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ABSTRACT

In this paper, we establish the first finite-time convergence result of the actor-critic
algorithm for fully decentralized multi-agent reinforcement learning (MARL)
problems with average reward. In this problem, a set of N agents work coop-
eratively to maximize the global average reward through interacting with their
neighbors over a communication network. We consider a practical MARL set-
ting, where the rewards and actions of each agent are only known to itself, and the
knowledge of joint actions of the agents is not assumed. Toward this end, we pro-
pose a mini-batch Markovian sampled fully decentralized actor-critic algorithm
and analyze its finite-time convergence and sample complexity. We show that the
sample complexity of this algorithm is O(N?/e?log(N/¢)). Interestingly, this
sample complexity bound matches that of the state-of-the-art single-agent actor-
critic algorithms for reinforcement learning.

1 INTRODUCTION

1) Background and Motivations: In recent years, multi-agent reinforcement learning (MARL)
has found a wide range of applications in networked large-scale systems, such as power grid sys-
tems (Riedmiller et al., 2000), autonomous driving (Yu et al., 2019; Shalev-Shwartz et al., 2016)
and strategic games (Silver et al., 2018; Foerster et al., 2018), to name just a few. Although em-
pirical successes of MARL applications have been widely observed, the fundamental theoretical
understanding of how to develop fast-converging and low sample-complexity MARL algorithms,
two of the most important performance metrics for MARL, remains in its infancy so far (see, e.g.,
(Zhang et al., 2021a) for an excellent survey). In particular, two important aspects of cooperative
MARL algorithm designs deserve special attention:

* First, in the multi-agent collaborative setting, the information structure (i.e., the assumptions of
who have the knowledge of what) is far more complex than its single-agent counterpart and care
must be taken in MARL problem formulations. In the cooperative MARL literature so far, many
existing works assume full knowledge of joint states and joint actions, which often do not hold
true in practice. For example, in autonomous driving (Yu et al., 2019), each vehicle can only
observe/detect the actions of the surrounding vehicles that are within its communication range.
As another example, in power grid networks (Riedmiller et al., 2000), each power distributor
generally does not know the resistor values set by other distributors.

¢ Second, most MARL theoretical studies in the MARL literature are focused on the discounted
total reward setting, where a hyperparameter v € (0, 1) is introduced as the discount factor in the
objective function. Although the discounted total reward setting captures the important aspect of
diminishing return in the future, it may not be appropriate for many other applications where the
long-term average reward is of interest. For example, in the optimization of distributed communi-
cation networks with MARL, the typical and natural performance metrics are long-term average
throughput or latency in the steady-state.

The lack of a fundamental understanding on how to develop efficient cooperative MARL algorithms
that consider the above two aspects in terms of information structure, scalability, and communication
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and sample complexities motivates us to fill this gap by developing a fully decentralized cooperative
MARL algorithm in the average reward setting, without assuming joint action knowledge.

2) Technical Challenges: Developing a fully decentralized cooperative MARL algorithm for the
average reward setting without full joint action knowledge is highly non-trivial and several major
technical challenges naturally arise. First, it is well-known that, even in the single-agent reinforce-
ment learning (RL) setting, the average reward setting is more challenging to analyze compared to
the discounted reward setting, which necessitates different proof techniques (Tsitsiklis & Van Roy,
1999). In MARL, the decentralized nature and the lack of joint action-state information further
complicate the algorithm design and analysis in the average reward setting. Second, due to the lack
of joint action knowledge, the communication costs among agents in MARL will be significantly
increased to achieve a satisfying performance, which implies that low sample and communication
complexities are even more challenging and critical for MARL without joint action information.

3) Main Results and Contributions: The main contribution of this paper is that we overcome the
aforementioned challenges and develop a consensus-based Markovian sampled decentralized actor-
critic algorithm for MARL. Our key results in this paper are summarized as follows:

* We propose a batch-sampled actor-critic algorithm that uses consensus updates in TD-sharing
among agents. This batch sampling approach enables more efficient communication compared
to the classical fully decentralized MARL. Specifically, in order to converge to an e neighbor-
hood of the stationary, we require O(e~! log(e~1)) rounds of communication while only needing
O(e 2log(e~1)) samples. By contrast, the state-of-the-art MARL requires a communication
round per sampling. Also, our algorithm allows the use of constant step-sizes in both the actor
and the critic steps.

* We provide the first-ever sample complexity analysis in the MARL average reward problem set-
ting without joint action information. Our obtained complexity is O(¢~2 log(e 1)), where € is the
closeness to the neighborhood of stationary point (treating network size N as a fixed constant).
It is worth noting that the order-wise sample complexity of our algorithm matches that of the
state-of-the-art single-agent RL algorithms.

2 RELATED WORK

In this section, we provide a quick overview on the closely related work on MARL algorithms and
their theoretical results, along with several notable related counterparts in single-agent RL.

1) MARL Theoretical Analysis and Algorithm Design: For recent advances in MARL algorithms
and their theoretical results, Zhang et al. (2021a) provided a comprehensive survey. Also, Lee et al.
(2020) highlighted the evolution from single-agent to multi-agent RL from a distributed optimization
perspective. In the broader area of MARL, a line of research has been focused on the MARL policy
evaluation problem. These works analyzed the convergence Doan et al. (2019) and proposed vari-
ous variance reduction of policy evaluation in decentralized MARL algorithms Zhang et al. (2021b).
Doan et al. (2019) used i.i.d. sampling and has shown the sample complexity of O(e~1) for their
TD(0) learning algorithm to reach a mean-square error convergence. However, these algorithms do
not involve policy improvement and solely focus on the performance evaluation of given policies. In
the areas of joint policy evaluation and improvement, Foerster et al. (2018) considered multi-agent
actor-critic algorithm that has a centralized critic and decentralized actors, which is different from
our fully decentralized actor-critic algorithm. In contrast, Zhang et al. (2018) established asymp-
totic convergence results for fully decentralized MARL actor-critic algorithms. Concurrent with
our work, Chen et al. (2021) has recently studied the mini-batch Markovian sampling actor-critic
algorithm for a class of discounted reward MARL problems, where the finite-time convergence re-
sult is obtained. They have applied batch sampling for both actor and critic steps and achieved a
sample complexity of O(e~21og(e~1)), which is the same as ours. We note that, together with our
work, these are the first finite-time convergence results for MARL. However, there are several key
differences between our work and (Chen et al., 2021). First, we focus on the average reward prob-
lem, while Chen et al. (2021) studied the discounted reward setting. Second, in (Chen et al., 2021),
agents share a noisy version of the rewards with the neighbors, which requires a re-sampling process
from every sampled reward instance. In contrast, we allow agents to share local TD-errors with their
neighbors and no re-sampling is required.
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Table 1: Comparison of sample complexity of single-agent (SA) and multi-agent (MA) AC algo-
rithms and TD(0) algorithms at Average Reward (AR) and Discounted Reward (DR) settings.

Paper Problem AcTors tz;m Dllgrgitic step Sample Complexity
Qiu et al. (2021) SAAR iid. Markovian | O(e2log?(e~ 1))
Xu et al. (2020) SADR | Markovian | Markovian |  O(e ?log(e 1))
) Zhang et al. (2018) | MAAR | Markovian | Markovian Asymptotic
Doan et al. (2019) | MADR N/A iid O )
Chen et al. (2021) | MADR | Markovian | Markovian | O(e Zlog(e 1))
This paper MAAR | Markovian | Markovian | O(N?/e?log(N/e))

2) Related Literature in Single-Agent RL: We note that single-agent RL can be viewed as a
centralized approach, where a central controller collects joint actions, rewards and even designs
policies for agents. For the single-agent average reward setting, Tsitsiklis & Van Roy (1999) first
analyzed the asymptotic convergence of TD(\) algorithm with function approximations in the policy
evaluation problem. Also, Tsitsiklis & Van Roy (2002) provided insights in terms of differences and
connections between average reward and discounted reward of TD-based learning algorithms with
function approximations. Recently, Qiu et al. (2021) analyzed the sample complexity for an actor-
critic algorithm for the average reward problem. In their actor-critic algorithm, they used batch
sampling for the critic learning and i.i.d. sampling for the actor step, with sample complexity being
O(e3log?(e1)). By applying mini-batch sampling update, we are able to improve the sample
complexity by a factor of O(e~!). Another closely related work on single-agent RL is (Xu et al.,
2020), where the authors studied the discounted reward problem. They used batch sampling for both
actor and critic steps in their actor-critic algorithm and developed a new technique to handle bias
error in the critic step, which we also adopted for the average approximation parameter analysis in
our critic step. This achieved the state-of-the-art sample complexity of O(e~2 log(e 1)) for single-
agent RL. In addition, the global convergence of actor-critic algorithm to the optimal policy has
been studied in the case of discounted setting with single time scale in (Fu et al., 2020) and linear
quadratic regulator in (Yang et al., 2019). However, we note that these settings are fundamentally
different from the average reward setting and it will be an interesting future direction to consider
global convergence possibility in the average reward setting.

