11,
O=© O=O
2/3 1/3 @

Fig. 3: Generate HPC Matrix

where FileSect, € FileSetSequence, a is the anchor file,
and the files contained in M, change with a in release r. We
call M, the member files of a in release r.

To explain the four indexing patters, we first define two
boolean expressions to describe the relationships between two
files (x and y) in release r: Sy(xr — y) and H,(z — y).
Sy(x — y) means y structurally depends on z in release r.
H.(x — y) means z is dominant and y is submissive in
their co-changes between release 1 to release r. In HCP,,
HCP,[x,y] is the probability of changing y, given z has
changed. If HCP[z,y] > HCP,[y,z], then = is dominant
and y is submissive. HCP[z,y] = HCP, [y, z] means x and
y are equally dominant. Formally:

In release r,
Sy(x — y) is true if y € DRSpace,_z, otherwise it is false
H,(x — y) is true if HCPx,y] >= HCP,[y, z]
N HCP|x,y] # 0, otherwise it is false
(6)
For any pair of a and m in a FileSet,, we identify 4
relationships: S,.(a — m), S.(m — a), H.(a — m), and
H,.(m — a). Each relationship could be either true or false.
We enumerated all 16 combinations of these 4 relationships.
The 4 combinations with H,.(a — m) and H,.(a — m)
false, which indicates that « and y are not likely to change
together, are irrelevant to our analysis, since we need history to

7 PDA*Widget ,100%
A* stands for Annotation

,100% ,100% Extend,dp,100% ,100% ,100% (7)

Fig. 4: Hub

measure debt. From the remaining 12 possible combinations, we
defined 4 indexing patterns—Hub, Anchor Submissive, Anchor
Dominant, Modularity Violation. Each pattern corresponds to
prototypical architectural issues that proved to correlate with
reduced software quality [26].

Using any file a € ErrorSpace, as the anchor file, we
can identify its members to form the F'ileSet, ,. The mem-
bers are identified by matching the structural dependency in
SelectedD RSpace, and the evolutionary coupling in HC'P,
through the lens of the 4 indexing patterns:

Hub—the anchor file and each member have structural
dependencies in both directions and history dominance in at
least one direction. The anchor is an architectural hub for
its members. This pattern corresponds to cyclic dependency,
unhealthy inheritance (if the anchor file is a super-class or
interface class), and unstable interface (if the anchor file has
many dependents). Informally such structures are referred to
as “spaghetti code”, or “big ball of mud”. A FileSet, , with
anchor file a in release r that matches a hub pattern is denoted
by HBUFileSet, , and is calculated as:

HBPFileSet, , = Indexyg(a, SelectedDRSpace,, HCP,.)
= {a, M,|Vm € M,,S,(a = m) A S.(m — a)

A(Hp(a = m)V H.(m —a))}
@)

Figure 4 is a Hub FileSet for the PDFBox project, anchored
by PDAnnotation. The dark grey cell represents the anchor file

1 2 3 4 5 6 7 8

1 AbstractType (1) |

2 UUIDSerializer ,100% |(2) ,50% ,100% ,50%

3 UUIDType ext,dp,33% dp, |(3) 33% ,50%

4 AbstractCell dp,50% (4)

5 TypeCast dp,33% ,33% (5) ,33% ,33%

6 IntegerSerializer ,100% ,100% ,50% (6) ,50%

7 LongType ext,dp,67% ,67% ,33% (7) dp,67%
8 DateType ext,dp,40% ,60% dp,40% (8)

Fig. 5: Anchor Submissive

(cell[4,4] for PDAnnotation). The cells showing the historical
and structural relationships between member files and the
anchor file are in lighter grey. In this HBFileSet, the anchor file
structurally depends on each member file, and each member
file also structurally depends on the anchor file. When the
anchor file changes, each member file has a 50% probability of
changing as well. When a member file changes, the anchor file
always changes with it. A HBFileSet is potentially problematic
because the anchor file, like a hub, is strongly coupled with
every member file both structurally and historically.

Anchor Submissive—each member file structurally depends
on the anchor file, but each member historically dominates the
anchor. This pattern corresponds to an unstable interface, where
the interface is submissive in changes. An Anchor Submissive
FileSet with anchor a in release rt is:

ASFileSet, , = Indexas(a, SelectedDRSpace,, HCP,)

= {a, M.|¥m € M,,S,(a — m)A

— S.(m = a) AH.(m = a)

®)

Figure 5 shows an ASFileSet with anchor AbstractType in
Cassandra. Each member file directly or indirectly depends on
the anchor file, but when the member files change, the anchor
file changes with each of them, with historical probabilities of
33% to 100%. A ASFileSet is problematic because history
dominance is in the opposite direction to the structural
influences: the anchor should influence the member files, not
the other way around.

Anchor Dominant—each member file structurally depends
on the anchor file and the anchor file historically dominates
each member file. This pattern corresponds to the other type of

unstable interface, where the interface is dominant in changes.

An Anchor Dominant FileSet with anchor a in release rt can
be calculated as:

ADFileSet, , = Index ap(a, SelectedDRSpace,., HCP,.)
= {a, M, |Vm € M,,S,(a — m)A
— Sy(m —a)ANH.(a —m)}
9)
Figure 6 shows an ADFileSet calculated using anchor
ColumnParent in Cassandra. Each member file (from row 2 to
row 6) structurally depends on (cell[2 to 6:1]) the anchor file
(row 1), and when the anchor file changes, the member files
change as well with probabilities from 41% to 100% (cell[1:2
to 6]). A ADFileSet presents potential problems where the
anchor file is unstable and propagates changes to member files
that structurally depend on it.

1 2 3 4 5 6
1 ColumnParent (1) ,100% ,50% ,41% ,50% ,100%
2 Cassandra dp, (2) ,48%
3 CliClient dp, dp, (3)
4 Column*Reader |[dp, dp, (4)
5 ThriftValidation dp, (5)
6 CassandraServer |dp, Implement, dp, (6)
Fig. 6: Anchor Dominant
1 2 3 4 5 6 7 8
1 JMXETPEMBean (1) ,100% ,44% ,50% ,100% ,100% |,50%
2 DebuggableTPExecutor (2) ,31%
3 StorageService (3) dp, dp,Use,
4 ColumnFamilyStore dp, (4)
5 MessagingService dp, (5) dp,
6 NodeProbe ,44% dp, (6)
7 StatusLogger ,50% dp,50%4dp, ,50% (7)
8 JMXCTPExecutor 50% ,100% ,31% ,100% ,50% ,50% ,50% [(8)

Fig. 7: Modularity Violation

Modularity Violation—there are no structure dependencies
between the anchor and any member, however they historically
couple with each other. In a modularity violation the anchor
and member files share assumptions (“secrets”) that are not
represented in any structural connection. A MV FileSet with
anchor a in release r is calculated as:

MV FileSet, , = Index v (a, Selected DRSpace,, HCP,.)
= {a, M,|VYm € M,,— S,(a = m)A — S,(m — a)
A(H.(m —a)V H.(a —m))}

(10)

Figure 7 is a MV FileSet with anchor JMXCTPExecutor
(row 8) in Cassandra. The anchor file, on the bottom of the
matrix, is structurally isolated from the member files. However,
when the anchor file changes, there are historically 31% to
100% probabilities that the member files change as well, and
when the member file JMXETPEMBean (on row 1) changes,
the anchor file has a 50% chance to change with it. This
pattern identifies potential problems where the anchor file and
the member files share common assumptions, without explicit
structural connections, and these assumptions are manifested
by historical co-change relationships.

For each release r, we use each a in ErrorSpace, as
the anchor file to calculate a FileSet for each of the 4
patterns: HB, AS, AD, and MV FileSet, ,. The FileSetSe-
quence in the Hub pattern with anchor file a is denoted by
HBFileSetSequence,. Similarly, for anchor a, we can identify
AS, AD, and MV FileSetSequence,. Using any error-prone file
as the anchor, we can identify 4 FileSetSequences, each of
which is an ATDCandidate.

As a result, for each a € ErrorSpace, and for each release
r, we can exhaustively detect 4*| U'_, ErrorSpace,| candi-
dates, which equals 4*|ErrorSpace,| because ErrorSpace,,
is a super set of all ErrorSpaces in earlier releases.

C. Modeling: Build Regression Model

Now that we have identified the first element of a potential
debt, namely ATDCandidate, which is a FileSetSequence
composed of the FileSet, with anchor « in different releases.

10000 N 2000
Linear

1800

1600

7.3*T +1070.7 1400
=0.9839 1200

Logarithmic

8000

6000
ebtModel(T) = 510.49In(T) + 875

4000 R?=0.9351

1000
800

T T 600 -+ T

2 4 6 8 10 0 2 4 6 8

0
12000 4 gxponential
10000

0

Wicket
RequestParameters

HBase
KeyValueHeap

2000

25000 .
Polynormial

DebtModel(T) = -37.523x4 + 719.82x; 1.8x2 +
10471x + 35.778
R?=0.935

Wicket
AttributeModifer

20000

8000
15000
6000 DebtModel(T) = 299/81€0.385T
2000 8 10000
2000 5000

o TypelEncoding

2 4 6 8 10 . e
12 3 4 5 6 7 8 9

Fig. 8: 4 Types of Regression Model

Now, we need to: (1) quantify the maintenance costs associated
with each FlileSet within a FileSetSequence to filter out
unqualified candidates, and (2) calculate the DebtModel that
can describe the cost trajectory of a debt over releases.

1) Quantify ATDCandidates: From each FileSetSequence,
we first exclude any F'ileSet,., that contains just 1 file, since
this can not involve architecture problems. Next, we define the
age of a FileSetSequence as the number of F'ileSets in it after
singleton F'ileSets are filtered out. Then, for each FileSet,.,
we measure the maintenance cost, denoted by Cost_F'ileSet,.,
that associated with the involved source files by the end
of release r. For any file f € FileSet,, we estimate the
maintenance cost as the amount of error-fixing churn expended
on it by the end of release r (i.e. between release 1 and release
r). We denote the maintenance cost for file f between release 1
and release 7 as ErrorChurn,_g. Cost_FileSet, is the sum
of maintenance costs on each file in the set:

Cost_FileSet, = Z ErrorChurn,_s

(1)

VfeFileSet,

Not every FileSetSequence qualify as a true debt. The key
characteristic of a debt is its long-lasting impacts. In other
words, a true debt should survive a long time and incur
increasing maintenance cost over time. Therefore, we examine
the age of each FileSetSequence to filter out short-lived
sequence. Second, FileSetSequence should require increasing
maintenance cost over time. During each release window, the
debt should have incurred more maintenance cost. That is,
let FlileSet; and FileSet;;1 be two consecutive snapshots
of an AT DCandidate, the cost on FileSet;;1 should be
higher than the cost on F'ileSet;. Formally, the criterion for a
AT DCandidate to qualify as a true debt is:

age >=n/c;

Cost_FileSet;11 > Cost_FileSet;,i = 1...age — 1.

The parameter c is a tunable. We use c=2, meaning that
FileSetSequence is persistent for at least half of the releases in
a project. A candidate in a younger age is not a meaningful
debt (at least not yet). The second condition requires that the
maintenance costs on FileSetSequence increase over time.

2) Formulate DebtModel: For each qualified FileSet-
Sequence, we calculate a regression model, denoted as
DebtModel, to describe the trajectory of its maintenance cost

over time. The purpose is to capture the “interest rate” of a
debt. We employ four typical regression models that indicates
different types of “interest”: linear, logarithmic, exponential,
and polynomial (up to degree 10). Figure 8 shows typical
examples of these 4 models. Each model represents a typical
“interest” type. The linear model (part 1 of Figure 8) indicates
a stable interest rate. This means that developers pay a stable
amount of maintenance cost on this debt in each release window.
The logarithmic model (part 2) indicates a decreasing interest
rate. As show in the example, the maintenance cost of a debt
increase more slowly over time. We conjecture that this could
happen in the scenario of a successful refactoring, which made
it easier to make the next change on the group of files. The
exponential model (part 3) indicates an increasing interest rate.
This could happen when the group of files become extremely
tangled. It is especially likely to happen at the beginning of a
project when developers have not started to worry about the
architecture. Finally, the polynomial model (part 4) indicates
a fluctuating interest rate. This is likely to happen due to
uncontrolled factors, such as resource allocation.

Following equation 11, we calculate the maintenance cost—
Cost_FileSet, for each FileSet, in a FileSetSequence. Thus,
the cost associated with a FileSetSequence form an array that we
call Cost_Array. Cost_Arrayli] = Cost_FileSet,, where
FileSet, is the ith element of FileSetSequence. We define an
integer array T'[i] = r, where r is the release number of the
ith element in FileSetSequence. Each release r is numbered
by its order in the release in history. In the DebtModel of
a FileSetSequence, the Cost_Array is the independent value
and T is the dependent value. We developed a ModelSelector
algorithm to select a regression model that best describes the
relationship between T' and Cost_Array. The formula of the
regression model are returned as Debt M odel:

DebtModel = ModelSelector(CostArray,T) (12)

The following figure shows
ModelSelector algorithm.

To help us pick the best regression model, we introduce a
parameter R?, .. (R? threshold) ! which ranges from 0 to
1 in the ModelSelector. A regression model can be selected
only if the R? associated with the regression model is higher
than R% .. However, we do not pick the best model strictly
based on the highest R2. Our heuristic is to prioritize the
linear regression model, as long as its R? reaches the threshold
R% ... As shown in the pseudocode, between line 1 to line
5, we first calculate a linear regression model, and this model
is returned only if its R%, is greater than R?, __, . Otherwise,
we try both logarithmic and exponential models (line 6 to line
9), and select the model whose R? reaches the threshold line
16 to 21). If they both reach R?, ... ModelSelector returns
the model with a higher R? (line 10 to line 15). Finally, if
none of the linear, logarithmic, or exponential model fit, we
calculate a polynomial model of degree up to 10 (line 22).

the pseducode of the

' R? is a statistical measure of how close the data are to the regression line.

Algorithm 1 ModelSelector (CostArray, T)

modely;, = Linear Fit(CostArray,T)
R%, = modelyi,.R>
if R%’L’I’L >= R%hresh then

return modely;,
end if
modelrog = LogF'it(CostArray,T)
R%OQ = modely,q.R?
model ggp = ExpFit(CostArray, T)
R%, = model gyp. R?

R A A S ol > s

10: if RLO% >=R?, ., and R?Ewp >= R? ., then
1n: if R7,, >= R%,, then

12: return modelrqq

13: end if

14: return modelgy,

15: end if

16: if R7,, >= R}, then

17: return modelroq

18: end if

19: if R}, >= R}, then

20: return modelggy

21: end if

22: modelyory = PolyFit(CostArray,T)
23: return modelpory

A polynomial model where R, >= R}, ., or the degree
reaches 10, whichever is satisfied first, is selected.

The rationale of the heuristic in ModelSelector is that the
linear, logarithmic, and exponential models present three typical
types of penalty interest rate: stable, decreasing, and increasing.
The polynomial model, however, catches all the fluctuations
of the maintenance cost, which is very likely a result of noise
due to extraneous factors, and will always be picked if based
on the highest R?. For example, the debt in part 1 of Figure 8,
intuitively a linear model (Debt Model(r) = 857xr+1070 with
R? of 0.98), can fit into a polynomial model Debt M odel(r) =
—2570 459 %75 — 6805 r? 43874 %73 — 11342 %1% + 16538 *
r — 6466, with a higher R? (0.99). The polynomial model fits
better (higher R2), but the linear model is more meaningful.

The selection of DebtModel completes the AT D identifica-
tion.

D. Ranking: Identify High-maintenance ATD

We have identified different ATDs following the first three
steps, however the identified debts have the varying severity,
costing different amount of maintenance cost. Practitioners
should prioritize debts with higher maintenance costs. There-
fore, this step ranks all the identified architectural debts
according to their cumulative maintenance cost.

We define a pair py = (f, ErrorChurny), where f is an
error-prone file, and ErrorChurny is the maintenance cost
associated with f, approximated by error-fixing churn on f.
Let CostMap be the set of py, such that Vf € ErrorSpace,
(n is the latest release), there exists a py € CostMap. CostMap

is one of the inputs to the ranking algorithm. The other input
is the identified AT Ds.

RankedDebts = ranking(AT Ds, Cost M ap) (13)

In the ranking algorithm, we identify the most significant
ATDs according to CostMap iteratively. In each iteration, we
select maxATD that account for the largest portion of cost for
files in CostMap from ATDs. The cost for duplicate files is
excluded, and the iteration terminates when all ATDs are ranked.
The top debts returned account for the largest maintenance cost,
and deserve more attention and higher priority for refactoring.

E. Aggregating: Merge Compound ATDs

In addition to ranking debts based on costs, practitioners also
need to investigate the relationship among debts to effectively
“pay-off” the debts. Thus, this step aims to analyze the relation-
ship among debts and merge related debts into compound debts
which capture the complicated inter-relationship among debts.
We believe that this step is necessary for the practitioners to
develop an effective refactoring solution for debts that form
more complicated structural patterns, and save duplicated effort
on reviewing debts that have significant overlap.

The identified ATDs may share two different types of relation-
ship between two debts D, = {a,, M,} and D, = {a,, M, }:

1) Transitive Anchors: The anchor file of a debt is a member

file of another debt. Formally,

Transitive_AnchOT(Dy, D,) is true, if a,, € M,

(14
This indicates that the change propagates from the anchor
of Dy, ay, to its member files M,, and then through
a; € M,y to the member files of D, M,. This change
propagation, through multiple debts, is analogous to the
well-known “ripple effect”. Figure 9 shows an example
from Hadoop formed by three Anchor Dominant debts.
The related files and cells of each debt are highlighted in
a different background color to facilitate understanding.
The first debt contains files on rows 1, 2, and 13. The
second debt contains files from rows 3 to 13. The third
debt contains files from rows 13 to 17. The member
files in each debt structurally depend on the anchor file
and historically change with the anchor file as well.
For example, in debt 2, the files on rows 4 to 13 all
structurally depend on the anchor fs. FSDatalnputStream
(row 3). When this anchor changes, there is a 16%
chance that these member files will change as well. These
three debts share Transitive Anchor relationships through
the member file, security.Credentials (row 13). secu-
rity.Credentials is the anchor of debt 3. This indicates that
the changes tend to propagate from two different anchors,
io.WritableUtils (row 1) and fs.FSDatalnputStream (row
3), to their member security.Credentials, which further
propagates changes to its members on rows 14 to 17.
Note that there exists non-trivial history change coupling
directly from the anchor and member files of debt 1 to
the member files of debt 3, as well as from the anchor

and member files of debt 2 to the member files of debt
3. This is consistent with the complicated Transitive
Anchors relationship that we have detected.

2) Compound Anchors: Two debts contain overlapping
member files, and thus the two original anchor files
should form compound anchors.