To conclude this section, we summarize the aforementioned related actor-critic and TD algorithms
and their sample complexity results in Table 1.

3 MULTI-AGENT REINFORCEMENT LEARNING WITH AVERAGE REWARD

3.1 SYSTEM MODEL

Consider a multi-agent system with N agents, denoted by N' = {1,--- , N}, operating in a net-
worked environment. Let £ be the edge set for a given network G = (N, &). To formulate our
MARL problem and facilitate our subsequent discussions, we first define the notion of networked
multi-agent MDP as follows.

Definition 1 (Networked Multi-Agent MDP). Let G = (MN,€) be a communication net-
work that connects IV agents. A networked multi-agent MDP is defined by following tuple
(S, {A%}ien, P,{R}ienr, G), where S is the global state space observed by all agents, A’ is the
action set for agent i, and P : S x Ax S — [0, 1] is a global state transition function, and R’ : S x A
is the local reward function for agent i. Let A =[],/ A’ be the joint action set of all agents.

In this paper, we assume that the global state space S and action space for agent A’ are finite. As
a result, the joint action space A is also finite for finite V. We also note that at time ¢ > 0, all
agents can observe the current global state s;. However, agent ¢ can only observe its own action
ai € A, which is the key difference between our model and that in (Zhang et al., 2018), where it is
assumed that the joint actions are observable to all agents. Moreover, each agent can only observe
its own reward ri, i.e., agents do not observe or share rewards with other agents at time ¢. The
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reward function Ri(s, a) is an expectation given s and a, and the instantaneous reward is denoted
by r*(s,a), i.e., R'(s,a) = E[r'(s,a)].

We consider policies that are stationary. In our MARL system, each agent chooses its action follow-
ing its local policy 7* that is conditioned on the current global state s, i.e., 7*(a’|s) is the probability
for agent i to choose an action a* € A". Then, the joint policy 7 : S x A — [0, 1] can be written as
m(als) = HiEN 7wt (atls).

Moreover, the policies at the agents are parameterized. Specifically, each agent ’s local policy can
be written as 7., where §° € R™: denotes the parameter. We let § = [(§1)7,--.  (6™)T]T €

RXZ1™i Then, we can write the joint policy as follows: mo(als) = [L;en moi (a']s).

3.2 TECHNICAL ASSUMPTIONS

We now state the following assumptions on the positivity and continuity of 772)1- (a'|s), which guar-
antee the stationary distribution of {s;} under any given policy.

Assumption 1. Forany i € N, s € S, a' € A" and §" € R™, the policy function 7, (a’|s) > 0.
Also, ng (s,a) is a continuously differentiable with respect to the parameter #°. In addition, for
any 0, we assume the induced Markov chain {St}tZO is irreducible and aperiodic, and its transition
matrix P? is P?(s'|s) = 3" . 4 mo(als) - P(s']s, a), Vs, s’ € S.

Assumption 1 guarantees that the states have a stationary distribution dy(s) over S given any policy
mg. As a result, the Markov chain of state action pair {(s;,a;)} also has a stationary distribution
dy(s) - mo(als).

Assumption 2. The instantaneous reward 7 is uniformly bounded by a constant 7, > 0 for any
1€ Nandt > 0.

Assumption 2 is common in the literature (see, e.g., (Zhang et al., 2018; Xu et al., 2020; Doan et al.,
2019)) and easy to be satisfied in many practical MDP models with finite state and action spaces.

Assumption 3. Let A be a consensus weight matrix for a given communication network G. There
exists a positive constant 7 > 0 such that A € RY*¥ is doubly stochastic and A;; > 7, Vi € N.
Moreover, A;; > n if 4, j are connected, otherwise A;; = 0 for all 4, .

Assumption 3 is standard in the distributed multi-agent optimization literature Nedic & Ozdaglar

(2009). We remark that for a practical choice of A, one can use the following form A =

Wl(g)(deg(g) - I — L), where deg(G) is the degree of the graph G (i.e. the maximal vertex de-

gree), I is the identity matrix of conforming dimensionality, and L is the Laplacian matrix of the

graph. It is easy to verify that this matrix is symmetric, doubly stochastic and n > ﬁ(g) > %
Assumption 4. Each agent ¢’s value function is parameterized by the class of linear functions, i.e.,
Vo(s;w) = ¢(s)Tw where ¢(s) = [p1(s), -, dr(s)]T € RE is the feature associated with the

state s € S and K < |S|. The feature vectors ¢(s) are uniformly bounded for any s € S. Without
loss of generality, we assume that ||¢gt(9)|| < 1. Furthermore, the feature matrix ® € RISI*X has
full column rank. Also, for any u € R*, ®u # 1, where 1 is an all-one vector.

This assumption on features is standard and has been widely adopted in the literature, e.g.,
(Tsitsiklis & Van Roy, 1999; Zhang et al., 2018; Qiu et al., 2021). This assumption implies the fol-
lowing property: for any policy 7y, the inequality w”? A,,w < 0 holds for any w # 0, where A, is
defined as

Ary = Egndg(s),5~P(19)[(6(57) — ¢(5))0" (5)]. M

This property further implies that for all 6, A, is invertible and Ayax(Ar, + Az;e) < 0 (Qiuetal.,
2021), where A\pax(+) is the largest eigenvalues of the matrix.

Assumption 5. There exists a constant A4 > 0 such that A\yax(Ar, + AZ@) < —A4 holds for all
0 € REien ™,

Assumption 5 ensures the optimal approximation wj for any given policy 7y is uniformly bounded
(see discussion before Theorem 2 and Lemma 4).
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Assumption 6. Let ¢y(s,a) = Vg logmg(als) be the score function for any state-action pair (s, a).
For any two policy parameters 6, ¢’ € R-icx ™ and any state-action pair (s,a) € SxA, there exist
positive constants such that the following hold: 1): ||[1s(s,a)|| < Cy; 2): [|[VaJ(0) — Ve J(8')| <
L;||0 — 0'||; where J () is defined in (2) and || - || denotes the ¢2-norm.

Assumption 6 says that the score function is uniformly bounded for any policy and the gradient of
the objective function has a Lipschitz property with respect to the policy parameter. This assumption
has also been adopted in the analysis of the single-agent actor-critic algorithm in (Qiu et al., 2021).
We note that for the discounted reward problem, this gradient Lipschitz property can be guaranteed
through (Xu et al., 2020, Assumption 2). We note that Assumption 6 can be satisfied by the class of
soft-max policy under the Assumption 1, as in (Guo et al., 2021).

3.3 THE OBJECTIVE FUNCTION

The goal of the agents is to find a joint policy 7y to maximize the global average long-term reward.
Mathematically, this can be written as:

T-1
maximizegy J(0) = Th_r}n %E (Z % Z r§+1> = ng(s) Z mo(als) - R(s,a), (2)

t=0 iEN s€S acA

where R(s,a) = & ;o R'(s, a) is the global average reward function. Let 7y = % > ;o 71,

then we have R(s,a) = E[fiy1]s; = s,a; = a]. Next, we define the state-action value
function: Qg(s,a) = E[>.,~, 741 — J(0)|so = s,a0 = a,mg|, and the state value function
Vo(s) = D 4ca Qo(s,a) - mo(als). The advantage function is defined as follows:

Advy(s,a) = Qo(s,a) — Vy(s). (3)

3.4 PoLiCcY GRADIENT THEOREM

The gradient of a policy 7y for decentralized policy gradient is stated in the following theorem.