Compound_Anchors(Dy, D) is true,

15
if M, N My~ (1>

This indicates that the two anchor files, a, and a,,
propagate changes to the same set of member files in
M, N M,. Therefore, these two anchor files, a, and
ay, should be treated as the compound anchor after the
aggregation. For example, Figure 10 is an example of
such relationship between two HUB debts from HBase.
The first debt is composed of files from row 1 to row 7,
with the anchor on row 1, namely AssignmentManager.
The second debt is composed of files from row 6 to
row 9, with the anchor on tow 9, namely Hmaster. This
debt is featured by the cyclic dependencies between each
member file and the anchor file. Meanwhile, whenever
each member file changes, there is a significant chance
(44% to 100%) that the anchor file will change with it.
Similarly, the files and related cells of the two debts are
highlighted in green and orange background colors to
help understanding. Similarly, whenever the members
file change, the anchor file has a 37% to 54% change
to change as well. As we can see from the view, there
are two member files on row 6 and row 7, which are
contained in both debts. Therefore, we highlight the
files and cells in blue background. The two anchors of
the HUB debts form the compound anchor for the two
overlapping members. Not only this makes the structure
of this merged debt more complicated, but also the files
in debt 1 are also likely to propagate changes to the
anchor file of debt 2. Therefore, it is important for the
practitioners to capture this type of relationship among
debts.

In Step2—Indexing Patterns, each debt pattern is retrieved
from a single file as the anchor. The above aggregation strate-
gies capture the complicated relationship among the anchors,
which in turn form the compound ATDs. The Transitive Anchors
capture the “ripple effects” among the four atomic debt patterns.
The Compound Anchors captures cases where a debt originates
from multiple files as the anchor. On the one hand, it is
necessary for developers to develop an effective refactoring
solution for eliminating the architectural flaws underlying the
compound debts. For example, if two debts share the Transitive
Anchors, the debts cannot be eliminated completely if the
developers only examine one of the debts. On the other hand,
if the compound anchors share a large number of overlapping
members, it is more effective for the developers to treat the
compound anchors together to avoid repeated effort.

We define a Compound-ATD as being composed of multiple
related ATDs. We create a Debt M erger algorithm to aggregate

related debts into Compound ATD in two phases.

CompoundAT Ds = DebtMerger(AT Ds) (16)

In the first phase, we merge debts based on the Transitive
Anchors relationship. We form a merge graph, G,,,_+,, Where
the nodes are the original debts, and the edges are the Transitive
Anchors relationship. If Transitive_Anchor(D,, D,) is true,
there is a merge edge from D, to D,. This means that D,
should be merged into D, since D, is at a higher propagation
hierarchy, i.e. its anchor propagate changes to D,’s anchor.
Next, we use a simple graph traversal algorithm to find all
the sub-graphs in G,,_t,. Each sub-graph is a group of debts
that should be merged together due to the Transitive Anchors
relationship.

The second phase merges debts based on the Compound
Anchors. Similarly, we calculate another merge graph, namely
Gm_om, Where the nodes are the output of phase 1 (or the
original debts if the output of phase 1 is not appropriate), and
the edges are the Compound Anchors relationship. For any two
debts, D, and D,, we calculate their weighted relationship in

. DyND
two directions, namely Wp, ,p, = ‘ D |y‘ and Wp, _,p, =

%. They measure the percentage of overlapping files
Y . . .

between D, and D, in D, and in D, respectively. In Gy, _om,
there is a merge-edge from D, to D,, indicating that D), can

be merged into D, when the following condition holds:

WDI*)Dy > WDy*)Dzand WDzﬁDy > ThredOverlap (17)

In our experiment, we pick Thredoyeriap = 0.5. The
rationale of this heuristic is that if Wp__, D, = 0.5, it indicates
that the majority of files in D, are also member files in D,
therefore D, should be merged into D,,. However, if Wp, .p,
and Wp, _,p, are both > 0.5, it indicates that these two debts
share mutually significant overlap with each other. In this case,
we merge the smaller debt into the larger debt. For example,
if Wp,~p, > Wp,~p,, we merge D, to D,, since D,
contains more source files besides the overlapping part. We did
not consider overlap less than 50%, since it is not significant
for a merge. For example, if two large debts only have one
overlapping member file, it does not make sense to merge them.
In section VII-E, we will discuss the impact of T'hredoyeriap
on the merging results.

For a particular note, we merge the same type of debts.
That is, we do not merge a AD debt and a MV debt even if
they share the two relationship. This is because debts in the
same type represents the same typical architectural flaws, thus
practitioners benefit from reviewing related, same type of debts
together.

V. EVALUATION QUESTIONS AND SUBJECTS
A. Research Questions

We aim to answer the following research questions:

o RQ1: Can the proposed approach identify ATDs that
deserve attention? This RQ aims to evaluate whether our
approach can identify file groups that cause significant

O 00 NOUL B WN B

10

12
13
14
15
16
17

Fig. 9: Transitive Anchors in Hadoop

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
io.WritableUtils (Anchor1) (1) 25% 25%) 25% 25%
delegation.DelegationKey dp,16% (2) 16% 33 16%
fs.FSDatalnputStream (Anchor 2) (3) 16% 16% 16% 16% 16% 16% 16% 16% 16% 16%| 16% 16%
fs.FileSystem dp (4) 13% 13% 38% dp |11%
fs.AbstractFileSystem dp dp,42% (5) 42% 80%
fs.RawLocalFileSystem dp Ext,dp,26% (6) 32% 17%
fs.FilterFs dp,10% dp,40% Ext,dp,90% (7) 10% 80% 10% 10%
fs.shell.CopyCommands dp dp (8) 22%
fs.TestLocalFileSystem dp dp, dp,57% (9)
fs.FileContext dp dp,50% dp,32% 11% 15% (10)
fs.FSMainOperationsBaseTest dp,14% dp,42% dp,14% 14% (11)
fs.shell.Display dp dp, 26% (12)
security.Credentials (Anchor 3) dp dp dp (13) | 10% 10% 63% 18%
fs.TestFilterFileSystem dp dp,57% 14% 28% dp (14)
util.GenericOptionsParser dp (15) dp,16%
security.UserGrouplinformation dp (16) ,36%
security.TestUserGrouplnformation dp dp,82% (17)

Fig. 10: Compound Anchor with Overlapping Members in HBase

1 2 3 4 5 6 7 8 9
1 AssignmentManager (Anchor1) (1) dp dp dp dp dp dp 29%
2 handler.ClosedRegionHandler dp,81% (2) 63% 27% 45% 63%
3 handler.OpenedRegionHandler dp,78% 30% (3) 13% 21% 39%
4 AssignCallable dp,100% 50% (4) 50% 50% 100%
5 UnAssignCallable dp,100% 33% (5) 66%
6 handler.DisableTableHandler (Overlap) dp,46% 20% 20% (6) 86% dp,46%
7 handler.EnableTableHandler (Overlap) dp,44% 17% 17% 44% (7) dp,37%
8 HMasterCommandLine 20% (8) Extend,dp,54%
9 Hmaster (Anchor 2) dp,23% dp dp dp (9)

maintenance costs in software projects that are worthy
of attention. We will address the question from different

perspectives in three sub

-questions :

— RQ1-1: Do the file groups identified in ATDs

generate more maintenance costs than what one
would expect given their sizes? Here, we investigate
whether the ATDs identified by our approach account
for significant maintenance costs in a project’s evo-
lutionary history. If the identified file groups only
account for a small portion of the project’s overall
maintenance cost, then they do not deserve attention.
Furthermore, we examine whether the maintenance
cost associated with the ATDs is proportionally higher
than the number of files contained in the ATDs. If
the identified file groups contain a large number of
source files, it is not surprising that they account
for a large amount of maintenance costs. In either
case, we cannot claim that the ATDs identified by
the proposed approach worthy of attention.

RQ1-2: Will the file groups identified in ATDs
based on project history keep incurring signif-
icant maintenance costs in the future? In this
part, we investigate whether the ATDs—identified
using the proposed approach based on a project’s
revision history from release 1 to release r — 1—

will keep incurring significant maintenance costs
between release » — 1 and release r. If the ATDs
identified based on history stop incurring substantial
maintenance costs in the future, this indicates that
the ATDs identified by our approach do not deserve
attention.

RQ1-3: Is our approach simply identifying large
files as ATDs? Prior research has shown that file size
usually correlates with error-proneness and churn.
Therefore, large files tend to be identified as ATDs.
Here, we want to investigate whether our approach
simply identifies groups of large source files. If
so, it indicates that we can (much more easily)
identify ATDs using LoC. To answer this question,
we analyzed the size, in terms of the Lines of Code
(LoC), of files involved in debts in each project, and
investigate whether the identified debts are composed
of files of varying sizes. If so, it indicates that our
approach is not simply identifying large files.

e RQ2: Can a DebtModel accurately predict the future
cost of an ATD? A DebtModel is a regression model
that describes the trajectory of the maintenance costs
associated with an ATD. An accurate Debt M odel should
not only characterize past costs, but it should also be able
to predict future costs. If the cost of a debt in release n,

10

estimated using the DebtModel calculated from release
1 to n-1, is close to (e.g. within 10% deviation from) the
actual cost in release 1, we can claim that the Debt M odel
is accurate. If so then architects can confidently use the
DebtModel to predict the interest cost of each debt in
the next release. In particular, we plan to investigate how
the choice of the R? threshold influences the accuracy of
prediction.

RQ3: Are compound ATDs common in software
projects, and do they form cost-effective refactoring
candidates? This RQ investigate two aspects of the
compound ATDs after the aggregation step. First, we
evaluate whether the merging process, based on Transitive
Anchors and Compound Anchors, is widely applicable to
debts across projects. If the ATDs are mostly independent
from each other, there will be few meaningful merging
opportunities. And it indicates that the compound ATDs
formed by multiple atomic patterns are rare. Second, if
merging is widely applicable, we will examine whether
the compound debts after merging are cost-effective
for architects to inspect as refactoring candidates. A
compound debt tends to aggregate more files and thus
may become harder to review. Thus, we will examine
two important characteristic of each compound debt: the
percentage of files included in it, and the percentage of
maintenance cost associated with it. A debt is more cost-
effective to refactor if it contains a small portion of the
system’s files, but these files account for a high proportion
of the system’s maintenance costs.

B. Study Subjects

We chose 18 Apache open source projects as our evaluation
subjects. These projects differ in scale, application domain,
length of history, and many other project characteristics. They
are: Camel—a integration framework based on Enterprise
Integration Patterns; Cassandra—a distributed DBMS; CXF—
a Web services framework; Hadoop—a framework for reli-
able, scalable, distributed computing; HBase—the Hadoop
distributed, scalable, big data store; PDFBox—a library for
working with PDF documents; and Wicket—a component-based
web application framework. OpenJPA—an object-relational
mapping solution for simplifying storing Java objects in
databases. HIVE—a data warehouse software project built
on top of Apache Hadoop for providing data query and
analysis. Avro—a row-oriented remote procedure call and
data serialization framework Mesos—an open-source project
to manage computer clusters. Httpd—an open-source cross-
platform web server software for Apache. Kudu—a column-
oriented data store of the Apache Hadoop ecosystem. Mahout—
it produces free implementations of distributed or otherwise
scalable machine learning algorithms Chemistry—it provides
Content Management Interoperability Services in different
programming languages. Jena—a Semantic Web framework
for Java Ambari—a project for provisioning, managing, and
monitoring Apache Hadoop clusters. Finally, allura is an open
source implementation of a software forge, a web site that

11

TABLE I: Study Subjects

Subject(L) History #R #Cmt #lss # Files
Camel(J) 7/2008 to 7/2014 (72) 12 14563 2790 1838 to 9866
Cassandra(J) | 9/2009 to 11/2014 (62) 10 14673 4731 311 to 1337
CXF(J) 12.2007 to 5-2014 (77) | 13 8937 3854 2861 to 5509
Hadoop(J) 8/2009 to 8/2014 (60) 9 8253 5443 1307 to 5488
HBase(J) 12/2009 to 9/2014 (53) 9 6718 6280 560 to 2055
PDFBox(J) 8/2009 to 9/2014 (62) 12 2005 1857 447 to 791
Wicket(J) 6/2007 to 1/2005 (92) 15 8309 3557 1879 to 3081
OpenJPA(J) 8/2007 to 6/2018 (130) | 17 4265 1779 1266 to 4487
HIVEQ) 10/2010 to 2/2016 (76) 14 7309 11768 979 to 4424
Avro(J) 52010 to 5/2016 (72) 15 1288 1066 156 to 506
Mesos(c++) 5/2014 to 1/2019 (56) 10 14368 4589 393 to 1294
Httpd(c) 6/2005 to 1/2019 (163) | 28 17239 8091 327 to 462
Kudu(c++) 2/2016 to 10/2018 (32) | 11 3918 1423 953 to 1223
Mahout(J) 52010 to 4/2017 (83) 11 3046 801 455 to 1217
Chemistry(J) 4/2011 to 4/2017 (72) 11 1786 589 652 to 1019
Jena(J) 6/2012 to 9/2018 (75) 18 7488 890 2552 to 4214
Ambari(py) 5/2014 to 12/2019 (67) 19 | 15,549 | 15,777 682 to 1693
Allura(py) 8/2013 to 10/2019 (74) 14 7498 542 491 to 542

manages source code repositories, bug reports, discussions,
wiki pages, blogs, and more for any number of individual
projects.

A summary of these projects is given in Table I. The first
column is the project name and the main implementing pro-
gramming language. In particular, 13 projects are implemented
in Java, while the other 6 projects are implemented in C/C++ or
Python. The second column is the start to end time and the total
number of months (in parentheses) for each project. The third
column “#R” shows the number of releases selected per project.
We selected releases to ensure that the time interval between
two releases is approximately 6 months. The column “#Cmt”
is the number of commits happened over the selected history.
The column “#Iss” is the number of bug reports, downloaded
from the project’s bug-tracking system. The last column shows
the size range, measured as the number of files in the first and
the last selected release.

The rationale behind the selection of the evaluation subjects
is as follows. First, these projects have diverse characteristics,
in terms of age (from 32 to 163 months), domains, scale,
and programming language (Java, C/C++, and Python). The
diversity of the projects ensures that our approach is generally
applicable to projects of different domains, age, scale, and
programming language. Second, since we aim at ATDs that
incur long-term maintenance consequences, the identification
and quantification approach relies on sufficient evolutionary
history in software projects. The selected projects all have at
least 9 releases to provide sufficient data. Projects that are new,
without sufficient releasing history, are not appropriate for this
study. Third, we select projects with high quality maintenance
revisions and issue tracking data. This allows us to keep track
and estimate the maintenance costs using the error-fixing churn,
mined from the project repository.

VI. EVALUATION RESULTS
A. Significance of ATDs

As discussed in Section V, we evaluate whether the proposed
approach can identify significant ATDs that deserve attention
in three sub-questions:

RQ1-1: Do the file groups identified in ATDs generate
more maintenance costs than what one would expect given

their sizes? We will report the percentage of maintenance costs
associated with the identified ATDs, as well as the percentage
of files that are contained in the ATDs. If the ATDs account
for a larger percentage of maintenance cost compared to the
size, it implies that they are causing extra cost in relative to
their size, and thus deserves attention.

Fig. 11: Churn associated with ATDs in HBase

Error Churn Associated with Top ArchDebts
HBase
100%

90%
80%
70%
60%
50%
40%

30%
20%

10%

0%

8
HB -A-AD B-AS ©-MV -e-All

9 10 11 12 13 14 15 16 17 18 19 20 21

We first use HBase as an example to illustrate our detailed
observations, and then we will summarize the key information
of the debts identified from different projects. Figure 11 shows
the percentage of maintenance cost (approximated by the bug-
fixing churn) associated with source files that are involved in
ATDs. The four trendlines represent the maintenance cost of
the four ATD patterns (from top to bottom), namely Modularity
Violations (MV), Anchor Dominant (AD), Anchor Submissive
(AS), and Hub (HB). The x-axis is the rank of each ATD based
on the associated maintenance cost. The y-axis indicates the
accumulative maintenance cost associated with the top x ATDs.
We can make the following observations based on HBase:

1) The top 21 ATDs account for a significant portion
(89%) of maintenance cost in HBase. Source files
involved in ATDs tend to continuously accumulate
a significant amount of cost in the project history.
Therefore, to avoid paying excessively high maintenance
costs, architects and developers should try to pay-off the
“debts” by eliminating the underlying architectural design
problems through refactoring. For instance, developers
could encapsulate the “shared secrets” among those files
identified as having Modularity Violations to separate
the most change-prone files from the less volatile parts
of the system [30]. Note that, as we look at more ATDs
in HBase, the maintenance cost associated with them
never reaches 100%. The reason is that not all files in
the project are associated with debts.

The top five Architectural Debts account for a large
portion of maintenance cost. For example, the main-
tenance cost of the top 5 MV debts take 74% of all
the error fixing churn. And the next 16 debts only
increase this to 89% of maintenance cost. Note that the
top 5 MV debts only contain 34% of files in a project.
Therefore, this small group of files deserves attention.

2)

12

Similar observation can be made for the other three
types of debts. The four trendlines flatten out after the
top 5 debts. The implication is that architects should
prioritize the top five debts to capture the majority of the
maintenance interests accumulated with debts.

3) Modularity Violations are the most common and
expensive type of debts. Hub is the least common debt
pattern. This is because Hub has the most complicated
structure in the four debt patterns: the anchor file is both
structurally and evolutionarily coupled with each member
file in both directions (from anchor to member and vice
versa). In comparison, AD debt and AS debts account for
comparable amounts of maintenance cost: up to about
33% and 40% of the error-fixing churn. Note also that
the sum of the maintenance cost associated with the four
types of debts is more than 100%. This is because some
source files are involved in multiple debts, thus the cost
associated with these files are counted multiple times.

We have observed similar patterns in most of the 18 projects
studied. Table II shows the summary of the top five ATDs in
each project. As we can see, the top five ATDs in the projects
on average account for 50% of error-fixing churn, while they
only contain, on average, 28% files in a project. In other words,
the maintenance cost associated with the ATDs almost double
compared to their size (in terms of number of files). This
indicates that the identified ATDs cause non-trivial extra cost
in relative to their size, thus they deserve attention from the
practitioners. This, as discussed earlier, indicates that architects
should prioritize the top few debts for refactoring. Modularity
Violations are the most common and expensive type of debts
compared to the other three types in all the projects. In some
cases projects have only a few ATDs identified; this indicates
that the error-prone files in these projects tend to be structurally
and/or evolutionarily decoupled and thus do not form significant
debt patterns. In section VII-C, we will explain more about
this phenomenon.

Furthermore, we also compare the percentage of LoC
(%LoC) vs. the percentage of churn (%Churn) associated
with the identified ATDs. The goal is to test whether the
identified ATDs account for a larger percentage of Churn than
would be expected given their LoC. The results are shown
in Table III. In column 2 and column 3, we show the %LoC
and the %Churn associated with all the identified debts. In
column 4, we calculate the difference—%Churn minus %LoC;
the larger the difference, the greater the extent to which the
identified ATDs account for a disproportionately large portion
of the churn. As we can observe from this table, the %Churn is
always greater (typically more than 10% and up to 66% greater
for the studied projects) than the %LoC of the associated debts.
However, the difference is not as large as compared to %files.
The reason is that, to a great extent, the total LoC in a file
is the result of the accumulation of churn over time. This
indicates that the identified ATDs account for a relatively larger
amount of churn, comparing to the LoC they contain. This is
consistent with the findings when comparing the percentage of

TABLE II: Significance of Debts:
The Percentage of Error-fixing Churn (Ch%) and Number of Files (Fls.)

#Debts Top 5 Debts
Subject (Ch%) All 4 Types [Modularity Vio. [Anchor Sub. [Anchor Dom. | Hub
Fls. ‘ Ch% ‘ Diff ‘ Fls. ‘ Ch% ‘ Diff ‘ Fls. ‘ Ch% ‘ Diff Fls. ‘ Ch% ‘ Diff ‘ Fls. ‘ Ch% ‘ Diff
Camel 512 (74%) | 1398(19%) | 32% | 13% [1363(19%) | 30% | 11% [32(0.4%) 2% 1.6% | 42(0.6%) | 5% 4.4% 26(0.4%) 3% | 2.6%
Cassandra | 124 91%) | 1021(59%) | 82% | 23% | 1012(58%) | 81% | 23% 57(3%) 5% 2% 31(2%) 22% 20% 20(1%) 10% 9%
CXF 183 (64%) 490(16%) 32% 16% 439(14%) 29% 15% 40(1%) 2% 1% 31(1%) 6% 5% 18(1%) 2% 1%

Hadoop 81 (58%) 261(17%) 40% | 23% 218(15%) 35% | 20% 90(6%) 17% 11% 28(2%) 13% 11% 17(1%) 6% 5%
HBase 282 (95%) 980(41%) 78% | 37% 796(34%) 74% | 40% | 495(21%) | 26% 5% 77(3%) 29% 26% 18(1%) 7% 6%

PDFBox 29 (62%) 199(28%) 57% | 29% 159(23%) 48% | 25% 84(12%) 34% 22% 25(4%) 14% 10% 11(2%) 8% 6%

Wicket 100 (50%) 385(14%) 29% 15% 352(13%) 28% 15% 66 (3%) 5% 2% 21(1%) 6% 5% 12 (0.4%) 4% 3.6%
HIVE 272 (75%) | 1403(35%) | 62% | 27% | 117830%) | 57% | 27% | 575(15%) | 32% 17% 39(1%) 22% 21% 83(2%) 6% 4%
Avro 29 (74%) 171(39%) | 63% | 24% | 16438%) | 61% | 23% | 22(0.5%) 6% 5.5% 8 (2%) 4% 2% 4(1%) 3% 2%
Mesos 9 (54%) 70029%) | 54% | 25% | 70(29%) | 54% | 25% | 15(6%) | 9% 3% 3(1%) 6% 5% 2(6%) 9% | 3%

OpenJPA 91 (61%) 394(15%) 35% | 20% | 352 (14%) 35% | 21% - - - 27(1%) 8% 7% 5(0.2%) 2% 1.8%

Httpd 17 (92%) 78 (67%) 91% | 24% 77(66%) 9% | 25% - - - 12(1%) 48% 47% 11(9%) 31% 22%
Kudu 7 (31%) 55(18%) 31% 13% 46(15%) 28% 13% 10(3%) 5% 2% - - - - - -

Mahout 6 (23%) | 185(14%) | 23% | 9% | 185(14%) | 23% | 9% - - -

Chemistry 2 (18%) 68 (14%) 18% 4% 68 (14%) 18% 4% - - -
Jena 23 (29%) 236(14%) 22% 8% 236(14%) 22% 8% 7(0.4%) 1% 0.6% - - - -

Ambari 29 (56%) 188(35%) 49% 14% 188(35%) 49% 14% 5(1%) 3% 2% 12(2%) 7% 5% - - -
Allura 39 (89%) 96(53%) 84% | 31% 92 (51%) 83% | 32% 19(11%) 21% 10% 24(13%) 50% 37% 10(6%) 19% 13%
Min. 18% 14% 23% 4% 13% 28% 4% 0.5% 2% 1% 0.6% 4% 2% 0.4% 3% 1%
Max. 95% 67% 9% 37% 66% 81% | 40% 21% 34% 22% 4% 48% 47% 9% 31% 22%
Avg. 61% 28% 50% 20% 28% 49% | 19% 6% 11% 6.1% 6% 12% | 14.7% 4% 6% | 6.1%

files vs. the percentage of churn. Columns 5 to 7 show similar
information, but for the top five ATDs in each project. The
same observations and conclusions hold here.

TABLE IV: Percentage of Bug-fixing Files/Churn between
Release r-1 to r that are Directly in and Growing from ATDs
Identified based on Release 1 to r

TABLE 1II: %LoC VS. %Churn in ATDs Subiect Direct in ATDs Plus Growing from ATDs
— AT Debis Top 5 DebEs ubjec %Files | %Churn | %Files %Churn
o). LoC% | Churn% | Diff | LoC% | Churn% | Diff Camel 61% 74% 70% 76%
Camel 52% 74% 2% | 21% 32% 1% Cassandra 85% 90% 92% 95%
Cassandra | 85% 91% 6% 72% 2% 10% CXFE 35% 37% 73% 2%
CXF 44% 64% 20% 18% 32% 14% Hadoop 44% 46% 63% 68%
Hadoop 11% 58% 47% 6% 40% 34% HBase 95% 99% 98%]OO%
HBase 88% 95% 7% 67% 78% 11% PDEBox 3%% 2% % 39%
PDFBox 39% 62% 23% 33% 57% 24% -
Wicket | 39% 50% | 11% | 19% 29% | 10% Wicket 35% 42% 42% 44%
HIVE 63% 75% 2% | 49% 62% 3% OpenJPA 61% 38% 69% 9%
Avro 67% 74% 7% 53% 63% 10% HIVE 72% 87% 80% 91%
Mesos 8% 54% 36% | 17% 54% 37% Avro 78% 53% 85% 85%
OpenJPA 53% 61% 8% 28% 35% 7% Mesos 35% 18% 53% 48%
Httpd 26% 92% 66% 24% 91% 67% Hitpd 7% 999%, 7% 99%
Kudu 15% 31% 16% 14% 31% 17% Kadu oL 9% 7% 93%
Mahout 17% 23% 6% 17% 23% 6% Vah 107 =17 207 17
Chemistry | 11% 18% 7% 1% 8% 7% out o o o o
Jena 1% 29% 8% | 3% 22% 4% Chemistry | 59% 63% 66% 66%
Ambari 12% 56% 4% | 11% 49% 38% Jena 54% 33% 56% 40%
Allura 36% 89% 53% 33% 84% 51% Ambari 61% 81% 67% 86%
Min. 11% 18% 6% 6% 18% 6% Allura 96% 98% 100% 100%
Max. 88% 95% 66% 2% 91% 67% Avg 63% 66% 2% 77%
AVg. 38% 61% 23% 28% 49% 21% Min 35% 18% 40% 40%
RQ1-2: Will the file groups identified in A7Ds based on Max 96% 9% 100% 100%

a project history keep incurring significant maintenance
costs in the future? Here, we report on two measures: 1)
the percentage of bug-fixing files and churn between release
r — 1 and release r that are directly identified as ATDs based
on release 1 to release » — 1; and 2) the total percentage of
bug-fixing files and churn between release » — 1 and release
r that are directly identified as or “growing out” of the
ATDs based on release 1 to release » — 1 in each project. Here,
“growing out” means more files are involved in the identified
ATDs through the four debt patterns.

As shown in Table IV, on average, a significant portion
(63%) of the future bug-fixing files (between release r-1 and
release r) are from ATDs in the project history (between

release 1 to release r-1). Similarly, 66% of the future bug-
fixing churn, i.e. the maintenance costs, are spent on ATDs
in history. Furthermore, a higher portion of future bug-fixing
files (72%) and churn (77%) are directly from or “growing
from” ATDs in the project history. Therefore, we can conclude
that the ATDs identified based on history will keep incurring
significant maintenance cost (interest) in the future.

RQ1-3: Is our approach simply identifying files with
large LoC as ATDs? Are all files with large LoC identified
as ATDs by our approach? Here, we want to know if our
approach simply identifies groups of source files with large
LoC; and whether all the large files are identified by our

13

approach as debts. If so, we can much more easily identify
ATDs by simply ranking source files using LoC, instead of the
approach proposed in this paper.

We analyze the LoC of files involved in ATDs in each project,
and found that the identified ATDs are composed of files of
varying sizes. For example, Figure 12 shows the distribution
of the LoC of files involved in the top five debts in HIVE.
The x-axis shows the size range of files. For instance, “<10%”
stands for files that are ranked in the top 10% percentile based
on the LoC. The y-axis stands for the percentage of debt files
that belong to the range indicated in the x-axis. As we can
see, 18% of the debt files are ranked in the top 10% among
all the source files in a project based on the LoC. We observe
from Figure 12 that only from 13% to 18% of files involved
in debts are very large files (i.e. reside in the top 10%, top
20% amd top 30% bins) in HIVE. This is consistent with prior
study that large files tend to be problematic. But files involved
in ATDs also appear in all size ranges—more than half (51%)
of the ATDs files are ranked outside of the top 30%.

Fig. 12: Top 5 Debts File LoC Distribution (HIVE)

File LOC Distribution in Top 5 Debts (Hive)

20% 18% 18%
13%

15%

9%
10% I I % %
5% I I I 3%
0% n
{j\,g\“ o\e:glu n\ﬁ;\“ 0\6&?\0 olé? " n\ﬁgﬁ“ ¢ ¢ e\e'q’gnlp °§Jlu 7@@\“
P H ® & P
Table V summarizes the LoC distribution of the ATDs files
from each project. As we can see, except for Allura, a non-
trivial (24%) to a significant (56%) portion of the ATDs files
in each project are ranked below the top 30% based on the
LoC. In many projects, a non-trivial (up to 40%) of debts are
led by source files that are not ranked in the top 30% based
on their LoC. In particular, based on our investigation of the
identified debts, a source file with a small number of LoC could
also serve as the central file of a debt and leads to non-trivial
amount of maintenance costs. For example, in Httpd, source
file 0s.0s2.0s_h, whose LoC ranked in the 94% among other
files in the project, is the anchor of an Anchor Dominant debt
with 4 other member files. This debt survived 19 releases in
Httpd, and account for 16% of the maintenance costs in Httpd.
Therefore, we can conclude that our approach is not simply
identifying large files.

We also investigate whether files with large LoC in a project
are all identified as ATDs by our approach. To answer this
question, we performed additional data analysis to show that
not all of the large files—i.e. files ranked in the top 10%,
20%, and 30% percentile of LoC respectively—are identified
as debts by our approach. This result is shown in Table VI. As
we can see, in most projects only a small portion (as low as
8%) of the top 10% largest files are identified as debts. Similar
observations hold for the top 20% and the top 30% largest

9 10%
8% 6%
o

ol
&

files. That is, the majority of the large files in every project
are not identified by our approach as debt. Therefore, LoC is
neither a sufficient nor a necessary condition to identify debts.

In summary, we observed that 1) our approach can identify
expensive ATDs that generate, on average, 2X more mainte-
nance costs than what one would expect given their sizes in
a project’s evolutionary history; 2) the ATDs identified based
on a project’s history will grow and keep incurring significant
maintenance costs (on average 77%) in future release; 3) the
ATDs identified by our approach do not simply contain large
files—non trivial (24%) to significant (56%) portion of the ATD
files have less than the top 30% LoC. Only a small portion
of files with large LoC are identified as ATDs. This indicates
that LoC is neither a sufficient nor a necessary condition for
our approach to identify debts. Thus, we conclude that our
approach identifies ATDs, worthy of attention.

B. Debt Regression Models for Cost Prediction

RQ2: Can we use a DebtModel to predict the future
cost of an ATD? Specifically, we aim to investigate whether
the regression models can accurately predict the cost of an
ATD in release n based on the model calculated from the
previous n — 1 releases. To do this we first define an accuracy
measure—Prediction Deviation (PD)—as follows:

|Actual_Cost_R,, — Predicted_Cost_R,|
Actual_Cost_R,,

Prediction Deviation (PD) measures how far the pre-
dicted cost Predicted_Cost_R,, deviates from the actual cost
Actual_Cost_R,, in release n. Thus, PD is a percentage value.
The lowest value is 0%, which means that the prediction is
completely accurate. The larger the PD, the less accurate is the
prediction. We calculate Predicted_Cost_R,—the predicted
cost at release n based on the model built from previous n — 1
releases.

First, we evaluate the accuracy of prediction under different
values of the R? threshold. If the majority of debts can be
predicted with a small amount of PD, it indicates that the
prediction is accurate. Thus, we investigate the percentage of
ATDs whose models have < 10% PD (because no prediction
model can be 100% accurate). We vary the R? threshold from
0.6 to 0.9 to see whether a higher percentage of debts can
be predicted with < 10% PD. The evaluation results are
listed in Table VII: 1) prediction accuracy increases with the
increase of R? threshold in most (14 out of the 18) projects;
and 2) in most projects (except PDFBox and Kudu), we can
predict the costs of the majority (between 64% to 100%) of
debts with less than 10% PD. Take Camel as an example, only
65% of debts can be predicted with less than 10% drift when R?
threshold is 0.6. As we increase the threshold, the percentage
of debts with < 10% PD gradually increases to 68%, 80%,
and 94%. In PDFBox, however, the percentage drops from
52% to 51% and to 46%, when the threshold increases to
0.8 and to 0.9 respectively. Similarly, in Kudu, the percentage
drops from 60% to 40% when increasing the threshold from

PD = (18)

14

TABLE V: LoC Distribution of ATDs Files

Proi LoC Bins, Each Bin is 10%
o Top 10% | (10%,20%] | (20%,30%] | Top 30% [(30%,40%] | (40%,50%] | (50%,60%] | (60%,70%] | (70%,80%] | (80%,90%] | (90%,100%] | (30%,100%]
Camel 22% 2% 10% 44% 1% 1% 7% 6% 7% 6% 8% 56%
Cassandra 18% 15% 12% 45% 11% 10% 8% 7% 7% 6% 6% 55%
CXF 32% 20% 2% 64% 1% 8% 5% 4% 2% 2% 4% 36%
Hadoop 4% 22% 3% 76% 6% 3% 5% 5% 2% 2% % 24%
HBase 19% 18% 15% 2% 2% 10% 9% 5% 4% 5% 3% 8%
PDFBox 32% 8% 3% 63% 2% 6% 5% 5% 4% 3% 2% 37%
Wicket 28% 7% 3% 58% 7% 2% 8% 6% 3% 3% 3% 2%
OpenJPA 39% 5% 2% 66% 8% 5% 5% 4% 4% 3% 5% 34%
HIVE 18% 8% 3% 49% 9% 9% 10% 8% 6% 6% 3% 51%
AVIO 24% 4% 4% 2% 8% 9% 10% 6% 6% 5% 4% 8%
Mesos 33% 20% 9% 62% 6% 10% 5% 8% 6% 3% 0% 38%
Hitpd 1% 20% 14% 45% 16% 5% 4% 7% 5% 14% 4% 55%
Kudu 35% 16% 14% 65% 8% 5% 3% 5% 0% 1% 3% 35%
Mahout 8% 3% 15% 46% 12% 8% 7% 8% 7% 7% 5% 54%
Chemistry | 24% 22% 10% 56% 9% 8% 2% 16% 2% 5% 2% 44%
Jena 26% 20% 15% 61% 9% 8% 6% 7% 3% 3% 3% 39%
Ambari 4% 3% 2% 57% 14% 10% 8% 2% 2% 2% 5% 43%
Allura T00% 0% 0% 100% 0% 0% 0% 0% 0% 0% 0% 0%
Min 1% 0% 0% 44% 0% 0% 0% 0% 0% 0% 0% 0%
Max 100% 31% 15% 100% 16% 12% 10% 16% 7% 14% 8% 56%
Avg 30% 7% 12% 59% 9% 8% 6% 6% 4% 5% 3% 1%
TABLE VI: % of Top LoC Files Identified in ATDs TABLE VII: Impact of R? Threshold on Prediction Drift
Proj. Top 10% | Top 20% | Top 30% Subicct % of Debts with < 10% Prediction Drift Trend
Camel 28% 21% 18%) R?>06 | RZ>07 | R*>0.8 | R?>>09
Cassandra 78% 72% 65% Camel 65% 68% 80% 94% up
CXF 23% 19% 15% Cassandra 83% 84% 84% 87% up
Hadoop 8% 6% 5% CXF 69% 69% 69% 72% up
Hbase 70% 69% 65% Hadoop 81% 82% 82% 89% up
PDFBoxX 32% 40% 34% HBase 63% 63% 64% 64% up
Wicket 23% 19% 16% PDFBox 52% 52% 51% 46% down
HIVE 6% 6% 0% Wicket 83% 83% 84% 88% up
Avro 74% 33% 54% OpenJPA 73% 77% 89% 100% up
Mesos 17% 14% 11% HIVE 66% 66% 67% 70% up
Httpd 9% 6% 6% Mesos 85% 85% 85% 85% -
Malont 1% TR 5% Httpd 73% 76% 76% 95% up
- Kudu 50% 50% 60% 40% down(*)
Ch t 14% 13% 11%
e o — = Mahout 35% 35% 64% 82% up
- Chemistry 100% 100% 100% 100% -
Ambari 8% 13% 11%
Allura 20% 30% 0% Jena 73% T76% 82% 82% up
° ° ° Ambari 64% 64% 64% 74% up
. Allura 58% 59% 63% 96% up
0.8 to 0.9. W(? conljecture tbat there are exogenous factors thagt Min 0% 0% 1% 0%
cause fluctuations in debts in these projects. Increasing the R Max 100% 100% 100% 100%
threshold to 0.9 in these cases will lead to over-fitting that Avg 1% 2% 5% 81%

compromises the prediction accuracy. For Mesos and Chemistry,
the R? does not impact the accuracy. Note that these two
projects only contain 9 and 2 debts, therefore the trends in
these two projects are not reliable.

Next, for the purpose of comparison, we also examine a
simple baseline prediction model, one which architects could
easily use to predict the cost without calculating a regression
model. In this simple model the cost of a debt in release
n is estimated based on the cost of the two prior releases:
n — 2 and n — 1. Specifically, Baseline_Prediction_R,, =
Cost_R,_1+6, where 6 = Cost_R,,_1 —Cost_R,,_2, which
is the increment between the most recent two releases. We
want to investigate whether the regression models can predict
the future costs of debts better than this simple model. Based
on the data shown in Table VII, we make the comparison by
using an R? threshold of 0.9.

Table VIII shows the results. The first column is the project
name. The other columns show the percentage of debts whose
costs can be predicted with up to 30% PD, using both the
regression models (sub-column “RM”) and the baseline (sub-

15

column “BL”). We focus on PD up to 30% because 1) a
majority of the predictions have less than 30% drift; 2) there
will always be a portion of debt that cannot be predicted due
to accidental reasons, such as a change in project direction;
and 3) a higher deviation is not useful for architects. The
sub-column “Win” shows the percentage of debts in which
the regression models outperform the baseline. We draw the
following observations from Table VIII:

o Regression models can predict the future costs of the
majority (72% to 100%) of debts with less than 20%
deviation from the actual costs. The regression models
outperform the baseline model in up to 60% of debts in
the 18 projects.