Theorem 1 (Policy Gradient Theorem for MARL (Zhang et al., 2018)). Forany 0, letmg : Sx A —
[0, 1] be a policy and let J(0) be the global average long-term average return defined in (2). Then,
the gradient of J(0) with respect to parameter 0* can be computed as:

Vi J(0) = Egmdy ammy [Voi log mhi (a']s) - Adve(s, a)]. 4)

4 A CONSENSUS-BASED ACTOR-CRITIC ALGORITHM

In this section, we propose a consensus-based actor-critic algorithm that includes two key steps:
actor and critic. In the critic step, the algorithm evaluates the value functions for the policy 7, at
time t. After the critic step, the algorithm enters the actor step, which improves the policy parameter
0; according to the direction from policy gradient as shown in Theorem 1. In both steps, we use
constant step-sizes and adopt batch sampling.

In this paper, we use linear function approximations for the value functions. Specifically, each agent
i has a parameter w’ € R to approximate the global value functions Vj(s; w") for each state s € S.
For linear approximation, we have Vp(s; w’) = ¢(s)Tw?, where ¢(s) € R¥ denotes the feature for
state s. As a result, the gradient of value function at state s with respect to approximation parameter
wis ¢(s), i.e. Vi, V(s;w?) = ¢(s).

1) The Critic Step: The critic step is achieved through its own oracle, which is summarized in
Algorithm 1. In the critic step, we allow the agents to communicate the approximation parameters
w(s) with their neighbors via the communication network with consensus weight matrix A. For
agent i € N, the parameter is locally updated by following rules:

et = (1= B)pthr + Bririn (5)

512,7' = Tifﬂ'-‘rl - /“Lgc,‘r + ¢T(3k77+1)wlic - QST(SkaT)w;.C (©6)
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Algorithm 1: Mini-batch TD learning for Critic

Input : sg, 7y, , ¢, step-size [, critic step iteration number K, critic batch size M, the
communication network A

fork=0,--- ,K.—1do
5k,0 = Sk—1,m (When k = 0, 5.0 = 50);
for alli € N do
forr=0,--- M —1do
Execute action aj, . ~ Wéz (|8k,r)s
Observe the state sy, -1 and reward r277+1;
Update gy, oy < (1= 06) - gy, + 6714 -y .
Update 511@7 i1 — Mt <z5T(Sk;,r+1)uﬂ;C - ¢T(Sk,r)w2-;
end
. iy Mo
Critic Step: 0}, + wk o O+ ¢ (k)3
Consensus Update wj,_ , + ZjeNi A(’L,j) Wy
end
end

Output: s, _1 v, Wk,

5 M—
W M; - b(sk), (7)

where 3 > 0 is the step-size of the critic step, uj . is the estimate of the long-term return of

agent ¢, and (5};77 is the local TD-error for agent ¢ at iteration k using sample 7. Here, in each
iteration k in the critic step, the approximation parameter is locally updated through a batch of
sampling as in (7), where the batch size is M. Then, agent 7 will further update the approximation
parameter w* through a weighted average of its local and neighboring agents’ parameters as follows:
Wiy = JEN; A(t, j)wy,. This batched sampling update continues for I iterations for each given
policy Ty, .

2) The Actor Step: As shown in Theorem 1, the advantage function needs to be known to compute
the gradient. However, from the definition in (3), the joint action a also has to be known to compute
the advantage function, whereas in our model, each agent can only observe its own action. As a
result, an estimation of the advantage function is required. Here, we show that the global TD-error
is an unbiased estimate of the advantage function.

At time t, suppose we have samples s, a;, S;4+1 and the rewards {rz +1}i€ A then the advantage
function is as follows: Advg(s:, ar) = E[fer1 — J(0) + Vo(Se+1) — Vo(st)|st, ar], and the global
TD-error can be computed as follows: 0; = 7441 — e + Vo(si41) — Vo(se), where ppp1 = (1 —
@) - pht + « - F¢11 is the estimate for the average long term return, and « is the step-size for the actor
step. Hence, we have that the expected global TD-error is the advantage function, i.e., E[d;|s¢, a¢] =
Ap(s¢, ar). Thus, we can use this global TD-error as an unbiased estimate of the advantage function.
For agent 4, the local TD-error can be computed as (5t =1 — pi+ Vo(sit1) — Vo(se), where

iy = (1 —a)ui+ari,,. Wealsonote that p; = 3 >, pr 14 -

Thus, once each agent knows the global TD-error, the policy parameter can be updated according to
the policy gradient rule in (4). However, without any communication, each agent only has the knowl-
edge of its own local TD-error. Moreover, we will show that the networked TD-error is actually the
average of the local TD-errors. Specifically,

0p = Teg1 — pe + Vo(se41) — Vi(se) Z The1 — Z iy + Vol(sern) = Vals)
LEN 1EN
- N Z i1 — #e 4 Vo(sier) — Va(s)] Z 0
1EN ZEN
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Algorithm 2: Minibatch-TD sharing for Actor Critic Algorithm
Input : state feature matrix @, actor step-size c, Initial parameters 6; for all i € N
fort=0,---,T—1do
critic update: wy, s; ¢ = Minibatch-TD-critic in Algorithm 1;
for(=0,---,B—1do
for alli € N'do 4

Execute action ay ; ~ mp, (-[s¢,1);

; i ‘

Observe the state s 41 and reward 74 ;4

Update M%,l+1 < (1— 04)_' Mg o T _

Update 6; ; <= 1y 109 — Hyy + ¢T (seap1)wi — @7 (se0)wis

Update vy ; <= Vi log 7y, (54,1, a3 ;)s

; i .

end

end
5t170 5?,’0
Let A = : : ;
5;371 52]371
for i € N do
for £k =0: 1,0 —1do
‘ Ak+1(:7i) <~ Zje/\/’i A(Zvj) : Ak(l,j);
end
end
or alli € N do
Let 5271:3_1 = Atgwp(:,i) ;

Actor Step: 0| + 0} + & 13261 ~§7l -1/12‘71;

ety

end

end
Output: 0 with T chosen uniformly from {1,---,T}

For any time ¢, the average of the local TD-errors is an unbiased estimate of the advantage function.
Therefore, we just need to let each agent communicate with its neighbors so that an average of all
local TD-errors can be reached or estimated for all agents.

From the results in (Nedic & Ozdaglar, 2009), we have lim, o, A7(z! .- 2™M)T =
% DN x'1. However, this convergence is asymptotic, meaning that the exact estimation can
only be achieved with infinite iterations (i.e., 7 — 00). In practice, since one can only apply fi-
nite iterations, we use 0! to denote the estimate of the global TD-error maintained by agent i after
teossip iterations of updates at time ¢, i.e., 6 = [Af=se]; A, where AY = (6}, ,6))7 is the N-
dimension vector of local TD-errors at time ¢. We note that agents do not need to know the weight
information of other agents. Rather, each agent just needs to exchange updated estimate of the lo-
cal TD-errors with its neighbors for #gsip rounds as shown in Lines 11-16 of Algorithm 2. This
communication among agents is also done in a batch fashion, with batch size being B. This implies
that for each outer iteration t € {0--- ,T — 1}, only teossip rounds of communication for every BB
samples are needed.

Combined with a B-batched Markovian sampling, the parameter 6’ update for agent i € N can be
W1_ritten as follows: 041 = 0; + & ;B: _01 62" L %/Ji,l where « is the step-size for the actor step and
¥y, = Vi log W;Z’ (St., a;l) is the local score function for agent ¢ using [-th sample at time ¢. The

actor step of our algorithm is illustrated in Algorithm 2.
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5 THEORETICAL CONVERGENCE ANALYSIS

In this section, we present the convergence results for both the critic and actor steps in Theorems 2
and 3, respectively. Due to space limitation, we relegate the proofs to the supplementary material.