Except for PDFBox and Kudu, the regression models
can predict the the future costs of the majority debts
with less than 10% Prediction Drift. Regression models
provide poorer predictions of the cost, as compared to
the baseline model, in only 4 out of the 18 projects,
CXF, Wicket, Httpd, and Ambari (highlighted with blue

TABLE VIII: Regression Model Cost Prediction Deviation
(R? >0.9)

% of Debts with PD < X
PD < £20%

BL
96%
86%
81%
83%
66%
39%
96%
98%
72%
86%
85%
100%
40%
100%
100%
55%
94%
96%
39%
100%
82%

Subject PD < £10%
BL
95%
81%
74%
67%
47%
39%
93%
97%
67%
70%
54%
100%
40%
45%
100%
33%
87%
86%
33%
100%
1%

PD < £30%
BL
97%
88%
84%
85%
73%
43%
99%
98%
75%
90%
92%
100%
40%
100%
100%
70%
97%
98%
40%
100%
85%

RM
94%
87%
72%
89%
64%
46%
88%
100%
70%
96%
85%
95%
40%
82%
100%
82%
74%
96%
40%
100%
81%

Win
0%
6%
-2%
22%
17%
7%
-5%
2%
3%
26%
31%
-5%
0%
36%
0%
48%
-13%
10%
-13%
48%
10%

RM

99%

94%

88%

94%

79%

2%

98%
100%
88%
100%
100%
100%
100%
100%
100%
88%

99%
100%
72%
100%
94%

Win
3%
8%
7%
1%
13%
33%
1%
2%
16%
14%
15%
0%
60%
0%
0%
33%
4%
4%
0%
60%
| 13%

RM
99%
97%
93%
95%
87%
82%
98%
100%
94%
100%
100%
100%
100%
100%
100%
91%
100%
100%
82%
100%
96%

Win
2%
9%
9%
10%
14%

39%

-1%
2%
19%
10%
8%
0%

60%
0%
0%

21%
3%
2%

-1%

60%

12%

Camel
Cassandra
CXF
Hadoop
HBase
PDFBox
Wicket
OpenJPA
HIVE
Avro
Mesos
Httpd
Kudu
Mahout
Chemistry
Jena
Ambari
Allura
Min
Max
Avg

background). On average, however, the regression models
outperform the baseline model by 10%.

In summary: 1) The regression models are effective in
predicting the future costs of the majority (72% to 100%)
of the debts with less than 20% Prediction Deviation. They
outperform the baseline model in most (up to 60%) debts; and
2) As we increase the R? threshold, the regression models can
provide more accurate predictions.

C. Compound ATDs

RQ3: Can we aggregate related ATDs into compound
debts that are cost-effective refactoring candidates? As
discussed in Section IV-E, we merge the identified ATDs in
two phases based on 1) the Transitive Anchors relationship
and 2) the Compound Anchors relationship. In this RQ, we
first investigate whether such a merge is broadly applicable to
debts in different projects. If not, it indicates that the debts are
mostly independent and should be treated separately. If these
merges do apply then architects need to examine the more
complicated connections among these larger debts to developing
effective refactoring solutions. Next, we investigate whether
the compound debts are cost-effective refactoring candidates,
since each compound debt is composed of multiple debts and
thus contains a larger number of source files.

Table IX shows how debts can be merged based on Transitive
Anchors. In column “#Debts”, for each debt type, we listed
the total number of debts of this type and the percentage
(in parentheses) of debts that can be merged together due to
Transitive Anchors. In column “Merge”, we list the number
of debts that can be merged and the number of compound
debts resulting from the merge. For example, in Camel, there
are a total of 100 AD debts, among these, 6 (6%) debts have
Transitive Anchors, and they can be merged into 3 compound
debts. We make the following observations from Table IX:

o Transitive Anchors are common in AD, AS, and HB
debts. In projects where Transitive Anchors are not
applicable, there are usually only a small number of debts,
thus the opportunities to merge are few. For example, as

16

highlighted in blue, there are just 1 to 12 AD debts in the
seven projects where merge is not applicable.

Transitive Anchors are prevalent in MV debts. The
majority (62% to 100%) of MV debts share Transitive
Anchors. In addition, the MV debts can be merged into just
a few (from 1 to 4) compound debts based on Transitive
Anchors. The implication is that architects need to only
review these few compound MV debts when exploring
refactoring opportunities. However, the downside is that
each cluster contains more files.

Similarly, Table X shows the application of the Compound
Anchors merge. We use an overlap threshold of 0.5 here. In
Section VII-D, we will discuss how this threshold impacts the
merge results. As discussed in Section IV-E, we perform the
Compound Anchors merge as a second phase, based on the
results of the Transitive Anchors merge. However, as shown
above, the Transitive Anchors merge is prevalent for MV
debts. The majority of MV debts can be merged into just
a few compound debts. Thus the Compound Anchors merge
is not commonly applicable due to the small number of debts
resulting from the first phase. Therefore, for MV debts, we
apply the Compound Anchors merge directly on the original
debts. This will also help us to avoid very large compound
debts that aggregate all the original debts. We now make similar
observations:

o The Compound Anchors merge is generally applicable
to AD, AS, and HB debts. In particular, when there is a
large number of debts, the merge is likely to be prevalent.
For example, the merge is applicable to 82% of the 97
AD debts in Camel. In contrast, the merge is less likely
to occur when there is just a small number of debts, as
highlighted in blue cells.

The Compound Anchors merge is also prevalent for
MYV debts. More specifically, 74% (in Hadoop) to 100%
(in Mesos, Httpd, and Chemistry) of the MV debts can
be merged into just 1 to 12 compound debts.

As shown in the examples of Figure 9 and Figure 10,
merging debts based on the two relationships helps to capture
the complicated structural patterns among debts. However, as
mentioned above, the downside is that each compound debt
will contain more files and thus may be cumbersome to review.

Therefore, we need to evaluate whether the compound debts
are cost-effective refactoring candidates. We capture four kinds
of information for this purpose, as shown in TableXI. First, the
original number of debts and the number of compound debts in
column “#Debts”. This shows the reduction in the number of
refactoring candidates for the architects to review as the result
of merging. Second, the average size of the merged debts, in
terms of the percentage of files, in column “S.%”. If the size of
the merged debts is too large, they are difficult to review. Third,
the average amount of maintenance cost associated with the
merged debts, in terms of the percentage of bug-fixing churn, in
column “Ch.%”. This measures how significant each compound
debt is. And finally, the ratio in column “R.”, calculated as
“Ch.%” divided by “S.%”. This measures the potential cost

TABLE IX: Prevalence of Transitive Anchors Merge

Subject AD AS HB MV
#Debts Merge #Debts Merge #Debts Merge #Debts Merge
Camel 100 (6%) 6—3 9 (0%) - 46 (4%) 2—1 357 (95%) | 338—4
Cassandra 35 (37%) 13—2 11 (18%) | 2—1 21 (19%) | 4—=2 57 (100%) | 57—1
CXF 27 (1%) 2—1 3 (0%) - 3 (0%) - 150 (96%) | 144—2
Hadoop 16 (44%) 7—3 11 (36%) | 42 7 (57%) 4—2 47 (62%) 29—4
HBase 107 (21%) | 22—7 34 (88%) | 30—1 30 (0%) - 111 (87%) | 97—1
PDFBox 6 (33%) 2—1 3 (0%) - 3 (67%) 2—1 17 (100%) 17—1
Wicket 12 (0%) - 2 (0%) - 9 (22%) 2—1 77 (711%) 552
HIVE 113 (7%) 8—4 9 (89%) 8—1 14 (79%) | 113 136 (80%) | 109—3
Avro 2 (0%) — 1 (0%) - 1 (0%) - 25 (96%) 24—2
Mesos 1 (0%) - 2 (0%) - 1 (0%) - 5 (80%) 4—1
OpenJPA 5 (0%) — — - 2 (0%) - 84 (89%) 75—3
Hittpd 3 (0%) - — - 4 (0%) - 10 (90%) 9—1
Kudu - - 1 (0%) - - - 6 (83%) 5—1
Mahout - - - - - - 6 (83%) 52
Chemistry - - - - - - 2 (100%) 2—1
Jena 1 (0%) - - - - 22 (86%) 19—2
Ambari 4 (0%) — 2 (0%) - - - 23 (96%) 23—1
Allura 10 (20%) 2—1 4 (0%) — 4 (50%) 2—1 21 (86%) 18—1
TABLE X: Prevalence of Compound Anchors Merge (Threshold = 0.5)
Subject AD AS HB MV
#Debts Merge #Debts Merge #Debts Merge #Debts Merge
Camel 97 (82%) 80—8 9 (0%) - 45 (67%) | 30—1 357 (91%) | 324—12
Cassandra 24 (46%) 11—4 10 (0%) - 19 (68%) | 13—2 57 (93%) 53—1
CXF 26 (69%) 18—6 3 (0%) - 3 (0%) - 150 (84%) 126—8
Hadoop 12 (42%) 52 9 (0%) - 5 (60%) 3—1 47 (74%) 357
HBase 92 (717%) | 71—4 5(60%) | 3—1 30 (53%) | 16—2 111 (87%) 972
PDFBox 5 (40%) 2—1 3(67%) | 2—1 2 (0%) - 17 (88%) 153
Wicket 12 (92%) 113 2 (0%) - 8 (75%) 6—1 77 (97%) 75—2
HIVE 109 (85%) | 93—1 2 (0%) - 6 (50%) 3—1 136 (96%) 130—2
Avro 2 (0%) - 1 (0%) - 1 (0%) - 25 (80%) 20—3
Mesos 1 (0%) - 2 (0%) - 1 (0%) - 5 (100%) 5—1
OpenJPA 5 (0%) - - - 2 (100%) | 2—1 84 (87%) 73—4
Httpd 3 (0%) - - - 4 (100%) | 4—1 10 (100%) 10—1
Kudu - - 1 (0%) - - - 6 (83%) 5—1
Mahout - - - - - - 6 (83%) 52
Chemistry - - - - - - 2 (100%) 2—1
Jena 1 (0%) - - - - - 22 (77%) 173
Ambari 4 (0%) - 2 (0%) - - - 23 (87%) 20—1
Allura 9 (67%) 6—2 4 (0%) - 3 (100%) 3—1 21 (76%) 16—2

effectiveness of examining the merged debts. To be effective
refactoring candidates the merged debts should contain a small
portion of files but account for a large portion of maintenance
costs. We conjecture that the higher the ratio the more effective
it is for architects to review and refactor a debt.

Table XI shows the average characteristics of the compound
debts after the merging. We can make the following observa-
tions:

o Merging can significantly reduce a large number

size-to-cost ratio of the AD and HB debts is, on average,
5 across the projects. The MV debts usually contain more
files, containing 13.1% of the files in a project on average.
And, the size-to-cost ratio of the MV debts is above
2 in most projects (except Httpd and Chemistry). The
implication is that these merged debts are potentially cost-
effective refactoring candidates, since architects only need
to focus on a few groups of files to “pay off” a large
amount of maintenance cost.

of ATDs in a project to a much smaller number o The AD and HB debts offer the highest cost effective-

of compound debts. For example, in Camel there are
100 original AD debts that can be merged into just 25
compound debts. Thus architects can review a much
smaller number of debt instances after the merge. We
highlighted cells where merge is not applicable in blue—
there are usually just a small number of such debts.

e On average, the size-to-cost ratio of most debts is
between 2 and 13. This means that the compound
debts usually only contain a small portion of files in

ness ratio in most projects, compared to the AS and
the MV debts. For each project, we highlighted one of
the four types of debt with the highest size-to-cost ratio
with a yellow background. As we can see, the AD and HB
debts are the “winners” in most projects. Thus architects
should prioritize the AD and HB debts as their refactoring
candidates for even better cost effectiveness.

VII. DISCUSSION

the system, but account for a relatively large portion of In this section, we discuss how architects can benefit from
maintenance costs. In particular, the sizes of the merged our approach, and some factors that may impact the results of
AD or HB debts are below 1% for most projects. The our approach.

17

TABLE XI: Average Size-and-Churn Ratio for the Compound Debts (Threshold = 0.5)

Subject AD AS HB MV
#Debts S.% Ch.% | R. #Debts S.% Ch.% | R. #Debts S.% Ch.% | R. #Debts S.% Ch.% | R.
Camel 100—25 | 0.2% | 0.6% 5 9—9 0.1% 0.4% 4 46—16 | 0.1% | 0.4% 7 357—45 1.8% 2.8% 3
Cassandra 35—17 | 03% 2.1% 7 11—10 | 0.5% 0.6% 2 21—=8 | 0.3% 1.4% 4 57—5 188% | 249% | 2
CXF 27—14 | 02% | 0.9% 4 33 0.4% 0.7% 2 33 02% | 0.6% 3 150—32 | 2.1% 3.2% 2
Hadoop 16—9 0.5% 2.4% 5 11—9 1.1% | 2.2% 3 7—3 0.4% 2.5% 4 47—19 2.5% 4.9% 3
Hbase 107—25 | 0.6% 1.9% 1 34—3 91% | 10.3% 1 30—16 | 0.2% 0.7% 3 111—=16 | 6.9% 121% | 2
PDFBox 6—4 11% | 4.7% 6 32 6.5% | 162% | 2 32 08% | 4.0% 5 17—5 101% | 175% | 2
Wicket 12—4 0.3% 1.6% 6 22 1.3% 1.9% 1 9—3 0.2% 1.2% 8 77—4 9.2% 127% | 2
HIVE 113—17 | 0.4% 1.9% 4 9—2 6.8% | 13.9% | 2 14—4 | 0.6% 1.7% 3 136—8 8.5% 122% | 2
Avro 22 0.9% 2.1% 2 1—1 4.1% | 6.0% 1 1—1 0.9% 2.7% 3 25—8 9.8% 142% | 2
Mesos 1—1 1.2% 6.4% 5 22 31% | 4.5% 2 1—1 0.8% 8.9% 11 5—1 29.1% | 545% | 2
OpenJPA 5—5 0.2% 2.2% 9 - - - - 2—1 0.2% 1.7% 9 84—15 3.5% 7.2% 3
Hittpd 33 49% | 26.6% | 5 - - - - 4—1 9.5% | 31.8% 3 10—1 74.1% | 92.3% 1
Kudu - - - - 1—1 33% | 4.9% 1 - - - - 6—2 7.8% 142% | 2
Mahout - - - - - - - - - - - 6—3 4.9% 8.3% 2
Chemistry - - - - - - - - - 2—1 13.7% | 18.1% 1
Jena 1—1 04% | 0.9% 2 - - - - - - - 22—8 3.3% 4.6% 2
Ambari 4—4 0.7% 2.2% 3 22 0.5% 1.7% 4 - - - - 23—4 14.8% | 18.5% 1
Allura 10—5 45% | 147% | 4 4—4 2.7% 5.2% 2 4—1 5.6% | 19.3% 3 217 15.7% | 26.6% | 2
Min 02% | 0.6% 1 0.1% | 0.4% 1 0.1% | 0.4% 3 1.8% 2.8% 1
Max 49% | 26.6% | 9 9.1% | 162% | 4 95% | 318% | 11 741% | 923% | 3
Avg 11% | 4.7% 5 3.0% | 5.3% 2 1.5% 5.9% 5 131% | 194% | 2

A. ATD Evolution

As discussed in Section III, our approach identifies an ATD as
a FileSetSequence, which is a sequence of file groups, each
extracted from consecutive releases. This provides a dynamic
view to examine the evolution of ATDs. We manually inspected
the evolution of these debts, and now illustrate how architectural
flaws evolve into debts over time.

Figure 13 shows a debt we identified from Camel. We have
provided 3 snapshots (i.e. F'ileSet) of this debt—in release
2.0.0 (age 1), release 2.2.0 (age 2), and release 2.12.4 (age 11)—
to show its evolution. Snapshots from age 3 to 10 are similar to
age 11. “Ext” and “Impl” stand for “extend” and “implement”,
“dp” denotes all other types of structural dependencies.

In release 2.0.0, PDef forms a dependency “hub” with 10
other files: 3 files are its subclasses, 7 files are its general
dependents, and PDef structurally depends on all of them.
We call these files a hub, which is a typical debt pattern as
we will introduce later. Note that in this snapshot, all files,
except InterceptStrategy, depend on RouteContext (column 5).
The 11 files in this hub structurally form a strongly connected
graph. According to the revision history, PDef changes with
all member files with probabilities from 50% to 100% (column
1). The dependents (on rows 5 to 11) of PDef are highly
coupled with each other. This is problematic in 3 ways: 1)
the parent class PDef depends on each subclass and each
dependent class (unhealthy inheritance [26]); 2) the parent
class is unstable and often changes with its subclasses and
dependent classes (unstable interface [26]). 3) RouteContext
forms cyclic dependencies with 9 files (cycles). Without fixing
these flaws, we expect the maintenance costs of this group to
grow.

In release 2.2.0, the impacts of this hub have enlarged—
PDef has 3 more subclasses and 6 more general dependents,
and it depends on each of them as well. Each newly involved file
also depends on RouteContext (column 13). The revision history
shows that PDef changes with its subclasses and dependents
with probabilities of 33% to 100%. Also, the subclasses and

18

dependents (rows 5 to 11) of PDef are highly coupled with
each other—changing any of them is likely to trigger changes
to the rest. In following releases, the hub grows further. Up
to release 2.12.4, PDef has 9 subclasses and 18 general
dependents—the size of the hub tripled compared to the start,
and, as always, PDef depends on each of them. In addition,
6 of the 18 general dependents (rows 11 to 16) of PDef also
become its grandchildren. The inheritance tree has increased
in width and depth. The revision history shows PDef still
changes with its dependents with probabilities from 33% to
100%. The files in this snapshot are tightly coupled with each
other, and so changing any file is likely to trigger changes to
others.

The maintenance costs spent on this debt fit a linear
regression model: DebtModel(rt) = 158.75 % rt + 509.35
with R? = 0.89. This means that, in every release, developers
contribute 158.75 more lines of code to fix errors in the hub
anchored by PDef. Although this model can only be obtained
after the costs and penalty have accumulated, one could use our
approach to detect architecture flaw patterns at any point (as
described in [26]), monitor how file groups grow, monitor the
formation of debts, and prevent significant costs by investing
in proper refactorings [31].