5.1 CONVERGENCE ANALYSIS FOR CRITIC (ALGORITHM 1)

For a given policy mp, we define b, = Esvay ammy [@(8)(F(s,a) — J(0))], where 7(s,a) =
+ Y ieari(s,a) and J(0) are as defined in (2). For all agents, the optimal solution (Wu et al.,
2020), (Qiu et al., 2021) of this critic learning is wj; = —A;;bm , where A, is defined as in (1).
The invertiblity of A, is due to the Assumptions 1 and 4 (see more details in (Qiu et al., 2021;
Tsitsiklis & Van Roy, 1999)). Then, the convergence of the critic step is summarized as follows:
Theorem 2 (Convergence and Sample Complexity of the Critic). Suppose that Assumptions 1-5
hold. For any given policy 7y, consider the iteration generated by Algorithm 1. Recall the definition
N-—-1
of A4 in the Assumption 5 and let 3 < min{w, 1)‘7%, ﬁ} It then follows that:

N
E[Y_[lwi, —wl[*] < N1 4+ sENOB® + 5Ny
i=1
K4
M
where y .= (1—-nN=1)-(1428) < 1 and K, kY, k3, k4 are positive constants. If we further let K, >
1 6k N* 12N ||wo—w} |2 . 1 N-1 A 4
3 max{log, - =108 _sag o T b f < min{g, /Gm, armrnys 13 3.
and M > @, then we have ]E[Zf\/:l llwie, — wi|[?] < € foralli € N with total sample
complexity given by K. M = O(% log(%)).

A .
+2N(1 = Z8) " |wo — w3 + 77V, ®)

Theorem 2 establishes a convergence result for the policy evaluation of a given policy mg. We can
see that our constant step-size batch-sampled critic process can achieve the same complexity of
@(671) order-wise as the TD(0) learning in Doan et al. (2019), where diminishing step-sizes were
used. On the other hand, in the single agent average reward setting of Qiu et al. (2021), there exists
a non-vanishing error term in their critic convergence. In contrast, with proper choices of iteration
number K. and batch size M, our mean-square error can be arbitrarily small.

5.2 CONVERGENCE ANALYSIS FOR ACTOR-CRITIC ALGORITHM (ALGORITHM 2)

Define the approximation error introduced by using linear approximation in the critic step, §§§I§i§)x =
Max, o5,y mi Bs~dy [[Vio (s) — Vs, (5)|?]. For a given policy 7, this error represents the gap
between ground truth value function under such policy and the value function obtained by the best
possible linear approximation. Such an error term is standard in the literature where linear approx-
imations are adopted (Qiu et al., 2021; Xu et al., 2020). Let R,,, defined in Lemma 4, be an upper

bound on ||wy|| for all policy parameter 6.

Theorem 3 (Overall Convergence Rate and Sample Complexity). Suppose that Assumption 1-6
hold. Consider the actor-critic algorithm in Algorithm 2. Let step-size o = ﬁ. It then holds that:

T N 7 *
16L jrmax L TON D im1 Doim w0 — wet‘|2
T T
iti (Tmax + Rw)2[1 + (25 — 1)p]
+ 72EC 4 288
o B(1-p)

E[|VoJ (07)|1] < + 18k3N3(1 — V=) 2o

N, (€))

where k3 is a positive constant. Furthermore, let' T > %, B > 576

(rmax+2Ry)?[14+(26—=1)p] N
(1-p) €

64k3 N3
€

and the communication round among the agents t o5 > % 1Og(1_nN—1)—l
same setting as in Theorem 1 holds so that E[Zfil lwie — wil|?] < w5 forall 0 < t <

T, then we have E[||VoJ(0;)||?] < € + O(Ete ), with a total complexity of (B + MK )T =

= approx

O(f—; log()). And the communication complexity is (K. + tgosip)T = O(L log(X)).

. Suppose for the
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Figure 1: Our TD-sharing algorithm vs classical MARL algorithm.

Theorem 3 concludes the overall sample complexity of our proposed actor-critic algorithm. The
sample complexity of O(e~2 log(e~!)) matches the state-of-the-art single-agent actor-critic RL by
Xu et al. (2020) and the discounted MARL by Chen et al. (2021).

We note that the overall communication complexity also matches that of (Chen et al., 2021) in the
discounted reward setting. However, our work is still an improvement compared to the classical
MARL in Zhang et al. (2018) for the average reward setting. Specifically, Zhang et al. (2018) needed
a communication round after each sampling. By contrast, in this paper, we only need a communica-
tion round per O(e~!) sampling. This is thanks to the use of batch sampling in the actor step. Also
because of the batch sampling, we are able to use a constant step-size for both actor and critic steps.
Here, the overall communication cost is measured by the number of communication rounds rather
than the size of bits transmitted over the network. We follow the standard definition of communi-
cation complexity in the literature, which is widely adopted in the literature, see (Chen et al., 2018)
(Zhang et al., 2019). However, we note that ¢4,ip, actor step batch size B and critic iteration rounds
K., scale with O(log 1/¢), O(1/¢€) and O(log 1/€) respectively as indicated in the Theorem 3 and
2. The amount of information (in terms of bits) is (K.NK + BNtusip)T = (9(?2 log %)

6 EXPERIMENTAL RESULTS

In this section, we conduct experiments to compare our proposed consensus-based TD-sharing
MARL algorithm with the most related MARL algorithm 1 in Zhang et al. (2018) that also stud-
ied average reward. To our knowledge, this is the only work that is directly comparable to ours. The
key difference is that the knowledge of joint action is assumed in Zhang et al. (2018), but not in our
work. We vary the system size from N = 6, 10 to 15. The blue curve is our TD-sharing algorithm
and the red curve is classical MARL algorithm in Zhang et al. (2018). The curves represent the
average results of 10 trials and the 95% confidence intervals are also plotted. For the details, see A.1
in Appendix. The results in Figure 1 show that for different system sizes, both algorithms converge
to a reasonable objective value. Note that if we use uniformly random policy as the baseline policy,
then the objective values will be around 2 due to the setting of our experiments. All simulation
results are above this threshold and our TD-sharing algorithm converge to a better objective value.
See Section A.2 for addition experiment results.

7 CONCLUSION AND DISCUSSION

In this paper, we studied fully decentralized MARL in average reward setting and proposed a
batch-sampled actor-critic algorithm. Our main contribution is to establish the first finite time con-
vergence result for fully decentralized MARL in average reward setting, where the complexity is
O(e 2 log(e™')), which matches that of the state-of-the-art single agent RL. The algorithm reaches
such convergence with a better communication efficiency. However, it is still in the preliminary
stage of the convergence analysis of the MARL since we only used the vanilla average. The future
direction will be how to design a more scalable algorithm in terms of system size.
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A APPENDIX

In this section, we provide lemmas that lead to the proof of both Theorem 2 and Theorem 3.

In this paper, we use || - || for 2-norm and || - ||y for total variance norm. (-,-) denotes the inner
product. Superscript 7 in quantity z, i.e. 2’, denotes the 2 quantity correspond to agent i € N/.
A(+) and o(-) denote the eigenvalues and singular values of the corresponding matrix respectively.
All vectors are assumed to be column vector, unless specified. (-)7 is the transpose of an matrix or
vector. We use 1 to denote all-1 vector with a proper dimension. For a matrix A, [A]; represents

the i-th row of matrix A. Let § = [6%, -+ ,6N]T, i.e. the column vector for local TD-errors. In
comparison, d denotes the scalar global TD-error, i.e. 6 = % ZZ Y% ot.

First, we explain the detail of our experiment setup.

A.1 EXPERIMENT SETUP

We considered the same setting as in the Section 6.1 of Zhang et al. (2018). There are IV agents,
each has a binary-valued action space, i.e. At = {0,1}, forall i € N. In addition, in all the results
shown here, we set |\S| = 5 states. The elements in the transition matrix are uniformly sampled from
the interval [0, 1] and normalized to be stochastic. We also added 10~ onto each element to ensure
ergodicity of the MDP such that the Assumption 1 is satisfied. For each agent ¢ and state action pair
(s, a), the mean reward R’(s,a) is sampled uniformly from [0, 4]. The instantaneous rewards r{ are
sampled from the uniform distribution [R?(s, a) — 0.5, R*(s, a) + 0.5]. The policy is parameterized
following the Bolzmann policies, i.e.,

_ eXp(QZ:az‘ ei)
Dpieas exp(ag ,:07)

ﬂ-éi (57 ai)

11
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where 7, is the feature vector with the same dimension as 6%, for all s € S and i € N. Here,

we set m; = --- = my = 5. The elements of ¢, ;: are uniformly sampled from [0, 1e3]. We set
the dimension for state features X' = 3. The feature matrix ¢ are insured to have full column. The
stepsizes for classical MARL are set as 3, + = t‘)% and By = to% The network matrix as chosen
as a ring network with diagonal elements being 0.4 and off diagonal elements 0.3 .

For our algorithm, we used step-sizes & = 1 and S = 0.1. The batch sizes are B = 10, M = 10
and the critic iterations are 10 and actor iterations are 1" = 100.

A.2 ADDITIONAL EXPERIMENT RESULTS

We have modified classical MARL into i)constant stepsize MARL, ii)batch MARL and iii)batch
constant stepsize MARL. For classical MARL and batch MARL, we chose the stepsizes as 3, =
to% and By = to% as in the paper (Zhang et al., 2018), and for the constant steptize MARL and
batch constant stepsize MARL, we chose stepsizes to be 5, = 0.9 and By = 0.01. For batch MARL
and batch constant stepsize MARL, we used batch size as 10. Other parameters are the same as in
the A.1. We vary the system sizes from N = 5 to NV = 15 and the empirical comparison results are
in Figure 2 (a)-(c). In addition, we provide the comparison between average reward setting with the
discounted counterpart of our algorithms for discounting factors ranging from vy = 0.1 to v = 0.999.
As we can see from Figure 2 (a)-(c), our TD-sharing algorithm performs well compared to the base-
line algorithms. Among the modified algorithms, batch constant stepsize MARL shows improve-
ment compared to the classical MARL in all three cases. Moreover in (b) and (c), when system size
is larger, specifically NV = 10 and N = 15, either batch modification or constant stepsize modifi-
cation seem to improve the classical MARL. Yet in (a), for smaller system size, i.e. N = 5, only
modifying to the batch size or constant stepsizes don’t seem to improve the performance.

In addition, in (d), for discounted setting, as  increases and gets closer to 1, the objective value
is closer to the average reward setting. It is because as the discounting factor approaches 1, the
effective horizon, which scales with O(%) (Kakade, 2003), to an € close stationary point gets
larger and larger. As a result, it will get closer to the average reward setting. However, we can see
average setting value converges to a significantly higher value. More importantly, one advantage
of the average reward setting is that with more samples, the policies can potentially keep updating
and so is the objective value. From Figure 2(d), we can see that as the number of sample increases,
the average reward setting objective value still evolves, which means the policies are keep updating.

However, for the discounted reward case, the extra sample doesn’t affect the objective value.

In Figure 3, we have shown the results of different network structures on the performance when
system size is 10. We compared the ring network, small world network and 2-regular network. The
small world network is generated with mean node degrees being 4 and rewiring probability being
0.2. The entries of matrix A, for both small world network and regular network, are set as the way
discussed after Assumption 3. Different network structures exhibit different performances, but all
are better than baseline value 2. Among these three structures, within given sample numbers, ring
network yields the best result.

A.3 SUPPORTING LEMMAS FOR THEOREM 2

Because of the Assumption 1, by (Levin & Peres, 2017, Theorem 4.9), for aperiodic and irreducible
Makrov chains, we can guarantee the following lemma holds:

Lemma 1. For any policy parameter § € RXiex ™ consider the MDP with policy g and transi-
tion kernel P(|s,a). Let dg be the stationary distribution of the MDP. There exist constants > 0
and p € (0,1) such that sup,c s || P(st|so = s) — do||rv < Kp', Vt>0.

This lemma has been adopted directly as an assumption in many related works in theoretical analysis
of RL (Xu et al., 2020; Chen et al., 2021; Qiu et al., 2021).

As aresult of the Lemma 1, the Markov chain of state-action pair {s;, a; };>o for policy g also has
the property of ergodicity. We state this result as the following lemma.

12
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Lemma 2. Suppose the Assumption 1 hold, let vy be the stationary distribution of the state-action
pair MDP. Then, we have

sug [|P(s¢, atlso = 8) — vgllry < kp', ¥t >0. (10)
se

Proof. For any given sg € S, by definition, we have

1
[1P(s¢, aelso) = vollrv = 5 > |P(se = s,a; = also) — vu(s, a)l
(s,a)eSxA
1
=3 D |P(si = slso)mo(ar = alse = s) — v§(s)7a(als)]
(s,a)eSx.A
1
=3 D |(P(se = slso) — vi(s))ma(als)]
(s,a)eSx.A
1 s
=3 > malals)|P (s = slso) — v (s)|
(s,a)eSxA
1 s
= LS 1P(se = slso) — 3(9)
seS

= [|P(s¢|s0) — vgllrv < kp'.

Since it holds for all sy € S, equation 10 holds. O]

As a result of Assumption 5, we have the following lemmas.

Lemma 3. For all policy my, we have
Aa
(w, Aryw) < =] l” (1)
where \ 4 is defined in Assumption 5.

Proof. Because of the fact w” A, w = w” AT w, we have

1
w! Agyw = §(wTA7T9w +w” AL w)

1

= §wT(A7r9 + Aze)w
)\A T AA 2

B, SO UV AT ) 12

< ATy = Ay (12)

O

In fact, interestingly enough, the Assumption 5 and Lemma 3 are equivalent in a sense that if the
statement in the Lemma 3 is taken as the assumption, the statement in the Assumption 5 can be
obtained as a result. And the paper (Xu et al., 2020) used the statement in the Lemma 3 as an
assumption, whereas in ours and (Qiu et al., 2021), we assumed Assumption 5.

Lemma 4. For any given policy my, the corresponding optimal value function approximation pa-
rameter wy is uniformly bounded, specifically, there exists R, := 4’;\% > 0 such that

[lwgll < Ry (13)

Proof. It’s easy to see that J(0) < ryax from equation 2 and 7(s,a) < Tpax for any (s, a) pair.
Then, we have

lwsll = 1] = Az} br, |

14
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= || - (ESng(s),s/NP(-\s) [(¢(3/) - ¢(5))¢T(3)D71 “Esndy,anmp [(b(s)(f(s, a) — J(9))]H
<l = (Bomdo (o)) [(@(5) = 3()87 () 11+ [[Esmdrammy [6(5) (7(s,0) — J@))]]
1 _
= i a1 [0) — g @) || ) = T
2|[Esndg,anmo [0(5)(7(s,a) — J(0))]]|
)‘min(_Am) - A%)

< 2Bondganmo[lE(s)]] - (I7(5, @) + [J(O)D] _ 47max

IN

- A Aa
where the third equality used the fact ||A71|| = ﬁ and the second from the last inequality is
from Bhatia (1997) (Proposition III 5.1) . O]

Note that, for agent i € N, the estimated long term average reward p, _ at sample 7 of iteration k
in equation 5 can be written as

Phr =B (1=B)"rhy + (1= B) g (14)
=1

Lemma 5. Foranyi € N andt > 0, step size 0 < B < 1, for the estimated long term average
reward for agent i, we have

pi = (1= B)ui + Br (15)

is bounded by 7,,,x, I.e. \,u§+1| < Poax.