In addition, we performed additional analyses to understand
how and “why” the debt in Figure 13 accumulated. The
debt center file “ProcessorDefinition” has a large number
of dependents, which tend to change together with it over
time. This is the result of change propagation through the
structural coupling—when “ProcessorDefinition” changes,
its dependents change accordingly. Throughout the project’s
history, more and more files are added and/or become dependent
on “ProcessorDefinition”. To further understand why this
happens from the perspective of LoC, we found that the
LoC of “ProcessorDefinition” increased from 923 in release
2.0.0 to 1382 in release 2.12.4 (50% increase). In addition, its
member files, including “LoadBalanceDefinition”, “ChoiceDef-
inition”, “RollBackDefinition”, “MarshallDefinition”, and

1 2 34 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 ProcessorDef dp, dpdp, dp, dp, dp, dp, dp, dp, dp, dp dp dp, dp, dp, dp, dp, dp, dp,
2 ChoiceDef Ext,dp,100% dp ,100%
3 LoadBalanceDef |Ext,dp,100% dp
4 RollbackDef Ext,dp,100% dp 33%
5 OnCompletionDef |Ext,dp,67% ,33%|,33% 33% (,33% ,33% dp 33% 33%
6 RouteDef Ext,dp,33% dp dp, 33%
7 OnExceptionDef |Ext,dp,100% ,100% 33% ,50% |,33% ,33% dp ,100% 33%
1 23 a5 6 7 8 9 10 11 8 Channel dp,50% ,50% (8) [.50% |,50% ,50% dp ,50% dp
1 ProcessorDef] 95 dp dp dp @ dp dp dp dp dp 9 Def dp,44% _ 33% _ Impl:,dp,SS% lto) 133% ,33% dp _ 33% dp
21 Def [Ext,dp,100% |(2)] dp, 10 ToDef dp,100% ,33% ,100% ,33% ,100% ,100%](10) 1, dp,40% ,40% ,100%
9 9 o o
3 ChoiceDef Ext,dp, 100% 3) dp, 100% i; ;Zigs":;[:ffstoef j:igg;/f ,33% ,100% ,33% ,100% ,100%,100%| y 40% ,100%
. ipientLi ,100%
: :ou?aéwtﬁ t ZXt:;;OM . 67% 33% 33% dp33%| > RouteContext LSS de, 50% dp
outeContex P/57% 7% 3%, P33% |14 MarshalDef dp,100% ,50% dp,40%|(14) ,100% ,50% ,100%
6 MarshalDef dp,100% dp,67%|(6) 1100%,50% ,100% | < pjicy et dp,75% s
7 PolicyDef dp,67% dp,44% ,33% ,33% ,33% ,33% 16 TryDef dp:lUD% 1100% do
8 TryDef dp,100% +100% |dp, 17 UnmarshalDef |dp,100% 50% dp,40% ,100% ,100% 100%
9 UnmarshalDef |dp,100% dp,67% ,100% ,100% 18 Error*Ref dp:w% o, do, dp'
10 Error*Ref dp,50% dp, 33% 19 MulticastDef dp,100% ,50% ,50% ,50% [,50% ,50% dp
11 InterceptStrategy [dp,50% ,33% ,50% ,50% 50% 20 InterceptStrategy |dp,50% ,50% ,50% ,50%
(a) R-2.0.0, Age 1, #File 11, Churn 392 (b) R-2.2.0, Age 2, #File 20, Churn 771
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
1 ProcessorDef (1) dp
2 ExpressionNode Ext,dp,60% |(2) ,40% ,40% ,40% ,40% ,40% ,40% ,40% ,40% ,30
3 CatchDef Ext,dp,40% |dp,40% (3) ,40% ,40% ,40% ,40% dp, ,40% dp, dp,60% 30 ,40%
4 ChoiceDef Ext,dp,67% |dp, dp,33% dp, ,33%
5 LoadBalanceDef Ext,dp,50%
6 RecipientListDef Ext,dp,50% |dp, ,33% ,33% ,33% dp, dp, ,50%
7 WireTapDef Ext,dp,33% ,67% |(7)_|.67% ,33% ,44% ,33% ,33% ,33% ,33% |dp,33%,33% dp,33% 67%
8 AggregateDef Ext,dp,33% |,33% ,33% ,33% ,33% ,50% ,67% ,33% ,50% ,50% ,33% |dp, ,33% dp, ,33% ,50%
9 ResequenceDef Ext,dp,50% |,50% ,50% ,75% ,75% ,50% ,50% dp, ,50% 37
10 OnCompletionDef |Ext,dp,44% |dp, ,44% ,33% |(10) dp, ,33% dp, ,33% dp, ,33%
11 LoopDef dp,100% Ext,dp,100% ,100% ,50% ,50% ,33% ,100%,100% ,100%(11) [,100% ,100% ,100%,100%),33% ,100% ,100% ,100%,100% ,100% ,100%,100% ,100% ,100%
12 ThrottleDef dp,40% Ext,dp,67% ,33% ,33% ,33% ,67% ,33% ,67% |,33% |(12) |,33% ,67% ,67% |dp,33% ,67% ,33% dp, ,33% ,33% ,33% ,33% ,33% ,67% ,33%
13 I*ConsumerDef dp,50% Ext,dp,50% ,50% ,75% ,50% ,50% ,50% dp, ,50% ,50%
14 WhenDef dp,100% Ext,dp,50% ,50% ,100% ,50% ,50% ,50% ,50% ,50% ,50% .37
15 SplitDef dp,50% Ext,dp,50% ,50% ,50% ,75% ,50% ,75% ,50% ,50% ,50% |dp, ,50% dp, ,50% 75%
16 DelayDef dp,33% Ext,dp,44% ,33% ,33% ,33% ,67% ,33% ,67% |,33% ,67% ,33% ,67% dp,33% ,67% ,33% dp, ,33% ,33% ,33% ,33% ,33% ,67% ,33%
17 Processor*Helper |dp,33% dp, dp, dp, dp, dp, dp, dp,
18 ThreadsDef dp,33% ,33% ,50% ,33% ,33% ,33% dp, ,50%
19 OtherwiseDef dp,100% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50%
20 RouteContext ,43% ,33% ,33% ,33% ,33% ,33% ,33% dp
21 PolicyDef dp,80% ,40%
22 TryDef dp,60% ,40% dp,60% ,40% ,40% ,40% ,40% ,40% dp, ,40% dp, ,30 dp,40%
23 TransactedDef dp,56% dp, 71
24 PipelineDef dp,100% ,100% ,100% ,50% ,50% ,33% ,1009,100% ,100% ,100% ,100% ,100% ,100%,100%|,33% ,100% ,100% ,100%,100% ,100%
25 SamplingDef dp,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33% ,33%
26 MulticastDef dp,43% 43% ,43% ,43% 43% dp, ,43% dp,
27 FinallyDef dp,60% ,50% ,100% ,40% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% ,50% dp,100% ,50%
28 InterceptStrategy |,50% ,50% ,50%

(c) R-2.12.4, Age 11, #File 28, Churn 2134

Fig. 13: Camel Hub Debt Evolution—Anchor ProcessorDefinition

“UnmarshallDefinition” increased in LoC by 35% to 78%
during the releases. We believe this analysis suggests: 1)
large files are likely to be the center of a debt due to their
poor design—encompassing too many responsibilities and thus
causing a large amount of co-changes, so that their sizes have
to keep growing; 2) the member files, as defined in our debt
pattern, tend to grow and change with the anchor file.

B. ATD Patterns and Potential Refactoring Guidelines

One of the key contributions of this work is to identify ATD
in terms of the four indexing patterns: hub, anchor submissive,
anchor dominate, and modularity violations. We manually
reviewed the debt patterns identified by our approach, and
summarized how each ATD pattern maps to potential refactoring
resolutions.

The hub pattern features a “hub” like central file, which
structurally depends on, and is also depended by, all the
member files in this pattern. Hub pattern instances are likely
to overlap with several design flaws that are formed by a
subset of the involved files. For example, the “hub” file and
its depends are likely to form unstable interface or unhealthy
inheritance. And each “hub” file also forms cyclic dependencies
with its members. However, an architect cannot treat a hub

19

pattern as separate cyclic dependencies or unstable interfaces to
successfully refactor this pattern. The reason is that the involved
source files form a more complicated whole. To successfully
eliminate a “hub”, an architect needs to analyze the internal
elements in the “hub” file, and decompose it into separate
modules, which decouple files that originally depend on it and
that it depends on.

The anchor submissive features an anchor file that frequently
changes with files that structurally depend on it. The anchor
file in this pattern most likely defines a fundamental API
or basic utility functions for its dependents. Therefore, the
anchor and its dependents form an unstable interface. The
anchor is a servant interface that frequently accommodates
the needs of its dependents and change its interface. The
guideline to refactor this pattern is two-fold: 1) identify the
most change-prone interfaces in the anchor; and 2) encapsulate
the change-prone interfaces in a separate class and/or stablize
the interfaces following the “design-by-contract” principle. The
anchor dominate pattern is similar to the anchor submissive
pattern. The difference is that in the anchor dominate the
interface changes, while its dependents accommodate the
change. The refactoring guideline is therefore similar: identify
the most change-prone interfaces in the anchor and encapsulate

or stablize those interfaces.

The modularity violation pattern is different than the above
three patterns. The files involved do not share structural
dependencies, however they frequently change together due
to latent dependencies. These latent connections could be the
result of “share secrets”, such as the semantic and/or structural
similarity among the involved files. The semantic similarity
could be the usage of parameters that represent the same
concepts, such as time units [32], or might simply be due
to code cloning. The structural similarity could be common
dependencies on other interfaces; when these interfaces change,
the files with shared dependencies often need to change
together. To refactor the modularity violation, an architect
needs to identify the “shared secrets” among the involved files,
and encapsulate these secrets into an abstraction. A common
example of eliminating a modularity violation is to encapsulate
code clones into separate methods or classes.

C. Why do some projects only have a few ATDs?

As shown in Table II, Kudu, Mahout, Chemistry, and Jena
contain debts that only account for a small percentage (up
to 31%) of maintenance costs. This section discusses the
underlying reason for this.

As described in Section III, an architectural debt is a group
of connected files that keep incurring higher maintenance costs
over time. Based on this definition, the debts are identified
based on two criteria: 1) the structural dependencies and 2)
the history coupling among files. Debts are matched by the
four indexing patterns (Section IV) combining structural and
history couplings among files.

Thus, we should understand how the debts correlate with
both structural coupling and history coupling. We measure
the coupling using the Propagation Cost (PC) metric proposed
in [33]. PC is the density of the n-transitive closure of a
dependency matrix. A P value ranges between 0 and 1; the
larger the value, the more coupled the elements in the matrix.
For example, a PC of 1 indicates that every element in the
matrix is connected to every other element, directly or indirectly.
In Figure 14, the x-axis lists the projects and the three trend
lines describe 1) the significance of debts in each project
(triangle marker); 2) the propagation cost calculated based on
the structural dependency DSM (square marker); and 3) the
propagation cost calculated based on the HCP matrix (round
marker). The projects are ranked by the significance of debts
in ascending order. The key observations are that:

o the significance of debts is not correlated with the
structural coupling, with a correlation coefficient of 0.1.
The rationale is that a project can have very tangled
structural coupling, but there is no debt if the project
seldom changes (i.e. no maintenance “interest”). For
example, Kudu has one of the highest PC values (0.6,

based on structural dependencies) among the 18 projects.

However, the evolutionary coupling (PC < 0.1) is almost
the lowest. This indicates that although Kudu has tangled
structural dependencies, the project is relatively stable,

20

therefore no persistently change-prone architectural flaws
are identified.

the significance of debts is only moderately correlated
with history coupling, with a correlation coefficient of
0.5. This is because our approach identify debts based on
persistent co-change file groups in the evolution history.
Note that high history coupling does not always lead
to debts, because a group of files may change together
for many reasons (e.g. new functionality, minor syntactic
changes, new coding or documentation conventions, etc.)
that do not impact architectural debt.

In addition low evolutionary coupling could be due to
missing links, in some projects, between bug reports and the
code commits that fix those bugs [34]. We acknowledge that this
is a potential limitation and threat to validity of our approach
in that it relies on the quality of history data. For example, if
developers regularly make fragmented commits, only changing
one source file a time, our approach will not be able to identify
meaningful debts. And if developers “hoard” their changes on
a private branch and then commit large changes (with dozens
of files), our approach will tend to identify more debts. In our
study, we attempted to mitigate this problem by only analyzing
changes that involve fewer than 30 files. This helps to eliminate
the “noise” introduced by very large commits.

Fig. 14: Debt Significance vs. Structural and History Coupling

Significance of Debt vs. Structural and History Coupling

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

—

LibCloud Mg
Chemistry - F
Mahout
Jena
Kudu
Wicket
Mesos
Ambari %
Hadoop lh
OpenlPE
PdfBox
CXF
Avro
Camel
HIVE
Allura
Cassandra
Httpd
Hbase

Debt Structural Coupling -e-History Coupling

D. How does the R? threshold impact the regression models?

For each Architectural Debt, we searched for a suitable
regression model to describe the trajectory of the associated
maintenance costs. We used an R? threshold as described in
Section IV. In this section, we investigate how the regression
models are impacted by the R? threshold.

Table XII lists the distribution of the four regression models:
Linear (Li), Logarithmic (Lg), Exponential (Ep), and Polyno-
mial (P1). For each model we examined four R? thresholds:
0.6, 0.7, 0.8, and 0.9. In general, a lower R? threshold better
captures the rough trend of maintenance costs over time, while
a higher R? threshold better captures detailed maintenance
cost fluctuations.

The first two columns show the project name and the total
number of Architectural Debts in each project. The following

TABLE XII: Regression Model Types

‘ Subject ‘ iDis M R?=06 R7=0] R?=038 R7=09 \
| i [Lg [Bp | Pl]| Li [Lg [Bp [Pl [Li [Lg [Bp | Pl | Li | Lg | Ep [PI |

Camel | 512 || 975% | 2.1% | 04% | - 91.8% | 74% | 04% | 04% || 68.9% | 28.5% | - 25% || 318% | 50.8% | 02% | 172%

Cassandra_|_ 124 || 1000% | - - - 960% | 32% | 08% | - 935% | 56% | 08% - 823% | 13% | 24% | 8.1%

CXF 83 || 978% | L.1% | 05% | 05% || 962% | 05% | 22% | 1.1% || 902% | 22% | 49% | 2.1% || 585% | 98% | 175% | 14.2%
Hadoop | 81 || 93.8% | 3.7% | - | 25% || 852% | 49% | 62% | 31% || 71.6% | 74% | 11.1% | 99% || 55.6% | 3.1% | 62% | 34.6%
HBase | 282 || 97.9% - 8% | 04% || 96.1% | 04% | 2.1% | 14% || 894% | 1.8% | 60% | 28% || 67.7% | 51% | 12.1% | 14.5%
PDFBox | 29 || 1000% | - - - 96.6% - [34% |- T24% | 34% | 241% | - 517% — [276% | 207%
Wicket | 100 || 99.0% | 10% | - - 95.0% | 40% | 10% | - 85.0% | 80% | 50% | 2.0% || 57.0% | 21.0% | 3.0% | 19.0%
OpenlPA | 91 || 923% | 66% | 11% | - 780% | 17.6% | 33% | 1.1% || 51.6% | 396% | 22% | 6.6% || 88% | 538% | 22% | 352%
HIVE | 272 || 993% - [07% | - 96.7% — [29% | 04% || 926% | 04% | 55% | 15% || 665% | L.1% | 243% | 8.1%
Avio 29 || 1000% | - - - 1000% | - - - 89.7% - 69% | 34% || 448% | 20.1% | 172% | 17.2%
Mesos 9 [1000% | - - - 1000% | - - - 1000% | - - - 1000% | - -

Hitpd 17 || 1000% | - - - 1000% | - - - 1000% | - - - 824% | 59% | 59% | 59%
Kudu 7| 1000% | - - - 1000% | - - - 85.7% | 143% | - - 714% | 286% | -

Mahout | 6 || 66.7% | 333% | - - 66.7% - — [333% || 500% | 16:7% | - | 333% || 167% | 161% | - | 66.1%
Chemisty | 2 || 100.0% | - - - 1000% | - - - 1000% | - - - 1000% | - -

Tena 3 || 957% | 43% | - - 82.6% | 43% | 8% | 43% || 39.1% | 304% | 13.0% | 174% || 8% | 21.7% | 8.1% | 60.9%
Ambari | 29 || 100.0% | - - - 1000% | - - - 96.6% | 34% - - 828% | 6.9% - 10.3%
Allura | 39 || 1000% | - - - 974% | 26% | - - 923% | 5.1% | 2.6% - 359% | 564% | - 77%

Min 2 || 66.7% | 1.0% | 04% | 04% || 66.7% | 04% | 04% | 04% || 39.1% | 04% | 08% | 15% || 87% | L1% | 02% | 59%
Max 512 || 100.0% | 33.3% | 1.8% | 2.5% || 1000% | 17.6% | 8.1% | 33.3% || 100.0% | 39.6% | 24.1% | 33.3% || 100.0% | 564% | 27.6% | 66.7

Avg 102 || 967% | 74% | 09% | 1.1% || 93.2% | 50% | 3.1% | 51% || 81.6% | 119% | 7.5% | 8.2% || 568% | 20.1% | 10.6% | 22.1%

columns show the distribution of the four regression models
at each threshold. When using 0.6 for the R? threshold, the
majority (66.7% to 100%) of debts in each project can be
described as a linear model. On average, only 7.4%, 0.9%, and
1.1% of debts fit into Logarithmic, Exponential, and Polynomial
models, respectively. This indicates that the maintenance costs

associated with most debts increase linearly over time in general.

However, as we increase the R? threshold to 0.7, 0.8, and 0.9,
more debts are described by other regression models to capture
the detailed cost fluctuations. For example, when choosing 0.9
for the R? threshold, on average, 20.7%, 10.6% and 22.7% of
the debts fit into Logarithmic, Exponential, and Polynomial
regression models, respectively.

Of particular note, when the R? threshold is 0.9, the
coverage of each regression model in different projects differs
substantially, compared to the dominance of the Linear model
when the R? threshold is 0.6 to 0.8. For example, when the
threshold is 0.9, 56.4% of Allura’s debts are best fit by a
Logarithmic model; PDFBox scores 27.6% with an Exponential
model; Mesos scores 100% with a Linear model; while Mahout
scores 66.7% with a Polynomial model. We assume that the fit
of different debt models is impacted by the trend of maintenance
activities in each project. For instance, Figure 15 shows the
trend of bug fixing per release in Mesos, OpenJPA, PDFBox,
and OpenJPA respectively. The x-axis is the release number in
each project and the y-axis is the total number of bug fixes by
the time of each release.

We can observe that, for example, 53.8% of debts in OpenJPA
fit a logarithmic model. We see that OpenJPA stabilized in
later releases, and bug fixing activities were slowing down.
This could be the result of a refactoring that improved the
architecture of OpenJPA, or simply because the project was
not as active as in earlier releases. Similarly, 100% of debts in
Mesos fit a linear model, as illustrated in Figure 15a. PDFBox’s
maintenance activities increase with releases following a
exponential model, thus, PDFBox has the highest percentage
of Exponential debts compared to other projects. Finally, 66%
of the debts in Mahout fit a Polynomial model, as shown in
Figure 15d.

Camel is an interesting outlier. As seen in Figure 15e, the
trend of maintenance activity of Camel follows a linear model,
indicating that developers invest a steadily increasing amount
of cost on fixing bugs over time. However, 50% of debts in
Camel fit a Logarithmic model, indicating that these debts are
costing less maintenance cost over time. We conjecture that
this is because the 31% of debts fitting the Linear model are
incurring higher maintenance costs, which offset the reduced
“interest” from the 50% of Logarithmic debts. In other words,
although 50% of debts are incurring lower interest, the other
31% of debts are incurring a higher interest, resulting in a
stably increasing trend line for the overall maintenance costs.