Proof. WLOG, we suppose that 0 < p§ < 7pax, We have
Wil = (1 = B)py + Bri]
< (1= B[l + Blril- (16)

By the supposition, we have |uf| < 7yax. We assume |t < rpax holds for iteration ¢ > 0, then
for ¢t + 1, by equation 16

|.ui+1| < (1 - 5)\N1| JFB‘T“ < (1 - ﬂ)rmax + Brmax = Tmax-

Therefore, Lemma 5 holds by mathematical induction. O

For a given policy 7y, to establish a bound on the difference between the optimal approximation
parameter wj, we first derive a bound the difference between parameter w’ and the average among
all agents wy, at time k. Then, we derive a bound for the difference between average wj and the
optimal wy.

We have following notations for the analysis. Given an agent i € N, we consider the consensus
error at time k and we denote Q} = w} — Wy, where W), := % >, wi. Then, we denote the

matrix form as Qj, = [Q}, -+ , QY] € RE*N Then, we have the following lemma.

Lemma 6. Suppose the Assumption 2 and 3 hold. For the consensus error matrix, we have
1Qrs1l] <KIN?A*||Qol| + k5N?B (17)

where y = (1=n¥=1)- (14+28) < L, x1 = 2(1+28)(1+ 5~ V=) and f, = 200" Vv

Proof. By equation 7, the parameter update W}, for agent 7 at iteration k can be written as follows
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+ ¢ (s, T+1)T“)2 — ¢(sk, ) wi] - P(sk,7)

—wj+ o Z 6 (5009 (s0r1) = d(s)) w}

Z Thort1 BZ o= (1= B) 1) d(sm,r). (18)

After a consensus step, the update will be

Wh = Y Ali, ) -0

JEN;
3 M—1 _
=Y AG,j) - [wl + o 2 Oskr)e(shri1) — $(s1,7)] wy
]E./V'i =0
B M-—1 . T _ o
0 Do g = B (=B "k — (1= B)7 ) o (s.)]
=0 1=1
M—1
= A(i, 7) wk—i——z (sk,7)[P(sk,r11) — D(Sk,7)] ZAZJ Sw],
JEN; = JEN;
M—1
8 - iy
MZ (Sk,r) zj\;AZ] rkr+1 ﬁz lrfcl (1= B)" o)
=0 VIS

v ()4 S o o) — bl - (417
=0

M-1 -
+ % ; ¢(3k,T)Ai7:(Tk,T+1 - ﬁ;(l - B)T_lTk,l — (1= 8)"po) (19)

where w;, = [w,i7 wi, e ,w,iv] € REXN is the matrix form of all parameters at time k, A, . is
the i-th row of matrix A and r; = (r}.;,- -+ ,7%;). Now we consider the average dynamics of the

algorithm. Recall wy, = % DN wi, then using equation 19 we have

Wrt1 = E wk+1

16./\/
1 ﬂ — T T
=N (Wk M Z (8k,7)[P(Sk,rt1) — G(sk,7)]" Wi+ (Ai:)
iEN 7=0
3 M-1
+MZ¢(8]€T) (g1 — 52 1-p8)7" Tkl—(l—ﬁ)TMO)>
7=0
3 M-1 1
= Wi 14 Y Bk [b(skrr1) — sk oW -1
Nk i 2 Sk Sk,r+1 Sk, N Wk
3 M-1
3 2 ko) LS A — BZ (1= B) "y = (1= B)" o)
=0 ieN
M-1
= wy, + % Z G (k) [B(81,711) — B(sn,7)] W
3 MflT_O 1
+ 27 2 ¢(sk,T)N (Teyrt1 — ﬂz 1= 8)""rey = (1= B) o)

16
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B M—1
= Wg 7 ¢ S 7' 5 T ) - ¢(5 ,,T)]T U
M < k, k,7+1 k Wi
/8 M—-1 T
+ o7 2o k) (Thrir = B > (=) e — (1= B)po) (20)
=0 1=1

where 7, ; = N DN Thl-

Given an agent i € \, we consider the consensus error at time k and recall Qi = w} — wy. Then,
we have

Q;H-l :w}c+1 — W41
=wp - (Ai)" — W+ Z G (k) [B(sh,711) — o))" (Wi - (Ai)" — wp)

M—-1

1 T
Z ¢) Sk, 7' z - N]-T)(Tk,r-l-l - ﬁZ(l - ﬁ)‘rilrk,l - (1 - B)TMO) (21)
Then, for the matrix form Qj = [Qllw T ,fov} € RE*N we have
Qi1 =QrA” + — Z O(sk,0)[B(s1,741) — B(s1,7)] T QAT

+£A§1¢(s )[(A—ill (r le— Tk — (1= ) o))"
MT:o kT N k,r+1 — k,l Mo

M—-1

_Q AT + — Z ¢ Sk, 7' 3k,7'+1) - ¢(Ska"')]TQkAT

M-
6 - . 1
+ 7 z_: (Sk,r) [Thyr+1 — ﬁlz; (1- ey — (1= B) o) (A - NllT)

(22)

where the first equality is due to A being doubly stochastic. For convenience, denote B =

11 S 6(sk,m)[0(sk,r 1) — 0|7 and Cp = 5 S0 dsn s = BEL (1 -
B)"try, — (1 — B)" o] ™. Then, iteratively we have

Qi =(1 + BBYQuAT + 5Ck(A — - 117)
k k

k
H I+ BB)Qo(A")* ! + 8> ]I+ BB;)CH(A - —11T)Ak @3

t=0 §>¢

Then, the norm of the consensus error is following

Q1] —HH I+ BB;)Qq(AT)H! +ﬁZH I+ BB;)Ci(A— fllT)A‘“ ‘Il

t= 0t>t

k

1

<TI0+ BBl [1Qo(AT)* ] +BZH 17+ BB - |Gl - I(A = F11T) AR,
t=0 =0 £>¢

(24)

Note that since A is doubly stochastic, sois A”. Let (A”)!}" be the i-th column of matrix (A )+1,
From Nedic & Ozdaglar (2009), we know that

1Qo(AT)E | = 1Qo (A — Qo%m

17



Published as a conference paper at ICLR 2022

=1 (ANf - )Qéll

JEN
<y o |An *| Q|
JEN
L4p~ (V7D N—1yk+1 j
<N-. ZWO_U ) I}g}f}”@%”
<2N (147~ NI (1 =N |Qoll- (25)

Hence, ||QoA* || < 2N2(1 + 7~ N=D)(1 — nV=1)% . ||Qo||. To bound the first term in the RHS
of equation 24, we have

k k
ITT¢ +8BoIl < [T 11 + 8Bl

t=0 t=0

k
< LTI+ BI1B)
t=0

k
<[[a+28) = +28)"". (26)
t=0
In order to make sure it converges to the neighborhood of a consensus in the limit, the step size has
N
to satisfy v := (1 — ™ ~1) - (1 4+ 28) < 1, which results in 3 < W Hence, for the first

term in the RHS of equation 24, we have

k
I T+ BB - 1QoA* | < k1 N?4*/1Qu|
t=0
where 1, = 2(1 +28)(1 +n~V-1).
Furthermore, we have

1 (N Nk
1A = 117) 4| = [JAF — S117 <2N2(1 )1 N @)

And ||Cy|| < 2N7max, Where ryax = sup; , , (s, a). This is because

M-1
||Ck”—||7z¢3k7 Thyrt1 — BZ (1=B) " res — (1= B) ol "l
1 M-—1
§MZ||¢(SI€T)[TI€T+1 ﬁz 1= B) e = (1= B) o] " ||
7=0 =1
1 M-1
< g7 22 NleGenll- ks = ﬁz (1= B)""rrp— (1= B) pol|
=0
M-—1
SM [||7“kr+1\|+ﬂz )" lrieall + (1= 8)7 ol
7=0
M—-1
i (-
< — N7max 1 NTmax 1- "N max] = 2N Tmax-
S 2 T By N+ (12 ) N ] = 2087

Then for the second term of equation 24, we have

k k
83 TTI0 + BB -Gl 1A~ 11745

t=0 >t
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k
<BY (1+28)" 7" 2N oy - 2N (17~ N7D) (1 = N mh)A
t=0

k
B 1— k+1
=r28 Y 7H ! = kN B — (28)
-7
t=0
where ko = 4(1 + n_(N _1))rmax. Further, for consensus error equation 24, we have
1— ,.ykJrl

T <mNIQoll + RNPB (29)

|Qir1]] < K1N*Y¥||Qo| + k2 N3B

where k5 = 2. O
-

The corresponding average parameter under the pohcy my will converge to the solutron to
the following equation w; = A, 'by, where Ag = Eswde(s)[qb( s)(p(s") — d(s)T], by =

E(s,a)ng(s,a)[(’F(& a’) - J(@))gb( )] and T(S G,) - N ZlENT (S a)

Now consider ||@, — w*||. Recall the from the average parameter equation equation 20 and the
corresponding ODE is

Wy = Agwg + bg. (30)

For the difference between average dynamics and the optimal value, we have the following lemma.

Lemma 7. For 8 < min{3&, & ;o pand M > (A +ﬁ)%w we have

A 1 1536 4R2 1 -1
Bfljwx — wpl[3] < (1= 5 8)"|wo — whll3 + (5 +5) ( (+ )QLA; (== Do)

€2y

Proof. The proof follows from verifying the Assumption 3 of Xu et al. (2020), then we can apply
the results from Theorem 4 of Xu et al. (2020).

1. Foritem 1 in the assumption, it’s easy to check that || Ag|| < C4 = 4 by Assumption 4 and
bO § Cb = 2rmax-

2. For item 2, it holds because of Lemma 3.
3. For item 3, it holds because of Lemma 1.

And we recall that the bound on ||w}|| is R,, = 4”‘“ . Hence, by Theorem 4 of Xu et al. (2020),

8 < rnin{s)‘TAQ, ﬁ} and M > (2 — + 25)%&1)"} equation 31 holds. O
A

A.4 PROOF OF THEOREM 2

As a result from Lemma 4 and Lemma 7, we provide the following proof for Theorem 2.

Proof. Therefore, by equation 17 and equation 31, we have
N
E[Y  llwi —wjll?
i=1

N N
<2E[)  |lw — ok ) + 2E[Y  [lox — wp||*]
i=1 i=1

< 2/|Q|l* + 2NE[||ox — wpl[’]

M

< 2(m N>y Qul| + K5 N?B)* + 2N (1 B lwo — wylf3
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o M DL~

< WN'Y?K 4+ wIN®B? 4 kg N5 B+ 2N(1 - %B)KH?DO —wplf3 + %N
where &7 = 2r7||Qoll* K72 = 26%, Kz = 4mikb[|Qoll and ks = (5 +
3) 3072(4Rfuar_,§j;),(££‘1+(n71)p] _ O

A.5 PROOF OF THEOREM 3

We use w; to denote the optimal value function parameter under policy 6; at time ¢ and
wy = [(w})T,---, (wN)T]T € RN*EK which is the aggregated function approximation pa-
rameters from Line 2 of Algorithm 2. Recall the (5;[ generated by Line 18 of Algorithm 2,
which is the i-th agent’s estimate of the global TD-error from sample [ at time t after con-
sensus. - Let vj(wy) = 5 33,20 0}, (we) - wi and vi(we) = [(w} (w)" -, (0 (w)"]",
1 * B-1 * 7 * * *
hi(wy) = % 1= Oru(wy) - ¥4, and ht(w_t) = [(htl(wt))Ta s a(hiv(wt)_)T]T’ Advy(s,a) =
Es’~P(-|s,a),r~dr(s,a) [511)(57(1’ 5/)|Sv a’} and gz(w7 9) = E[Ade(Sya)i/Jei (57az)]’ where dr(sa CL) is
the reward distribution of state-action pair (s, a). By Taylor expansion and the Lipschitz property
from Assumption 6, we have

)

L
(0041) 2 J(0) + (Vo (00), 01 = 00) = - |10041 = 00l

LJOé2

= J(0:) + (Vo (01),vi(wi) — Vo J (0r) + Vo J (0:)) — [|vg (wy)[]?

LJOZQ

= J(0:) + al[Vo J (00> + (VT (6,), ve(wi) — Vo (6:)) —
— Vo (6:) + Vo (6:)|]?

|[ve (we)

1 1
> J(0:) + (0 = Lya®)|[VaJ 00)]1” = (o + Lya®)lvi(we) = VoI (6,)]?
where the last inequality is because
1 1
(VoJ(01), ve(we) = Vo (6,)) = =5 [[Vo T (6] = 5llvi(we) = Vo (O],
and

[[ve(we) = VoI (6:) + Vo (0:)]1* < 2[ve(we) = Vo (0)|* + 2| VoI (00)|*.  (32)

Taking expectations on both sides conditioned on the filtration J; and rearranging the terms, we
have

(%a — Lyo®)E[||VoJ (0|21 F:] < E[J(0s41)|F:] — J(6;)

1
+(gat Lya®)E[|[vy(we) — Vo J (8,)]1|F]- (33)
Then, we establish upper bound on the third term of the RHS. By definition, we have
[[ve(we) — Vo J (6:)]]?
= [Joe(we) = ve(wy) +ve(wy) = he(wy) + he(wy) — glwy, 0:) + g(wy,0:) — VoI (6,)|[
< 6|[ve (wy) — ve(wy)[1? + 6[[vs(wy) — he(w)|* + 6||he(wi) — g(wy, 0)]|?
+6[lg(wy, 0r) = VoI (0] (34)

We note that [[vg(w;) — ve(w))||> = 3, n |[vi(wi) — vi(w)||* and the other three terms in equa-
tion 34 can also be similarly decomposed. For the first term in the RHS of equation 34, we have

i (we) — wi (wy)]?
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B-1
—||*Z5tz wy) 7/%1 Z ',z(wf)-wZ,ZIIQ
=0
1 B2 - ,
= ||§ Z[‘S;#l(wt) - 5%,1(“’:)] '1/4,1”2
=0
B-1
= Il Y[ — wi T [os0e10) — 6(s00)]-
=0
< e Al v = wi 1) 0(su04) = (el vl
< o AP (sta1) = SCse)l Plwe — wf L7112 |71
N .
<d-flwe—wf @1 =4 Jwf - wi? (35)
i=1

where the third equality is from
~:f,z(wt) - 5§z(w2‘)
= [Aler];6 0 (wp) — [A'=0]i81 (w])
= [Aler] [0 (we) — S (w])]

T (st441)(wf — wi) — @7 (se0)(w) — wy)
— [Atesn), :

T (se0p1) (Wl — wf) — 67 (s0.1)(wp — wy)
= (At (w — wi 1) [$(50141) — B(s00)]-

For the second term in the RHS of equation 34, we have

Hvi(wt) hl(wt)HQ

1 B-1
:HE ( wtl Z5tlwt wtl”z
=0
B-1
1 NG * * 7 2
:HE [ t,l(wt)_(st,l(wt)]'%,lu
=0
1 = tgossi 1 T 5 * % 2
=l 32 (1] — 17 ) Gt - v
1=0
; 1 < * i
<m0 = A7) B vl

1 o )
< m Ateosiv]. — —1T1(12 . |5 FN2 . ([0 (12
- 16{07“,37%_1} H[ ]Z N || H t;l(wt)H HT/Jt,l”

L4p~ V=D Nt °
S max N(2w(l — 77N 1)tgomp+1)2 . Hét,l(wt )||2

1€{0,- ,B—1}
< 16N2((1 + ﬂ_(N_l))(]. _ nN—l)tgossip)2(rmax + Rw)2 _ /€3N2(1 o 77N_1)2tgossip (36)
where k3 = 16(1 + 7~V "1)2(r ., + Ry)%. We note that the second equality is because
67 1 (wf) — 01 (wy)

T * 1 g *
= [Aferiby 1 (w]) = 5170 (w])

_ ([Atgosslp]i — N]_T) (St,l<wt )
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For the last inequality, we note that J; ;(w*) is bounded because rewards and feature vectors are
bounded, p® is bounded for constant step size and w; is bounded from the critic step. That is, for
j € N entry in 0, ;(w*) by definition,
5{,[(“’*) = 7’{,1 - N{,l + [P(star1) — d(sen)] " wy.
Hence, its 2-norm bound is
167 (W) = llry ;= gy + [D(st011) — D(se.0)] wi||

< Irg 1+ s o1+ e Cseaga) = Slsea)ll - [y |

< Tmax + Tmax + [|‘¢(St,l+1)|| + ||¢(5t,l)||] ' Rw < 2"dmax + 2Rw (37)
For the last term in equation 34, we have

llg(wf, 0:) — Vo J (6,)]?
= [|Eay, (s.0) [AQVu; (5, )6, (5, a)] = Eqy (s,.0)[Adve, (5, a)g, (5, a)]|
= [|Ed, (s.0) [(AdVa; (5, 0) — Advg, (s,a)) g, (s, a)]||?