Despite this one exception in Camel, we observe that, in
every other case, the best fitting debt model type is impacted
by the trend of the maintenance activities in a project.

#Bug Fixes Overtime --Mesos #Bug Fixes Overtime-OpenJPA
300
250
200
150
100

50

3000
2500 y =961.09In(x) - 268.2
2000 =u
1500
1000
500

y =24.752x - 8.7333
R?=0.995,

1234567 8 91011121314151617

(a) Mesos

#Bug Fixes Overtime--PDFBox

(b) OpenJPA

#Bug Fixes Overtime-Mahout
1000

1200

1000 y = 29.04€02975 800 ¥=-62716¢ + 152.83x - 109,59
800 R2=0.9677 R? =01
600

600 400
400
200 200

[0

12 3 456 7 8 9 101112 1 2 3 4 5 6 7 8 9 101
(c) PDFBox (d) Mahout

#Bug Fixes Overtime--Camel
6000
5000
4000
3000
2000
1000

y =419.4x + 86.682
R?=0.

12 3 4 5 6 7 8 9 101112

(e) Camel
Fig. 15: Maintenance Activity Trend Line

21

E. How does the Compound Anchors threshold impact the
characteristics of compound debts after merging?

As shown in Equation 17, we use an overlap threshold to
decide whether to merge two debts. In this section, we evaluate
how this threshold impacts the characteristics of the compound
debts after merging with Compound Anchors. In particular,
we are interested in: 1) the number of compound debts after
merging; and 2) the average size (number of files), the average
maintenance cost (in terms of the churn associated with those
files), and the ratio between the two. The first aspect determines
the maximum number of debts architects need to review, while
the second aspect reveals the potential cost-effectiveness of
inspecting each debt. We tested thresholds from 0.1 to 0.9,
and the results are shown in Table XIII. We can make the
following observations:

o As we increase the overlap threshold, the number of
compound debts increases for all four debt types. This
is consistent with the intuition that a higher threshold
poses a more strict criterion thus preventing some merges.
Therefore, more distinct debts will remain after merging.
The implication is that the architects can expect to review
more debt instances if the overlap threshold is high.

« As we increase the overlap threshold, the potential cost-
effectiveness of each compound debt increases for the
AD, HB, and MV debts across projects. For example, the
size-and-churn ratio of the AD debts increases from 4
to 7 as the threshold increases from 0.1 to 0.9. In other
words, as the threshold increases, each compound tends to
contain fewer source files, but each debt still accounts for
relatively higher maintenance costs with respective to its
number of files. Therefore, the implication is that a higher
overlap threshold helps architects focus on compound
debts with higher cost effectiveness. Of particular note,
the cost effectiveness of the AS debts remain stable as we
increase the threshold; we conjecture that the reason is
that merge is only applicable to 7 projects even when the
threshold is 0.1. Therefore, the cost effectiveness rate stays
close to that of the original debts (i.e., without merging)
for AS debts.

VIII. RELATED WORK
A. Technical Debt.

The concept of TD was first coined by Cunninghan [1]. It
refers to the trade-offs developers make between long term
benefits, such as maintainability, and short term goals, such
as meeting a deadline. Much research has focused on 7D, to
understand the 7D landscape, on practitioners’ perceptions
of TD, as well as best practices for managing 7D. We have
observed several trends in 7D research in recent years [2], [3],
[S1-71, [71-[13], [19]1-[25], [35]-[55], [551-(68], [68]-[72].

a) Self-Admitted Technical Debt: An important body
of work focuses on identifying and analyzing Self-Admitted
TD (SATD) [46]-[58]. SATD refers to TD that is noted by
developers in comments and issue reports, such as “TODO”
items. The key to this type of 7D is that the developers

intentionally introduce these debts to strategically balance
long-term and short-term goals in software development. Most
work in this area has focused on detecting SATD using
text mining [49], [51], natural language processing [56] and
deep learning techniques [53]. Yan et. al [48] focused on
identifying changes that introduce SATD. Wehaibi et. al [50]
investigated the impact of SATD on software quality, revealing
that the introduction of SATD correlates with defectiveness
of the involved files, and files involved in SATD are more
difficult to change. Mensah et. al [54] proposed a prioritization
scheme for treating SATD in practice. Kamei et. al focused on
measuring the interest of SATD in terms of LoC and Fan-
In [55]. Maldonado et. al [47] and Zampetti et. al [57]
investigated how SATD is removed in practice. One large-scale
study revealed that SATD is mostly code debt (30%), defect debt
(20%), and requirement debt (20%) [46]. In addition, Sierra et.
al [52] evaluated whether SATD can serve as an indicator of
architectural debt. The answer is that 14% of the architectural
debt can be traced through SATD, but the effort of doing so is
high and generally inefficient. Our paper specifically focused on
Architectural Debts, which are largely overlooked by developers
when documenting SATD. We conjecture that Architectural
Debts are more likely to be introduced accidentally without
developers’ awareness. Literature about SATD focused on
identifying debts that are admitted by developers through
code comments and issue reports. In comparison, our study
proposed an automated approach to identify and quantify ATDs
by mining project repository and matching the architectural
and evolutionary patterns. Therefore, our work complements
the existing work in SATD by identifying potential ATDs that
developers are not aware of.

b) TD Survey/Interview: An important research method-
ology for understanding 7D is through surveys or interviews
involving practitioners [5], [19]-[23], [59]-[63]. These studies
focused on understanding practitioners’ perceptions of 7D
and discovering current practices of 7D management. Rios
et. al [22], [23] revealed that TD is usually caused by a
combination of factors in project planning/management such
as deadlines and inadequate planning, and the lack of problem
domain and technology knowledge. Perez et. al [19] had similar
findings in another survey. They emphasized that the concept
of TD is well understood by practitioners, and that researchers
need to offer strategies and tools to support TD management.
Yli-Huumo et. al [20] interviewed 25 professionals from 8
development teams to understand current practices in 7D
management of 7D repayment, identification, measurement,
monitoring, prioritization, communication, prevention, and
documentation. They found that different teams have different
maturity levels and pointed out that one of the challenges in 7D
management is the lack of tools. Besker et. al [59] conducted an
interview with 16 professionals in software startups, showing
that startups intentionally use 7D as a strategy to achieve a
“good enough” product with rapid time to market. In addition,
Besker et. al [5] conducted another study, focusing on the
impact of ATD on daily development. They reported that ATD
has the highest negative impact and impacts all roles in a

22

TABLE XIII: Impact of Overlap Threshold (0.1 to 0.9) on Merging

Overlap AD AS HUB MV
Thresh #MDebts S.% Ch.% | R. #MDebts S.% Ch.% | R. #MDebts S.% Ch.% | R. | #MDebts S.% Ch.% R.
0.1 4 2.8% 103% | 4 2 5.5% 9.3% 2 3 1.6% 6% 5 1 40% 53 %1
0.2 4 2.8% 103% | 4 3 4.3% 8% 2 3 1.5% 6% 5 2 35% 45% 1
0.3 5 1.51% | 6.11% | 5 3 343% | 6.41% | 2 3 1.52% | 591% | 5 3 28.89% | 37.83% 2
0.4 8 1.37% | 5.70% | 5 3 3.03% | 5.25% | 2 4 1.52% | 590% | 5 6 16.64% | 23.13% 2
0.5 8 1.15% | 5.03% | 5 3 3.03% | 525% | 2 4 1.52% | 590% | 5 10 13.73% | 20.25% 2
0.6 19 1.02% | 4.65% | 6 3 2.72% | 4716% | 2 8 0.71% | 3.55% | 7 29 10.06% | 16.26% 3
0.7 21 097% | 454% | 6 3 2.62% | 4.64% | 2 8 0.71% | 3.56% | 7 44 6.65% 12.43% 3
0.8 23 097% | 455% | 7 3 2.62% | 4.64% | 2 8 0.71% | 3.56% | 7 55 6.11% 11.64% 3
0.9 23 096% | 4.52% | 7 3 2.62% | 4.64% | 2 8 0.71% | 3.56% | 7 63 6% 11.2% 3
Trend T i) — — T i) i) T

development team compared to other types of TD. In other
studies, Besker et. al [62], [63] found that 7D cripples software
development productivity. Holvitie et. al [61] conducted a
survey with 184 responses for understanding 7D and agile
development practices. Their main finding is that agile practices
and processes help to reduce technical debt; in particular,
techniques such as coding standards and refactoring positively
affect technical debt management. Martini et. al [21] conducted
a survey with 226 respondents from 15 organizations. They
found that 7D Management requires substantial dedication
from developers, probably due to the lack of effective tools.
Currently, the most used and effective tools are backlogs and
static analyzers.

The main findings of these works reveal that practitioners are
aware of the negative impact of 7D, but the most challenging
part is 7D management. We believe that the approach presented
in this paper has the potential in facilitating 7D management
with its ability to automatically detect, to quantify the interest,
and to predict the future costs of 7D.

¢) TD Secondary Studies: Due to the large volume of
TD research, a set of secondary studies has reviewed the
status of the 7D research [2], [3], [6], [64]-[69]. This helps
researchers understand whether current research aligns with
the practitioners’ expectation. Rios et. al [2] studied 13 studies
of TD between 2012 and 2018. They identified a taxonomy
of TD types, including design debt, code debt, architectural
debt, test debt, documentation debt, defect debt, infrastructure
debt, etc. Among these, design, code, and architecture debt
are the most cited types. Similar findings have been reported
by Alves et. al [3] and Li et. al [4]. Behutiye et. al [64]
studied 38 papers about 7D in the context of Agile development
and found that architectural and design issues are the most
common causes of 7D in Agile development. Verdecchia et.
al [65] studied 47 papers focusing on architectural 7D. They
found that most studies focused on architectural anti-patterns
and smells, and modularity analyses, based on source code
and evolutionary data. Besker et. al [6] pointed out that there
is a compelling need for supporting tools and methods for
system monitoring and evaluating ATD. A key challenge in
this area is to quantify and predict the economic consequences
of architectural TD. Ferndndez-Sanchez et. al [66]’s study
concluded that 7D management should be context dependent,
considering the history of product development, prospects, and
time to market. They also pointed out that quantifying and
visualizing 7D is important for communication in the decision-

23

making process. Lenarduzzia et. al [68] noted, based on 44
studies of 7D, that prioritization is preliminary and researchers
need to put more effort on determining the important factors
and how to measure them. Becker et. al [69] suggested that
more effort should be put on investigating the decision making
process for 7D management, in particular the “intertemporal”
choices in TD management.

d) TD Quantification and Prioritization: Some work
specifically focused on quantifying the principle, interest, and
probability of interest of TD in software projects [24], [25],
[55], [68], [70]-[72]. Lenarduzzi et. al [68] summarized ten
different aspects of impacting factors considered during debt
prioritization in research and practice, based on 44 primary
studies. The ten aspects of impact factors considered for
debt prioritization are 1) business factors, such as lead time
and market competitiveness; 2) customer factors, such as
satisfaction and expectations; 3) evolution, such as impact
on features; 4) maintenance, such as number of bugs and
maintenance cost; 5) system quality, such as security and
robustness; 6) quality debt—# of issues or their co-occurrence;
7) productivity, such as wasted development hours; 8) project
factors, such as project size and complexity; 9) social factors,
such as developers’ morale and team culture; 10) other factors,
such as user perception and number of users affected. Martini
et. al [24], [25] measured the negative impact of 7D in
development speed, bugs, quality compromised, extra costs,
frequency of issues, and users affected. These inputs were
provided by developers working on the studied projects. Kosti
et. al [70] focused on estimating the principal of 7D by
modeling seven structural metrics. The rationale is that the
higher the structural metrics, such as coupling and cohesion,
the higher the principle of a 7D. Codabux et. al [71] used
the metrics of defect- and change-prone classes to build a
prediction model for debt proneness of classes. This helps to
prioritize debts. Amanatidis et. al [72] considered developer
characteristics, such as expertise level, to estimate the principle
of TD.

e) Architectural TD: [7], [7]-[13]. As noted above,
architectural 7D is one of the most cited types, due to its
significant negative impacts on software development [2], [3].
Li et. al [4] further categorized Architectural 7D into seven
sub-categories, including architectural smells [14], architectural
anti-patterns [15], [16], complex architectural behavioral de-
pendencies [73], violations of good architectural practices [17],
architectural compliance issues [74], system-level structural

quality issues, and all others. Martini et al. [18] conceptualized
two patterns of Architectural 7D: contagious debt and vicious
circle. Contagious debt leads to ripple effects in projects.
Vicious circle refers to a more severe contagious debt where
the ripple effects form a loop. Martini et. al [7] proposed a
framework to help practitioners decide if and when to refactor
architectural 7D. Towards this end, the authors considered the
coupling among debt elements for estimating the interest, and
also collected data about the impact on development speed,
maintainability, learning, etc. Skiada et. al [8] explored the
relationship between modularity and 7D, finding that a lack of
modularity often co-locate with 7D. MacCormack et. al [12]
revealed that high coupling is an essential factor that contributes
to system architectural 7D. Roveda et. al [13] proposed
an Architectural Debt Index to quantify the significance of
architectural smells based on existing tools, including the
approach proposed in our own prior work [75], [76].

f) Industrial Application of the ATD Patterns: In our
previous studies [31], [32], [77], [78], we specifically focused
on evaluating and verifying the harmfulness of the kinds of
ATD patterns identified in this paper, including extensive user
studies and interviews of developers. In each of these empirical
studies of industrial projects the architects and developers
were intensively involved, providing feedback regarding the
harmfulness of the identified debts and benefits of identifying
and fixing them. In particular, in study [32], our analysis
resulted in quantifiable evidence to support a refactoring
proposal, convincing the project manager to invest in a major
refactoring. In the other two studies [31], [77], the developers
carried out long-term refactorings following the suggestions
provided by the identified ATD patterns. These studies all
provided real-world evidence that the ATD patterns formalized
in this paper are truly harmful and deserve attention. The main
contribution of this paper is to provide a formalized, systematic
approach to identify, quantify and predict the costs of ATDs.

g) TD Management Tools/Platforms: There are several
tools/platforms developed for managing 7Ds in large-scale
systems, including CodeScene 2, AnaConDebt * and Arcan 4.
CodeScene is an online platform providing code visualization
dashboard based on software repository [79]. It identifies social
patterns and hidden risks in code. More specifically, CodeScene
detects “hotspots”—complex code that an organization has
to work with frequently. It prioritizes 7D based on the
frequency [80]. In addition, CodeScene also focuses on the
team dynamics of the software development team, such as
their social networks and code ownerships. AnaConDebt is a
TD management tool that consists of a TD-enhanced backlog,
developed by Martini et. al based on empirical experience
with 6 software development companies [7], [81]. The backlog
allows the creation of TD items and allows performing TD-
specific operations on the item, including tracking TD items,
assessing TD principal and interest, comparing and ranking

Zhttps://codescene.io
3https://anacondebt.com
“http://essere.disco.unimib.it/wiki/arcan

TD items, visualizing TD items, etc. These operations can
aid decisions on ATD refactoring. AnaConDebt provides a
generalized framework to track and manage TD items, but
the identification and assessment of the TD items requires
project expert’s input and experience. Arcan is a tool for
architectural smell detection [82]. It detects four smell patterns,
namely class level cyclic dependency, package level cyclic
dependency, unstable dependency, and hub like dependency.
In a recent study, Martini et al. [83] conducted a case study
using Arcan for identifying ATD in four industrial projects
with a questionnaire, interviews and thorough inspection of the
code with the practitioners. The goal is to reveal whether and
how practitioners could identify and prioritize ATD through
the architectural smells identified by Arcan. Their study
focused on three architectural smell patterns, including unstable
dependency, hub-like dependency, and cyclic dependency. They
found that using these architectural smells to identify and
prioritize ATD was considered useful to identify unknown
problems by the developers. In addition, cyclic dependency
and hub-like dependency are considered more harmful and
thus having higher priority than unstable dependency. Our
study also investigate similar ATD patterns. We leverage
the history coupling as an additional layer of architectural
connections to pin-point ATDs that incur higher maintenance
costs (approximately by changes) compared to their size.
And, modularity violations is a unique pattern in our work.
Furthermore, the debt aggregation step in our approach helps
to identify compound structures that are composed by “atomic”
patterns. Lastly, our study focuses on the formalization and
quantification of ATD identification and prioritization; while
Martini et al.’s work [83] is an empirical case study applying
Arcan and taking practitioners’ opinion .

h) Comparison of Technical Debt Detection Tools: A
recent empirical study compares the technical debts identified
by 6 well-known tools—including Structure 101, SonarQube,
Designite, DV8, Archinaut, and SCC [84]. One of the selected
tools, DV8, identifies the architectural debt patterns in this
work. The authors compared the consistency of the identified
results over 10 projects. The conclusion is that DVS identified
significantly different debts than the other tools. In addition,
the debts identified by DV8 were strongly associated with
true maintenance difficulties across the studied projects. Most
importantly, the debts identified by DV8 provide additional
insights into the root causes of the debt, that is, problematic
structures among files, and hence they have the potential to
guide refactoring. For example, the Modularity Violation and
Anchor Dominant anti-patterns that DV8 identifies give insight
into not only what files are problematic, but also how to
refactor those files to remove the root cause of the debt. This
empirical study highlights the necessity of leveraging change-
based information in technical debt detection.

While the main contribution of this paper is to formalize
the definition, identification, quantification, and prediction of
architectural debt. In particular, in RQ2 and RQ3, we focused
on architectural debt cost prediction, and aggregating pieces of
architectural debts into compound debts based on their more

24

https://codescene.io
https://anacondebt.com
http://essere.disco.unimib.it/wiki/ arcan

architectural connections. We have not found any existing work
that addresses similar goals. Therefore, we could not make any
direct comparison of these parts with existing studies.

B. Co-change Analysis

Analysis of co-changes in software projects at the package,
class, method, and statement level has been used to gain insight
in and provide solutions for problems in software development.
Prior research has focused on analyzing co-change patterns in
software evolution for different purposes such as predicting
software change impact [85]-[88], predicting defects [89]—
[91], revealing design problems [92]-[99], and visualizing
co-changes to improve understanding [100]-[103].

Zimmermann et al. [104] applied data mining on revision
histories to predict likely changes given a change that has
already occurred. They contributed the ROSE tool to predict
files to be changed based on a given change [85]. Kagdi et
al. [105] proposed an approach to calculate the change impact
scope of a software entity by combining structural coupling,
reflected in source code, and change coupling, recorded in the
project’s revision history. Their approach improved the accuracy
of change impact analysis, compared with either technique
used independently. Gethers et al. [106] proposed an integrated
approach to identify the impact set of a change request (e.g. a
bug ticket in bug-tracking database), based on data mining of
past source code commits and run-time traces. Others aimed
at improving the accuracy of impact analysis [86]-[88]

Analysis of co-changes has also been used in reverse-
engineering. Beck et al. [107] used co-change analysis to
compute clusterings. They used an Evolutionary Class Depen-
dency Graph to represent co-change coupling. They calculated
three types of clusterings using (1) only co-change coupling, (2)
only structure dependencies, and (3) a combination of the two.
They found that clustering based on the combined approach
yielded the best results.

Co-change analysis has also been applied to investigate
problems in software projects, such as bugs and code smells.
Wiese et. al. combined historical data with social metrics
collected from developer interactions for defect prediction [89].
Kouroshfar et al. [108], [109] investigated how co-changes
impact bugs. They found that co-changes dispersed across
different sub-systems are more likely to result in bugs than
localized co-changes. Girba et al. [110] used co-change patterns
to identify hidden dependencies among different areas of a
software system that reveal bad smells. They defined history
patterns at three granularity levels: method, class, and package.
These patterns can reveal code smells, such as similar code,
cloned code, and shot-gun surgery. Code smells have also been
used as a heuristic for approximating TD. Zazworka et al. [111]
reported that not all 7D approximated by code smells will lead
to high maintenance costs, and not all 7D has code smells. Zhou
conducted a study of open-source systems employing 6 types of
co-change relationships to reveal design problems [92]. Wong
proposed a approach to identify modularity violations through
co-change analysis, which reveal symptoms of poor design [93].
Mondal presented a study of co-change patterns in methods,

25

which has the potential to pinpoint design deficiency [98]. Silva
classified co-change patterns into three types and collected the
perceptions of expert developers on these patterns [99].

IX. LIMITATIONS AND THREATS TO VALIDITY

We now explain the threats to the validity of this research.

First, we acknowledge that the consequences of ATDs can
include many other aspects of costs and issues, such as
availability, evolvability, scalability, reliability etc. However,
the approach proposed in this paper specifically focuses on de-
tecting and quantifying ATDs that incur high maintenance costs
over time—approximated by the bug-fixing churn associated
with source files. The reason is that other aspects of costs and
issues are often not directly measurable, or the measurements
are not available in most software project repositories. We
acknowledge this limitation to our approach.

Second, we have only examined 18 open source projects
from the Apache Software Foundation. We cannot guarantee
that our approach will be as effective for projects with different
cultures or conventions. We also cannot guarantee that the same
observations achieved in this paper will hold for other projects.
To mitigate this limitation, we selected projects of different
programming languages (c/c++, Java, and Python) and from
different domains. We believe that our dataset is representative
of a diverse set of projects. However, we acknowledge that
proprietary projects may have different cultures and convention
from the open source projects. We plan to conduct case studies
with our industrial collaborators in the future to further evaluate
our approach.

Third, as discussed in section VII-C, the debt identification
approach relies on history data since we mine the coupling
data from the code repository, version control systems, and
bug tracking systems. We need quality history data to identify
how source files are revised due to bug fixing, and how source
files change together over time. This is both a limitation and
a potential threat to validity. If developers do not commit
changes following good project practices, the quality of
the identified debts will be compromised. For example, if
developers frequently combine irrelevant changes into big
commits the identified debts may be connected by “false
positive” history coupling. Alternatively if developers making
frequent trivial commits, our approach may miss some debts, as
history coupling cannot be properly captured by the commits.
We attempted to address these threats by only analyzing
commits that affected between 2 to 30 source files. We believe
that this mitigation helps us to eliminate trival changes as well
as large changes that may not have a cohesive purpose. In our
future work, we plan to employ pre-processing to untangle
complicated commits and merge relevant commits to improve
the quality of history coupling.

Fourth, we used bug-fixing churn as a proxy for maintenance
costs. In open source projects, there is no good way to track
actual costs, such as person-hours. Therefore, code churn has
been commonly used as a surrogate for maintenance cost
in previous studies [112]-[119]. Sjgberg et. al [112] found a
significant correction between maintenance cost and code churn.

Their study suggested that, given the lack of real effort data,
code churn is a reasonable surrogate for maintenance cost/effort
in software development. While churn may not be a perfect
proxy for measuring cost, this bias, if it indeed exists, should
not significantly impact our debt identification. Our approach
examines the trajectory of the churn over time, instead of
focusing on a specific release. Thus we do not depend on the
absolute value of churn. In future work, we plan to explore
other cost measures. In addition, we plan to collaborate with
industry partners to analyze commercial projects, where more
accurate cost estimation may be available.

Fifth, ATDs are sub-optimal architectural design decisions
that cause “extra” maintenance effort. The mere presence of
architectural smell patterns does not qualify as ATD if not
causing extra maintenance effort. In this study, we compare
the difference between the percentage of maintenance cost
associated with ATDs (in terms of error-fixing churn) with the
size of identified ATDs. The size of ATDs is measured in both
the percentage of associated files (Table II) and the percentage
of LoC (Table III). This is to estimate the potential “extra
cost” of ATDs as the additional portion of maintenance cost
compared to their size. We acknowledge that this estimation
does not capture the exact amount of “extra cost” caused by
ATDs. However, there is no practical way to directly measure
the exact extra cost. This method of estimation for the “extra
cost” has been adopted in multiple previous studies [26], [31],
[77], [120]. We acknowledge that the problem of measuring
the interest of ATD is still open.

Lastly, we acknowledge that the regression models only
quantify the trajectory of maintenance costs associate with
each identified ATD. Based on the type of the trajectory, we
made conjectures to interpret the interest rate associated with
ATDs. That is, a linear regression model describes a debt
with stable interest over time. A logarithmic model indicates
flattening interest rate; while the exponential model indicates
ever-increasing interest rate. And polynomial model indicates
fluctuating interest rate. We acknowledge that the interpretation
of each regression model instance might depend on many
factors, such as project constraints, goals, and evolution. Our
general interpretation of different regression model types
has not taken those factors into considerations. We also
acknowledge the limitation that we only used the regression
models to predict the future cost of debts in the most recent
future release (about 6 months of time). We have not evaluated
whether the models can predict the costs of releases farther in
the future. We conjecture that the accuracy of the prediction
will decrease with the additional prediction distance. This
applies to any model that predicts the future. For example, it is
common sense that the weather forecast is more accurate for
the next three days than for the next month. In addition, it is
most important for practitioners to predict the cost of the most
recent release to develop a practical task prioritization plan. In
our future work, we plan to evaluate how far the models can
predict future costs of debts.

26

X. CONCLUSION

This paper contributed an approach to automatically detect
the precise locations of ATDs, to quantify the “interest” rate of
each debt using four typical regression models, and to predict
the cost of each debt in a future release using these models.
Furthermore, our approach revealed the more complicated
connections among different debt instances that deserve to
be examined together for effective refactoring solutions.

We have evaluated the effectiveness of our approach in
identifying and quantifying ATDs in 18 real-world projects
of varying characteristics. First, our approach can identify
significant ATDs in software projects that deserve attention.
The identified debts usually only contain a small portion of a
project’s files, but account for a large portion of maintenance
costs. Therefore, by focusing on the identified debts, the
architects can potentially focus on cost-effective refactoring
opportunities. The debts identified by our approach will keep
incurring high maintenance costs in a project’s future. Second,
the regression models not only quantify the trajectory of past
maintenance costs on each debt, but also accurately predict
the cost of each debt in a future release. Therefore, architects
can use such regression models to objectively prioritize ATDs
based on estimates of future costs. Finally, the compound
debt aggregation method in this approach can help architects
focus on cost effective refactoring candidates that capture the
connections among debt patterns.

We believe that this research represents a valuable and
novel addition to the existing literature in ATDs identification,
quantification, and prioritization.

XI. ACKNOWLEDGEMENTS

This work was supported in part by awards CNS-1823074,
CNS-1823177, CNS-1823214, CCF-1817267, CCF-1816594,
and OAC-1835292 from the National Science Foundation. We
would also like to thank the anonymous reviewers for their
valuable feedback, which helped us to improve this work.

REFERENCES

[1] Ward Cunningham. The WyCash portfolio management system. In
Addendum to Proc. 7th ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, pages 29-30,
October 1992.

Nicolli Rios, Manoel Gomes de Mendonga Neto, and Rodrigo Oliveira
Spinola. A tertiary study on technical debt: Types, management
strategies, research trends, and base information for practitioners.
Information and Software Technology, 102:117-145, 2018.

Nicolli SR Alves, Thiago S Mendes, Manoel G de Mendonga, Rodrigo O
Spinola, Forrest Shull, and Carolyn Seaman. Identification and
management of technical debt: A systematic mapping study. Information
and Software Technology, 70:100-121, 2016.

Zengyang Li, Paris Avgeriou, and Peng Liang. A systematic mapping
study on technical debt and its management. J. Syst. Softw., 101(C):193—
220, March 2015.

Terese Besker, Antonio Martini, and Jan Bosch. Impact of architectural
technical debt on daily software development work—a survey of
software practitioners. In 2017 43rd Euromicro Conference on Software
Engineering and Advanced Applications (SEAA), pages 278-287. IEEE,
2017.

Terese Besker, Antonio Martini, and Jan Bosch. Managing architectural
technical debt: A unified model and systematic literature review. Journal
of Systems and Software, 135:1-16, 2018.

[2

—

[3

[t}

[4

=

[5

—

[6

—_

(71

o0

(8]

[91

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Antonio Martini and Jan Bosch. An empirically developed method to
aid decisions on architectural technical debt refactoring: Anacondebt. In
2016 IEEE/ACM 38th International Conference on Software Engineering
Companion (ICSE-C), pages 31-40. IEEE, 2016.

Peggy Skiada, Apostolos Ampatzoglou, Elvira-Maria Arvanitou, Alexan-
der Chatzigeorgiou, and Ioannis Stamelos. Exploring the relationship
between software modularity and technical debt. In 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
pages 404-407. IEEE, 2018.

Jeffrey C Carver, Jordi Cabot, Rafael Capilla, and Henry Muccini.
Github, technical debt, code formatting, and more. IEEE Software,
34(2):105-107, 2017.

Terese Besker, Antonio Martini, and Jan Bosch. Impact of architectural
technical debt on daily software development work - a survey of software
practitioners. 09 2017.

Terese Besker, Antonio Martini, and Jan Bosch. Managing architectural
technical debt: A unified model and systematic literature review. J. Syst.
Softw., 135:1-16, 2018.

Alan MacCormack and Dan Sturtevant. Technical debt and system
architecture: The impact of coupling on defect-related activity. Journal
of Systems and Software, 120, 06 2016.

Riccardo Roveda, Francesca Arcelli Fontana, Ilaria Pigazzini, and Marco
Zanoni. Towards an architectural debt index. pages 408416, 08 2018.
Ran Mo, Joshua Garcia, Yuanfang Cai, and Nenad Medvidovic. Mapping
architectural decay instances to dependency models, 2013.

Isaac Griffith and Clemente Izurieta. Design pattern decay: The case
for class grime. In Proceedings of the 8th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement,
ESEM ’14, pages 39:1-39:4, New York, NY, USA, 2014. ACM.
Lawrence Peters. Technical debt: The ultimate antipattern - the biggest
costs may be hidden, widespread, and long term, 2014.

Bill Curtis, Jay Sappidi, and Alexandra Szynkarski. Estimating the
principal of an application’s technical debt. IEEE Software, 29(6):34-42,
2012.

A. Martini and J. Bosch. The danger of architectural technical debt:
Contagious debt and vicious circles. In Software Architecture (WICSA),
2015 12th Working IEEE/IFIP Conference on, pages 1-10, May 2015.
Boris Pérez, Juan Pablo Brito, Hernan Astudillo, Dario Correal, Nicolli
Rios, Rodrigo Oliveira Spinola, Manoel Mendonga, and Carolyn Seaman.
Familiarity, causes and reactions of software practitioners to the presence
of technical debt: A replicated study in the chilean software industry. In
2019 38th International Conference of the Chilean Computer Science
Society (SCCC), pages 1-7. IEEE, 2019.

Jesse Yli-Huumo, Andrey Maglyas, and Kari Smolander. How do
software development teams manage technical debt?—an empirical study.
Journal of Systems and Software, 120:195-218, 2016.

Antonio Martini, Terese Besker, and Jan Bosch. Technical debt tracking:
Current state of practice: A survey and multiple case study in 15 large
organizations. Science of Computer Programming, 163:42-61, 2018.
Nicolli Rios, Rodrigo Oliveira Spinola, Manoel G de Mendonga Neto,
and Carolyn Seaman. A study of factors that lead development teams
to incur technical debt in software projects. In 2018 44th Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
pages 429-436. IEEE, 2018.

Nicolli Rios, Manoel G Mendonga, Carolyn Seaman, and Rodrigo O
Spinola. Causes and effects of the presence of technical debt in agile
software projects. 2019.

Antonio Martini, Simon Vajda, Rajesh Vasa, Allan Jones, Mohamed
Abdelrazek, John Grundy, and Jan Bosch. Technical debt interest
assessment: from issues to project. In Proceedings of the XP2017
Scientific Workshops, pages 1-6, 2017.

Antonio Martini and Jan Bosch. The magnificent seven: towards a
systematic estimation of technical debt interest. In Proceedings of the
XP2017 Scientific Workshops, pages 1-5, 2017.

Ran Mo, Yuanfang Cai, Rick Kazman, and Lu Xiao. Hotspot patterns:
The formal definition and automatic detection of architecture smells. In
Proc. 15th Working IEEE/IFIP International Conference on Software
Architecture, May 2015.

Lu Xiao, Yuanfang Cai, and Rick Kazman. Design rule spaces: A new
form of architecture insight. In Proc. 36th International Conference on
Software Engineering, 2014.

Carliss Y. Baldwin and Kim B. Clark. Design Rules, Vol. 1: The Power
of Modularity. MIT Press, 2000.

27

[29]

[30]

[31]

[33]

[34]

[35]

[36]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, 3rd edition, 2012.

Sunny Wong, Yuanfang Cai, Miryung Kim, and Michael Dalton.
Detecting software modularity violations. In Proc. 33rd International
Conference on Software Engineering, pages 411-420, May 2011.
Rick Kazman, Yuanfang Cai, Ran Mo, Qiong Feng, Lu Xiao, Serge
Haziyevy, Volodymyr Fedaky, and Andriy Shapochkay. A case study
in locating the architectural roots of technical debt. In Proc. 37th
International Conference on Software Engineering, 2015.

Robert Schwanke, Lu Xiao, and Yuanfang Cai. Measuring architecture
quality by structure plus history analysis. In Proc. 35rd International
Conference on Software Engineering, pages 891-900, May 2013.
Alan MacCormack, John Rusnak, and Carliss Y Baldwin. Exploring
the structure of complex software designs: An empirical study of open
source and proprietary code. Management Science, 52(7):1015-1030,
2006.

Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar De-
vanbu, and Abraham Bernstein. The missing links: bugs and bug-fix
commits. In Proceedings of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering, pages 97-106, 2010.
Georgios Digkas, Mircea Lungu, Alexander Chatzigeorgiou, and Paris
Avgeriou. The evolution of technical debt in the apache ecosystem. In
Anténia Lopes and Rogério de Lemos, editors, Software Architecture,
pages 51-66. Springer International Publishing.

Reem Alfayez, Pooyan Behnamghader, Kamonphop Srisopha, and Barry
Boehm. An exploratory study on the influence of developers in technical
debt. In Proceedings of the 2018 International Conference on Technical
Debt, TechDebt *18, pages 1-10. Association for Computing Machinery.
Md Abdullah Al Mamun, Antonio Martini, Miroslaw Staron, Christian
Berger, and Jorgen Hansson. Evolution of technical debt : An exploratory
study. volume 2476, pages 87-102. CEUR-WS.

Michael Mohan, Des Greer, and Paul McMullan. Technical debt
reduction using search based automated refactoring. 120:183-194.
Georgios Digkas, Mircea Lungu, Paris Avgeriou, Alexander Chatzige-
orgiou, and Apostolos Ampatzoglou. How do developers fix issues
and pay back technical debt in the apache ecosystem? In 2018 IEEE
25th International Conference on Software Analysis, Evolution and
Reengineering (SANER), pages 153-163. ISSN: null.

Angeliki-Agathi Tsintzira, Apostolos Ampatzoglou, Areti Ampatzoglou,
Alexander Chatzigeorgiou, Oliviu Matei, D Department, and Holisun Srl.
Technical debt quantification through metrics: An industrial validation.
page 5.

Valentina Lenarduzzi, Nyyti Saarimiki, and Davide Taibi. The technical
debt dataset. In Proceedings of the Fifteenth International Conference
on Predictive Models and Data Analytics in Software Engineering -
PROMISE’19, pages 2—11. ACM Press.

Georgios Digkas, Mircea Lungu, Alexander Chatzigeorgiou, and Paris
Avgeriou. The evolution of technical debt in the apache ecosystem. In
Antoénia Lopes and Rogério de Lemos, editors, Software Architecture,
Lecture Notes in Computer Science, pages 51-66. Springer International
Publishing.

Rodrigo O. Spinola, Nico Zazworka, Antonio Vetro, Forrest Shull, and
Carolyn Seaman. Understanding automated and human-based technical
debt identification approaches-a two-phase study. 25(1):5.

Narayan Ramasubbu and Chris Kemerer. Integrating technical debt
management and software quality management processes: a framework
and field tests. In Proceedings of the 40th International Conference on
Software Engineering, ICSE *18, page 883. Association for Computing
Machinery.

Yuepu Guo, Rodrigo Oliveira Spinola, and Carolyn Seaman. Exploring
the costs of technical debt management — a case study. 21(1):159-182.
Gabriele Bavota and Barbara Russo. A large-scale empirical study on
self-admitted technical debt. In Proceedings of the 13th International
Conference on Mining Software Repositories, pages 315-326, 2016.
Everton da S Maldonado, Rabe Abdalkareem, Emad Shihab, and
Alexander Serebrenik. An empirical study on the removal of self-
admitted technical debt. In 2017 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 238-248. IEEE,
2017.

Meng Yan, Xin Xia, Emad Shihab, David Lo, Jianwei Yin, and Xiaohu
Yang. Automating change-level self-admitted technical debt determina-
tion. IEEE Transactions on Software Engineering, 45(12):1211-1229,
2018.

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Ke Dai and Philippe Kruchten. Detecting technical debt through issue
trackers. In QuASoQ@ APSEC, pages 59-65, 2017.

Sultan Wehaibi, Emad Shihab, and Latifa Guerrouj. Examining the
impact of self-admitted technical debt on software quality. In 2016
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), volume 1, pages 179-188. IEEE, 2016.
Qiao Huang, Emad Shihab, Xin Xia, David Lo, and Shanping Li.
Identifying self-admitted technical debt in open source projects using
text mining. Empirical Software Engineering, 23(1):418-451, 2018.
Giancarlo Sierra, Ahmad Tahmid, Emad Shihab, and Nikolaos Tsantalis.
Is self-admitted technical debt a good indicator of architectural
divergences? In 2019 IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 534-543. IEEE,
2019.

Xiaoxue Ren, Zhenchang Xing, Xin Xia, David Lo, Xinyu Wang,
and John Grundy. Neural network-based detection of self-admitted
technical debt: From performance to explainability. ACM Transactions
on Software Engineering and Methodology (TOSEM), 28(3):1-45, 2019.
Solomon Mensah, Jacky Keung, Jeffery Svajlenko, Kwabena Ebo
Bennin, and Qing Mi. On the value of a prioritization scheme for
resolving self-admitted technical debt. Journal of Systems and Software,
135:37-54, 2018.