< (Edy, s, [[[(AdVa; (5, a) — Adve, (s, a))e, (s, a)|[])?
< (Edy, (s, [||AdVu; (5, a) — Adve, (s, )| - |6, (s, a)[])?
< (Bdy, (s,0) [[AdVu; (3, 0) — Advg, (s, a)[])?
= (Edy, (s,0) [E[Vaog ()] 5, a] = Vauy (5) — E[Vo; (5')]s, a] + Vg (5)]])
< (Edy, (s,0) [[E[Vaoz (8) = Vo; ()]s, al| + [Vauz (5) = Vey (5)]])?
< (Bay, (s,0) [El[Vaog (8) = Vor ()]s, a] + [Vioz (5) = Vo (5)1])?
= (E[|Vu; (5) = Vor (s)[] + El[ Vg (5) = Vo; (5)1])?
< A(E[| Vg (5) = Vo; (5)I1)? < 4E[[Viuy (5) — Vg (5)°] < 4€5pmex. (38)

For each i € A/, we have
[y (wy) — g* (wy, 67)]]?

1 2= . _
= <§ Z 5t,ll(w:)¢9§ —Eq a[Ade (s, a)d’et S, a Z 6t I wt 7/’0@ —E; a[AdeZ (S,a)zbéz(s,al)b

11=0 lg 0

B—1B-1 ) ) ) )
== Z > (Be, (W] )b — Es o[Advu; (s, @)t (s,a")], 00,1, (0] Jibg; — Es alAdVag (5, a)10p: (5,a")])

ll_Olz 0

B-1
1 . . ;
B2 Z H(st,l(wt)%; - ]Es,a[Ade;(s,a)@bg%(&a )]||2
1=0

1 . _ . .
+ 5 D Boy (W] )thg; — B a[AdVay (5, a)0p (5,0")], 81,1, (w7 )g; — B a[Adva (5,0)851 1, (s,a")]).
l1#l2

Taking expectation over the filtration F;, we have
E[l|hy(w) — g'(w}, ;)| *| 7]
=,
- = Z B [[1000(w7 g — B alAdvig (5, @), s, 01|21

s 3 B (001 (0 W — B v (5,010 . )] B, (g — Eva A s ) (5,00)]) ]
l1#l2

1 . _ . .
5 D0 B [0, (0] — BualAdvag (5, @), (5,01)], 8, (w7 gy — By alAdva (5, @) (5,0)]) 7
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where the inequality follows from triangle inequality and the facts that |d; 4, (w:)d}gé < 27max +
2R,, and |]Es7a[Adet*(s,a)z/)éi(s,ai)ﬂ = |]E[6t7ll(w2‘)w9§]| < 27max + 2Rw. WLOG, for the
following term, we suppose I; < l2. Then we have

E | (810, (w7 g; — B alAdva (5, @) (5, 01)], 00,1, (0] gy — Bl Advag (s, @)i8hs (s, a')])

—E [E | (0u1, (0] Woo; — BoalAdVz (5,005 (5,0°)]: Oy (] gy — Bl AV (5, @)ty (5,1 P, | 12
= [ (310, (w} Wg; — EoalAdvag (5, 0)05: (5, 0V, E 8o, (0] gy — EsalAdva; <s,a>w;&§<s,az>]|m}>\ |
=E [(61,1, (1] JWg; — Bl Advayg (s, @)t6hs (5, '), B3y, (w7 gy

=B (611, (7 ); — BoalAdvarg (5, )05 (5, 0°)] LA (501051, ) 005  Fits] — Bl Advg (5, @) (s, 01|

Fuun] = Evial Adv; (s, @) (s, a7

<E [16¢.0, (w; )g; — Es,alAdvay (s, a)tbgi (s, a")]|| - [[E[AQVw; (1,02, aris)¥0i [ Fr,] — Esa[AdVay (5, )1y, (S’ai)]|||ft}
§2(2Tmax + 2Rw)E HE[Ade; (St,lzaat,lz)%;‘ ]:t,h] —Es a[Adet (5 a)%t(s a )]|||]:t}
<16(Tmax + Ru)2kpl2 0

where the last inequality follows from
IE[AVw; (5t0,, aei)Vai | Fein] — Es,alAdva; (s, a)tg (s, a")]]]
=Y AV (St @t )0 (1005 Q1) P(Stis Grts | Fey) = Y Advae (s, a)tb: (s, a)vg, (s, a)|

(st,lz1at,l2) (S)a)

<" llAdva; (s, )il (s.a)|| - [P0 (5,0l Fos,) — g, (5, 0)|

s,a

<2(2rmax + 2Ry) - [|P2 71 (s, 0l Fry,) — v(s,a)||rv
<A(Tmax + R )rp'2 7'

Then, we have

E[[|h;(w}) — g (wf, 01)]*| Fi]
1
B—[16B(r,mX + Ry)? + 16(rmax + Rw)QH Z pl2_ll]
l2#l
1 32(7“maX + Ry)%*kpB
<7
L
1 M+02k—1
S 6(rmax +Rw) [ +( K )p] . (39)
B(1-p)
Then, we have
N .
E[[[vr(wr) — VoJ (0)||7] <2AN > [[w) — w] ||* + 653N (1 — N ~1)2eso
i=1
96(Tmmx + R )2[1 + (2/43 — l)p]
24 critic 2 w N 40
+ fapprox B(]. _ p) ( )

As a result, substituting equation equation 40 into equation 33 and taking expectation over JF; on
both sides, we have

(30— LsaE[[¥0.1(00) |

N
< ELJ(00+1)] ~ B0 + (o + Lya?) (24N >l = w2
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3 it max w 2 1 2k —1
+61433N5(1 o nN*l)thossip + 24&';3};((3”( + 96 (T + RB)(l[_;)( o )p] N) . (41)

By considering step size o = i, and dividing both sides of previous equation by ﬁ, we have

N
E[[VoJ(00)|]°] <16L;(E[J(0r41)] — E[J (6:)]) + 72NZ [Jw; —wi ||

: max w 2 1 2 - 1
18k N3 (L — V)2t 4 7ogetite | ggapy (e & Ru) [+ (21— Do)

approx B(l . p)
(42)
Let 7" be a random variable that takes value uniformly among {1, --- ,T'}. Taking summation over
t ={1,---,T} and dividing by T, we have
1 X
E[[[VoJ (02)I1°] =% > E[|IVeJ (6:)]1°]
t=1
T N 7 *
LI6L,(EVOn)] ~EJ(00)]) | o S T [t — |
- T T
2 _
+ 18/‘E3N3<1 _ T)N71)2tgossip + 72 glrjlpt)i'((:)x + 288 (’rmax + R’w) [1 + (2K/ 1)p] N
B(1-p)
N 7 *
< 16LJEZ[1J(9T)} + 72N >iz1 ||U;i Wy |I?

iti max Rw 2 1 25 — 1
+ 18K3N3(1 _ nN—1>2tgosSip + 72€crmc 4288 (7“ -+ ) [ + ( K )P]

) N.
approx B(l — P)
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