Yasutaka Kamei, Everton da S Maldonado, Emad Shihab, and Naoyasu
Ubayashi. Using analytics to quantify interest of self-admitted technical
debt. In QuASoQ/TDA@ APSEC, pages 68-71, 2016.

Everton da Silva Maldonado, Emad Shihab, and Nikolaos Tsan-
talis. Using natural language processing to automatically detect self-
admitted technical debt. IEEE Transactions on Software Engineering,
43(11):1044-1062, 2017.

Fiorella Zampetti, Alexander Serebrenik, and Massimiliano Di Penta.
Was self-admitted technical debt removal a real removal? an in-depth
perspective. In 2018 IEEE/ACM 15th International Conference on
Mining Software Repositories (MSR), pages 526-536. IEEE, 2018.
Stephany Bellomo, Robert L Nord, Ipek Ozkaya, and Mary Popeck.
Got technical debt? surfacing elusive technical debt in issue trackers.
In 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR), pages 327-338. IEEE, 2016.

Terese Besker, Antonio Martini, Rumesh Edirisooriya Lokuge, Kelly
Blincoe, and Jan Bosch. Embracing technical debt, from a startup
company perspective. In 2018 IEEE International Conference on
Software Maintenance and Evolution (ICSME), pages 415-425. 1EEE,
2018.

Justus Bogner, Jonas Fritzsch, Stefan Wagner, and Alfred Zimmermann.
Limiting technical debt with maintainability assurance: an industry
survey on used techniques and differences with service-and microservice-
based systems. In Proceedings of the 2018 International Conference
on Technical Debt, pages 125-133, 2018.

Johannes Holvitie, Sherlock A Licorish, Rodrigo O Spinola, Sami
Hyrynsalmi, Stephen G MacDonell, Thiago S Mendes, Jim Buchan,
and Ville Leppénen. Technical debt and agile software development
practices and processes: An industry practitioner survey. Information
and Software Technology, 96:141-160, 2018.

Terese Besker, Antonio Martini, and Jan Bosch. Technical debt
cripples software developer productivity: a longitudinal study on
developers’ daily software development work. In Proceedings of the
2018 International Conference on Technical Debt, pages 105-114, 2018.
Terese Besker, Antonio Martini, and Jan Bosch. The pricey bill
of technical debt: When and by whom will it be paid? In 2017
IEEE International Conference on Software Maintenance and Evolution
(ICSME), pages 13-23. IEEE, 2017.

Woubshet Nema Behutiye, Pilar Rodriguez, Markku Oivo, and Ayse
Tosun. Analyzing the concept of technical debt in the context of agile
software development: A systematic literature review. Information and
Software Technology, 82:139-158, 2017.

Roberto Verdecchia, Ivano Malavolta, and Patricia Lago. Architectural
technical debt identification: The research landscape. In 2018 IEEE/ACM
International Conference on Technical Debt (TechDebt), pages 11-20.
IEEE, 2018.

Carlos Ferndndez-Sanchez, Juan Garbajosa, Agustin Yagiie, and Jennifer
Perez. Identification and analysis of the elements required to manage
technical debt by means of a systematic mapping study. Journal of
Systems and Software, 124:22-38, 2017.

Francesca Arcelli Fontana, Riccardo Roveda, and Marco Zanoni.
Technical debt indexes provided by tools: A preliminary discussion. In

28

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

2016 IEEE 8th International Workshop on Managing Technical Debt
(MTD), pages 28-31. IEEE, 2016.

Valentina Lenarduzzi, Terese Besker, Davide Taibi, Antonio Martini,
and Francesca Arcelli Fontana. Technical debt prioritization: State of
the art. a systematic literature review. arXiv preprint arXiv:1904.12538,
2019.

Christoph Becker, Ruzanna Chitchyan, Stefanie Betz, and Curtis
McCord. Trade-off decisions across time in technical debt management:
a systematic literature review. In Proceedings of the 2018 International
Conference on Technical Debt, pages 85-94, 2018.

Makrina Viola Kosti, Apostolos Ampatzoglou, Alexander Chatzi-
georgiou, Georgios Pallas, Ioannis Stamelos, and Lefteris Angelis.
Technical debt principal assessment through structural metrics. In 2017
43rd Euromicro Conference on Software Engineering and Advanced
Applications (SEAA), pages 329-333. IEEE, 2017.

Zadia Codabux and Byron J Williams. Technical debt prioritization using
predictive analytics. In 2016 IEEE/ACM 38th International Conference
on Software Engineering Companion (ICSE-C), pages 704-706. IEEE,
2016.

Theodoros Amanatidis, Alexander Chatzigeorgiou, Apostolos Ampat-
zoglou, and Ioannis Stamelos. Who is producing more technical debt? a
personalized assessment of td principal. In Proceedings of the XP2017
Scientific Workshops, pages 1-8, 2017.

John Brondum and Liming Zhu. Visualising architectural dependencies.
In Proceedings of the Third International Workshop on Managing
Technical Debt, MTD 12, pages 7—14, Piscataway, NJ, USA, 2012.
IEEE Press.

Rick Kazman and S. Jeromy Carriere. Playing detective: Reconstructing
software architecture from available evidence. Automated Software
Engineering, 6(2):107-138, April 1999.

L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng. Identifying and
quantifying architectural debt. In 2016 IEEE/ACM 38th International
Conference on Software Engineering (ICSE), pages 488-498, May 2016.
R. Mo, Y. Cai, R. Kazman, and L. Xiao. Hotspot patterns: The formal
definition and automatic detection of architecture smells. In 2015 12th
Working IEEE/IFIP Conference on Software Architecture, pages 51-60,
May 2015.

Maleknaz Nayebi, Yuanfang Cai, Rick Kazman, Guenther Ruhe, Qiong
Feng, Chris Carlson, and Francis Chew. A longitudinal study of
identifying and paying down architecture debt. In 20/9 IEEE/ACM
41st International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP), pages 171-180. IEEE, 2019.
Derek Reimanis, Clemente Izurieta, Rachael Luhr, Lu Xiao, Yuanfang
Cai, and Gabe Rudy. A replication case study to measure the
architectural quality of a commercial system. In Proceedings of the Sth
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, pages 1-8, 2014.

Peter Caron. Creating and using quality software delivery measurements
and metrics.

Adam Tornhill. Prioritize technical debt in large-scale systems using
codescene. In Proceedings of the 2018 International Conference on
Technical Debt, pages 59-60, 2018.

Antonio Martini. Anacondebt: a tool to assess and track technical
debt. In 2018 IEEE/ACM International Conference on Technical Debt
(TechDebt), pages 55-56. IEEE, 2018.

Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, Damian
Tamburri, Marco Zanoni, and Elisabetta Di Nitto. Arcan: A tool for
architectural smells detection. In 2017 IEEE International Conference
on Software Architecture Workshops (ICSAW), pages 282-285. IEEE,
2017.

Antonio Martini, Francesca Arcelli Fontana, Andrea Biaggi, and
Riccardo Roveda. Identifying and prioritizing architectural debt
through architectural smells: a case study in a large software company.
In European Conference on Software Architecture, pages 320-335.
Springer, 2018.

Jason Lefever, Yuanfang Cai, Humberto Cervantes, Rick Kazman, and
Hongzhou Fang. On the lack of consensus among technical debt
detection tools. In To Appear in 2021 International Conference in
Software Engineering, Software Engineering in Practice.

Thomas Zimmermann, Andreas Zeller, Peter Weissgerber, and Stephan
Diehl. Mining version histories to guide software changes. IEEE
Transactions on Software Engineering, 31(6):429-445, 2005.

Sunny Wong and Yuanfang Cai. Generalizing evolutionary coupling
with stochastic dependencies. In 2011 26th IEEE/ACM International

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Conference on Automated Software Engineering (ASE 2011), pages
293-302. IEEE, 2011.

Thomas Rolfsnes, Stefano Di Alesio, Razieh Behjati, Leon Moonen, and
Dave W Binkley. Generalizing the analysis of evolutionary coupling for
software change impact analysis. In 2016 IEEE 23rd International Con-
ference on Software Analysis, Evolution, and Reengineering (SANER),
volume 1, pages 201-212. IEEE, 2016.

Huzefa Kagdi, Malcom Gethers, Denys Poshyvanyk, and Michael L
Collard. Blending conceptual and evolutionary couplings to support
change impact analysis in source code. In 2010 17th Working Conference
on Reverse Engineering, pages 119-128. IEEE, 2010.

Igor Scaliante Wiese, Rodrigo Takashi Kuroda, Reginaldo Re, Gus-
tavo Ansaldi Oliva, and Marco Aurélio Gerosa. An empirical study of
the relation between strong change coupling and defects using history
and social metrics in the apache aries project. In IFIP International
Conference on Open Source Systems, pages 3—12. Springer, 2015.
Marcelo Cataldo, Audris Mockus, Jeffrey A Roberts, and James D
Herbsleb. Software dependencies, work dependencies, and their impact
on failures. IEEE Transactions on Software Engineering, 35(6):864-878,
20009.

Harald Gall, Karin Hajek, and Mehdi Jazayeri. Detection of logical
coupling based on product release history. In Proceedings. International
Conference on Software Maintenance (Cat. No. 98CB36272), pages
190-198. IEEE, 1998.

Daihong Zhou, Yijian Wu, Lu Xiao, Yuanfang Cai, Xin Peng, Jinrong
Fan, Lu Huang, and Heng Chen. Understanding evolutionary coupling
by fine-grained co-change relationship analysis. In 2019 IEEE/ACM
27th International Conference on Program Comprehension (ICPC),
pages 271-282. IEEE, 2019.

Sunny Wong, Yuanfang Cai, Miryung Kim, and Michael Dalton.
Detecting software modularity violations. In Proceedings of the 33rd
International Conference on Software Engineering, pages 411420,
2011.

Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto,
Andrea De Lucia, and Denys Poshyvanyk. Detecting bad smells in
source code using change history information. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 268-278. IEEE, 2013.

Robert Schwanke, Lu Xiao, and Yuanfang Cai. Measuring architecture
quality by structure plus history analysis. In 2013 35th International
Conference on Software Engineering (ICSE), pages 891-900. 1EEE,
2013.

Gerardo Canfora, Luigi Cerulo, and Massimiliano Di Penta. On the use
of line co-change for identifying crosscutting concern code. In 2006
22nd IEEE International Conference on Software Maintenance, pages
213-222. IEEE, 2006.

Bram Adams, Zhen Ming Jiang, and Ahmed E Hassan. Identifying
crosscutting concerns using historical code changes. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-
Volume 1, pages 305-314, 2010.

Manishankar Mondal, Chanchal K Roy, and Kevin A Schneider. Insight
into a method co-change pattern to identify highly coupled methods:
An empirical study. In 2013 21st International Conference on Program
Comprehension (ICPC), pages 103-112. IEEE, 2013.

Luciana L Silva, Marco Tulio Valente, Marcelo de A Maia, and Nicolas
Anquetil. Developers’ perception of co-change patterns: An empirical
study. In 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 21-30. IEEE, 2015.

Dirk Beyer. Co-change visualization. In ICSM (Industrial and Tool
Volume), pages 89-92, 2005.

Marco D’Ambros, Michele Lanza, and Mircea Lungu. Visualizing
co-change information with the evolution radar. IEEE Transactions on
Software Engineering, 35(5):720-735, 2009.

Dirk Beyer and Ahmed E Hassan. Animated visualization of software
history using evolution storyboards. In 2006 13th Working Conference
on Reverse Engineering, pages 199-210. IEEE, 2006.

Adam Vanya, Rahul Premraj, and Hans van Vliet. Interactive exploration
of co-evolving software entities. In 2010 14th European Conference on
Software Maintenance and Reengineering, pages 260-263. IEEE, 2010.
Thomas Zimmermann, Peter Weifigerber, Stephan Diehl, and Andreas
Zeller. Mining version histories to guide software changes. In Proc.
26th International Conference on Software Engineering, pages 563-572,
May 2004.

29

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Huzefa Kagdi, Malcom Gethers, Denys Poshyvanyk, and Michael L.
Collard. Blending conceptual and evolutionary couplings to support
change impact analysis in source code. In Proc. 17th Working
Conference on Reverse Engineering, pages 119-128, October 2010.
Malcom Gethers, Bogdan Dit, Huzefa Kagdi, and Denys Poshyvanyk.
Integrated impact analysis for managing software changes. In Proceed-
ings of the 34th International Conference on Software Engineering,
ICSE ’12, pages 430-440, Piscataway, NJ, USA, 2012. IEEE Press.
Fabian Beck and Stephan Diehl. Evaluating the impact of software
evolution on software clustering. In Proc. 17th Working Conference on
Reverse Engineering, pages 99-108, October 2010.

E. Kouroshfar. Studying the effect of co-change dispersion on software
quality. In Software Engineering (ICSE), 2013 35th International
Conference on, pages 1450-1452, May 2013.

Ehsan Kouroshfar, Mehdi Mirakhorli, Hamid Bagheri, Lu Xiao, Sam
Malek, and Yuanfang Cai. A study on the role of software architecture
in the evolution and quality of software. In Proceedings of the 12th
Working Conference on Mining Software Repositories, MSR 15, pages
246-257, Piscataway, NJ, USA, 2015. IEEE Press.

Tudor Girba, Stéphane Ducasse, Adrian Kuhn, Radu Marinescu, and
Ratiu Daniel. Using concept analysis to detect co-change patterns. In
Ninth International Workshop on Principles of Software Evolution: In
Conjunction with the 6th ESEC/FSE Joint Meeting, INPSE 07, pages
83-89, New York, NY, USA, 2007. ACM.

Nico Zazworka, Antonio Vetro, Clemente Izurieta, Sunny Wong,
Yuanfang Cai, Carolyn Seaman, and Forrest Shull. Comparing four
approaches for technical debt identification. Software Quality Journal,
pages 1-24, 2013.

Dag IK Sjgberg, Aiko Yamashita, Bente CD Anda, Audris Mockus,
and Tore Dyba. Quantifying the effect of code smells on maintenance
effort. IEEE Transactions on Software Engineering, 39(8):1144-1156,
2012.

Marco D’Ambros, Alberto Bacchelli, and Michele Lanza. On the
impact of design flaws on software defects. In 2010 10th International
Conference on Quality Software, pages 23-31. IEEE, 2010.

Bente CD Anda, Dag IK Sjgberg, and Audris Mockus. Variability and
reproducibility in software engineering: A study of four companies that
developed the same system. IEEE Transactions on Software Engineering,
35(3):407-429, 2008.

Ignatios Deligiannis, Martin Shepperd, Manos Roumeliotis, and Ioannis
Stamelos. An empirical investigation of an object-oriented design
heuristic for maintainability. Journal of Systems and Software, 65(2):127—
139, 2003.

Hong Wu, Lin Shi, Celia Chen, Qing Wang, and Barry Boehm.
Maintenance effort estimation for open source software: A systematic
literature review. In 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 32-43. IEEE, 2016.
Fabrizio Fioravanti and Paolo Nesi. Estimation and prediction metrics
for adaptive maintenance effort of object-oriented systems. IEEE
Transactions on software engineering, 27(12):1062-1084, 2001.

Jane Huffman Hayes, Sandip C Patel, and Liming Zhao. A metrics-based
software maintenance effort model. In Eighth European Conference
on Software Maintenance and Reengineering, 2004. CSMR 2004.
Proceedings., pages 254-258. IEEE, 2004.

Frank Niessink and Hans Van Vliet. Predicting maintenance effort
with function points. In 1997 Proceedings International Conference on
Software Maintenance, pages 32-39. IEEE, 1997.

Qiong Feng, Rick Kazman, Yuanfang Cai, Ran Mo, and Lu Xiao.
Towards an architecture-centric approach to security analysis. In 2016
13th Working IEEE/IFIP Conference on Software Architecture (WICSA),
pages 221-230. IEEE, 2016.

Lu Xiao is an Assistant Professor in the School
of Systems and Enterprises at Stevens Institute
of Technology. Her research focues on software
architecture, software evolution and maintenance. In
particular, she is interested in modeling and analyzing
software architecture and its evolution for addressing
quality problems, such as maintenance quality and
performance. She earned her PhD in Computer
Science at Drexel University in 2016, advised by
Dr. Yuanfang Cai.

Yuanfang Cai is currently a Professor at Drexel
University, USA. Dr. Cai’s research focuses on
software design, software architecture, software evo-
lution, and software economics. Her recent work
investigates architecture issues that are the root
cause of software defects, and the quantification of
architectural debt. Dr. Cai is currently serving on
program committees and organizing committees for
multiple top conferences and the editorial board of
top journals in the area of software engineering. The
tools and technologies from Dr Cai’s research have
been licensed and adopted by multiple multinational corporations.

Rick Kazman is a Professor at the University of
Hawaii and a Visiting Scientist at the Software Engi-
neering Institute of Carnegie Mellon University. His
primary research interests are software architecture,
design and analysis tools, software visualization, and
software engineering economics. Kazman has created
several highly influential methods and tools for
architecture analysis, including the SAAM (Software
Architecture Analysis Method), the ATAM (Architec-
ture Tradeoff Analysis Method), the CBAM (Cost-
Benefit Analysis Method) and the Dali and Titan
tools. He is the author of over 200 publications, and co-author of several books,
including Software Architecture in Practice, Designing Software Architectures:
A Practical Approach, Evaluating Software Architectures: Methods and Case
Studies, and Ultra-Large-Scale Systems: The Software Challenge of the Future.

Ran Mo is an Associate Professor in the School of
Computer Science at Central China Normal Univer-
sity. His research focuses on analyzing the quality
of software based on software architecture. More
specifically, how to measure software architecture in
terms of maintainability? what are the architecture
problems which incur high maintenance costs? when
and how to fix these problems to reduce maintenance
effort? He received the Ph.D degree in Computer
Science from Drexel University in 2018, advised by
Dr. Yuanfang Cai.

30

Qiong Feng got her Ph.D. degree from the Computer
Science Department at Drexel University in 2019. Her
research mainly focuses on analyzing the evolution of
software architecture. She is now a software engineer
at Wayfair Inc.

	Introduction
	Background
	ATD Definition
	Definition

	ATD Detection
	Crawling: Select Design Rule Spaces
	Indexing: Identify ATD Candidates
	HCP Matrix
	Indexing Patterns

	Modeling: Build Regression Model
	Quantify ATDCandidates
	Formulate DebtModel

	Ranking: Identify High-maintenance ATD
	Aggregating: Merge Compound ATDs

	Evaluation Questions and Subjects
	Research Questions
	Study Subjects

	Evaluation Results
	Significance of ATDs
	Debt Regression Models for Cost Prediction
	Compound ATDs

	Discussion
	ATD Evolution
	ATD Patterns and Potential Refactoring Guidelines
	Why do some projects only have a few ATDs?
	How does the R2 threshold impact the regression models?
	How does the Compound Anchors threshold impact the characteristics of compound debts after merging?

	Related Work
	Technical Debt.
	Co-change Analysis

	Limitations and Threats to Validity
	Conclusion
	Acknowledgements
	References
	Biographies
	Lu Xiao
	Yuanfang Cai
	Rick Kazman
	Ran Mo
	Qiong Feng

